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monthly fields are comparable in magnitude to the bias cor-
rection term and are small compared with the variations in 
6-hourly data. Any inconsistency among the independently 
adjusted forcing fields is likely to be small and have little 
impact. For quantifying the mean response to future exter-
nal forcing, this approach avoids the need to perform RCM 
large ensemble simulations forced by different GCM out-
puts, which can be very expensive. It also allows changes 
in transient weather patterns to be included in the lateral 
forcing, in contrast to the Pseudo Global Warming (PGW) 
approach, in which only the mean climate change is con-
sidered. However, it does not address the uncertainty asso-
ciated with internal variability or inter-model spreads. The 
simulated transient weather changes may also be unrep-
resentative of other models. This new approach has been 
applied to construct the forcing data for the second phase of 
the WRF-based downscaling over much of North America 
with 4 km grid spacing.

Keywords Climate downscaling · Forcing data · Regional 
climate change · WRF · North America

1 Introduction

To quantify regional climate change and assess its 
impacts, detailed climate change information at fine reso-
lution (e.g., on grids of 1–5 km) is often needed (Giorgi 
and Mearns 1991; Wilby and Wigley 1997; Giorgi et al. 
2006). Current global climate models (GCMs) can 
only produce projections on grids of 50-200km (Col-
lins et  al. 2013), insufficient for quantifying regional 
and local climate change and their impacts. To meet 
this need, dynamic downscaling using regional climate 
models (RCMs) (e.g., Girogi and Mearns 1991; Giorgi 
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and Lionello 2008; Mearn et  al. 2009; Rasmussen et  al. 
2011, 2014; Jacob et  al. 2014; Vautard et  al. 2014; 
Wang and Kotamarthi 2015; Liu et  al. 2016), statistical 
downscaling (Wilby and Wigley 1997), and other meth-
ods (Maraun et  al. 2010; Themeßl et  al. 2011; Walton 
et  al. 2015) have been widely used to downscale future 
climate projections from GCMs to finer grids. To force 
the RCMs, 6-hourly data from individual GCM simula-
tions (either with or without a bias correction, Bruyère 
et  al. 2014) have traditionally been used to provide the 
forcing at the lateral boundaries for both a current and a 
future period of 10–30 years. The difference in the mean 
fields from the RCM simulations between the current 
and future periods is often interpreted as the response 
to future changes in greenhouse gases (GHGs) and other 
external climate drivers. However, it is known that inter-
nal climate variability (ICV) can generate large variations 
in precipitation and other atmospheric fields on decadal 
to multi-decadal time scales over regional to continental 
scales within a GCM (Deser et al. 2012a, b, 2014; Wal-
lace et al. 2016; Dai and Bloecker 2017a). Thus, the lat-
eral forcing and the resultant downscaled changes within 
the RCM domain based on individual GCM simulations 
contain both GHG-forced long-term changes and ICV-
induced decadal-multidecadal variations, which can 
affect the mean fields averaged over a period of 10–30 
years. Furthermore, the GHG-forced response from one 
model may differ from another (Knutti et  al. 2010; Col-
lins et al. 2013). These issues complicate the interpreta-
tion of the downscaled changes as they consist of both 
model-dependent GHG-forced and ICV-induced changes.

The ICV for a given period depends on the starting 
initial conditions in a coupled GCM or the real world. 
Current GCM simulations of future climates start from 
random initial conditions as observations are insufficient 
to quantify past states of the climate system; thus they 
are meant to capture the forced response to future GHG 
changes (after averaging over a number of simulations), 
but not to simulate future ICV. Therefore, RCM-based 
downscaling should also focus on GHG-forced changes. 
For this purpose, the ICV-induced changes in the down-
scaled fields should be eliminated, or be separated and 
used as a measure of ICV-induced uncertainty when pos-
sible. One way to do that is to perform a large ensemble 
of RCM simulations forced by different GCM simulations 
(e.g., Mearns et al. 2009; Jacob et al. 2014; Vautard et al. 
2014), and then average the RCM simulations over the 
ensemble members to smooth out the random ICV, while 
the spread among the ensemble members can be used as 
a partial measure of the ICV. However, performing such 
a large ensemble of RCM simulations is very expensive 
as they require large computational and human resources, 
especially for high-resolution (with grid spacing <10 km) 

simulations over large domains (e.g., Prein et  al. 2015; 
Liu et al. 2016; Kendon et al. 2017).

Another approach to downscaling forced future climate 
change is the so-called Pseudo-Global Warming (PGW) 
experiments (e.g., Schär et  al. 1996; Hara et  al. 2008; 
Kawase et al. 2009; Rasmussen et al. 2011, 2014; Liu et al. 
2016), in which a mean perturbation from a GCM multi-
model ensemble of projections is added to 6-hourly forcing 
data from a reanalysis product (thus no bias correction is 
needed). The PGW forcing captures the mean response to 
future GHG changes representative of multi-model ensem-
ble projections, and ensures that the changes in the forcing 
data are purely due to GHG forcing but not ICV. However, 
it does not include changes in transient weather activities 
which may limit the RCM’s ability to simulate the response 
of extreme events, such as severe storms and intense pre-
cipitation (Dai et  al. 2017b), and daily extreme tempera-
tures. This is a potential shortcoming for analyzing changes 
in extreme events (Prein e al. 2017), which is a common 
application of RCM-downscaled data.

To overcome the shortcomings in the traditional RCM-
based climate downscaling methods, we propose a new 
approach to construct representative forcing data for down-
scaling GCM projections of externally-forced future cli-
mate change. In principal, this approach can be applied 
to both RCM-based dynamic downscaling (Giorgi and 
Mearns 1991) and statistical downscaling (Wilby et  al. 
1997), although for the latter, one can easily perform an 
ensemble of downscaling to derive the forced change and 
the ICV. The new approach combines the transient weather 
signal from one GCM simulation with the monthly mean 
climate states derived from the multi-model ensemble 
mean for the present and future periods, together with a 
bias correction term. It ensures that the mean differences in 
the forcing data between the present and future periods rep-
resent GHG-forced changes only and are representative of 
the multi-model ensemble mean, while changes in transient 
weather activities are also considered based on one select 
GCM simulation. We emphasize that the new approach 
focuses only on externally-forced climate change. Uncer-
tainties associated with ICV or inter-model spreads of the 
simulated response will need to be addressed using other 
methods, such as a combination of statistical and dynamic 
downscaling (Walton et al. 2015). We show that the adjust-
ments through the monthly fields are comparable in mag-
nitude to mean bias corrections and they are small com-
pared with the variations in 6-hourly data. This suggests 
that any inconsistency among the independently adjusted 
forcing fields is likely to be small. This approach allows 
the downscaled regional climate change to be representa-
tive of the response to future GHG forcing without the need 
to perform an ensemble of RCM simulations, which can be 
very expensive and impractical for convection-permitting 
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downscaling (Prein et  al. 2015; Kendon et  al. 2017) over 
a large domain. This new approach has been used to con-
struct the forcing data for the second phase of the WRF-
based downscaling over much of North America with 
4 km grid spacing (Liu et al. 2016). Here we describe the 
approach and address some of the potential issues it may 
encounter using the planned WRF-based downscaling as an 
example.

2  Description of the new approach

Future climate changes are often quantified by examin-
ing differences in the mean fields averaged over a current 
and a future period of 10–30 years (e.g., 1980–1999 vs. 
2080–2099; Collins et  al. 2013). To achieve that, climate 
downscaling is often carried out over two such periods. 
Ideally, periods of ~30 years should be used for defin-
ing a stable climate (i.e. to average out most of the ICV-
induced variations); however, for high-resolution simula-
tions over a large domain (e.g., over most North America, 
Liu et al. 2016), periods of 10–20 years are more practical 
due to their high computational demands. For such short 
periods, the influence of ICV can be very large over many 
regions (Dai et al. 2013; Dong and Dai 2015) and even for 
global averages (Dai et  al. 2015). Thus, how to minimize 
the influence of ICV in the forcing data for 3-dimensional 
horizontal winds (u,v), air temperature (T), specific or rela-
tive humidity (q or RH) and geopotential height (Z), and 
2-dimensional sea-surface temperature (SST) and sea-level 
pressure (SLP) (and thus the resultant downscaled fields) 
over such a short period is even more critical for such 
downscaling.

Traditionally, 6-hourly forcing data  (YC) with a bias 
correction term over the current simulation period can be 
expressed as (e.g., Bruyère et al. 2014):

where  XC = 6-hourly data for variable X from a GCM run 
for the current period;  XMC = monthly climatology of X 
over a current climatological period  (TC) from the GCM 
run; X′

C
 =  XC −  XMC: X′

C
 is the current weather and inter-

annual variations in the GCM run; ZM = monthly climatol-
ogy from a reanalysis over  TC.

Note that the current period (e.g., 1996–2005) of down-
scaling may be too short for defining a stable mean bias; 
instead, a longer period (e.g.,  TC  =  1976–2005) may be 
used for computing the climatology (i.e.,  XMC and ZM). In 
this case, the X′

C
 would be the transient variations relative 

to the mean over  TC rather than over the current simulation 
period.
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For the future simulation period (e.g., 2091–2100), the 
traditional method would construct the 6-hourly forcing 
data as:

where  XF = 6-hourly data for variable X from the same 
GCM run for the future period;  XMF = monthly clima-
tology of X over a future climatological period  (TF, e.g., 
 TF  =  2071–2100) from the GCM run; X′

F
   =  XF −  XMF 

(future weather and inter-annual variations from the same 
GCM run).

The new approach uses equations similar to Eqs. (1–2), 
except that a multi-model ensemble mean is used for defin-
ing the monthly climatology and the mean model bias, and 
the forcing for the current period is exactly the same as in 
the traditional method after the bias correction:

where  XEC = monthly climatology of X over a current 
climatological period  (TC) from a multi-model ensemble 
mean; X′

C
 =  XC −  XMC (current weather and inter-annual 

variations) from one GCM run. The X′

C
,  XC and  XMC are 

the same as for Eq. (1); ZM = monthly climatology from a 
reanalysis over  TC, same as for Eq. (1).

Thus, the forcing from Eq.  (3) is a combination of the 
multi-model ensemble-mean monthly climatology and 
the transient weather and inter-annual variations from one 
select model simulation, plus a bias correction term. The 
only difference between Eqs. (3) and (1) is the replacement 
of  XMC (climatology from the select model run) by  XEC 
(the climatology from the multi-model ensemble mean) in 
defining the current climatology and the model mean bias. 
However, the final forcing data for the current period are 
the same (ZM +  X′

C
) for both methods. The difference is in 

the interpretation.
Similarly, for the future period, the new approach uses

where  XEF = monthly climatology of X over a future cli-
matological period  (TF) from the same multi-model ensem-
ble mean; X′

F
 =  XF −  XMF (future weather and inter-annual 

variations from the same GCM run as for X′

C
). The X′

F
,  XF 

and  XMF are the same as for Eq. (2).
Equation (4) can be rearranged to

The first term in the right-hand side of Eq.  (5) is the 
future forcing from the traditional method (Eq.  2), and 
the second term is the difference of the simulated future 
mean change between the select GCM and the multi-
model ensemble. Thus, Eq.  (4) can be considered as 
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Eq.  (2) plus a mean bias term to correct the simulated 
future change by the select GCM relative to the multi-
model ensemble mean. This term should be comparable 
in magnitude to the mean bias term  (XMC-ZM). Thus, 
the adjustments through monthly climatological fields in 
the new method are not very different from those for the 
bias correction in the traditional method.

The mean change between the current and future forc-
ing data in this case is  XEF −  XEC, which represents 
the change from  TC to  TF (e.g., from 1976 to 2005 to 
2071–2100, a 95 year interval) based on the multi-model 
ensemble mean, in contrast to that based on the select 
GCM as in the traditional method. This ensures that the 
mean forcing change is representative of the multi-model 
ensemble simulations, which likely represent our best 
projection of future climate change (Knutti et  al. 2010), 
and that the time-averaged forcing change is due primar-
ily to future GHG and other anthropogenic changes, not 
due to ICV. However, the transient variations in our forc-
ing are still affected by ICV. In addition, the inclusion of 
the transient term (X′

C
 and X′

F
) from one select model in 

the forcing from the new approach allows the downscal-
ing to include temporal and spatial changes in transient 
weather activities. This is important for studying changes 
in daily extreme events. Thus, the new approach over-
comes the major shortcomings in both the traditional 
approach and the PGW method.

In the above, the mean forcing change is between 
 TC and  TF (e.g., 1976–2005 to 2071–2100, a 95-year 
interval), not between the two simulation periods (e.g., 
1996–2005 and 2091–2100, also a 95  year interval), 
which are relevant only for defining the transient terms 
(X′

C
 and X′

F
). In general, the shorter simulation periods 

may cover only the later part of the climatological peri-
ods  (TC and  TF) to ensure that the simulations are feasi-
ble and the time interval between them is similar to that 
between  TC and  TF. One should note that simulations over 
a relative short period (e.g., 10 years) may not provide 

enough sampling for very extreme events, and a longer 
simulation period (e.g., 20–30 years) is recommended for 
studying changes in extremes.

3  Potential inconsistency

The adjustments through the monthly climatology are 
done separately for each of the forcing variables, which 
usually include u, v, T, q or RH, Z, SST, and SLP. This 
could induce some internal inconsistency among these 
fields due to the nonlinearity in the relationship among 
them. That is, the physically-consistent 6-hourly fields 
from the select GCM simulation may become physically-
inconsistent among them because of the adjustments 
through the monthly climatology and the bias correction. 
However, we argue below that any such inconsistency 
should be small and have minor impacts on the down-
scaled fields away from the lateral boundaries.

First, we notice that the adjustment and forcing data 
are the same for the current period in our new and tradi-
tional approaches (cf. Eqs.  (1), (3)), and the adjustment 
is through replacing the model climatology by the rea-
nalysis climatology (ZM) for both approaches. This has 
been done previously in dynamic downscaling (e.g., Bru-
yère et  al. 2014; Xu and Yang 2015) without noticeable 
inconsistency. There are likely several reasons for this. 
First, the difference in the climatology between a model 
and a reanalysis (in the order of 1–5 °C for T, Liu et al. 
2016) is considerably smaller at most locations than the 
transient variations in the 6-hourly data (in the order of 
10–20 °C for T), as illustrated by Fig. 1 for the daily tem-
perature anomalies from Lindenberg, Germany. Because 
of this, any inconsistency in the 6-hourly data from the 
adjustments in the monthly climatology is likely to be 
small. The second reason is that any such inconsistency 
will be smoothed out in the buffer zone around the lat-
eral boundaries by the regional model dynamics, leading 

Fig. 1  Observed anomalies of daily mean air temperature from Linderberg, Germany from 1907 to 2015. It shows that short-term variations are 
likely to be much larger than any adjustments for mean biases or climate changes in the twenty-first century
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to negligible impacts on the interior part of the regional 
domain. Thirdly, because the adjustment is applied to all 
the dynamic fields, the adjusted fields should be inter-
nally consistent if the relationship is linear or if the 
adjustment is small (in comparison with the total vari-
ance) so that the dynamical equations can be linearized. 
Finally, the WRF initialization process attempts to 
remove internal inconsistency among the forcing fields, 
thus minimizing any inconsistency in the final forcing 
data used by the model.

The adjustments to the future forcing (Eqs. 4, 5) consist 
of the mean bias correction  (XMC-ZM, discussed above) 
and the correction term [(XMF − XMC) − (XEF − XEC)], 
which should be comparable to, if not smaller than, the 
multi-model projected change  (XEF  −  XEC), which has 
been added to reanalysis forcing data in the PGW method 
(e.g., Liu et al. 2016). No internal inconsistency was found 
in previous PGW-based downscaling simulations (e.g., 
Rasmussen et  al. 2011, 2014; Liu et  al. 2016). This sug-
gests that the adjustment through the monthly mean fields 
 (XEF − XEC) is unlikely to cause significant inconsistency 
in the 6-hourly data, again presumably due to similar rea-
sons discussed above.

In summary, the adjustments through monthly mean 
fields in the new approach are comparable to the mean bias 
correction used in the traditional approach and the per-
turbation term of mean climate change used in the PGW 
method. These mean adjustments have not caused any 
noticeable inconsistency in previous downscaling studies, 
likely due to (1) the adjustments are small compared with 
the total variations in the forcing data so that any non-linear 
effects may be negligible and (2) the buffer zone around 
the lateral boundaries and WRF initialization system can 

smooth out such inconsistency, preventing it from affect-
ing the interior of the downscaling domain. Thus, internal 
inconsistency should not be a significant issue for 6-hourly 
data constructed by the new approach.

4  Selecting a model for the transient term

The transient terms X′

C
 and X′

F
 need to be derived from a 

single GCM simulation, preferably with relatively high 
spatial resolution. This model should show good perfor-
mance in simulating the current variability on 6-hourly to 
inter-annual time scales around the lateral boundaries of 
the regional domain for downscaling. For our WRF-based 
downscaling with 4  km grid spacing over most North 
America (Fig. 2; Liu et al. 2016), we evaluated five CMIP5 
models that had a grid spacing less than 1.5° and also 
provided 6-hourly data for the present and future climate 
under the RCP8.5 scenario. All the data were re-gridded 
onto a common 1° grid in the comparison. The mean bias 
 (XMC − ZM) and model-to-reanalysis ratio of the variance 
of X′

C
 for the period from 1979 to 2005 in comparison with 

the ERA-Interim reanalysis (Dee et al. 2011) are examined 
below for the contiguous US (CONUS) and the upstream 
western and southern zone (Fig. 2).

Figure 3 compares the normalized variance versus mean 
bias averaged over the whole CONUS for eight select 
fields (850 hPa T, u, v and q, 500 hPa u, v and Z, and SLP) 
from the five CMIP5 models. Similar plots are shown in 
Figs. 4 and 5 for the upstream western and southern bound-
ary zones which have the largest impact on the interior of 
the CONUS. Figures 3, 4 and 5 show that the variance of 
the transient variations (X′

C
) from the CCSM4 compares 

Fig. 2  The CCSM4 versus ERA-Interim ratio of the standard devia-
tion of JJA 500-hPa specific humidity during 1979–2005 for the 
transient variations (X′

C
) from daily to decadal time scales over the 

North American domain. The red and blue dashed lines outline the 

upstream western and southern boundary zones, which include the 
WRF model western and southern boundaries where the CCSM4 
model forcing will be used to drive the regional model
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favorably to the ERA-Interim among the five models. The 
mean biases for some of the fields (e.g., SLP and 500 hPa 
Z) are relatively large for the CCSM4; however, these mean 
biases should not have an effect here because the mean cli-
matology from this model will not be used to construct the 

forcing [cf. Eqs.  (3–4)]. The CCSM4 also has a relatively 
high resolution with 0.94° lat × 1.25° lon spacing. Given 
these considerations, the CCSM4 was chosen to provide 
the transient forcing data X′

C
 using one of its ensemble 

simulations.

Fig. 3  Scatter plots of regionally-averaged normalized variance (i.e., 
model-to-ERA-Interim ratio of the variance) of the transient varia-
tions (X′

C
) vs. mean bias  (XMC  −  ZM) for eight different fields for 

the whole CONUS for five CMIP5 models with relatively high reso-
lution. Each color represents one model (e.g., red = CCSM4) and 

each symbol is for one season or annual mean (e.g., circles for DJF). 
Models with the normalized variance close to one perform the best in 
simulating X′

C
. Note that the mean bias will be corrected through the 

bias correction term in Eqs. (3–4)

Fig. 4  Same as Fig. 3 but for the western zone shown in Fig. 2
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5  Summary and final remarks

In this short contribution, we discussed some of the prob-
lems in the existing approaches to construct 6-hourly forc-
ing data for dynamic downscaling, and proposed a new 
approach to overcome these shortcomings, which include 
the impact of realization-dependent ICV in the forcing and 
the lack of representativeness of the GHG-forced changes 
in the traditional method, and the lack of transient weather 
response in the PGW method. The new approach makes use 
of the multi-model ensemble mean for estimating the mean 
model bias and future climate change, and combines the 
future climate from a multi-model ensemble mean with the 
transient variations from one select model to generate the 
future forcing. For the current simulation period, the forc-
ing data from the new approach is the same as that from the 
traditional approach with a mean bias correction (Bruyère 
et al. 2014). Thus, the new approach ensures that the mean 
changes in the forcing data between the current and future 
periods are primarily due to external climate forcing with 
little contribution from ICV, and are representative of the 
multi-model ensemble-mean projections. It also includes 
forced changes in transient weather and inter-annual varia-
tions based on one select model simulation.

In theory, the adjustments through monthly climatol-
ogy for the bias correction and for the use of multi-model 
ensemble mean could generate some inconsistency among 
the different fields in the adjusted 6-hourly data because 
of the nonlinearity in the relationship among these fields. 
In practice, however, such adjustments have not produced 
noticeable inconsistency in previous downscaling simu-
lations (e.g., Bruyère et  al. 2014; Rasmussen et  al. 2011, 

2014; Liu et al. 2016). We argued that this may be because 
(1) the mean adjustments are generally small compared 
with the total variations in 6-hourly data so that any non-
linearity effect is likely to be small, and (2) the buffer zone 
in the regional model around the lateral boundaries can 
smooth out any such inconsistency. Thus, inconsistency 
among the modified fields is unlikely to be an issue in the 
forcing data generated by our new approach.

In selecting the global model for providing the transient 
variations (X′

C
 and X′

F
), one needs to consider how well a 

model simulates the variance of X′

C
 in comparison with a 

good reanalysis product over the simulation domain, espe-
cially around the upstream boundaries. Another factor is 
the resolution of the global model. For directly forcing the 
regional model without domain nesting, which complicates 
the downscaling work and decouples the forcing constraint 
from the GCM for the interior domains, the global model 
should have relatively high resolution for convection-per-
mitting downscaling to alleviate the large resolution jump 
between the RCM and GCM.

For quantifying the forced climate change, the new 
approach is better than using output from one or a few indi-
vidual GCM simulations, which often contain realization-
dependent ICV and may also be unrepresentative of other 
model-simulated response to future GHG forcing. How-
ever, the new approach does not address the uncertainties 
associated with ICV or inter-model spreads in the simu-
lated response. Furthermore, the simulated changes in tran-
sient weather patterns are based on one select GCM simu-
lation, which may not be representative of other models. A 
large ensemble of downscaling simulations is still needed 
to quantify these uncertainties, possibly through efficient 

Fig. 5  Same as Fig. 3 except for the southern zone shown in Fig. 2
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statistical downscaling (Themeßl et al. 2011; Walton et al. 
2015). Nevertheless, for those who can only afford a few 
RCM simulations, our new approach provides an efficient 
way for them to quantify the most likely response to future 
GHG increases.

A final remark is on spectral nudging within the entire 
downscaling domain (in contrast to the boundary forcing 
constraint discussed above) to reanalysis fields for large-
scale (>1000–2000 km) variations in the free troposphere. 
This technique is available within the WRF model (for 
nudging u, v, T, and Z) and has been commonly used to 
reduce the mean biases over a relatively large domain in 
present-day simulations, often with good success but at a 
price of considerable additional computational costs (e.g., 
Xu and Yang 2015; Liu et al. 2016). However, such a nudg-
ing puts a strong constraint on the large-scale downscaled 
fields, as it essentially brings the large-scale fields back to 
a pre-defined condition, which is the reanalysis field for 
the present-day run and the reanalysis plus GCM-derived 
perturbation for the PGW-based future simulation (e.g., 
Liu et al. 2016). Thus, the downscaled large-scale changes 
in the free troposphere (which also affects surface fields) 
are likely to resemble those from the global models, and 
thus only meso- and small-scale (<~1000  km) changes 
are captured in this type of downscaling. The PGW-based 
downscaling focuses on thermodynamic impacts of climate 
change, and the nudging keeps the same weather events 
(such as hurricanes and other extreme events) in both the 
current and future simulations. This makes it possible to 
study the impacts of future warming on recent extreme 
events if they were to occur in the future warmer climate. 
For non-PGW based downscaling, one does not have a 
standard to nudge to for the future climate, since one can-
not consider the GCM fields more reliable than the regional 
model simulations. Because of these reasons, we do not 
recommend spectral nudging in non-PGW based dynamic 
downscaling of future climate changes. One exception is 
simulations of the present-day conditions, in which spec-
tral nudging can further constrain the large-scale weather 
patterns to a reanalysis within the domain and thus greatly 
improve the simulations in comparison with observations. 
Without the nudging, the interior of a large domain is only 
weakly constrained by the boundary forcing and thus is 
allowed to deviate from the real world. This would make it 
incompatible with observations and thus difficult to evalu-
ate the model’s performance.
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