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The coarse spatial resolution of GCMs presents an impor-
tant limitation for simulating extreme ETCs, but Eady 
growth rate biases are likely just as relevant. Further bias 
reductions could be achieved by addressing processes that 
lead to an underestimation of lower tropospheric meridi-
onal temperature gradients.

Keywords  Explosive extratropical cyclones · Dynamical 
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1  Introduction

Extratropical cyclones (ETCs) affect the general circulation 
through the exchange of heat, moisture, and momentum, 
but also impact human activity through the generation of 
strong surface winds, high waves, storm surges, extreme 
precipitation, and associated hazardous conditions. Many 
of the most violent winter storms along North America’s 
Atlantic coast undergo rapid intensification, with deepen-
ing rates typical of “weather bombs” (Sanders and Gya-
kum 1980). These explosive ETCs (EETCs) have caused 
fatalities and billions of $USD property damage (Kocin 
et al. 1995), and remain difficult to forecast (Froude et al. 
2007). Given the severe weather conditions associated with 
EETCs, it is of great public interest to better understand 
how these events may evolve under a warming climate.

Global climate models (GCMs) reproduce the climatol-
ogy of observed ETC frequency and intensity reasonably 
well, with a tendency to slightly underestimate both vari-
ables and to simulate tracks that are too zonal (Lambert and 
Fyfe 2006; Ulbrich et al. 2008; Zappa et al. 2013a). GCMs 
tend to project an overall decline in ETC frequency as a 
response to anthropogenic greenhouse gas (GHG) forc-
ing, with a weak polar shift in the Northern Pacific, and 
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a downstream extension of the Atlantic storm track into 
Europe (Bengtsson et  al. 2006; McDonald 2011; Chang 
et  al. 2012; Collins et  al. 2013; Christensen et  al. 2013). 
The latter implies an increase in storm frequency close to 
the British Isles, and a decrease in storm frequency in the 
Norwegian and Mediterranean Seas and subtropical cen-
tral Atlantic (Zappa et  al. 2013b). The precipitation rates 
associated with ETCs are projected to increase along North 
America’s Atlantic coast (Zappa et  al. 2013b). GCM per-
formance in simulating EETCs is less impressive; they 
tend to underestimate EETC frequency by up to two thirds 
(Seiler and Zwiers 2016a). The same models project a 
reduction in EETC frequency in the Northern Atlantic by 
17% on average by the end of this century (Seiler and Zwi-
ers 2016b).

Anthropogenic GHG forcing is expected to affect ETCs 
through multiple competing processes. This includes (1) 
changes in baroclinicity in the lower and upper tropo-
sphere due to polar and tropical amplification, and (2) an 
increase in the atmospheric water vapor content that may 
intensify ETCs through enhanced latent heating (Hall 
et al. 1994). The release of latent heat plays a crucial role 
for the intensification of an ETC. From the potential vorti-
city (PV) perspective, cyclogenesis occurs when a positive 
(+) PV anomaly in the upper troposphere migrates over a 
pre-existing low-level baroclinic zone (Martin 2013). The 
cyclonic circulation associated with the upper-level +PV 
anomaly penetrates down the troposphere, and induces a 
weak cyclonic circulation close to the surface. This even-
tually leads to the formation of a lower-level +PV anom-
aly located further east of the upper-level PV anomaly. 
The upper- and lower-level +PV anomalies become phase 
locked, which leads to mutual amplification and cyclogen-
esis. Diabatic heating in the middle troposphere enhances 
this mutual amplification by increasing the penetration 
depth through a reduction of static stability, and by PV pro-
duction in the lower troposphere and PV destruction east of 
the upper-level +PV anomaly. The intensification of ETCs 
through latent heat release produces additional precipita-
tion, which further intensifies ETCs through more latent 
heating. Much of the latent heat release occurs near frontal 
zones. Resolving these mesoscale features in high resolu-
tion runs intensifies the positive feedback loop between 
latent heat release and ETC intensification (Willison et al. 
2013). Given the modest spatial resolution of most cur-
rent GCMs, it is therefore natural to ask if model biases 
could be reduced by increasing the horizontal model reso-
lution, and whether this would affect the corresponding 
projections.

The impact of horizontal model resolution on ETC 
biases and projections can be examined in dynamical 
downscaling experiments, where a regional climate model 
(RCM) is forced with lateral boundary conditions from a 

GCM or reanalysis data. Previous studies show that dynam-
ical downscaling can substantially affect model biases 
and projections of ETCs. Willison et al. (2013) forced the 
Weather Research and Forecasting model (WRF) with the 
National Centers for Environmental Prediction (NCEP) 
global forecast system (GFS) final analysis, and compared 
results where WRF was run at lower (120 km) and higher 
horizontal resolutions (20 km) for a domain covering the 
North Atlantic. Using an Eulerian approach, the study 
showed enhancement of the positive feedback between 
ETC intensification and latent heat release at the higher 
resolution, resulting in a systematic increase in eddy inten-
sity and a stronger storm track. These results are consist-
ent with findings from Long et al. (2009), who downscaled 
the Canadian Climate Centre model (CGCM2) with the 
Canadian Regional Climate Model (CRCM version 3.5) 
for the Northwest Atlantic and eastern North America. 
Using a Lagrangian approach in which storms were tracked 
from 6h mean sea level pressure (MSLP) minima, dynami-
cal downscaling was found to increase the frequency of 
strong ETCs with MSLP <995 hPa along North America’s 
Atlantic coast. However, it remains unclear whether this is 
a response of the ETC or of the background MSLP field. 
Contrary findings are presented in Colle et al. (2015) who 
downscaled reanalysis data (NCEP-CFSR) with six differ-
ent RCMs for North America’s Atlantic coast and detected 
a 5–10% decrease in ETCs tracked from 850 hPa relative 
vorticity. Côté et  al. (2015) related similar findings to the 
presence of the regional model boundary in the vicinity of 
the storm track.

Downscaling may also affect climate change projections 
of ETC frequencies and intensities. Willison et  al. (2015) 
conducted a pseudo-global warming experiment where 
projected changes in temperature from five GCMs were 
applied to reanalysis data, which was then used as the ini-
tial and lateral boundary conditions in a regional climate 
model experiment for a selection of days with storms. The 
study finds that changes in temperature increases storm 
activity in the northeastern Atlantic, and that this is fur-
ther enhanced when increasing the model resolution from a 
120-km to a 20-km grid spacing. Long et al. (2009) on the 
other hand finds that downscaling enhances the reduction 
in ETC frequency projected by a global model (CGCM2) 
in the Northwest Atlantic and eastern North America by 
10%. Such contrary findings may result from differences in 
experimental designs and methods. Also, it remains unclear 
to what degree the impacts of dynamical downscaling are 
affected by differences in physical parameterizations used 
in the global models compared to the regional models.

The studies outlined above show that dynamical down-
scaling has the potential to substantially affect model 
ETC biases and projections. The enhanced condensa-
tional heating in the high-resolution model runs may 
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play an important role in this context. Only a few studies 
have assessed the impacts of dynamical downscaling on 
ETC biases and projections, and their conclusions remain 
ambiguous. While pseudo-global warming experiments 
are suitable for exploring thermodynamic mechanisms in 
controlled experiments (Marciano et al. 2015), the number 
of tracks that are simulated in such studies is too small to 
assess the statistical significance of the projected changes. 
Finally, a focus on EETCs is to our knowledge still missing, 
despite their potential for severe impacts, and the impor-
tant role that latent heating can play in rapid intensification 
(Fink et al. 2012).

This study assesses how dynamical downscaling affects 
model biases and projections of EETCs along North Amer-
ica’s Atlantic coast. Our analysis pays special attention to 
the use of different spatial filters required to compute storm 
tracks from different horizontal grids in a consistent man-
ner that allows intercomparison of results. This work is of 
particular relevance for our previous work on EETC biases 
and projections of a multi GCM ensemble (Seiler and Zwi-
ers 2016a, b). Furthermore, our results are also expected 
to be of great interest for the High Resolution Model 
Intercomparison Project (HighResMIP v1.0) for CMIP6 
(Haarsma et al. 2016). HighResMIP systematically investi-
gates the impact of horizontal resolution for multiple high-
resolution GCM simulations. The increase in resolution is 
expected to lead to more realistic simulations of small-scale 
phenomena with potentially severe impacts such as tropi-
cal cyclones, tropical– extratropical interactions, and polar 
lows. Our study may indicate whether more realistic simu-
lations may also be expected for the larger-scale EETCs.

The following section presents our data and approach 
used for identifying and tracking EETCs in global and 
regional climate model data from seven experiments. Sec-
tion  3 assesses biases and projections of all ETCs and of 
EETCs simulated by the Canadian Earth System Model 
(CanESM2) and the Canadian Regional Climate Model 
(CanRCM4). The role of baroclinic instability for EETC 
biases and projections is explored as well. Section 4 elabo-
rates on the principal findings and discusses opportunities 
for future research on the competing processes that deter-
mine storm biases and projections.

2 � Methods

2.1 � Data

We use global data from the ERA-Interim reanalysis 
(Dee et  al. 2011) and the Canadian Earth System Model 
(CanESM2, Arora et  al. 2011). ERA-Interim is produced 
by the European Centre for Medium-Range Weather Fore-
casts (ECMWF). The atmospheric component is a spectral 

model with T255 truncation and 60 vertical levels, and the 
data are converted to a 480 × 240 (0.75◦, 83 km) horizontal 
linear grid. CanESM2 is developed by the Canadian Centre 
for Climate Modelling and Analysis (CCCma) and partici-
pated in the fifth phase of the Coupled Model Intercompar-
ison Project (CMIP5). Its atmospheric component has spec-
tral T63 resolution and 35 vertical levels with a lid near 
1 hPa, and the data are converted to a 128 × 64 (2.8125◦, 
313 km) horizontal linear grid. The CanESM2 simulation 
(r1i1p1) uses “all” forcings for the historical period ending 
in 2005 (greenhouse gases, other anthropogenic forcings, 
solar and volcanic) and follows the Representative Con-
centration Pathway 8.5 emissions scenario for 2006-2100 
(RCP8.5) (Taylor et al. 2012).

CanESM2 is dynamically downscaled to a horizontal 
resolution of 0.22◦ (24 km) with the Canadian Regional Cli-
mate Model (CanRCM4) (Scinocca et al. 2016). CanRCM4 
is a hydrostatic model with a hybrid vertical coordinate sys-
tem and a regular latitude–longitude grid with rotated pole. 
Vertical model levels match those in CanESM2, except that 
CanRCM4 has a lower model lid located at 13 hPa. Sea 
surface temperatures and sea ice extent in CanRCM4 are 
prescribed by the forcing data. CanESM2 and CanRCM4 
are compatible, as they share the same physics package and 
parameter settings of physical parametrizations. The cloud 
microphysics scheme of both models treats condensation as 
an instantaneous adjustment of the thermodynamic proper-
ties to equilibrium (von Salzen et al. 2013). Spectral nudg-
ing is applied to the horizontal wind fields from the model 
top down to 850 hPa and to temperature in the top three 
vertical levels of the model domain. The regional model 
grid is similar to that of the Coordinated Regional Cli-
mate Downscaling Experiment (CORDEX) North America 
experiment (Giorgi et al. 2009), with the difference that it 
extends further into the Atlantic to include storm tracks that 
affect North America’s coastal region (NAE22 grid, hereaf-
ter) (Fig. 1).

Variables used for ETC tracking include 6 hourly zonal 
and meridional wind components at 850 hPa, and 6h 
MSLP. Baroclinic instability is quantified from daily mean 
values of zonal and meridional wind components, geo-
potential height, air temperature, and specific humidity at 
850 and 500 hPa. Finally, we also use daily precipitation in 
order to assess the hydrological component of EETCs. Our 
data covers the historical period from 1981 to 2000 and 
the projected high emission scenario RCP8.5 from 2081 to 
2100.

2.2 � Cyclone tracking

ETCs are identified using the objective feature tracking 
algorithm TRACK (Hodges 1994; Hodges et  al. 1995; 
Hodges 1999). The algorithm computes relative vorticity 
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from the horizontal wind velocity at 850 hPa at the resolu-
tion of the input data. We spatially filter relative vorticity to 
T42 resolution prior to tracking in all cases to ensure that 
results from data sources with different horizontal resolu-
tions are comparable. This is achieved through spheri-
cal harmonic decomposition in the case of global data 
(Anderson et al. 2003), and by discrete cosine transform for 
dynamically downscaled data (Denis et al. 2002). The large 
scale background is removed by setting the coefficients in 
the spectral transform expansion for total wave-numbers 
<5 to zero in the global filtering and the equivalent for the 
discrete cosine transform. Feature points are detected based 
on local extreme values. The algorithm computes tracks 
by determining the correspondence between feature points 
for adjacent time steps. Tracks are first initialized using a 
nearest neighbor method and then refined by minimizing a 
cost function, in spherical geometry, for track smoothness 
subject to adaptive constraints to produce the optimal set of 
smoothest tracks. Post-tracking filters are applied to retain 
only storms that have a relative vorticity greater than 10−5 
s−1, that last longer than two days, and that travel further 
than 1000 km.

MSLP values are assigned to each ETC center by search-
ing for the closest T42 MSLP minimum to the location of 

the relative vorticity maxima within a great circle radius 
of 5◦. T42 MSLP is used rather than the full resolution 
MSLP to ensure that results from data sources with differ-
ent horizontal resolutions are comparable. Deepening rates 
are computed for each time step by comparing the MSLP 
values that belong to the same track and that are 24 h apart. 
EETCs are identified as ETCs with deepening rates greater 
than or equal to one bergeron (b) (Sanders and Gyakum 
1980):

where � is the latitude of the ETC center. The pressure 
drop between two cyclone centers is scaled according to 
the latitude of the second cyclone center. EETC maximum 
wind speed and maximum precipitation are computed by 
finding the highest T42 wind speed and largest precipita-
tion amount within a 6◦ radius around each ETC center. 
Daily precipitation values are assigned to each six hourly 
ETC center for the day when the ETC center occurs. As 
for MSLP, T42 values rather than full resolution values are 
used. The projected increase in maximum EETC precipita-
tion is compared to the projected increase in monthly mean 
near surface air temperature from October to March, which 
is averaged over the coastal region enclosed by the polygon 
depicted in Fig. 1.

2.3 � Experiments

The impacts of dynamical downscaling on model biases and 
projections of EETC frequency and intensity are assessed 
by comparing results from seven experiments (Table  1). 
The first three experiments consist of ETC tracks that are 
computed from global grids, where relative vorticity is spa-
tially filtered to T42 resolution through spherical harmonic 
decomposition (SH). This includes tracks from ERA-
Interim and from CanESM2 for the historical (H) period 
1981–2000 (ERAH-SH and GCMH-SH, respectively), and 
for the future period (F) 2081-2100 under RCP8.5 forcing 
(GCMF-SH). The remaining four experiments consist of 
ETC tracks that are computed from the NAE22 grid with 
relative vorticity spatially filtered to T42 equivalent resolu-
tion through discrete cosine transform (DC). This applies 
to ERA-Interim (ERAH-DC) and the historical CanESM2 
experiment (GCMH-DC), which are interpolated spatially 
to the NAE22 grid by bilinear interpolation, as well as to 
the historical and projected simulation of CanRCM4 forced 
with CanESM2 (RCMH-DC and RCMF-DC, respectively). 
ETC statistics are computed for the North American Atlan-
tic coast enclosed by the inner polygon depicted in Fig. 1.

The impacts of dynamical downscaling on model biases 
and projections are quantified by comparing runs that are 
based on the same grid extension and spatial filter (Table 1). 

(1)b =

24 hPa

24 hours

sin(�)

sin(60)
,

Fig. 1   EETC tracks and their along track MSLP values computed 
from ERA-Interim for the period 1981–2000. The outer polygon 
presents the CanRCM4 eastward extended North American model 
domain, the small polygon shows the area that is used to compute sta-
tistics for coastal storms, and the middle-sized polygon encloses the 
area used to compute zonal mean values in Fig. 7
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This separates the effects of dynamical downscaling from the 
potential impacts of a limited model domain and the use of 
different grid types and associated spatial filtering techniques.

Model biases in CanESM2 are assessed by contrast-
ing results from GCMH-SH against ERAH-SH. To gain 
insight into how spatial filtering affects the bias we compare 
results from GCMH-DC against ERAH-DC. The impact of 
dynamical downscaling is quantified by comparing RCMH-
DC against GCMH-DC, and the effects on model biases are 
determined by comparing RCMH-DC against ERAH-DC. 
Finally, we assess whether dynamical downscalling alters cli-
mate change projections by comparing the projected changes 
from GCMF-SH and GCMH-SH against RCMF-DC and 
RCMH-DC.

2.4 � Clausius–Clapeyron relation

The projected change in maximum EETC precipitation per 
degree warming is compared to the projected change in the 
saturation vapor pressure (es) per degree warming. The warm-
ing is quantified from the change in the climatological mean 
cold season (October to March) near-surface air temperature 
averaged over the polygon that encloses North America’s 
Atlantic coast (Fig. 1). The saturation vapor pressure is esti-
mated from near-surface air temperature following the Clau-
sius–Clapeyron equation (Stull 2000):

where e0 is the saturation vapor pressure at 273.15 K (0.611 
kPa), Lv is the latent heat of vaporization per unit mass (2.5 
106 J kg−1), Rv is the gas constant for water vapor (461 J K−1 
kg−1), T0 is freezing temperature (273.15 K), and T is the 
near-surface air temperature simulated by CanESM2 and 
CanRCM4.

2.5 � Baroclinic instability

Changes in EETC frequency as a consequence of dynamical 
downscaling or anthropogenic GHG forcing are compared 
to the corresponding changes in baroclinic instability. Baro-
clinic instability is measured by the maximum Eady growth 
rate (�BI) with units of s−1 (Hoskins and Valdes 1990):

where N is the static stability, or Brunt-Väisälä frequency 
(Stull 2000):

with

(2)es = e0 exp

[
Lv

Rv

(
1

T0
−

1

T

)]

,

(3)�BI = 0.31 f
|||
|

��

�z

|||
|
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(4)N =

√
g

Tv

(
�Tv

�z
+ Γd

)

,

and

where f is the Coriolis parameter, v is the horizontal wind 
velocity, z is the geopotential height, g is the gravitational 
acceleration, Γd is the dry adiabatic lapse rate, Tv is the 
virtual temperature, T is the air temperature, r is the water 
vapor mixing ratio, and q is the specific humidity. The 
Eady growth rate is computed for daily values between 
850 and 500 hPa, and is then averaged for each month. The 
partial derivatives with respect to z are approximated by 
computing the differences between the two pressure levels. 
Our analysis of the Eady growth rate considers the months 
October to March, as most EETCs occur during the cold 
season (Seiler and Zwiers 2016a). Also, we focus on North 
America’s Atlantic coast, a major region of EETC genesis 
related to the presence of the Gulf Stream (Roebber 1984).

3 � Results

3.1 � All extratropical cyclones

Looking at all ETCs along North America’s Atlantic coast 
shows that storms in GCMH-SH tend to be too weak com-
pared to ERAH-SH, leading to overestimation of the fre-
quency of weaker ETCs with maximum vorticities below 6 ×  
10−5 s−1, and too few stronger ETCs above this threshold 
(GCMH-SH minus ERAH-SH) (Fig.  2a, c). The absolute 
negative bias is largest for strong ETCs that reach vorticities 
of about 10 × 10−5 s−1. The relative negative bias becomes 
larger as relative vorticity increases, reaching 76% for 
ETCs with maximum vorticities of 12 × 10−5 s−1 (Fig. 2e). 
This is consistent with findings from Zappa et al. (2013a) 
who showed that CMIP5 models generally underestimate 
the frequency of extreme ETCs. Regridding data to NAE22 
prior to ETC tracking yields similar but not identical values 
(GCMH-DC minus ERAH-DC) (Fig. 2b, c, e). The impact 
of using two different grids and spatial filtering techniques 
is sufficiently small to yield comparable results. Neverthe-
less it is necessary to restrict comparisons to data sets that 
are based on the same grid and spatial filtering technique as 
the results are not identical. Downscaling CanESM2 with 
CanRCM4 decreases the frequency bias of stronger ETCs 
with vorticities ranging from 6 to 13 × 10−5 s−1 (RCMH-DC 
minus ERAH-DC) (Fig. 2c). This is consistent with Long 
et al. (2009), who also found that dynamical downscaling 
can increase the frequency of strong ETCs along North 
America’s Atlantic coast.

Anthropogenic GHG forcing is projected to generally 
weaken ETCs, leading to more events with vorticities 

(5)Tv = T (1 + 0.61 r),

(6)r = q∕(1 − q),
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below 5 × 10−5 s−1 and fewer events with vorticities 
between 5 and 11 × 10−5 s−1 (GCMF-SH minus GCMH-
SH) (Fig. 2a, d, f). The total number of tracks decreases 
by 2%, but changes are not statistically significant. This 
agrees with results from Christensen et  al. (2013) who 
found only a weak reduction of ETC frequency for the 
CMIP5 climate model ensemble in the same region. 
Extreme ETCs with relative vorticity exceeding 11 × 10−5 
s−1 (99th percentile) are, on the other hand, projected to 
increase, rising from 79 tracks to 97 tracks per 20-year 
period (23%; not statistically significant at the 5% level). 
Dynamical downscaling further reduces the projected 

number of ETC tracks with vorticities between 4 and 9 × 
10−5 s−1 (RCMF-DC minus RCMH-DC) (Fig. 2d).

To summarize, CanESM2 tends to simulate too many 
weak and not enough strong ETCs. Dynamical downscal-
ing reduces this bias by increasing the number of stronger 
storms. Anthropogenic GHG forcing is projected to weaken 
ETCs, leading to more weak storms and fewer strong events. 
Dynamical downscaling further reduces the number of strong 
storms. The total number of ETCs, and the frequency of 
extreme ETCs (99th percentile) is not projected to change 
significantly.

Fig. 2   Frequency histograms of 
the maximum relative vorticity 
that is attained in each ETC 
track along North America’s 
Atlantic coast for data on a the 
global grid and b the NAE22 
grid. Subplots c, d show the 
absolute biases and the pro-
jected changes, and subplots e, f 
show the relative biases and the 
projected changes, respectively. 
The relative biases are shown 
for relative vorticity values 
below 13 10−5 s−1 due to the 
small number of ETC tracks at 
higher intensities. Only ETC 
segments that are enclosed by 
the polygon that encompasses 
North America’s Atlantic coast 
in Fig. 1 are considered.
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3.2 � Explosive extratropical cyclones

3.2.1 � Frequency

The most intense ETCs that pass along North Ameri-
ca’s Atlantic coast undergo rapid intensification (Fig.  2a, 
magenta-colored bars). The annual mean EETC frequency 
is 45 tracks for ERAH-SH (Fig. 3a). GCMH-SH simulates 
28 tracks year−1, underestimating EETC frequency by 38% 
(-17 EETC tracks year−1) (Table  2), which is consistent 
with the negative frequency bias of stronger ETCs docu-
mented in Sect.  3.1. Comparable EETC frequency biases 
are also found for other CMIP5 models (Seiler and Zwiers 
2016a). Regridding the same data to the NAE22 grid prior 
to tracking leads to similar results, with 40 tracks year−1 
for ERAH-DC, and 24 tracks year−1 for GCMH-DC, and 
a negative EETC frequency bias of 41% (-17 tracks year−1 

after rounding). The slightly lower frequencies for data that 
are interpolated to the NAE22 grid are consistent with a 
loss of information that can be expected through the regrid-
ding process and somewhat different filtering approach that 
must be used in non-global domains. Nevertheless, as for 
ETCs in general, we conclude that the impact of using two 
different grids and spatial filtering techniques is sufficiently 
small to yield comparable results, but that comparisons 
should be restricted to data sets that are based on the same 
grid and spatial filtering technique as the results are not 
identical.

Dynamical downscaling increases EETC track fre-
quency by 33% (8 tracks year−1) when comparing 
RCMH-DC against GCMH-DC (Table  2; Figs.  3a, 4). 
Downscaling therefore reduces the frequency bias from 
−41% in the global data on the NAE22 grid (GCMH-
DC minus ERAH-DC) to −22% (RCMH-DC minus 

Fig. 3   Percentiles (0.05, 0.25, 
0.50, 0.75, 0.95) (boxplots) 
and mean values (asterisks) of 
a annual mean frequency, b 
maximum relative vorticity, c 
minimum MSLP, d maximum 
deepening rate, e maximum 
wind speed, and f maximum 
precipitation of EETC tracks 
along North America’s Atlantic 
coast. Only EETC segments that 
are enclosed by the polygon that 
encompasses North America’s 
Atlantic coast in Fig. 1 are 
considered
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ERAH-DC), which is consistent with the increase in 
stronger ETCs in the downscaled solution documented 
in Sect. 3.1.

CanESM2 projects a decrease in EETC frequency of 
15% (−4 tracks year−1; GCMF-SH minus GCMH-SH, 
Table 2; Fig. 3a). This agrees with the projected decrease 
in stronger ETCs shown in Sect. 3.1, and is comparable 
to the reduction in the Northern Atlantic (−17%) found 
for the CMIP5 climate model ensemble (Seiler and Zwi-
ers 2016b). Results from dynamically downscaled data 
are similar, with a projected decrease of 18% (−6 tracks 
year−1; RCMF-DC minus RCMH-DC). This result is in 
agreement with findings from Long et al. (2009) but is in 
contrast to results from Willison et al. (2015) for reasons 
discussed in Sect. 4.

To summarize, CanESM2 underestimates the fre-
quency of EETCs by 38%, and dynamical downscaling 
reduces this bias to −22%. The projected relative reduc-
tion in EETC frequency is similar for the global model 
(−15%) and its dynamically downscaled counterpart 
(−18%).

3.2.2 � Intensity

The average EETC track along North America’s Atlantic 
coast has a maximum relative vorticity of 8 × 10−5 s−1, a 
minimum MSLP of 981 hPa, a maximum deepening rate 
of 21 hPa 24 h−1, a maximum wind speed of 36 m s−1 
(130 km h−1), and a maximum precipitation rate of 33 mm 
day−1 (ERAH-SH) (Fig.  3b–f). Intensities computed from 
GCMH-SH are similar, with slightly lower values in maxi-
mum relative vorticity (−0.8 × 10−5 s−1, −9%), maximum 
wind speed (−2 m s−1, −5%), and maximum precipita-
tion ( −2.8 mm day−1, −8%), and slightly higher values in 
minimum MSLP (5 hPa) (Table 2, Fig. 3b–f). Regridding 
the data to the NAE22 grid prior to tracking has no major 
impacts on EETC intensities. The biases of GCMH-SH and 
GCMH-DC differ by 0.36 × 10−5 s−1 (5%) for relative vor-
ticity, 1 hPa for MSLP, 1 m s−1 (2%) for wind speed, and 1 
mm day−1 (3%) for maximum precipitation.

Dynamical downscaling increases maximum EETC pre-
cipitation by 22% (7 mm day−1; RCMH-DC minus GCMH-
DC, Table 2; Fig. 3f). This is consistent with the increase 
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Fig. 4   EETC tracks with explosive segments shaded in red for a ERAH-DC, b GCMH-DC, and c RCMH-DC for the period 1981 to 2000. Sub-
plots d, f show the corresponding annual frequency of 6 hourly EETC centers
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in EETC frequency described in Sect. 3.2.1, and indicates 
that the frequency increase is linked to an enhanced posi-
tive feedback between ETC intensification and latent heat 
release at the higher resolution as suggested by Willison 
et  al. (2013). EETC relative vorticity, MSLP, deepen-
ing rate, and wind speed are not significantly affected by 
dynamical downscaling (Table 2).

Anthropogenic GHG forcing is projected to increase 
maximum EETC precipitation by 46%, or by 14 mm day−1 
(GCMF-SH minus GCMH-SH; Table  2; Fig.  3f). This is 
consistent with findings from Zappa et  al. (2013b) who 
show that CMIP5 models project an increase in the fre-
quency of ETCs that are associated with strong precipi-
tation in the Northern Atlantic. The projected increase in 
EETC precipitation is consistent with a projected 35% 
increase in specific humidity at 850 hPa from October to 
March (not shown). The maximum EETC precipitation 
increase per degree warming is 8.9% K−1, which exceeds 
the Clausius-Clapeyron rate of 6.6% K−1 for the region 
(Table  3). While maximum wind speed is projected to 
increase by 1.4 m s−1 (4%), other measures of EETC inten-
sity are not significantly affected by anthropogenic GHG 
forcing (Table 2; Fig. 3b–e).

Dynamical downscaling enhances the projected increase 
in maximum EETC precipitation from 46% (14 mm 
day−1) to 52% (20 mm day−1) (RCMF-DC minus RCMH-
DC; Table  2; Fig.  3f). Maximum precipitation associated 
with EETCs increases by 10.6% per degree warming for 
the downscaled data (Table 3). As in CanESM2, the pro-
jected increase is consistent with a 35% increase in specific 
humidity at 850 hPa for October to March (not shown).

To summarize, EETCs simulated by CanESM2 are 
slightly weaker compared to ERA-Interim. Dynamical 
downscaling increases maximum EETC precipitation by 
22%, which suggests that dynamical downscaling may have 
enhanced the positive feedback between ETC intensifica-
tion and latent heat release. Anthropogenic GHG forcing is 
projected to increase maximum EETC precipitation by 46% 
for the global data and by 52% for the downscaled data. The 
corresponding precipitation increase per degree warming 
is 8.9% K−1 and 10.6% K−1 for CanESM2 and CanRCM4, 
respectively, which exceeds the Clausius-Clapeyron rela-
tion of 6.6% K−1.

3.2.3 � Life cycle

Life cycle composites show that explosive development 
occurs within a period of two days, with a maximum 
deepening rate of 24 hPa 24 h−1 (Fig.  5, ERAH-SH). 
MSLP drops from 1011 to 971 hPa, relative vorticity 
increases from 3.5 × 10−5 to 9.9 × 10−5 s−1, and maxi-
mum precipitation increases from 8 mm to 25 mm day−1
. EETCs reach their minimum MSLP and maximum 

precipitation values approximately 6 hours after their 
maximum vorticity. The rate of MSLP intensification is 
much stronger compared to the rate of MSLP decay. The 
corresponding rates for relative vorticity and maximum 
precipitation on the other hand are quite similar. Similar 
rates are presented in Bengtsson et al. (2009).

CanESM2 reproduces these patterns well, with slightly 
smaller changes in MSLP (from 1011 to 976 hPa), rela-
tive vorticity (from 3.1 × 10−5 s−1 to 9.2 × 10−5 s−1), and 
maximum precipitation (from 7 mm to 23 mm day−1) 
(Fig. 5, GCMH-SH). The timing of the maximum intensi-
ties in GCMH-SH is accurate for MSLP and relative vor-
ticity, and 12 hours early for maximum precipitation.

Regridding ERA-Interim to the NAE22 grid prior 
to tracking (ERAH-DC) leads to similar but not identi-
cal life cycle composites compared to ERAH-SH, with 
MSLP dropping from 1011 to 973 hPa, relative vorti-
city increasing from 2.8 to 9.0 10−5 s−1, and precipitation 
rising from 6 to 26 mm day−1. Life cycle composites of 
GCMH-DC are similar to those of ERAH-DC for MSLP 
(from 1012 to 978 hPa) and maximum precipitation 
(from 5 mm day−1 to 25 mm day−1). The increase in maxi-
mum relative vorticity however, is smaller in GCMH-DC 
compared to ERAH-DC (from 2.6 × 10−5 s−1 to 7.7 × 
10−5 s−1). Dynamical downscaling slightly improves the 
result by increasing maximum vorticity to 8.3 × 10−5 s−1 
(RCMH-DC), but the MSLP minimum in RCMH-DC is 
still too high, and the precipitation maximum is still 12 h 
earlier than in ERAH-DC.

Projections under RCP8.5 forcing exhibit no major 
impacts on the overall life cycle patterns described above. 
The most noticeable change is the projected increase in 
maximum precipitation from 23 mm day−1 in the his-
torical experiment (GCMH-SH) to 34 mm day−1 under 
RCP8.5 forcing (GCMF-SH). The corresponding values 
for the downscaled experiment are moderately larger, 
with 27 mm day−1 for RCMH-DC and 39 mm day−1 for 
RCMF-DC.

To summarize, life cycle composites show that explo-
sive development occurs within a period of two days, in 
which a sharp drop in MSLP of 24 hPa 24 h−1 coincides 
with a rise in relative vorticity and maximum precipita-
tion. CanESM2 reproduces these patterns reasonably 
well, with a tendency for too high MSLP and too low 
relative vorticity values, and a peak in maximum precipi-
tation that is 12 hours earlier than ERAH-SH. Downscal-
ing CanESM2 improves this result slightly by increasing 
maximum vorticity. Projections under RCP8.5 forcing 
exhibit a projected increase in maximum precipitation 
from 23 mm day−1 (GCMH-SH) to 34 mm day−1 (GCMF-
SH), with somewhat larger values for the corresponding 
downscaled counterparts.
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3.3 � Baroclinic instability

The highest density of EETC tracks occurs in a region with 
strong cold season lower tropospheric Eady growth rate 
(1.8 to 2.0 day−1; ERAH-SH, Fig. 6a, b). The highest zonal 
mean frequency is located at about 45◦ north where the 
zonal mean Eady growth rate is about 1.6 day−1 (Fig. 7a, c). 
This also applies to analyses based on the discrete cosine 
transfrom rather than spherical harmonic decomposition 
(Fig. 7b). CanESM2 underestimates the zonal mean Eady 
growth rate value by 0.1 day−1, which is consistent with 
its negative EETC frequency bias (Figs.  6c, 7c). Similar 
underestimation along North America’s Atlantic coast is 

also found in the multi-model mean of Eady growth rates 
in the CMIP5 climate model ensemble (Seiler and Zwiers 
2016a; their Figure 10l). The impact of dynamical down-
scaling on the Eady growth rate is not statistically signifi-
cant at the 5% level in the main region of the storm track 
(Figs. 6d, 7d).

Projections under RCP8.5 forcing show a decrease 
of the lower tropospheric Eady growth rate by 0.2 day−1 
between 40◦ and 45◦ latitude (Figs. 6e, 7c), which is con-
sistent with the projected decline in EETC frequency 
in CanESM2, and with Eady growth rate projections in 
other CMIP5 models (Seiler and Zwiers, 2016b). Also, 
the zonal mean maximum Eady growth rate and the 

Fig. 5   Life cycle composites 
of all EETCs that pass through 
the polygon that encompasses 
North America’s Atlantic coast 
in Fig. 1. Contrary to Fig. 3, 
this also includes the parts 
of EETCs that lie outside the 
polygon. Parameters shown 
are a, b MSLP, c, d relative 
vorticity, and e, f maximum 
precipitation. Subplots a–f show 
results for experiments that are 
based on spherical harmonic 
decomposition and discrete 
cosine transfrom, respectively. 
The centered lines show the 
medians and the outer lines 
enclose the interquartile ranges. 
The life cycles of EETC tracks 
are combined by centering the 
tracks according to the time step 
of maximum relative vorticity
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maximum EETC frequency are projected to shift north-
wards by about two to three degrees latitude (Fig. 7a and 
c). Downscaling does not significantly impact the pro-
jected decrease in the Eady growth rate in most of the 
storm track region (Figs. 6f, 7c and 7d). This is in con-
trast to Willison et al. (2015) who showed that the lower 
tropospheric Eady growth rate increases with anthro-
pogenic GHG forcing, and that this impact is enhanced 
when increasing the horizontal model resolution in a 
pseudo global warming experiment.

The low Eady growth rate in CanESM2 is due to 
underestimation of vertical wind shear rather than over-
estimation of the Brunt-Väisälä frequency, as CanESM2 
slightly underestimates the latter by 0.25 10−3 to 0.5 10−3 
s−1 (not shown). The Eady growth rate bias coincides 
with a warm temperature bias in the lower troposphere 
(850 hPa) over Eastern Canada between 40◦ and 60◦ lati-
tude (2–4 K) (Figs.  8a, b, 9a). The resulting meridional 
temperature gradients are therefore smaller in CanESM2 
compared to ERA-Interim, with differences as large as 
0.3 K per 100 km at 850 hPa (Fig. 8c, yellow shaded area 

along North America’s Atlantic coast). This could lead to 
underestimation of the Eady growth rate, as vertical wind 
shear and the meridional temperature gradients are linked 
through the thermal wind equation.

To summarize, the highest density of EETC tracks 
occurs in a region with strong cold season lower tropo-
spheric Eady growth rate. CanESM2 underestimates 
the lower tropospheric Eady growth rate by 0.1 day−1, 
which is consistent with the model’s negative EETC fre-
quency bias. Anthropogenic GHG forcing is projected to 
decrease the lower tropospheric Eady growth rate by 0.2 
day−1, which may explain the projected decline in EETC 
frequency in CanESM2. The negative Eady growth rate 
bias in CanESM2 is due to an underestimation of verti-
cal wind shear rather than an overestimation of the Brunt-
Väisälä frequency. The weak vertical wind shear is con-
sistent with too weak meridional temperature gradients 
that are related to a warm temperature bias in the lower 
troposphere over Eastern Canada. Dynamical downscal-
ing has no significant impacts on Eady growth rate biases 
and projections in most of the storm track region.
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Fig. 6   a EETC frequency in ERA-Interim (ERA-SH) for the period 
1981 to 2000, b lower tropospheric Eady growth rate of ERA-Interim 
for the same period during the cold season, c Eady growth rate bias of 
CanESM2 (1981–2000), d the difference between Eady growth rate 
in CanESM2 and CanRCM4 (1981–2000), e Eady growth rate projec-

tions under RCP8.5 by CanESM2 (1981–2000 and 2081–2100), and f 
the difference between Eady growth rate projections from CanESM2 
and CanRCM4 (2081–2100). Regions with statistically significant 
differences at the 5% level are hatched (Wilcox test, R Core Team 
2013). The red lines represent 40◦ and 45◦ of northern latitude
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Fig. 7   Zonal mean frequency 
of EETC centers for experi-
ments based on the a spherical 
harmonic decomposition and 
b discrete cosine transform. 
Subplots c, d show the cor-
responding zonal mean Eady 
growth rates. Zonal means 
are computed from 25◦ to 60◦ 
latitude and from −90◦ to −25◦ 
longitude, corresponding to the 
area enclosed by the middle-
sized polygon shown in Fig. 1
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Fig. 8   Air temperature biases at a 850 hPa and b 500 hPa (CanESM2 
minus ERA-Interim) from October to March for the historical period 
1981–2000. Subplots c, d show the corresponding meridional tem-
perature gradient biases. Regions with statistically insignificant dif-

ferences at the 5% level are masked out in white (Wilcox test, R Core 
Team 2013). The gray box in a shows the region that is used to com-
pute zonal mean values in Fig. 9
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(a) Zonal Mean Isotherms and Temperature Bias
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Fig. 9   a Zonal mean isotherms and air temperature biases 
(CanESM2 minus ERA-Interim), and b the corresponding tempera-
tures of isobars for selected pressure levels. Zonal means are com-
puted from 1981 to 2000 for the months October to March for a 

region enclosed by the longitudes −102◦ to −30◦ as denoted by the 
gray polygon in Fig.  8a. Regions with statistically insignificant dif-
ferences at the 5% level are masked out in white in subplot a (Wilcox 
test, R Core Team 2013)

Table 1   Experiment ID’s, input data, climate model experiments, grids, and spatial filtering techniques

Final grid refers to the grid that is used as input data for TRACK. All data is spatially filtered to T42 or T42 equivalent

ID Data Experiment Native grid Final grid Spatial filter (T42 or equivalent)

Resolution Extent Resolution Exten

ERAH-SH ERA-Interim Historical 0.75° Global 0.75° Global Spherical harmonic decomposition
GCMH-SH CanESM2 Historical 2.8125° Global 2.8125° Global Spherical harmonic decomposition
GCMF-SH CanESM2 RCP8.5 2.8125° Global 2.8125° Global Spherical harmonic decomposition
ERAH-DC ERA-Interim Historical 0.75° Global 0.22° NAE22 Discrete cosine transform
GCMH-DC CanESM2 Historical 2.8125° Global 0.22° NAE22 Discrete cosine transform
RCMH-DC CanRCM4[CanESM2] Historical 0.22° NAE22 0.22° NAE22 Discrete cosine transform
RCMF-DC CanRCM4[CanESM2] RCP8.5 0.22° NAE22 0.22° NAE22 Discrete cosine transform

Table 2   Differences in the frequency and intensity of EETC tracks in proximity of North America’s Atlantic coast for selected experiments

Intensities (i.e. relative vorticity, MSLP, deepening rate, wind speed, and precipitation) refer to the strongest intensities that are reached on aver-
age by EETC tracks. Only EETC segments that are enclosed by the polygon that encompasses North America’s Atlantic coast in Fig. 1 are con-
sidered. Statistically significant differences are written in bold (two-sampled Wilcoxon test, 5% level)

Experiments Track freq. Vorticity MSLP Δ MSLP Windspeed Precipitation

Year−1 % 10−5 s−1 % hPa % hPa/24h % m s−1 % mm day−1 %

GCMH-SH minus ERAH-SH −17 −38 −0.8 −9.4 5.0 0.5 1.6 −7.6 −1.9 −5.4 −2.8 −8.5
GCMH-DC minus ERAH-DC −17 −41 −1.2 −14.1 4.4 0.4 1.3 −5.7 −1.4 −3.9 −1.7 −5.2
RCMH-DC minus GCMH-DC 8 33 0.3 3.8 −0.2 0.0 1.5 −7.0 0.2 0.7 7.1 22.3
RCMH-DC minus ERAH-DC −9 −22 −0.9 −10.8 4.2 0.4 2.7 −12.3 −1.2 −3.2 5.4 16.0
GCMF-SH minus GCMH-SH −4 −15 0.3 4.4 0.1 0.0 −0.4 1.8 1.4 4.2 13.9 45.7
RCMF-DC minus RCMH-DC −6 −18 0.3 3.8 0.2 0.0 −0.5 2.8 0.0 0.0 20.2 52.0
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4 � Discussion

This study explores how dynamical downscaling affects 
model biases and projections of EETCs along North Amer-
ica’s Atlantic coast. The regional climate model CanRCM4 
is forced with the global climate model CanESM2 for the 
periods 1981 to 2000 and 2081 to 2100. ETCs are tracked 
from relative vorticity using an objective feature tracking 
algorithm. Special attention is paid to the impact of differ-
ent spatial filters used for data with different spatial grids. 
CanESM2 is shown to simulate too many weak and too few 
strong ETCs, which is consistent with findings from Zappa 
et al. (2013a). Dynamical downscaling reduces this bias by 
increasing the number of stronger storms, consistent with 
results from Long et al. (2009). Forcing under the RCP8.5 
emission scenario is projected to weaken ETCs when com-
paring the late 21st century with the late 20th century, 
leading to more weaker and fewer stronger storms. Down-
scaling further reduces the projected number of stronger 
storms. The total number of ETCs, and the frequency of 
extreme ETCs (99th percentile) are not projected to change 
statistically significantly.

Focusing on explosive cyclones shows that CanESM2 
underestimates EETC track frequency by 38%, which is 
comparable to the biases of other CMIP5 models (Seiler 
and Zwiers 2016a). Dynamical downscaling reduces the 
CanESM2 bias to −22%. The relatively higher EETC fre-
quency in CanRCM4 coincides with a corresponding 22% 
increase in maximum EETC precipitation. This is con-
sistent with Willison et  al. (2013) who show that a posi-
tive feedback between ETC intensification and latent heat 
release is enhanced at higher horizontal model resolution. 
Dynamical downscaling with CanRCM4 does not com-
pletely eliminate the EETC frequency bias of CanESM2, 
possibly due to underestimation of the Eady growth rate, 
which is not affected by dynamical downscaling. The use 
of spectral nudging may have constrained the Eady growth 
rate in CanRCM4 to that of the driving model.

The negative Eady growth rate bias in CanESM2 is 
due to underestimation of vertical wind shear rather than 
overestimation of the Brunt-Väisälä frequency. The weak 
vertical wind shear may be caused by weak meridional 

temperature gradients, as both variables are linked 
through the thermal wind equation. Meridional tem-
perature gradients are smaller in CanESM2 compared to 
ERA-Interim, possibly due to a warm temperature bias 
in the lower troposphere over Eastern Canada. We con-
clude that the coarse spatial resolution of GCMs presents 
an important limitation for simulating extreme ETCs, but 
biases in the large scale circulation that affect baroclinic 
instability may be just as relevant. Future research on 
model biases of intense coastal storms should assess the 
mechanisms that lead to an underestimation of the lower-
tropospheric Eady growth rate along North America’s 
Atlantic coast.

CanESM2 projects a 15% decrease in EETC frequency 
(4 tracks year−1) by the end of this century, which is compa-
rable to other CMIP5 model projections (Seiler and Zwiers, 
2016b). Dynamical downscaling has little impact on the 
relative changes that are projected in EETC track frequency 
and intensity, suggesting that CMIP5 projections in Seiler 
and Zwiers (2016b) may not be very sensitive to horizontal 
model resolution. This is consistent with our finding that 
dynamical downscaling has no significant impact on the 
projected reduction in the lower tropospheric Eady growth 
rate, and consistent with Long et al. (2009) (their Figure 9). 
In contrast, Willison et  al. (2015) showed that the lower 
tropospheric Eady growth rate increases with anthropo-
genic GHG forcing, and that this impact is enhanced when 
increasing the horizontal model resolution in a pseudo 
global warming experiment. Such contrasts may arise due 
to the different nature of pseudo global warming experi-
ments, which focus on the thermodynamic aspect of the 
response forcing, and may also be related to the fact that 
our experiments were spectrally nudged. Future research 
could compare these results to climate model biases and 
projections of EETCs in global HighResMIP simulations. 
It is possible that the negative Eady growth rate bias may 
be reduced in such simulations, as HighResMIP runs are 
not constrained by spectral nudging.

The projected decline in EETC frequency is consistent 
with a 0.2 day−1 decrease in the lower tropospheric Eady 
growth rate between 40◦ and 45◦ latitude. The Eady growth 
rate bias (-0.1 day−1) is smaller than its projected reduction 
(−0.2 day−1), but the EETC track frequency bias (−38%) 
is larger than its projected decline (−15%). This suggests 
that the impact of the projected Eady growth rate reduc-
tion might be partially offset by a mechanism that favors 
EETC intensification, such as enhanced baroclinic instabil-
ity in the upper troposphere related to tropical amplification 
(Hall et al., 1994), or condensational heating corresponding 
to the projected increase in maximum EETC precipitation. 
Changes in the contribution of moist diabatic processes to 
EETC intensification could be analyzed from the potential 
vorticity perspective (Davis and Emanuel 1991).

Table 3   Projected changes in near-surface air temperature (ΔT), and 
saturated vapor pressure (Δe

s
) averaged over the area enclosed by the 

small polygon in Fig. 1, and maximum EETC precipitation (ΔP), and 
the corresponding rates of change per degree warming for CanESM2 
and CanRCM4

ΔT (K) Δe
s
(%) ΔP (%) Δe

s

ΔT

(
%

K

)
ΔP

ΔT

(
%

K

)

CanESM2 5.2 34.3 45.3 6.6 8.9
CanRCM4 4.9 32.5 54.6 6.7 10.6
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Maximum EETC precipitation is projected to increase 
by 46% in the global model. The projected precipitation 
rate per degree warming is estimated as 8.9% K−1, which 
exceeds the Clausius-Clapeyron rate of 6.6% K−1 for the 
region, reflecting the role of moisture convergence in maxi-
mum EETC precipitation. Changes in the spatial distri-
bution of precipitation could be studied in more detail in 
storm centered composits (e.g. Bengtsson et al. 2009).

To conclude, this study assesses how dynamical down-
scaling with a spectrally nudged model affects biases and 
projections of EETCs along North America’s Atlantic 
coast. Dynamical downscaling significantly reduces EETC 
biases, likely due to enhanced precipitation and associated 
condensational heating. The remaining bias is consistent 
with underestimation of baroclinic instability, which is 
not affected by dynamical downscaling. Projections under 
RCP8.5 forcing exhibit a reduction in EETC frequency, 
and an increase maximum EETCs precipitation. The pro-
jected relative changes are not very sensitive to horizontal 
model resolution. Future research should assess the relative 
contribution of moist diabatic processes for ETC intensifi-
cation, and study how these contributions vary with storm 
intensity under current and projected climatic conditions.
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