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estimations of surface energy balance components can con-
tribute to different behaviors in reanalysis products in terms 
of estimating soil temperature. In addition, reanalysis data-
sets can mainly rebuild the northwest–southeast gradient of 
soil temperature memory over China.

1 Introduction

Soil temperature is a key land surface parameter that con-
tributes considerably to climate variations and predictions 
(Tang et al. 1988; Wang 1991; Liu and Avissar 1999; Zhou 
and Huang 2006; Fan 2009; Wang et al. 2013). As a reflec-
tion of the land surface thermal conditions, soil tempera-
ture plays an important role in the energy and water bal-
ance of the land surface. Through interaction with the 
atmosphere, soil temperature has been demonstrated to 
have substantial effects on monthly to interannual climate 
variations (Hu and Feng 2004a, b; Mahanama et al. 2008; 
Wu and Zhang 2014). By inducing an eastward-propagat-
ing cyclone, a warm May subsurface soil temperature in 
the western United States can lead to more June precipi-
tation in the southern United States and less precipitation 
in the north (Xue et al. 2012). The modeling work of Wu 
and Zhang (2014) emphasized the importance of subsur-
face soil temperature on summer surface air temperature 
variability over arid and semi-arid regions of Eastern Asia. 
As a slow variable of the land surface, soil temperature can 
“remember” climate anomalies and release their effects in 
subsequent seasons (Hu and Feng 2004a). The memory of 
soil temperature can persist for 1 month to years, depending 
on soil depth, season, and climate regime (Liu and Avissar 
1999; Yang and Zhang 2015). Soil temperature memory is 
considered to be a potential predictor for seasonal climate 
anomalies and extremes, and could improve forecasts of 
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monthly to interannual climate (Xue et al. 2012; Yang and 
Zhang 2015).

Reanalysis datasets have been widely adopted in clima-
tology research to complement incomplete observational 
records (Robock et al. 2000; Koster et al. 2004; Zhang et al. 
2008; Kim and Alexander 2013). The evaluation of rea-
nalysis products, which is essential and critical because of 
the uncertainty that may be caused by data assimilation and 
forecast models, provides a reference for applying reanaly-
sis datasets in different regions and fields (Dirmeyer et al. 
2004; Hodges et al. 2011; Bao and Zhang 2012; Shah and 
Mishra 2014). Many variables, such as surface air tempera-
ture, radiative fluxes, precipitation, and wind speed, from 
different reanalysis datasets have been widely evaluated 
(Simmons et al. 2004; Chaudhuri et al. 2012; Lindsay et al. 
2014). According to previous evaluation works, generally 
speaking, no one product performs better than the others 
in all fields and regions (Makshtas et al. 2007; Mao et al. 
2010; Chaudhuri et  al. 2012). The reanalysis data of land 
surface parameters, such as soil moisture, have also been 
evaluated. The 40-year European Centre for Medium-
Range Weather Forecasts (ECMWF) Reanalysis (ERA-40) 
dataset has been found to perform better than the National 
Centers for Environmental Prediction-National Center for 
Atmospheric Research (NCEP-NCAR) reanalysis 1 and 
the NCEP-Department of Energy (NCEP-DOE) datasets 
for reproducing the mean value and interannual variability 
of soil moisture in China (Li et  al. 2005). Albergel et  al. 
(2012) compared soil moisture in the ECMWF’s Interim 
reanalysis (ERA-Interim) dataset with in situ soil moisture 
observations from 117 stations across the world (Australia, 
Africa, America, and Europe). They found that the ERA-
Interim dataset generally overestimates soil moisture, espe-
cially over dry land. However, it still performs well for sur-
face soil moisture variability.

Considering the importance of soil temperature in the 
land system, recently, several works have assessed the fore-
cast quality of soil temperature in numerical weather pre-
dictions (Holmes et al. 2012; Albergel et al. 2015). Holmes 
et  al. (2012) assessed surface soil temperature from the 
Integrated Forecasting System from ECMWF, the mod-
ern-era retrospective analysis for research and applications 
(MERRA) from the NASA Global Modeling and Assimila-
tion Office, and the global data assimilation system used by 
NCEP over Oklahoma. Albergel et al. (2015) used soil tem-
perature measurements over the United States and Europe 
to assess ECMWF forecasts of soil temperature during 
2012. They found that the ECMWF forecasts can gener-
ally represent the annual and diurnal cycle of soil tempera-
ture. Furthermore, they highlighted the importance of oro-
graphic data for estimating soil temperature. However, to 
the best of our knowledge, evaluations of soil temperature 
data from reanalysis products over China are still scarce.

Our present study evaluates four well-known reanalysis 
datasets, namely the land surface reanalysis of ECMWF 
(ERA-Interim/Land), the second MERRA (MERRA-2), 
the NCEP Climate Forecast System Reanalysis (CFSR), 
and version 2 of the Global Land Data Assimilation System 
(GLDAS-2.0), by comparing them with the observational 
soil temperature data over China, to provide a reference for 
the ability of these products to describe the seasonal mean, 
interannual variability and linear trend of soil tempera-
ture, and also, for their ability to estimate soil temperature 
memory over China. To explore the possible reasons for the 
different behaviors of the four reanalysis datasets, we fur-
ther examine the relationship between soil temperature and 
surface energy balance components. The remainder of this 
paper is arranged as follows. The observational and reanal-
ysis datasets are described in Sect. 2. Section 3 shows the 
results of the evaluation. Discussion and conclusions are 
presented in Sects. 4 and 5, respectively.

2  Data and methods

2.1  Observations

The observational data used in this study are the monthly 
mean soil temperature of 626 stations over China for the 
period of 1981–2005, provided by the China Meteoro-
logical Administration. The dataset has nine soil layers of 
0, 5, 10, 15, 20, 40, 80, 160, and 320  cm. Owing to the 
limitation of data availability, we only retain the stations 
with complete records for specific periods and soil layers. 
Figure 1 shows the spatial distribution of the stations with 
available soil temperature data for all nine soil layers for 
summer (June, July, and August), winter (December, Janu-
ary, and February), and for all 12 months of all 25 years. 
These stations are mostly located over the east of China. In 
this study, bilinear interpolation is used to interpolate rea-
nalysis data to stations.

2.2  ERA‑Interim/Land

The ERA-Interim/Land dataset (Dee et al. 2011; Balsamo 
et  al. 2015) is the newest land surface model simulation 
produced by ECMWF, covering 1979–2010. Based on a 
spatial resolution of 80  km (T255 spectral), the soil tem-
perature data in ERA-Interim/Land have four layers with 
depths of 0–7, 7–28, 28–100, and 100–289 cm. Forced by 
the near-surface meteorological fields from ERA-Interim 
(Dee et  al. 2011) and precipitation adjustments based on 
the Global Precipitation Climatology Project Version 2.1 
(Huffman et al. 2009), ERA-Interim/Land is executed using 
the latest version of the Hydrology-Tiled ECMWF Scheme 
for Surface Exchanges over land (HTESSEL, Balsamo 
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et  al. 2009). Compared with the Tiled ECMWF Scheme 
for Surface Exchanges over Land (TESSEL) used in ERA-
Interim, HTESSEL has significant improvements in terms 

of soil hydrology, snow scheme, vegetation climatology, 
and bare-soil evaporation. The ERA-Interim/Land dataset 
has been found to show more agreement with the observa-
tions for latent and sensible heat fluxes, soil moisture, and 
snow than the ERA-Interim dataset, and is considered to be 
more suitable for climate applications in terms of land sur-
face parameters. The ERA-Interim/Land data are used on a 
0.5°×0.5° grid in our study.

2.3  MERRA‑2

The MERRA-2 dataset (Bosilovich et  al. 2016), as a 
replacement for the MERRA reanalysis (Rienecker et  al. 
2011) produced by NASA, uses an upgraded version 
of the Goddard Earth Observing System Model, Ver-
sion 5 (GEOS-5) data assimilation system, including the 
GEOS-5 atmospheric model (Rienecker et al. 2008; Molod 
et  al. 2015) and the Gridpoint Statistical Interpolation 
(GSI) analysis scheme (Wu et  al. 2002). Compared with 
MERRA, MERRA-2 uses observation-based precipitation 
data instead of model-generated precipitation to force the 
land surface parameterization, and it includes numerous 
additional satellite observations. The soil temperature in 
MERRA-2 has six layers with thicknesses of 9.88, 19.52, 
38.59, 76.27, 150.7, and 1000 cm, and is provided on a grid 
with 576 points in the longitudinal direction and 361 points 
in the latitudinal direction (0.625°×0.5°).

2.4  CFSR

The CFSR dataset (Saha et  al. 2010; Meng et  al. 2012) 
is the newest global, high-resolution reanalysis covering 
1979–2009 developed by NCEP. Using the Noah four-layer 
land surface model, CFSR adopts the NASA land informa-
tion system (LIS) to execute the global land data assimila-
tion system (GLDAS/LIS; Mitchell et al. 2004; Rodell et al. 
2004; Peters-Lidard et al. 2007) to perform the land surface 
analysis. GLDAS/LIS is forced by the atmospheric data 
assimilation output of CFSR and observational precipita-
tion, including the pentad data of the Climate Prediction 
Center (CPC) Merged Analysis of Precipitation (Xie and 
Arkin 1997) and the CPC unified global daily gauge analy-
sis. The soil depths of the four soil layers are 0–10, 10–40, 
40–100, and 100–200 cm.

2.5  GLDAS‑2.0

The GLDAS-2.0 dataset (Rodell et al. 2004) is the newest 
reanalysis as part of the mission of NASA’s Earth Science 
Division covering 1948–2010, and is archived and distrib-
uted by the Goddard Earth Sciences (GES) Data and Infor-
mation Services Center (DISC). Based on the Noah model, 
GLDAS-2.0 is forced by the global meteorological forcing 

Fig. 1  Spatial distribution of stations with complete soil tempera-
ture records for all nine soil layers for a summer, b winter, and c all 
12 months of all 25 years
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dataset from Princeton University (Sheffield et al. 2006). In 
spite of the model version upgrade, GLDAS-2.0 uses the 
MODIS-based land surface parameter datasets and includes 
initialization of soil moisture over desert. The bottom-layer 
temperature in the Noah model is also updated, compared 
with GLDAS-1. GLDAS-2.0 has two resolutions of 1°×1° 
and 0.25°×0.25°, and the resolution of GLDAS-2.0 used 
in our study is 0.25°×0.25°. Similar to CFSR, GLDAS-
2.0 has four soil layers with thicknesses of 0–10, 10–40, 
40–100, and 100–200 cm.

3  Results

In land surface models, as an unavoidable limitation, soil 
temperature is given as an average of a soil layer. Linear 

interpolation is usually adopted to approximately calculate 
the soil temperature at certain soil depths, which may cause 
bias in the evaluation. To present the best behavior of each 
reanalysis dataset, we evaluate both the layer-averaged soil 
temperature (LA-ST) and the soil temperature interpolated 
to the nine observational soil depths using linear interpola-
tion (INTER-ST) by comparing them with the observations 
(OBS-ST). Figure  2 shows the vertical distribution of the 
mean LA-ST, INTER-ST, and OBS-ST of the stations with 
complete observational records in summer and winter. As 
an observational fact to support the applicability of linear 
interpolation, the vertical variation of OBS-ST is approxi-
mately linear, especially for the soil temperature at 0–40 cm 
depth. All four reanalysis datasets generally underestimate 
the soil temperature. And for each reanalysis product, the 
comparison of LA-ST and INTER-ST depends on soil 

Fig. 2  Vertical distribution of the mean observational soil tempera-
ture (°C), layer-averaged soil temperature (solid lines), and the soil 
temperature interpolated to the nine observational soil depths using 

linear interpolation (dashed lines) of all stations with complete obser-
vational records in a, b summer and c, d winter. a, c The soil tem-
perature at 0–40 cm, and b, d the soil temperature at 40–320 cm



321Evaluation of reanalysis datasets against observational soil temperature data over China  

1 3

depth. Comparing LA-ST for the four datasets, in general, 
the ERA-Interim/Land and GLDAS-2.0 datasets are closer 
to the observations than the MERRA-2 and CFSR data-
sets. In summer, the LA-ST of the GLDAS-2.0 dataset at 
0–10 cm is relatively higher than the other datasets, and the 
ERA-Interim/Land dataset has similar values for LA-ST 
at 0–7 cm. For summer LA-ST at 10–28 and 40–100 cm, 
the ERA-Interim/Land dataset has a higher estimation than 
the other datasets. The LA-ST of the GLDAS-2.0 dataset at 
28–40 and 100–200 cm is relatively closer to the observa-
tions. The MERRA-2 dataset shows good behavior in rep-
resenting the summer LA-ST in its second soil layer, which 
may be due to the fact that it has more soil layers than the 
other reanalysis datasets. The LA-ST of the CFSR dataset is 
relatively lower than the others datasets. For LA-ST in win-
ter, the ERA-Interim/Land dataset has the highest estima-
tion at 0–10 and 28–69.77 cm, and even has a higher value 
than the observations (estimated based on the assumption 
of linear variation) around 28 and 100 cm. The GLDAS-2.0 
dataset has a relatively higher estimation for soil tempera-
ture at 10–28  cm. The MERRA-2 dataset has the highest 
values for LA-ST at 69.77–100 cm and 144.26–294.94 cm 
(the soil depth of the fifth soil layer of MERRA-2). Six soil 
layers are used in the MERRA-2 dataset, which is the most 
layers among the four datasets, makes MERRA-2 data-
set has the closest winter soil temperature to the observa-
tions at deep soil layers, but also leads to a large bias in 
its estimation in summer. In addition, we find that the bias 
between the reanalysis data and the observations is larger 
for soil temperature in summer than in winter.

To investigate the ability of the reanalysis data to 
rebuild the spatial distribution of soil temperature in sum-
mer and winter, we choose 40  cm as an example. For 
each reanalysis dataset, INTER-ST or LA-ST at 40  cm 
is selected, depending on which one is closer to observa-
tions (shown in Fig. 2), to present the spatial distribution. 
Therefore, INTER-ST at 40  cm in the ERA-Interim/Land 
and MERRA-2 datasets and LA-ST of the second layer 
of the CFSR and GLDAS-2.0 datasets are adopted as the 
soil temperature at 40  cm in summer. The LA-ST of the 
third layer of the four datasets is chosen as the soil tem-
perature at 40  cm in winter. The observed soil tempera-
ture in summer shows a clear north–south difference over 
the east of China, with relatively high values in the south 
and relatively low values in the north (Fig.  3a). Over the 
west of China, summer soil temperature is relatively larger 
in the north than in the south. All four reanalysis datasets, 
which mainly show negative anomalies, generally capture 
those spatial characteristics, and have fewer discrepan-
cies with the observations in the east than in the west of 
China. Relatively, the ERA-Interim/Land and GLDAS-2.0 
datasets show more in common with the observations com-
pared with the other products. The MERRA-2 dataset also 

performs well at reproducing the summer soil temperature 
in central and south China, but has a relatively large bias 
for soil temperature in north China (Fig. 3). For soil tem-
perature in winter, as shown in Fig. 4, the observations also 
show a north–south disparity in the east of China, which 
is generally reproduced by the four reanalysis datasets. The 
GLDAS-2.0 dataset stands out as having the smallest bias, 
with a positive anomaly in the north and a negative anom-
aly in the south. The ERA-Interim/Land dataset has a rela-
tively large overestimation of winter soil temperature over 
north and northwest China, which could be the main rea-
son for the large national mean LA-ST of the ERA-Interim/
Land dataset at 40 cm shown in Fig. 2. The MERRA-2 and 
CFSR datasets show good behavior in terms of reproducing 
the winter soil temperature over the east of China, and the 
CFSR dataset has a relatively smaller bias. Compared with 
the estimation of soil temperature in summer, the reanalysis 
datasets have a smaller bias for soil temperature in winter.

We also calculate the multiyear mean, correlation coef-
ficient with observation, root mean square difference of 
mean soil temperature of stations with complete records 
at 40  cm in summer and winter. As is shown in Table 1, 
except for ERA-Interim/Land dataset in winter, reanalysis 
data have an underestimation of soil temperature compar-
ing with observations. GLDAS-2.0 datasets shows the 
smallest bias of multiyear mean both in summer and win-
ter. And it also performs better than other datasets in terms 
of correlation coefficient and root mean square difference, 
except for having a relatively low correlation coefficient 
with observations in winter.

Standard deviation is adopted to represent the interan-
nual variability of soil temperature. The standard deviation 
of soil temperature in summer for the observations has a 
spatial distribution characterized by obvious regional dis-
parity, with higher values in the north than in the south 
(Fig. 5a). The reanalysis datasets also show a north–south 
gradient, and generally underestimate the interannual vari-
ability of summer soil temperature. Relatively, the ERA-
Interim/Land dataset has a more similar spatial distribution 
to the observations than the other datasets. The other three 
datasets can mainly capture the interannual variability of 
summer soil temperature over south China (Fig. 5). Unlike 
the simple north–south disparity of summer soil tempera-
ture, the interannual variability of the observed soil temper-
ature for winter is characterized by a high–low–high pattern 
from north to south (Fig. 6a). The CFSR dataset has a simi-
lar distribution to the observations. The GLDAS-2.0 data-
set shows an underestimation in most areas, and can gener-
ally reproduce the spatial patterns of the observations over 
the east of China. The ERA-Interim/Land and MERRA-2 
datasets do not rebuild the large standard deviation over 
north China, but they still capture the spatial characteris-
tics of the observations over central China and south China 
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Fig. 3  Spatial distribution of 
the soil temperature (°C) for a 
observations, b ERA-Interim/
Land, d MERRA-2, f CFSR, h 
GLDAS-2.0 at 40 cm in sum-
mer, and the spatial distribution 
of the bias of c ERA-Interim/
Land, e MERRA-2, g CFSR, 
i GLDAS-2.0 compared with 
the observed summer soil 
temperature at 40 cm. Stations 
with complete observed records 
of summer soil temperature at 
40 cm are selected for compari-
son. Reanalysis data are interpo-
lated to these stations using 
bilinear interpolation



323Evaluation of reanalysis datasets against observational soil temperature data over China  

1 3

Fig. 4  Similar to Fig. 3, but 
for soil temperature in winter. 
Stations with complete observed 
records of winter soil tempera-
ture at 40 cm are selected for 
comparison
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(Fig.  6). In addition, ERA-Interim/Land and MERRA-2 
datasets show the smallest bias of the standard deviation of 
mean soil temperature of stations with complete records in 
summer and winter respectively (Table 1).

Figure  7 shows the spatial distributions of the linear 
trend of soil temperature from observations and reanalysis 
datasets in summer. The linear trend of observed summer 
soil temperature has a relatively high value in north and 
a relatively low value in south, which has been rebuilt by 
CFSR and GLDAS-2.0 datasets. Four reanalysis datasets 
generally have an underestimation of the linear trend over 
north and northwest China. Relatively, GLDAS-2.0 dataset 
has the smallest bias comparing with others. For the linear 
trend of mean soil temperature of stations with complete 
records in summer, GLDAS-2.0 also has a closer value 
with observations than other datasets (Table 1). Comparing 
with the linear trend of observed soil temperature in sum-
mer, the linear trend of observed soil temperature in win-
ter has a relatively higher value over south China (Fig. 8). 
Reanalysis datasets have all underestimated the linear trend 
over north China, and fail to rebuild the north–south dis-
parity shown in observations. MERRA-2 dataset has a rela-
tively closer value with observations for the linear trend of 
mean soil temperature of stations with complete records in 
winter (Table 1).

Soil temperature, as a reflection of the land surface 
thermal conditions, is highly related to the surface energy 
balance:

where  SRn is the net downward shortwave radiation,  LRn 
is the net downward longwave radiation, SH is the sensible 
heat flux, LH is the latent heat flux, and G is the soil heat 
flux (Meng et al. 2012). Therefore, the quality of the esti-
mations of surface energy balance components may have an 
influence on the estimations of soil temperature. Figure 9 
shows the seasonal cycle of the observed soil temperature 
for 0–320 cm and the soil heat flux. During April–Septem-
ber, soil temperature in the upper layers is higher than in 

(1)SR
n
+ LR

n
+ SH + LH = G

the deeper layers, and during November–March, the deeper 
layers have a higher soil temperature than the upper lay-
ers. Surface soil temperature peaks in July, while soil tem-
perature at 80 and 320  cm peaks in August and October, 
respectively. In general, the four reanalysis products show a 
similar annual variability of the soil heat flux, which turns 
from negative to positive around February, then peaks in 
April and turns to negative around September–October. 
Positive and negative soil heat fluxes correspond to the soil 
gaining and losing energy. Therefore, the land surface is 
gaining energy from the atmosphere in spring and summer 
and losing energy to the atmosphere in autumn and win-
ter. In the land surface models, LA-ST is usually calculated 
based on the heat diffusion equation. During April–Sep-
tember, the land surface transfers energy, which is got from 
atmosphere, to the deep soil layers, and during autumn and 
winter, the deep soil upwardly releases energy to the land 
surface.

The largest amount of energy that the land surface 
receives from the atmosphere is during April–June, while 
the highest land surface soil temperature appears around 
June–August. This phenomenon could be due to the fact 
that soil temperature has a memory ability for climate. We 
compare the increment of soil temperature from spring to 
summer in the first layer of reanalysis products with the 
averaged soil heat flux during April–June (Fig. 10a, c). The 
reason for using summer soil temperature minus spring 
soil temperature is considering that the energy from the 
atmosphere influences the summer soil temperature on 
the basis of the spring soil temperature. The increment of 
soil temperature from spring to summer corresponds well 
to the soil heat flux for the four products, with the CFSR 
dataset showing the highest values, followed by the ERA-
Interim/Land and MERRA-2 datasets. The GLDAS data-
set has both the smallest increment of soil temperature and 
soil heat flux. Therefore, in land surface models, the esti-
mations of land surface energy balance components dur-
ing April–June can significantly influence the estimations 
of summer soil temperature. In autumn and winter, energy 

Table 1  Multiyear mean (MM, 
°C), correlation coefficient with 
observations(CC), standard 
deviation (SD), root mean 
square difference (RMSD, °C), 
linear trend (LT, °C/year) and 
memory lengths (STM, months) 
of mean soil temperature of 
stations with complete records 
at 40 cm in summer (JJA) and 
winter (DJF)

MM CC SD RMSD LT STM

JJA OBS 22.906 0.366 0.030 3.509
JJA ERA-Interim/Land 20.847 0.920 0.362 2.064 0.020 2.134
JJA MERRA-2 19.644 0.739 0.374 3.273 0.023 2.672
JJA CFSR 19.355 0.919 0.425 3.555 0.037 4.101
JJA GLDAS-2.0 21.253 0.958 0.378 1.656 0.029 5.174
DJF OBS 2.813 0.513 0.044 1.392
DJF ERA-Interim/Land 3.693 0.962 0.433 0.892 0.031 1.669
DJF MERRA-2 1.166 0.964 0.494 1.653 0.033 1.283
DJF CFSR 1.450 0.888 0.394 1.384 0.032 0.815
DJF GLDAS-2.0 2.618 0.894 0.438 0.299 0.032 1.288



325Evaluation of reanalysis datasets against observational soil temperature data over China  

1 3

Fig. 5  Spatial distribution of 
the standard deviation of soil 
temperature from a observa-
tions, b ERA-Interim/Land, d 
MERRA-2, f CFSR, h GLDAS-
2.0 at 40 cm in summer, and 
the spatial distribution of the 
bias of c ERA-Interim/Land, e 
MERRA-2, g CFSR, i GLDAS-
2.0 compared with the standard 
deviation of the observational 
summer soil temperature at 
40 cm. Stations with complete 
observed records of summer 
soil temperature at 40 cm 
are selected for comparison. 
Reanalysis data are interpolated 
to these stations using bilinear 
interpolation
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Fig. 6  Similar to Fig. 5, but 
for soil temperature in winter. 
Stations with complete observed 
records of winter soil tempera-
ture at 40 cm are selected for 
comparison
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Fig. 7  Spatial distribution 
of the linear trend of soil 
temperature (°C/year) from a 
observations, b ERA-Interim/
Land, d MERRA-2, f CFSR, h 
GLDAS-2.0 at 40 cm in sum-
mer, and the spatial distribution 
of the bias of c ERA-Interim/
Land, e MERRA-2, g CFSR, i 
GLDAS-2.0 compared with the 
linear trend of the observational 
summer soil temperature at 
40 cm. Stations with complete 
observed records of summer 
soil temperature at 40 cm 
are selected for comparison. 
Reanalysis data are interpolated 
to these stations using bilinear 
interpolation
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Fig. 8  Similar to Fig. 7, but 
for soil temperature in winter. 
Stations with complete observed 
records of winter soil tempera-
ture at 40 cm are selected for 
comparison
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is transmitted upward from the deep layers to the surface. 
Therefore, the soil heat flux should have an anti-correlation 
with the reduction in soil temperature, as a smaller reduc-
tion in surface soil temperature means more energy is 
transmitted from the deep soil layer to surface, leading to 
more energy being released to the atmosphere. As shown in 
Fig. 10b, d, the reduction of soil temperature from autumn 
to winter and the soil heat flux in winter correspond well. 
With the largest soil temperature reduction from autumn to 
winter, the CFSR dataset has the smallest winter soil heat 
flux. The ERA-Interim/Land dataset has the smallest soil 
temperature reduction and the largest winter soil heat flux.

Except for the ERA-Interim/Land dataset, the magni-
tudes of standard deviation for soil temperature and soil 
heat flux also correspond well (Fig. 11). The CFSR data-
set, with the largest standard deviation for the increase of 
soil temperature from spring to summer, has the largest 
standard deviation of soil heat flux during April–June. The 

GLDAS-2.0 dataset has smaller standard deviations than 
the MERRA-2 dataset for the soil temperature increase and 
soil heat flux. The comparisons of standard deviations for 
the decrease of soil temperature from autumn to winter and 
for soil heat flux in winter are similar to the comparisons 
in summer. Therefore, the accuracy of estimating the inter-
annual variability of soil temperature can be influenced by 
the estimation of the interannual variability of the soil heat 
flux.

Our previous work investigated the spatiotemporal char-
acteristics of soil temperature memory over China based 
on the same observations, and emphasized its potential for 
improving our ability to predict seasonal climate (Yang and 
Zhang 2015). Owing to missing observational data, investi-
gations of soil memory in some areas, especially northeast 
China and the Tibetan Plateau, are still scarce. Reanalysis 
products, as evaluated in this study, can be very helpful in 
compensating for this lack of data.

Based on the analysis in our previous work, we adopted 
the red noise method to calculate the soil temperature 
memory (r(�) = exp(−�∕d)), where d is the decay time 
scale, which characterizes the red noise process, and r(τ) 
is the autocorrelation coefficient at lag time τ (1 month in 
this study) (Jones 1975; Delworth and Manabe 1988). The 
1-month autocorrelation coefficients of June and July, and 
July and August are averaged as the 1-month autocorrela-
tion coefficients of summer, and the 1-month autocorrela-
tion coefficients of November and December, and Decem-
ber and the January of the next year are averaged as the 
1-month autocorrelation coefficients of winter.

We know that the main spatial characteristic of soil tem-
perature memory is a northwest to southeast gradient, with 
relatively high values in northwest China, and relatively 
low values in southeast China, which can also been found 
in Fig.  12a. In summer, the ERA-Interim/Land dataset 
mainly shows an underestimation of soil temperature mem-
ory. It has a relatively larger memory length over northwest 
China than south China, which is generally consistent with 
the observations. The MERRA-2 dataset has a small bias of 
0–2 months compared with the observations over the east 
of China, and it has a relatively larger bias over northwest 
China. The CFSR and GLDAS-2.0 datasets show similar 
spatial distributions of summer soil memory with an over-
estimation over north China, and they do not perform well 
at rebuilding the northwest–south disparity. For winter soil 
memory (Fig.  13), the ERA-Interim/Land dataset shows 
the northwest–south gradient, and overestimations over 
north China and northwest China. The memory lengths for 
the MERRA-2 dataset in northwest China are shorter than 
in the other datasets. Similar to the summer, the CFSR and 
GLDAS-2.0 datasets have a similar spatial pattern to soil 
memory in winter. They have a relatively smaller bias in 
the east than in the west of China. In spite of the poor skills 

Fig. 9  a Seasonal cycle of observational mean soil temperature of 
stations with complete observational records shown in Fig.  1c at 0, 
20, 40, 80, 160, and 320 cm. b Seasonal cycle of mean soil heat flux 
of stations with complete observational records shown in Fig. 1c from 
the four reanalysis datasets
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Fig. 10  a Mean summer and spring soil temperature differences in 
the first layer, b mean winter and autumn soil temperature differences 
in the first layer, c mean soil heat flux during April–June, and d mean 

soil heat flux in winter of four reanalysis products for stations with 
complete observational records shown in Fig. 1a (a, c), and Fig. 1b 
(b, d)

Fig. 11  a Mean standard deviation of summer and spring soil tem-
perature differences in the first layer, b mean standard deviation of 
winter and autumn soil temperature differences in the first layer, c 
mean standard deviation of soil heat flux during April–June, and d 

mean standard deviation of soil heat flux in winter of four reanalysis 
products for stations with complete observational records shown in 
Fig. 1a (a, c), and Fig. 1b (b, d)
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Fig. 12  Spatial distribution of 
the soil temperature memory 
(months) for a observations, b 
ERA-Interim/Land, d MERRA-
2, f CFSR, h GLDAS-2.0 at 
40 cm in summer, and the spa-
tial distribution of the bias for c 
ERA-Interim/Land, e MERRA-
2, g CFSR, i GLDAS-2.0 
compared with the observed soil 
temperature memory at 40 cm 
in summer. Stations with com-
plete observed records of sum-
mer soil temperature at 40 cm 
are selected for comparison. 
Reanalysis data are interpolated 
to these stations using bilinear 
interpolation
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Fig. 13  Similar to Fig. 12, but 
for soil temperature memory in 
winter. Stations with complete 
observed records of winter 
soil temperature at 40 cm are 
selected for comparison
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presenting the spatial distribution of soil temperature mem-
ory, CFSR and GLDAS-2.0 datasets show the smallest bias 
of the memory lengths of mean soil temperature of stations 
with complete records in summer and winter respectively 
(Table 1).

4  Discussion

Figure  2 shows that the four reanalysis datasets perform 
differently at different soil depths, and there is no one prod-
uct that performs better than the others at all soil depths. 
The evaluation results of soil temperature at 40  cm may 
not be applicable for the soil temperature at other depths. 
We also evaluated soil temperature at 80  cm using the 
same methods (not shown). In general, the four reanalysis 
datasets show similar spatial distributions of the seasonal 
mean and standard deviation for soil temperature at 40 and 
80 cm, but not exactly the same. The MERRA-2 dataset has 
a better ability for reproducing the spatial characteristics of 
soil temperature at 80 cm than the other products. So the 
evaluation of soil temperature at 40 cm can’t be completely 
applied as the evaluation the soil temperature at other 
depths.

In this study, we only investigated the relationship 
between soil temperature and surface energy balance com-
ponents to determine the reason for the different behaviors 
of the reanalysis datasets. In fact, except for energy balance, 
many land and atmospheric parameters and processes can 
influence or interact with soil temperature. Albergel et  al. 
(2015) emphasized the importance of orography, soil mois-
ture, and snow cover on the forecast of soil temperature in 
ECMWF. The orography over the west of China is much 
more complex than in the east of China, which could be the 
main reason that reanalysis products perform better in east 
than in west. Soil moisture, as a crucial parameter of the 
land–atmosphere interaction, is highly correlated with soil 
temperature (Subin et al. 2012). Heat transport in the soil 
column is usually based on the thermal gradient, and the 
heat conductivity is closely related to soil moisture (Koster 
et  al. 2000). Soil moisture can also influence the surface 
energy balance by impacting the latent heat flux. The 
dynamics of snow, which is sensitive to air temperature, 
can influence the surface energy balance and then alter the 
soil temperature (Zhang et  al. 2005a, b; Khoshkhoo et  al. 
2015). Soil and vegetation characteristics, and soil frost 
also play an important role in land energy and water bal-
ance (D’Odorico et al. 2007; Wu et al. 2011; Collow et al. 
2014). The estimations of these parameters and processes 
can influence the estimation of soil temperature in reanaly-
sis products to varying degrees.

A major conclusion of our study is that reanalysis 
datasets generally show an underestimation of the soil 

temperature over China, which is consistent with the evalu-
ation of soil temperature from ECMWF forecasts during 
2012 over Europe (Albergel et al. 2015). Ma et al. (2008) 
also found that ERA-40, NCEP/NCAR, and NCEP/DOE 
datasets have underestimated the air temperature (which is 
high correlated with soil temperature) over China. As men-
tioned above, Albergel et al. (2015) investigated the influ-
ence of orography data and snow cover on the estimation 
of soil temperature. They chose Darrington station (Wash-
ington DC, USA) as an example and found that the orogra-
phy correction can make the surface soil temperature larger 
than the original data and closer to the observations. Zhao 
et  al. (2008) demonstrated that “topographic correction” 
can notably improve the quality of surface air temperature 
in NCEP-NCAR and ERA-40, which have generally under-
estimate the surface air temperature over China. Albergel 
et al. (2015) investigated the impact of snow on soil tem-
perature running offline ECMWF land surface model for 
a single grid point over the Wild Basin station (Colorado, 
USA). And they found that soil starts warming until snow 
depth reach 10  cm in model, while in observations, soil 
starts warming when soil depth is still 40  cm. They also 
mentioned that in model, soil starts warming until the snow 
depth of the entire grid point is less than 10 cm. These two 
limitations of land surface model can result in an underes-
timation of soil temperature. Another factor, the land use 
changes can also lead to an underestimation of soil tem-
perature in reanalysis data. Urbanization (urban heat island 
effect) and other land use changes can contribute to a high 
surface temperature (Zhang et  al. 2005a, b). While these 
anthropogenic changes in land surface condition are poorly 
described in models.

We found that reanalysis data perform better for estimat-
ing soil temperature in winter than in summer, especially 
over the east of China. This may be due to the effect of pre-
cipitation on soil temperature. Precipitation can influence 
the soil moisture and latent heat flux of land surface, which 
then directly or indirectly impacts the soil temperature. 
Influenced by the Asian monsoon, China has more precipi-
tation in summer than in winter. Figure 14 shows the corre-
lation coefficients of the soil temperature and precipitation 
from observations and reanalysis datasets. The observa-
tional precipitation data are provided by the China National 
Climate Center (http://ncc.cma.gov.cn/Website/index.
php?ChannelID=43&WCHID=5). The stations of obser-
vational soil temperature data (ST-STATION) are different 
from the stations of observational precipitation data (PRE-
STATION). For each PRE-STATION, the soil temperature 
of the adjacent ST-STATION (with a latitude and longi-
tude difference from the latitude and longitude of the PRE-
STATION less than 1° respectively) is selected or averaged 
(if there are more than one adjacent ST-STATION) as the 
soil temperature of this PRE-STATION. PRE-STATIONs 

http://ncc.cma.gov.cn/Website/index.php?ChannelID=43&WCHID=5
http://ncc.cma.gov.cn/Website/index.php?ChannelID=43&WCHID=5
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Fig. 14  Spatial distribution of 
the correlation coefficients of 
the soil temperature at 40 cm 
and precipitation for a observa-
tions in summer, b observations 
in winter, c ERA-Interim/Land 
in summer, d ERA-Interim/
Land in winter, e MERRA-2 
in summer, f MERRA-2 in 
winter, g CFSR in summer, h 
CFSR in winter, i GLDAS-2.0 
in summer, j GLDAS-2.0 in 
winter. Correlations of ±0.35, 
±0.41, and ±0.52 are significant 
at the 90, 95, and 99% levels, 
respectively. The interannual 
trend of soil temperature and 
precipitation data was removed 
before calculation
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with no adjacent ST-STATION are abandoned. We can find 
that the reanalysis datasets generally show similar spatial 
distribution characteristics with observations. In the four 
reanalysis datasets, soil temperature in summer shows high 
correlation with precipitation over most areas of the east 
of China, while in winter, there is no significant correla-
tion between soil temperature and precipitation over those 
regions (Fig. 14). Therefore, the quality of the estimations 
of summer precipitation can play an important role in the 
estimations of summer soil temperature. The observed pre-
cipitation data adopted by the reanalysis products (men-
tioned in Sect. 2) can be very helpful for improving the reli-
ability of the estimated soil temperature in summer.

5  Conclusions

In this study, we evaluated soil temperature from four rea-
nalysis datasets, namely ERA-Interim/Land, MERRA-2, 
CFSR, and GLDAS-2.0, in terms of climatological mean, 
interannual variability, linear trend and memory lengths 
by comparison with observational data over China for 
1981–2005. The magnitude of soil temperature averaged 
over the study period is generally underestimated by all 
four reanalysis datasets, which can be due to the limitations 
of models at reproducing the topographic characteristics, 
snow cover and land use changes. The ERA-Interim/Land 
and GLDAS-2.0 datasets have a relatively closer national 
mean to the observations than the MERRA-2 and CFSR 
datasets. Benefitting from the utilization of six soil layers, 
the MERRA-2 dataset has a good ability for rebuilding 
the winter soil temperature. For soil temperature at 40 cm, 
the four datasets all rebuild similar spatial distributions to 
the observations, and the GLDAS-2.0 dataset stands out 
as having a smaller bias in both summer and winter. The 
ERA-Interim/Land dataset shows a similar spatial distribu-
tion to the GLDAS-2.0 dataset for soil temperature in sum-
mer. The spatial distribution for the interannual variability 
of soil temperature, as characterized by standard devia-
tion, is well reproduced by the ERA-Interim/Land dataset 
in summer and by the CFSR dataset in winter. Reanalysis 
datasets can generally rebuild the linear trend of soil tem-
perature in summer.

The reanalysis products generally perform better in the 
east of China than in the west of China, which could be 
due to the fact that the orography over the west of China is 
much more difficult to describe than over the east of China. 
Furthermore, the reanalysis products perform better in win-
ter than in summer. Soil temperature in the reanalysis data 
is significantly correlated with precipitation in summer 
over the east of China, while in winter, the correlation is 
small and insignificant. Hence, the estimation of summer 

precipitation can have an important influence on the esti-
mation of summer soil temperature.

We have demonstrated that summer soil temperature is 
highly correlated with the soil heat flux during April–June, 
and winter soil temperature is related to the soil heat flux in 
winter, which highlights the importance of the estimation 
of land surface energy balance components on the estima-
tion of soil temperature.

The four datasets can mainly rebuild the north-
west–southeast gradient of soil temperature memory, and 
the ERA-Interim/Land dataset is more consistent with the 
observations in both summer and winter. In addition, the 
four reanalysis datasets have different abilities for estimat-
ing soil temperature at different soil depths. The results 
of the evaluation of soil temperature at 40 cm may not be 
applicable for the soil temperature of the other layers.
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