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Abstract
Indian summer monsoon rainfall extremes and their changing characteristics under global warming have remained a poten-
tial area of research and a topic of scientific debate over the last decade. This partially attributes to multiple definitions of 
extremes reported in the past studies and poor understanding of the changing processes associated with extremes. The later 
one results into poor simulation of extremes by coarse resolution General Circulation Models under increased greenhouse 
gas emission which further deteriorates due to inadequate representation of monsoon processes in the models. Here we use 
transfer function based statistical downscaling model with non-parametric kernel regression for the projection of extremes 
and find such conventional regional modeling fails to simulate rainfall extremes over India. In this conjuncture, we modify 
the downscaling algorithm by applying a robust regression to the gridded extreme rainfall events. We observe, inclusion 
of robust regression to the downscaling algorithm improves the historical simulation of rainfall extremes at a 0.25° spatial 
resolution, as evaluated based on classical extreme value theory methods, viz., block maxima and peak over threshold. The 
future projections of extremes during 2081–2100, obtained with the developed algorithm show no change to slight increase in 
the spatial mean of extremes with dominance of spatial heterogeneity. These changing characteristics in future are consistent 
with the observed recent changes in extremes over India. The proposed methodology will be useful for assessing the impacts 
of climate change on extremes; specifically while spatially mapping the risk to rainfall extremes over India.

Keywords  Statistical downscaling · Extreme value theory (EVT) · Climate change

1  Introduction

Indian Summer Monsoon Rainfall (ISMR) is a major com-
ponent of the Asian summer monsoon, which covers almost 
80% of Indian total annual rainfall, from June to Septem-
ber (Jain and Kumar 2012). The occurrences of short term 
heavy rainfall events during monsoon can cause losses to 
human life, infrastructure, industry, agriculture and ecosys-
tem at an unprecedented scales, e.g. Flood in Mumbai dur-
ing 2005 (Kumar et al. 2008), Flood in Kedarnath during 
2013 (Mishra et al. 2014), etc. India is the 3rd worst affected 
country by weather related disasters and it can be attributed 
to both higher occurrences of extremes and high population 
(UNISDR 2015). Global warming due to increased green-
house gas emissions causes the changes in the behaviour 
of the extreme precipitation all over the world (Trenberth 
et al. 2005). Global studies indicate that the magnitude 
and frequency of the extreme precipitation will increase in 
the future, even in the regions where total precipitation is 
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unchanged or decreased (IPCC 2007). Recent studies (Allen 
and Ingram 2002; Held and Soden 2006) show that the 
increase in the mean precipitation with increasing tempera-
ture is around 2% K-1, while the extremes are not energeti-
cally constrained and would increase at a greater rate under 
the warming scenario (Muller and Gormann 2011). The pre-
cipitation extremes are projected to increase at a larger rate 
than that of the mean precipitation in most part of the globe 
under the warmer climate due to the abundant availability of 
water vapour. This can be explained by the Clacuius–Clap-
eyron (C–C) relation, which states 7.5% increase in precipi-
tation per degree C increase in temperature. Changes in the 
magnitudes and frequency of extremes in future have been 
assessed using the General Circulation Models (GCMs) by 
Kharin and Zwiers (2000) and others (Kharin et al. 2007; 
Min et al. 2009; Wetterhall et al. 2009; Wasko and Sharma 
2015). However, there are some recent studies which indi-
cated that the increase in precipitation extremes in a warm-
ing environment exhibits a super C–C relation, especially 
in the case of hourly precipitation (Drobinski et al. 2016; 
Westra et al. 2014; Mishra et al. 2012; Lenderink and van 
Meijgaard 2010). The multi-model projections from GCMs 
on global monsoon depict significant increase in its intensity 
in the future (Kitoh et al. 2013; Lee and Wang 2014) and 
also its sensitivity to global warming (Kitoh et al. 2013). 
Hence the severity of ISMR is expected to increase with 
increase in the global warming (Sharmila et al. 2015) lead-
ing to detrimental effect on country’s agricultural activities 
and economy. Thus proper understanding and efficient pro-
jection of ISMR and its extremes have a significant influ-
ence on the India’s water resources and management policies 
(Mall et al. 2006; Archer et al. 2010).

The ISMR extremes have gained the attention of scientific 
research community due to its enormous complexities. There 
are numerous observational studies performed to understand 
the behaviour of the extremes over India, which revealed 
conflicting conclusions about the nature of changes in ISMR 
extremes. For instance, Goswami et al. (2006) showed sig-
nificant increase in the frequency and magnitude of precipi-
tation extremes, with decrease in moderate precipitation in 
Central India by spatially aggregating the gridded precipita-
tion data. This conclusion is further supported by Rajeevan 
et al. (2008). However, follow-up studies (Krishnamurthy 
et al. 2009; Ghosh et al. 2009, 2012) pointed some of the 
limitations of these analyses, which include heterogeneity 
of Central Indian precipitation with spatial non-uniformity 
in trend and failure in field significance test. On the other 
hand, the fine resolution analysis of ISMR extremes revealed 
increasing trend of spatial heterogeneity (Ghosh et al. 2012). 
The debates on the space–time variation of Indian monsoon 
rainfall extremes with the relative contributions from large 
scale circulation (Goswami et al. 2006; Rajeevan et al. 2008) 
and local influences, such as urbanization (Kishtawal et al. 

2010; Vittal et al. 2013; Shastri et al. 2014) still exist. In a 
very recent study, Mondal and Mujumdar (2014) reported 
that no spatially uniform pattern exists in Indian rainfall 
extremes. However, there is a general consensus that on a 
spatial aggregate scale there is an increase in extremes with 
statistically significant increase in spatial variability. The 
hypothesis, which is not yet explored, is that if such pat-
terns exist in future projections of monsoon rainfall under 
greenhouse warming.

GCMs are useful tools, which are being used exten-
sively by the researchers to understand the present and 
future changes in the precipitation in case of both mean and 
extremes. There are also several studies existing on Indian 
monsoon, which are largely focusing on the mean precipi-
tation (Gadgil and Sajani 1998; Hu et al. 2000; Lal et al. 
2001; May 2002; Wang et al. 2004; Kripalani et al. 2007; 
Turner et al. 2007; Stowasser et al. 2009; Sharmila et al. 
2015; Sarathi et al. 2015), with considerable uncertainty 
across multiple GCM projections. However, relatively fewer 
studies have focused on examining the projected changes 
of ISMR extremes (Turner and Slingo 2009a, b). The stud-
ies mentioned above, directly utilized the GCM data to 
analyze the projections of ISMR; however, coarse resolu-
tion simulations by GCMs may not suitable for simulating 
regional precipitation. Regional climate model outputs of 
Indian monsoon have been rarely used to understand the 
characteristics of future extremes. This is partially due to 
the inability of models in simulating the extremes, though 
some of them may be good for other characteristics such 
as climatology or seasonality. Revadekar et al. (2011) and 
Rao et al. (2014) conducted studies on projection of ISMR 
extremes by using RCM known as PRECIS (Providing 
REgional Climates for Impacts Studies), which showed 
increase in extremes towards the end of twenty-first century. 
However, the parent model was one of the old generation 
climate model from CMIP3 suite and the analyses do not 
consider inter-model uncertainty. Mishra et al. (2014) have 
evaluated the dynamic downscaling simulations from Coor-
dinated Regional Climate Downscaling Experiment (COR-
DEX) with CMIP5 models as parent models and have not 
found any value addition with respect to the parent GCM. 
They have also concluded that the regional simulations of 
extremes are inadequate for climate change adaptation. In 
addition, a recent study by Singh et al. (2016) revealed that 
the regional models do not add value to the ISMR projec-
tions including extremes. Salvi et al. (2013) and Shashi-
kanth et al. (2013) have developed statistical downscaling 
model with kernel regression for fine resolution projection 
of Indian monsoon; however, such downscaling model was 
unable to capture the extremes. The other recently reported 
statistical downscaling algorithms include beta regression 
(Sohom et al. 2016), K-nearest neighbourhood (Sharif and 
Burn 2006, 2007; Goyal et al. 2011, 2013; King et al. 2015), 
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maximum entropy bootstrapping (Srivastav and Simonovic 
2014), Hidden Markov Model (Mehrotra and Sharma 2005, 
2010), geostatistical approaches (Jha et al. 2015) etc. The 
inability of both state of art dynamic and statistical regional 
models in simulating ISMR extremes makes it a potential 
area of research and here we attempt to address the same. 
The other issue associated with extremes is the analysis of 
tail which needs special statistical treatment through appli-
cation of Extreme Value Theory (EVT) (Kharin and Zwi-
ers 2000; Kharin et al. 2007; Khan et al. 2007; Vittal et al. 
2013); however majority of the studies on Indian monsoon 
(Goswami et al. 2006; Revadekar et al. 2011 and Rao et al. 
2014) have not really utilized this tool for a strong statisti-
cal support. Here, in the present study we modify the state-
of-art statistical downscaling model (Kannan and Ghosh 
2013; Salvi et al. 2013) for better simulations of regional 
rainfall extremes; characterize extremes by applying EVT 
with Annual Maxima/Block maxima (AM/BM) (Ghosh et al. 
2012) and Peak over Threshold (PoT) (Vittal et al. 2013; 
Coles 2001) approaches. We further compute the statistically 
significant changes in extremes during future considering the 
uncertainty in parameters of extreme value distributions by 
using multiple GCMs from CMIP5 suites.

The current paper is organized as follows. The selection 
of the GCMs and the data details are discussed in Sect. 2. 
The methodology and list of models are also provided in 
Sect. 2. A discussion of the various results obtained in the 
study is presented in Sect. 3. Finally, a summary, followed 
by concluding remarks, are presented in Sect. 4.

2 � Data and methods

We first use the conventional statistical downscaling (Sup-
plementary Fig. S1) (Kannan and Ghosh 2013; Salvi et al. 
2013) for projection of Indian summer monsoon rainfall 
(ISMR). Here, in the present study, we focus on rainfall 
during JJAS (June–September, Indian summer monsoon) 
time period only. The model is then further modified to 
capture the extremes (Fig. 1). Extremes are characterized 
with extreme value theory. Brief overview of different 
steps and data used for the same are presented in the fol-
lowing subsections.

Fig. 1   Modified Downscaling 
Algorithm for simulations/ 
projections of precipitation 
extremes
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2.1 � Statistical downscaling

Statistical downscaling involves development of statistical 
relationship between synoptic scale circulation pattern and 
regional precipitation, which is further applied to the bias 
corrected synoptic circulation patterns projected by GCMs. 
The synoptic scale climate variables forming the circulation 
pattern are known as predictors. Following Shashikanth et al. 
(2013), Salvi et al. (2013) and Kannan and Ghosh (2013), 
here, we use wind velocities in both U and V directions, 
temperature at surface and 500 hPa, specific humidity at 
500 hPa and mean sea level pressure (MSLP) as predictors. 
We follow the state of art transfer function based statistical 
downscaling where kernel regression (Supplementary Fig. 
S1) is used as a transfer function (Kannan and Ghosh 2013; 
Salvi et al. 2013). The methodology is applied separately to 
seven meteorologically homogeneous zones (Parthasarathy 
et al. 1995) in India (Supplementary Fig. S2).

We first develop the statistical relationship between 
predictors and predictand. We use National Centers for 
Environmental Prediction/ National Center for Atmos-
pheric Research (NCEP/ NCAR) reanalysis data (Kalnay 
et al. 1996) as predictor and the gridded rainfall provided 
by Asian Precipitation—highly-resolved observational data 
integration towards evaluation (APHRODITE) (Yatagai 
et al. 2012) as predictand for establishing the relationship. 
The relationship involves multiple statistical steps, such 
as Principal Component Analysis (PCA) for reduction of 
dimensionality of predictors; Classification and Regression 
Tree (CART) for estimation of rainfall states representing 
spatial patterns of precipitation and Kernel Regression (KR) 
at individual grid conditional on derived state to simulate 
gridded precipitation. Details of the methodology with the 
domain of predictors are reported in Salvi et al. (2013).

We apply the derived relationship to the GCM simulated 
synoptic scale climate variables. The GCMs used for the pre-
sent study are developed by Norway climate center (NCC) 
formerly BCCR (Bjerknes centre for Climate Research, 
Norway), CCCma (Canadian Center for Climate Modelling 
Analysis), MIROC-medium resolution (Model for Inter-
disciplinary Research on Climate), MRI (Meteorological 
Research Institute, Japan), and MPI (Max Plank Institute, 
Germany). The GCMs used in the present work are from 
CMIP5 suite. The GCMs are selected based on their capabil-
ity to simulate the Indian monsoon (Kripalani et al. 2007). 
In addition to this, Bayesian analysis with statistically down-
scaled projections assigns higher weigtages to the GCMs 
BCCR, MRI and MPI for the India monsoon (Shashikanth 
et al. 2014). The GCM simulated variables have system-
atic departure (bias) with respect to observe NCEP/NCAR 
reanalysis data. For the current study, quantile based trans-
formation method, proposed by Li et al. (2010) is used for 
bias correction. The daily precipitations are simulated by 

applying the derived relationship to bias corrected GCM 
simulations.

2.2 � Modified downscaling for precipitation 
extremes

One of the key limitation as reported in state-of-art regional 
climate modelling with statistical downscaling is that they 
fail to simulate extremes, since the regression based methods 
aim to simulate the expected value of predictand, given a 
circulation pattern (Wilby et al. 2004; Benestad 2010). This 
is true for Indian monsoon and is reported in Salvi et al. 
(2013). To simulate the extremes, we modify the algorithm 
(Fig. 1), and the new method involves a twofold approach, 
first, the identification of extreme days and then the use 
of robust regression for simulating extreme precipitation 
amount. As extreme precipitation data set is mostly associ-
ated with the outliers, we apply robust regression.

Robust Regression (RR) is mostly implemented when 
non-normal or outliers are observed in the data set. The lin-
ear least square estimate performs badly in the presence of 
unusual data (extremes), where the residuals do not follow 
a normal distribution. If the distribution of errors is asym-
metric and prone to outliers, the model assumptions will 
no longer remain valid, and also the parameter estimates, 
confidence intervals, and other computed statistics will 
become unreliable (Huber 1972). Therefore, robust regres-
sion is employed which is not as vulnerable as least squares 
to heavy tailed data. The most general method for robust 
regression is M-estimation (Huber 1972; Fox 2002), where, 
M stands for “maximum likelihood type”. It assigns weight 
to each data point automatically and iteratively using a pro-
cess called Iteratively Reweighted Least Squares (IRLS). 
In the first iteration, each point is assigned equal weight 
and model coefficients are estimated using ordinary least 
squares. The weights are then recomputed with least weight 
assigned to the data point deviating maximum from model 
prediction. Model coefficients are recomputed and the pro-
cess continues until the values of the coefficient estimates 
converge within a specified tolerance (Huber 1972; Fox 
2002).

However, RR being a modified linear regression method 
may not perform well for highly non-linear relationship. In 
such scenario, the nonlinear kernel regression may perform 
better. Hence, for downscaling of rainfall extremes we apply 
both KR and RR, to select the best one for individual grid.

2.3 � Extreme value analysis

For analysis of extremes on the observed and simulated grid-
ded monsoon precipitation over India, we apply Extreme 
Value Theory (EVT) (Coles 2001), which infers the tail 
behaviour of a population on the basis of well-grounded 
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statistical theory (Ghosh et al. 2012). The two commonly 
used EVT methods are Block Maxima (BM) (Annual/ sea-
sonal Maxima for hydro-meteorological applications) using 
generalized extreme value distribution (GEV) and peak 
over threshold (PoT) using Generalized Pareto Distribution 
(GPD).

The BM approach involves extraction of maxima values 
from a block of a year or a season (here, monsoon season, 
JJAS). These maxima values are then fitted to Generalized 
Extreme Value (GEV) distribution. The BM method is pref-
erable with long historical record or long range of data (Kha-
rin et al. 2007). The details of fitting the GEV distribution to 
annual/block maxima are described in the Coles (2001). The 
details of GEV distributions are explained below:

Suppose ‘x’ represents the annual/block maxima of daily 
precipitation in a given series, then the GEV distribution is 
defined by (Coles 2001; Katz et al. 2002);

GEV distribution has three parameters namely location 
(µ), scale parameter (α) and shape parameter (ξ). In the 
present work the maximum likelihood estimation (MLE) 
technique is used to estimate the parameters. However, for 
small data sets the parameters may be unstable (Martins and 
Stedinger 2000; Wang et al. 1990). This may be considered 
as a limitation of the present work. The positive, negative 
and zero values of shape parameters guide to three differ-
ent cases of GEV distribution namely Frechet, Weibull and 
Gumbel distribution respectively.

The goodness of fit is estimated using Kolomogo-
rov–Smirnov (K-S) (5% level significance) test and if the 
test fails an empirical distribution is fitted instead of GEV. 
The fitted GEV parameters are used to estimate 30 year 
return level. The return level/ period (RLN) is defined as 
a particular value expected to exceed once in every N year 
(here, 30 year) with probability of 1/N in any given year 
(Khan et al. 0.2007).

On the other hand, a nonparametric Gaussian kernel dis-
tribution was fitted to those grids where KS test failed for 
GEV.

The main weakness of block maxima method is that 
it does not consider multiple occurrences of an extreme 
event over a particular threshold (Katz et al. 2005; Coles 
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2001; Vittal et al. 2013). The PoT method considers all the 
extreme events exceeding a threshold and here we consider 
95 percentile rainfall at individual grids as the threshold for 
that grid. The clusters of maximas of rainfall are identified 
when the daily rainfall is above the respective threshold for 
successive days, and clusters are separated when there is 
at least a single day between them with rainfall lower than 
the threshold. The maximas from clusters of rainfall values 
exceeding these thresholds are then fitted to GP distribution. 
The expression for GPD is provided below:

 where, y > 0, with σ > 0 is a scale parameter and is a 
shape parameter. The shape of GPD assumes three possible 
types depending upon the shape parameter ξ = 0, known 
as exponential distribution; ξ > 0 Pareto distribution and 
ξ < 0 beta distribution (Katz et al. 2005). The parameters are 
obtained using maximum likelihood estimation and good-
ness of fit is estimated using KS test at 5% significance level. 
The extreme values are expressed as return levels/periods 
(RLN) (Coles 2001; Vittal et al. 2013).

One of the key assumptions in PoT is that the fitted rain-
fall values should be independent. Here we examine the 
independence using lbqtest (Ljung-Box 1978). Further 
information regarding the PoT can be obtained from Coles 
(2001), Vittal et al. (2013) and Madsen et al. (1997). How-
ever, Cunnane et al. (1973) reported that PoT and BM mod-
els are of similar efficiency when a relatively high threshold 
is used for the PoT series.

2.4 � Computing changes in extremes 
with significance

Fitting of distribution to a sample is characterized by uncer-
tainty and hence computing the changes in return levels 
derived from distribution needs to be tested for statistical 
significance. Resampling is an approach for estimating 
parameter uncertainties (Efron and Tibshirani 1993; Davi-
son and Hinkley 1997). It generates the confidence intervals 
for return levels which are used to compute statistical sig-
nificance (Dupuis and Field 1998; Kharin and Zweirs 2005; 
Kharin et al. 2007).

The changes in the 30-year return levels that are sub-
jected to the uncertainty resulting from the fitting of distri-
bution are evaluated with bootstrapping approach. Following 
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Kharin and Zwiers (2005), the extremes are sub-sampled 
(with repetition) 1000 times. These new samples are used to 
re-estimate the extreme distribution parameters and the cor-
responding return quantiles. The difference between (future 
and historical values) two return level estimates is said to be 
statistically significant at 20% when their confidence bands 
have less than 60% overlap (Kharin and Zwiers 2005).

3 � Results and discussion

We apply the conventional statistical downscaling and evalu-
ate its performance for Indian monsoon mean and extremes 
over the historic period (1981–2000). The results are pre-
sented in Fig. 2. For mean ISMR, we observe both the sta-
tistically downscaled evaluation runs (from reanalysis) and 
GCM simulations perform well, specifically in capturing the 
spatial patterns (Fig. 2a–c). We further evaluate the same for 
extremes using both the methods, viz., Block Maxima (BM) 
and Peak over Threshold (PoT) (Fig. 2d–i). The errors are 
computed in terms of 30 years return levels and are observed 
to be even as high as 80–100% at many locations. The dis-
crepancy between BM and PoT suggests the existence of 
multiple extremes other than the maxima in a season that 
significantly affects the extreme rainfall quantiles corre-
sponding to return levels. Figure 2 shows similar spatial 
pattern of return levels from BM and PoT, however; there 
are significant discrepancies at multiple locations. These 
attribute to the existence of multiple statistically impact-
ful extremes other than seasonal maxima. Such differences 
are also reported for other regions (Adamowski 2000). This 
shows the necessity of special treatment for extremes in 
downscaled climate simulations/ projections.

To apply specific algorithms to the rainfall extremes, the 
first step would be the identification of extreme days. We 
compute the 95 percentile rainfall values for individual grids 
from the conventionally downscaled simulations separately 
and identify the extreme days based on them. The detec-
tion of extreme days is evaluated with Heidke Skill Score 
(HSS). The score is around 15% for majority of the locations 
(Fig. 3) and this has been considered as a reasonable value 
for climate simulations (Maity and Nagesh Kumar 2008).

We apply the modified approach to these extremes days. 
As mentioned in Sect. 2.2, the best regression at stage 2 is 
not necessarily the RR, and there are locations where KR 
is doing better (Supplementary Fig. S3). We select the best 

among KR and RR for individual grids and then apply the 
extreme value analysis for the evaluation. Here, we find RR 
performs better for 58% (2894 nodes) of nodes, while KR 
performs better for the rest. Hence, we have made a grid 
specific selection of methods. This step is performed inde-
pendently to all the grids. The results show (Fig. 4) sig-
nificant decrease in the absolute percentage errors in terms 
of 30 years return levels. The results of the absolute per-
centage errors across nodes for all India (Supplementary 
Table T1(a)) and zone wise for the NCEP/NCAR simulated 
extremes (Supplementary Table T1(b)) show the maximum 
percentage nodes lie within 5% error.

Further, we have performed a cross validation of our 
model with different combinations as presented in Supple-
mentary Table T2. The total 40 years data is split into 4 parts 
each with 10 years data, viz., 1961–1970 (A), 1971–1980 
(B), 1981–1990 (C) and 1991–2000 (D). For e.g. AD-BC 
combination denotes that the model is trained for A and D 
period (1961–1970 and 1991–2000) and tested for B and 
C (1971–1980 and 1981–1990) period for the projections 
of extremes using modified statistical downscaling model 
with NCEP/NCAR predictors. Similarly the results for other 
combinations are obtained and presented in the (Supplemen-
tary Fig. S4). The results indicate satisfactory performance 
for above mentioned combinations except for AD (Training) 
-BC (Testing) combination where we observe absolute per-
centage being slightly high in some regions.

Fig. 2   The rainfall simulations based on methodology developed by 
Salvi et al. (2013). Mean ISMR (a–c) is well captured by the down-
scaling model with the predictors from NCEP/NCAR reanalysis and 
GCMs. However, simulations of extreme rainfall with Block Maxima 
(BM) and Peak over Threshold (PoT) (e, h) approaches indicate high 
absolute percentage errors (f, i)

◂

Fig. 3   The detection of extreme days as evaluated with the Heidke 
skill score (HSS)
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We present the scatter plots where the errors for con-
ventional and modified downscaling methods are presented 
(Fig. 5). Each of the points in the scatter plot represents each 
grid. For both BM and PoT, the errors have been reduced 
significantly. The improvements are more in BM method, 
compared to PoT and probably this is because of the errors in 
identification of extreme days. PoT considers all the extreme 
days and hence the errors are slightly more than those of 
BM; however the performance is still better than the con-
ventionally downscaled simulations. The discrepancy in the 
results between BM and PoT needs to be further explored 

with a detailed sensitivity analysis and may be considered 
as the potential area of future research. To check the reliabil-
ity and also to compare with the results obtained from the 
GEV distributions, we have now performed the PoT with the 
thresholds 97.5 and 99 percentile. However, by changing the 
threshold, the discrepancies between the results from PoT 
and BM cannot be reduced (Supplementary Fig. S5). Fur-
ther at the same time, we observe that 94% of nodes are not 
violating the IID assumption at 5% significance level, when 
95 percentile rainfalls is considered as threshold. Hence, we 
perform the rest of the analysis with 95 percentile rainfall 

Fig. 4   Spatial variation of the 
simulated extreme rainfall 
corresponding to 30 years 
return period and the absolute 
errors with respect to observed 
data. The extreme rainfall is 
simulated by modified downs-
caling algorithm using NCEP/
NCAR predictors. a Spatial 
map of 30 year return level 
(30RL) intensity estimated by 
BM approach and its absolute 
errors (b). Similarly the analysis 
is further carried with PoT 
approach, where (c) depicts 
the spatial variation of the 30 
years extreme precipitation with 
absolute errors (d)
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as threshold and this may be considered as limitation of the 
present work. The discrepancy between the results obtained 
from BM and PoT is one of the limitations of the present 
model.

We apply the modified downscaling algorithms to the 
CMIP5 GCMs, and present the ensemble mean of 30 years 
return levels in Fig. 6. The model captures high return lev-
els at the Western Ghats when applied to the GCM simula-
tions. High return levels are also observed over some of the 
regions of North East India. However, the plots are spotty 
with high quantiles at few locations in the central India. The 
error diagram shows that the percentage deviations of simu-
lated extremes from observed are within permissible limits. 
We also performed the analysis for 10 year return period 
to understand the spatial pattern of errors with respect to 
30 year return period. We found the similarity in the spatial 
pattern both in 10 and 30 years return levels, however, the 
errors are high in later case, mainly due to the extrapola-
tion (Supplementary Fig. S6). Nonetheless, it should be 
noted that the main motivation of the present work is to 
develop the methodology for extreme downscaling espe-
cially for ISMR. Once the methodology is developed any 
return levels can further be computed based on the sample 
size availability.

The proposed method does not really consider the asso-
ciation among predictors while correcting the bias. The pre-
dictors have significant correlation among themselves and 
this cannot be taken care with the methodology proposed 
by Li et al. (2010). Impacts of such limitation will be more 
significant for extremes. This is required to be incorpo-
rated with the approach suggested by Mehrotra and Sharma 
(2015) in the present model. This is a potential area of future 
research. We apply the same to the future (2081–2100) pro-
jections of GCM simulations. We keep the threshold for the 
future as same to the 95 percentile of the current climate. 
This is to deal with the possible large changes in the future.

Selection of predictors have remained a major challenge 
in statistical downscaling and there have been a recent 
development in the literature on the same. Here, we have 
employed such a method by using partial weight to the pre-
dictors, as described in Sharma et al. (2016) for the projec-
tions of extremes. This study uses the non parametric pre-
dictive model using Partial Informational Correlation (PIC) 
and Partial Weights (PW) model. Non parameter Prediction 
(NPRED) identifies predictors using PIC and predicts the 
response using a k-nearest neighbor regression formulation 
based on a PW based weighted Euclidean distance. The 
results from this formulation show similar performance 
(Supplementary Fig S7) to the same obtained with the pro-
posed model. However, such an approach may add value in 
other regions and should be employed.

We present the spatial variations of historic and future 
return quantiles (multi-model mean) as obtained for India 
and Central India with their respective PDFs (Fig. 7). The 
Block Maxima (BM) method shows increase in the spatial 
average of projected return levels in future for both the cases, 
India and Central India. This is consistent with the observed 
trends as concluded in Goswami et al. (2006). However the 
PoT does not show any significant difference between the 
historic and future period in spatial average of return levels. 
Both the methods show increase in the standard deviation 
of return levels, which denotes the increase in spatial vari-
ability. This is consistent with the observed characteristics 
as analyzed by Ghosh et al. (2012). The increase in spatial 
variability is less for PoT compare to BM in Central India.

We also present the changes in return levels as obtained 
with BM method for future with respect to the same for 
historic (Fig. 8). We show the changes which are signifi-
cant at 20% level with less than 60% overlap (Vittal et al. 
2016) between the uncertainty bands of historic and future 
extremes. The results show spatially non-uniform changes 
in extremes for all the downscaled GCM simulations, which 

Fig. 5   Scatter plots of absolute errors for simulated extreme precipitation from modified downscaling method conventional downscaling 
Method. The results are obtained for both BM (a) and PoT approaches (b)
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are consistent with the observed data (Ghosh et al. 2012). 
We also present results with 80% overlap (10% confidence 
level) in Supplementary Fig. S8 and Supplementary Fig. 
S9 for both BM and PoT approaches. The spatial patterns 
remain the same. We present the zone wise distribution of 
changes in rainfall in Supplementary Table T3 for both BM 
and PoT approaches. Here, we find increase in extremes 
over majority of the locations in Central India and the grids 
which are showing increasing changes are clustered together. 
This observation is consistent across all the GCMs. We find 

almost similar number of grid points has undergone posi-
tive and negative changes in return levels for multi-model 
mean, though Fig. 7 shows increase in spatial average for 
multi-model mean. This attributes to the statistically non-
significant changes that were considered in computing 
the average in Fig. 7 as well to the very high magnitude 
of changes in the increasing grid points than those of the 
decreasing grid points. This points to the necessity of using 
extreme value theory with statistical significance in analysis 
of extremes rather than simple count based approaches with 

Fig. 6   Same as Fig. 4, when the 
bias corrected predictors are 
used from historic simulations 
of CMIP5 models
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Fig. 7   PDFs, standard deviation and box plots of the 30 years 
extreme precipitation for historical (1981–2000) and future (2081–
2100) periods for All India and Central India (as considered in Gos-
wami et  al. 2006). Both BM and PoT are used to compute the 30 
years extreme precipitation. The spatial variability of extremes are 
presented with PDFs for All India using Block Maxima (a), and PoT 

(d) and for Central India using Block Maxima (g), and PoT (j). The 
blue solid vertical lines represent the mean for historical, and the 
magenta lines represent the mean for future. The standard deviations 
resulting from the spatial variations for all the four cases are plotted 
in (b), (e), (h) and (k). The corresponding box plots are presented in 
(c), (f), (i) and (l)

Fig. 8   The Changes in 30 year RL extreme precipitation during his-
torical (198–2000) and future (2081–2100) for BM approach for 
each of the GCMs considered in the study. Following the bootstrap 
approach, the changes in 30RL is estimated at 20% significance level. 

The pie chart inside the maps represents the percentages of the total 
grids with statistically significant positive, negative and no change 
respectively



12	 K. Shashikanth et al.

1 3

a low sample of rare events. We also find that a significant 
area in the North – East India will receive fewer extremes 
in future period (2081–2100) compared to historical period 
(1981–2000) and this has significant implications consider-
ing the highest rainfall occurrences over this area at present.

We present the projected changes in return levels as 
obtained with PoT and find similar spatially non-uniform 
changes as those obtained with BM (Fig. 9). Here we find 
that the increase is less compared to BM. The differences in 
the results obtained from BM and PoT show that seasonal or 
Block maxima probably do not present the extremes occur-
ring in the entire season and consideration of such cases 
needs PoT approach. In the results from the PoT method, 
the increasing grid points are observed to be clustered in the 
Central India, which is very similar to that obtained from 
BM.

It should be noted that local factors such as urbaniza-
tion (Shastri et al. 2015), deforestation play major role in 
the changing pattern of precipitation and such forcing are 
not considered in the present work. Changing patterns of 
extremes make the extreme value analysis non-stationary, 

which may need a special treatment such as Generalized 
Additive Models for Location, Scale and Shape (GAMLSS) 
(Villarini et al. 2009, 2010) and such an approach has not 
been applied here. Downscaling for extremes with its 
extreme value analysis with GAMLSS may be considered 
as a potential area for future research.

4 � Summary and conclusions

Projections of rainfall extremes are a major research chal-
lenge in climate science which is even more difficult for 
ISMR. Here we find the conventional statistical downscaling 
fails to simulate the characteristics of extremes because the 
transfer function (regression) can model the expected quan-
tity, but not the higher quantiles. We develop 2-stage regres-
sion, where an extra regression is applied only for extreme 
days after the conventional downscaling. The outliers in 
the regression are taken care by robust regression, whereas 
the nonlinearity is addressed with kernel regression. The 
developed model captures well the extremes along with its 

Fig. 9   Same as Fig. 8, but with PoT approach
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spatial variability. The return levels of extremes are obtained 
with statistically rigorous extreme value theory where both 
BM and PoT are used. The future projections show spatially 
non-uniform changes in extreme rainfall with increase in 
spatial variability. Similar changes are also observed in 
recent periods (Ghosh et al. 2012) and hence this character-
istic of downscaled projections is consistent with the recent 
observed trend. Furthermore, we find increase in the spatial 
average of extremes for India and Central India as computed 
with BM, which is consistent with observed trend (Goswami 
et al. 2006). We also find that the PoT approach does not 
show distinct increase of extremes. Testing of statistical sig-
nificance with bootstrapping to address uncertainty in fitting 
of distribution shows the increasing grid points are clustered 
together mostly in the Central Indian belt and possibly result 
into increase in extremes for the same region. However, 
spatial non-uniformity in statistically significant changes of 
extremes is distinctly visible in India during 2081–2100, as 
compared to the historic period. Though the present study 
is a successful attempt to downscale the rainfall extreme for 
Indian monsoon, however, there are some limitations that 
can be addressed in future. The first limitation is: The Sta-
tistical downscaling (SD) model firstly establishes relation-
ship between reanalysis predictors and predictand (observed 
extreme rainfall) during the historical period. The same 
established relation is used for future projections for the 
GCM simulated synoptic scale climate predictors. This sta-
tistical relationship, extracted from historical data remains 
unaltered, despite non-stationary change in climate (Salvi 
et al. 2016). It is true that the performance of the proposed 
model needs to be tested in a non-stationary climate and 
the design of experiments proposed by Salvi et al. (2016) 
may be used for the same. The increase in extremes during 
future may not be visible in the projections possibly due to 
the failure of the model in a non-stationary climate; however 
at the same time it should also be noted that dependence of 
the intensification of Indian monsoon extremes on warming 
of land and sea surface is weak (Vittal et al. 2016). This 
deserves a detailed analysis and should be a potential area 
of future research. Further, the non-stationarity in the dis-
tribution parameters fitted to simulated data set has not been 
considered. The second limitation is that the local effects 
such as impacts of deforestation and urbanization have not 
been considered in this study. Incorporation of local changes 
has been practiced in dynamic downscaling framework by 
coupling with a land surface model; however, incorporating 
them in statistical framework remains a challenge and may 
also be considered as a potential scope for future research.
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