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temperature and low soil moisture content prone to domi-
nate over other processes during the warmest summers in 
this region. Over the Great Plains, however, improving the 
soil moisture initialization does not lead to any robust gain 
of forecast quality for near-surface temperature. It is sug-
gested that models biases prevent the forecast systems from 
making the most of the improved initial conditions.

Keywords Land-surface initialization · Seasonal 
forecasting · Land–atmosphere coupling · Multi-model · 
Ensemble forecast

1 Introduction

Human activities are affected by climate-dependent factors, 
such as energy demand, crop yield or disease risk man-
agement. This raises a growing demand for reliable and 
accurate sub-seasonal to seasonal forecasts of temperature 
and precipitation (Challinor et  al. 2005; García-Morales 
et  al. 2007; Thompson et  al. 2006). Atmospheric predict-
ability on these timescales is mainly driven by the cou-
pling between the atmosphere and slowly-evolving compo-
nents of the Earth system, such as the ocean, sea ice and 
land surfaces (Doblas-Reyes et  al. 2013). Even if tropical 
oceans provide the major source of global interannual vari-
ability through sea surface temperature anomalies related 
to the El Niño Southern Oscillation (ENSO) phenomenon 
(Saha et al. 2006; Stockdale et al. 2011), both observational 
and numerical studies have highlighted the significant 
imprint of the continental surfaces on the climate system 
and their potential or effective contribution to mid-latitude 
sub-seasonal to seasonal predictability, particularly for 
near-surface temperature (T2M) and precipitation. Among 
these components, snowpack (Dutra et  al. 2011) and soil 

Abstract Land surface initial conditions have been rec-
ognized as a potential source of predictability in sub-sea-
sonal to seasonal forecast systems, at least for near-surface 
air temperature prediction over the mid-latitude continents. 
Yet, few studies have systematically explored such an influ-
ence over a sufficient hindcast period and in a multi-model 
framework to produce a robust quantitative assessment. 
Here, a dedicated set of twin experiments has been carried 
out with boreal summer retrospective forecasts over the 
1992–2010 period performed by five different global cou-
pled ocean–atmosphere models. The impact of a realistic 
versus climatological soil moisture initialization is assessed 
in two regions with high potential previously identified as 
hotspots of land–atmosphere coupling, namely the North 
American Great Plains and South-Eastern Europe. Over 
the latter region, temperature predictions show a significant 
improvement, especially over the Balkans. Forecast sys-
tems better simulate the warmest summers if they follow 
pronounced dry initial anomalies. It is hypothesized that 
models manage to capture a positive feedback between high 
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moisture anomalies (Seneviratne et  al. 2010, 2013) have 
been the most investigated since they strongly affect the 
land surface energy budget and, hence, the energy fluxes 
between the surface and the atmospheric boundary layer 
(Hirschi et  al. 2011). Land surface models (LSM), which 
have improved steadily in the past three decades, together 
with increasing computational resources have allowed for 
more thorough studies and a better understanding of the 
soil moisture and snow influence on the atmosphere at mul-
tiple spatio-temporal scales (Douville 2010). A realistic 
snowpack initialization has been shown to be useful both in 
boreal fall (e.g. Orsolini et al. 2013) and spring (e.g. Peings 
et al. 2011), when the interannual variability of the North-
ern Hemisphere snow cover is relatively strong and has a 
large impact on the surface energy budget given the avail-
able incoming solar radiation even at high latitudes.

For summer predictions, the focus was mainly on soil 
moisture and its influence on near-surface temperature and 
precipitation mainly via evapotranspiration. It has been 
demonstrated that soil moisture content controls the evap-
otranspiration in regions with a semi-arid climate (“soil 
moisture-limited regime”). In wet regions, the evapotran-
spiration rate mainly depends on atmospheric control and 
not on soil water content (“energy-limited regime”). In the 
former, the evaporative fraction modulated by soil moisture 
affects both the local water cycle (Dirmeyer 2006) and the 
surface energy balance, and hence temperature and precipi-
tation (Dirmeyer et al. 2014; Koster 2004; Seneviratne et al. 
2010). Additionally, soil moisture memory has proven to 
last up to several months in some cases (Seneviratne et al. 
2006; Orth and Seneviratne 2012; Hagemann and Stacke 
2015). Due to these characteristics, extreme warm events 
can be triggered or at least amplified by dry soil initial con-
ditions in terms of magnitude (Fischer et al. 2007; Hirschi 
et  al. 2011; Whan et  al. 2015) and persistence (Lyon and 
Dole 1995; Lorenz et al. 2010).

Previous studies have highlighted a number of “hot-
spots” where seasonal prediction skill can be increased 
by realistic soil moisture initialization since they combine 
intense land–atmosphere coupling processes with strong 
soil moisture persistence (Koster 2004; Seneviratne et  al. 
2006; Dirmeyer et  al. 2011). The North-American Great 
Plains and the region between the Danube basin and the 
Mediterranean are often identified as belonging to these 
hotspots. Our study will focus mainly on these two regions, 
namely the Southern Great Plains (SGP) and the Bal-
kan region (BKS). BKS and SGP boundaries are defined 
in Table  1 and highlighted by green boxes in Fig.  2. The 
second phase of the Global Land–Atmosphere Coupling 
Experiment (GLACE-2; Koster et  al. 2011), which con-
sisted in a multi-model forecast quality assessment, showed 
that a realistic soil moisture initialization provides sig-
nificantly improved skill for air temperature forecast up to 

2 months ahead over the North American continent. More 
recent studies confirmed this positive impact up to seasonal 
timescales (Materia et  al. 2014; Prodhomme et  al. 2016). 
Prodhomme et al. (2016) described the benefits of soil ini-
tialization for the quality of temperature predictions over 
large parts of Eastern Europe up to 4 month forecast time. 
They could only achieve a successful hindcast of the sum-
mer of 2010 extreme heat over western Russia with a real-
istic soil moisture initialization.

This study aims at exploring to what extent previous 
results are robust across a variety of forecast systems. Its 
originality lies in being the first multi-model assessment 
of soil moisture initialization impact on atmospheric pre-
dictability on seasonal timescales with ocean–atmosphere 
coupled models over a nearly two-decade period. We use 
a highly comprehensive database of seasonal prediction 
experiments produced within the framework of the Euro-
pean FP7 SPECS (Seasonal-to-decadal climate Prediction 
for the improvement of European Climate Services) project 
and covering the 1992–2010 period. The following section 
describes the forecast systems and datasets used to per-
form the experiments and to assess their output. Section 3 
focuses on the model systematic errors and on the predic-
tive skill related to soil moisture initialization. Section  4 
explains how the models respond to the soil moisture ini-
tialization over the two regions of interest (BKS and SGP) 
and precedes the discussion and conclusions to this study 
in Sect. 5.

2  Experimental design and methodology

2.1  Overview of the experiments

Five forecast systems (Table  2) have been used to per-
form twin sets of boreal summer season hindcasts over the 
1992–2010 period. These simulations start at the beginning 
of May and span 4 months, including the June–August tri-
mester (JJA).

For each system, the twin experiments consist of one 
control and one sensitivity experiment differing only by 
their land-surface initialization. The former is initial-
ized with climatological surface fields while the latter 
is performed with initial conditions closer to observed 

Table 1  Boundary coordinates 
of the BKS, SGP and Niño 3.4 
boxes

Coordinates

BKS 15°E–25°E
40°N–50°N

SGP 105°W–95°W
35°N–45°N

Niño 3.4 120°W–170°W
5°S–5°N
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interannual variations in soil moisture (hereafter ‘realistic’ 
initialization). The different strategies adopted to derive 
these initial conditions are detailed in the following subsec-
tion. All the experiments consist of ten-member ensemble 
simulations. The methods applied for the generation of the 
ensembles as well as the experimental design are summa-
rized in Table 2.

The five twin experiments allow the comparison of two 
fifty-member grand ensembles. They are named ALL-
CLIM and ALL-INIT hereafter. We refer similarly to 
CLIM and INIT experiments when discussing individual 
forecast system results. The multi model approach dimin-
ishes the impact of individual model errors and thus leads 
to more reliable seasonal predictions (Palmer et  al. 2004; 
Hagedorn et al. 2005).

2.2  Land-surface initial conditions

Different methods were used to generate the so-called ‘real-
istic’ initial conditions of soil moisture used in the ALL-
INIT ensemble:

•	 Atmosphere–Ocean General Circulation Model 
(AOGCM) simulation relaxed towards reanalyses:

For MPI-ESM, divergence, vorticity, temperature and 
surface pressure were assimilated into the atmospheric 
component (ECHAM6) and temperature, salinity and sea-
ice concentration into the ocean component (MPIOM). For 
data assimilation, ERA-Interim (hereafter ERAI; Dee et al. 
2011) is used for the atmosphere, ORAS4 for the ocean 
and NSIDC/Bootstrap for sea ice. No assimilation was per-
formed in the LSM (JSBACH).

•	 Standalone LSM simulation forced by atmospheric rea-
nalysis

This method was applied for the LSM component 
(JULES) of HADGEM3 applying WFDEI atmospheric 
forcing.

•	 Land surface reanalysis dataset

The last three models used the pre-existing daily data-
set of land surface pseudo-reanalysis ERA-Interim/Land 
(hereafter ERALand; Balsamo et al. 2013). It results from 
a stand-alone run of the HTESSEL LSM, forced by ERA-
Interim atmospheric fields and bias-corrected precipitation 
using the GPCP monthly climatology (Huffman et al. 2009) 
for precipitation.

The two AOGCMs using the HTESSEL land component 
(namely EC-Earth and ECMWF System 4) were initial-
ized with May the 1st ERALand reanalyses, horizontally 

interpolated over the model grid. For CNRM-CM5, 
ERALand data was additionally interpolated onto the SUR-
FEX vertical soil layers (which differ from the ERALand 
vertical distribution), while preserving the soil wetness 
index for each soil layer (Boisserie et al. 2015).

These initial conditions were computed for the 1st of 
May start dates of each of the 19 years of the seasonal re-
forecast experiments, e.g. 1992 through 2010. The land-
surface initial conditions for each of the five CLIM ensem-
bles are obtained by averaging the initial conditions for the 
1st of May from the corresponding INIT initial conditions.

Snow initial conditions are also considered realistic with 
the described techniques to generate INIT initial condi-
tions. However, different choices have been made for CLIM 
: snow fields were averaged for BSC-CLIM and MF-CLIM, 
similarly to soil moisture, while their yearly variability was 
preserved in the other three CLIM simulations. This exper-
imental set-up inhomogeneity might affect the conclusions 
since significant snow-atmosphere coupling occurs dur-
ing and after snowmelt over snow transition zones of the 
Northern hemisphere (Xu and Dirmeyer 2011). However, 
this impact is considered limited in our regions of interest 
where the influence of snow in boreal summer is lower than 
in other seasons.

2.3  Reference data and forecast quality assessment

The monthly-mean precipitation observations used are the 
Global Precipitation Climatology Center (GPCC) (Schnei-
der et al. 2008) gridded gauge analysis products, available 
at a 1° resolution, while monthly mean T2M reference data 
are provided by the CRU TS v.3.23 analysis (Harris et al. 
2010). The ERA-Interim (Dee et al. 2011) dataset is used 
for daily averaged 2-m temperature as well as daily-mean 
precipitation and daily maximum and minimum tempera-
ture  (Tmax and  Tmin, respectively) references as no other 
global daily precipitation or temperature data spans the 
full hindcast period. Both observational and model outputs 
were re-gridded onto a T85 Gaussian grid and only land 
surface grid points are considered for score computations.

The bias is computed as the mean difference between the 
model and the observed climatologies. We assume that the 
individual model drift does not depend on the start dates, 
meaning that no distinction between the different hind-
cast years is required to compute the model climatologies. 
Removing the bias is equivalent to considering observed 
and re-forecast anomalies relative to their respective clima-
tologies. Thus, the skill of the simulation is evaluated by 
means of the correlation coefficient (r) between the pre-
dicted and the observed anomalies of a given variable. The 
difference  rINIT minus  rCLIM is computed at every grid point 
and then mapped to highlight regions impacted by the land-
surface initialization.
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A confidence interval for correlations is provided by a 
2-sided 95% confidence level t-test. The assessment of cor-
relation differences between the CLIM and INIT simula-
tions must take into account the degree of dependence 
between the two experiments as both are run over the same 
time period. To that end, the Hotelling–Williams t-test is 
computed (Steiger 1980).

In addition to correlation, the comparison of the root 
mean square error (RMSE) of each experiment through the 
root mean square skill score (RMSSS) helps in assessing 
how the soil moisture initialization affects the interannual 
departure from observations. The RMSSS, contrary to the 
RMSE, is positively-oriented so that a negative (positive) 
score means the INIT ensemble has lower (higher) skill 
than the CLIM ensemble.

The RMSSS is considered to be significantly different 
from 0 if RMSE(INIT) is not included into the confidence 

RMSSS = 1 −
RMSE(INIT)

RMSE(CLIM)

interval of RMSE(CLIM) computed through a 95% confi-
dence level  Chi2 test.

3  Results

3.1  Bias analysis

A preliminary analysis of the surface bias can provide 
insight on both individual and multi-model climatological 
limitations, as well as an overview of the ensemble consist-
ency. Biases are estimated as the forecast-time dependent 
difference (temperature) or ratio (precipitation) between 
ensemble mean and reference data. The bias analysis can 
also contribute to understanding model differences in fore-
cast skill.

This analysis reveals almost indistinguishable differ-
ences in pattern and amplitude between the CLIM (Fig. S1) 
and INIT (Fig. 1) experiments for both T2M and precipi-
tation fields. As expected, soil initialization used in these 

Fig. 1  Biases for June-to-August average near-surface temperature in 
K with respect to CRU TS v.3.23 (left panel) and relative biases for 
accumulated precipitation in % with respect to GPCC (right panel). 

The right-hand side large map corresponds to the multi-model ALL-
INIT, small left-hand side maps correspond to each individual fore-
cast system
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experiments does not alter the model climate in the sea-
sonal re-forecasts.

JJA precipitation and temperature biases from individual 
models show relatively inconsistent patterns over Eurasia 
(Fig. 1). Over Eastern Siberia, the five models overestimate 
the amount of rainfall, although the very limited number of 
rain gauges available in that region (Fig. S2b) suggests that 
reference data may have a substantial level of uncertainty. 
Biases partly cancel out in the multi-model over Central 
Europe, but a notable dry and warm bias over the Steppes 
east of the Caspian Sea, and a strong wet bias over East-
ern Russia and the Iberian Peninsula tend to stand out of 
the multi-model ensemble average. For the latter region 
as well as for the Steppes, since the observed amount of 
JJA precipitation is very low (Fig. S2a), small differences 
between these values can result in a strong relative bias. 
Over North America, in contrast, all models present fairly 
similar patterns of wet and slightly cold bias over Alaska 
and pronounced dry and warm bias over the Central Plains. 
This warm bias was also found in many models of the Cou-
pled Model Intercomparison Project Phase 5 (CMIP5) and 
would stem from excessive incoming shortwave radiation 
combined to a lack of evaporative fraction (Cheruy et  al. 
2014). We will discuss further how this could impact the 
seasonal forecast quality with respect to soil moisture ini-
tialization in Sect. 4. This preliminary analysis confirms the 
interest of the multi-model approach since the individual 
model climatologies show a number of similarities with 
each other and the multi-model biases are not excessively 
influenced by any of the contributing models.

Soil moisture biases are far more difficult to assess due to 
the scarcity of in-situ observations to be assimilated in any 
soil moisture reanalysis. Furthermore, remote sensing can 
only reflect the superficial soil layer state, without taking 
into account the deeper root-layer soil moisture, and do not 
necessarily provide a sufficient sampling for deriving relia-
ble monthly mean values. Root-zone soil moisture controls 
the plants’ transpiration and thereby plays a major influence 
on total evapotranspiration in vegetated areas. Finally, the 
limited knowledge of soil depth and global scale physical 
processes at stake leads to a large variety of land surface 
modelling techniques and parameters, which somewhat 
hampers the inter-model comparison of soil moisture as 
well as the comparison of simulated versus observed data. 
However, a straightforward way to gain insight on the sim-
ulated soil moisture is to consider the total soil water con-
tent of the entire soil depth averaged over specific regions 
for each model and to assess the relative evolution in time 
of its daily climatology. This evolution can be compared 
with that of ERALand. The assessment of the mean soil 
moisture over the SGP and BKS regions (Fig. S3) shows 
that the soil dries faster than the reference for four models 
out of the five analysed over both regions, although none 

of them shows any obvious abnormal evolution. However, 
for the SGP region, according to ERALand, there is little 
evolution in the soil water content during the first third of 
the forecast period, followed by a drying phase starting in 
mid-June. Only one forecast system evolves similarly to 
ERALand during the steady stage but retains somewhat 
too much water afterwards. The drying tendency occurs too 
early for the other systems. This suggests that in addition 
to the JJA precipitation bias discussed earlier, these mod-
els simulate either a deficit of rain in May and early June, 
or an excessive evapotranspiration, or both simultaneously. 
These results suggest that understanding the model bias 
and forecast drift are essential to interpret and access the 
quality of a forecast system.

3.2  Summer skill over boreal mid-latitudes

Figure  2 shows the JJA seasonal anomaly correlations of 
ALL-CLIM and ALL-INIT for near surface temperature. 
Large parts of continents south of 50°N show significant 
T2M correlation in all the experiments. This feature could 
be attributed to the correct representation of ENSO tel-
econnections by the models, but also to the warming trend 
over the recent period, especially over Europe (Doblas-
Reyes et al. 2013). These hypotheses are assessed by com-
puting for each grid point the temporal correlation of JJA 
simulated T2M with respectively JJA observed T2M aver-
aged over the Niño 3.4 region defined in Table 1 and JJA 
observed global T2M averaged over land. ENSO telecon-
nections, if present, do not seem to impact greatly the skill 
south of 50°N (Fig. S4a). Observations suggest that the 
models over-estimate the link between Niño 3.4 and East-
ern Canada T2M. However, T2M over Eastern Canada, 
Southern Greenland and the Middle-East is significantly 
correlated with global T2M, with correlation values of sim-
ilar amplitude to the hindcast skill (Fig. S4b). This is sup-
ported by observations over the same period (not shown) 
in addition to the longer 1979–2013 period (Fig S4d). On 
the contrary, the interannual simulated T2M over BKS 
and SGP is not significantly correlated to the global T2M 
during the hindcast period, meaning that the global warm-
ing trend does not account for most of the skill found over 
these regions. This is further confirmed by removing a lin-
ear trend from both experimental and reference data, which 
does not affect greatly the correlation pattern nor its values 
(Fig. 3).

An overall increase of skill is found over Europe in 
the T2M correlation differences between INIT and CLIM 
(Fig. 4a). ALL-INIT is only outperformed by ALL-CLIM 
over the Iberian Peninsula, although not significantly, 
whereas the effect is either positive or neutral anywhere 
else. This skill enhancement is significant over Scandi-
navia, Ukraine and most of the Balkans peninsula. The 
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assessment of the RMSSS computed with respect to the 
CLIM experiments (Fig. 4b) confirms these improvements. 
Over North America, soil initialization leads to a limited 
score improvement. The model even exhibits a significant 
decrease in skill over Central Canada. However, it should 
be kept in mind that this region has a poor temperature skill 
in the first place. Such upper latitude regions are consid-
ered to be in an energy-limited regime where the evapora-
tive fraction of the surface energy budget is not controlled 
by soil moisture. Moreover, snow melting–soil freezing 
interactions within the HTESSEL model seem to generate 
too much and early runoff, which could have implications 
on soil moisture storage after the melting season (E. Dutra, 
personal communication). If this were the case, the May 

Fig. 2  Anomaly correlation between the reference data and the June-to-August average near-surface temperature for ALL-CLIM (a) and ALL-
INIT (b). Dots mark those points where the correlations are significantly different from zero with a 95% confidence level

Fig. 3  Same as Fig. 2b with linearly detrended anomalies

Fig. 4  a Anomaly correlation difference ALL-INIT minus ALL-
CLIM and b Root Mean Square Skill Score ALL-INIT versus ALL-
CLIM for detrended June-to-August average near-surface tempera-

ture. Dots mark those points where the difference (the skill score) is 
significantly different from zero with a 95% confidence level
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1st land surface initial conditions derived from ERALand, 
which are used for three models out of five, could then be 
locally unsuitable.

The multi-model ALL-CLIM (Fig. S5) and ALL-INIT 
(Fig. 5) display almost no skill for precipitation, except for 
Western North America. This could be related to the great 
influence of the ENSO activity on the local atmospheric 
circulation, although evidence of this teleconnection has 
been found mainly during the winter season (Quan et  al. 
2006; Yoon et al. 2015). This skill pattern should be consid-
ered with caution as the region receives limited amounts of 
precipitation during summer (Fig. S2), implying that corre-
lation values may be influenced by extremely small differ-
ences in precipitation amounts. The difference of skill com-
puted between INIT and CLIM for precipitation (Fig. 6a) is 
quite patchy over the Northern Hemisphere mid-latitudes. 
Moreover, the Iberian Peninsula, which results as one of 
the very few regions where the increase of correlation leads 
to significant predictive skill, receives limited amounts of 
rain in summer as mentioned earlier. Hence, small changes 
in simulated precipitation may greatly impact correlation 

values. The negligible improvement of RMSSS tends to 
support this hypothesis (Fig.  6b) although models have 
already exhibited skill for precipitation over this region in 
past coordinated experiments (Diez et al. 2005).

The results described above suggest that the BKS region 
is one of the most positively impacted by soil moisture 
initialization in terms of predictive skill for temperature. 
Furthermore, the multi-model ensemble displays rela-
tively weak temperature and precipitation biases over BKS 
(Fig. 1), although one should keep in mind that some of the 
contributing models have pronounced biases of opposite 
signs. On the other hand, SGP was previously identified 
as a region with a high potential for seasonal predictabil-
ity due to its sensitivity to soil moisture. This set of experi-
ments did not show any skill increase over SGP associated 
to improved land surface initialization. A possible reason 
for this lack of sensitivity may be related to the common 
dry and warm bias of the five individual models.

The next section of this paper therefore aims at provid-
ing insights on the reasons for such contrasted results over 
SGP and BKS. This is achieved by comparing the relation-
ship for these two regions between the realistic initial soil 
moisture and the subsequent simulation of temperature and 
precipitation during the hindcast period. The next section 
intends to shed light on the link between the multi-model 
skill and the systematic error analysed so far.

4  Preliminary understanding of the models 
response to realistic soil moisture initialization

This section focuses on the two previously defined regions, 
namely BKS and SGP, to better understand the response of 
seasonal predictions to soil moisture initial conditions.

The standard deviations of simulated JJA T2M anoma-
lies over BKS and SGP are enhanced with realistic initial 
conditions, especially over SGP (Table 3) confirming the 

Fig. 5  Anomaly correlation between the reference data and the June-
to-August average accumulated precipitation for ALL-INIT

Fig. 6  Same as Fig. 4 for precipitation
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sensitivity of the models’ response to soil moisture con-
ditions in summer. They also get closer to the observed 
standard deviation value in each region. To assess this 
sensitivity more closely, temporal correlations between 
detrended ERALand total soil water content at start dates 
and observed or simulated JJA T2M have been computed 
(Table 4). The time series of these anomalies are repre-
sented on Fig.  7 where the blue and red envelopes fea-
ture the temperature anomaly spread between individual 
model ensemble means for respectively CLIM and INIT 
simulations. In the following sections, both regions are 
analyzed separately.

4.1  SGP region

Over SGP, unlike in the observations, the simulated JJA 
T2M is significantly anticorrelated with the initial soil 
moisture for the five models. This is well illustrated in 
Fig.  7 where prevailing dry initial conditions in the early 
2000’s coincide with warm simulated summers accord-
ing to ALL-INIT, which does not match observations. 
This implies that models tend to overestimate either the 
land–atmosphere coupling processes or their contribution 
among other factors that could explain interannual near-
surface temperature variability.

In order to provide further insight on the models’ 
response, 31-day running means of daily-averaged simu-
lated fields are correlated with the initial soil water content 
on May 1st over the re-forecast period. Results for tempera-
ture, precipitation and soil moisture according to the fore-
cast time throughout the 4  months of simulation are pre-
sented in Fig. 8. The initial soil moisture is very persistent 
in the simulations, with a correlation coefficient close to 
1 and barely decreasing throughout the summer. This per-
sistence is also present in the reference soil moisture data, 
although less pronounced. This implies that initial dry (wet) 
anomalies in the models rarely turn into wet (dry) anoma-
lies during the summer, while such changes in sign are mar-
ginally more likely in the reference data. When considering 
the INIT-ALL ensemble, initial soil moisture is correlated 
with both simulated precipitation and  Tmax over SGP from 
the beginning of the period. This correlation grows stronger 
in time for a few days before reaching a plateau for  Tmax 
at about 0.9, i.e. about 80% of variance explained, while it 
is about 0.6, about 35% of variance explained, right from 
the start for precipitation and persists throughout the whole 

Table 3  Standard deviation of 
JJA area-averaged T2M anom-
aly (K)

BKS SGP

OBS 0.69 1.01
ALL-CLIM 0.40 0.51
ALL-INIT 0.50 0.88

Table 4  Anomaly correla-
tions of detrended ERALand 
May 1st total soil moisture with 
detrended area-averaged June-
to-August T2M

95% confidence significant val-
ues are marked by a asterisk

BKS SGP

OBS −0.58* 0.18
ALL-INIT −0.50* −0.64*
MPI-INIT −0.46* −0.53*
MO-INIT −0.71* −0.6*
MF-INIT −0.35 −0.53*
EC-INIT −0.23 −0.48*
BSC-INIT −0.20 −0.55*

Fig. 7  Top: detrended June-to-August near-surface temperature 
anomaly in  K. ERAInt (black solid line), ALL-CLIM and CLIM 
multimodel spread (blue solid line and blue envelope, respectively), 
ALL-INIT and INIT multimodel spread (red solid line and red enve-

lope, respectively) for SGP (a) and BKS (b). Bottom: detrended 
ERALand soil water content anomaly on May 1st for SGP (c) and 
BKS (d) in  m3.m− 3
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summer. On the other hand, in the reference data, the cor-
relations are of the same sign as in the simulations but they 
are not significant and tend to zero after the first month for 
temperature. This suggests a larger amount of intraseasonal 
variability in the observational dataset that is not repro-
duced by the models. The latter tend to simulate a smoother 
evolution of the variables.

Based on Seneviratne et al. (2010), the following mech-
anism could explain the simulated tendencies. Years with 
initial dry soils lead to reduced evapotranspiration, which 
inhibits precipitation and in turn increases soil dryness. As 
soil moisture decreases due to this positive feedback loop, 
it fails to respond to the evaporative demand, permitting the 
role of the sensible heat flux to grow in the surface energy 
budget, at the expense of the latent heat flux. This leads to 
higher daily  Tmax, which triggers another positive feedback 
loop by increasing evaporative demand and thus reducing 
soil moisture content. At night, however, this mechanism is 
weakened by the development of a stable boundary layer 
decoupling the land surface from the atmosphere aloft. 
Based on an observational campaign over Kansas et  al. 
(2003) highlighted the development of a surface inversion 
primarily due to radiative cooling when turbulent fluxes 
collapse in the early evening. This could explain why 

simulated  Tmin is not significantly anticorrelated to initial 
soil moisture during the first days, unlike  Tmax. However, 
the anticorrelation becomes significant about 2 weeks later 
than for  Tmax, ultimately reaching values comparable to 
those of  Tmax. This feature of INIT-ALL is supported by 
three individual models but not by observations. The  Tmin 
values are generally reached at the end of the night, when 
the diurnal soil moisture-temperature feedback loop is still 
off. This lagged co-variability of  Tmin and soil moisture 
in the simulations could result from a progressive overall 
warming of the surface-boundary layer system. Depending 
on the stability regime of the nocturnal boundary layer over 
grassland (Mahrt 1999), turbulence due to wind shear at the 
top of the stable layer may redistribute downward the heat 
stored in the residual layer aloft. This mechanism competes 
with the suppression of turbulence by thermodynamic sta-
bility that favours nocturnal radiative cooling of the surface 
(McNider et al. 2010). However, the representation of such 
complex subgrid scale phenomena in large-scale GCMs is 
likely to be inadequate and a source of model error.

It is beyond the scope of this study to determine the 
reasons for the discrepancies between the coupled model 
simulations and the observations. However, the similarities 
between forecast systems in terms of correlation between 

Fig. 8  Correlation between May 1st total soil water content and 
31-day running mean of daily maximum temperature (red), minimum 
temperature (blue), precipitation (green) and total soil water content 

(gray) for individual model ensemble mean (a), multi-model ensem-
ble mean (b) and observations (c) over the SGP region. Significant 
correlations are displayed with circles 
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initial soil moisture and summer variables likely relate to 
their similarities in terms of biases. If the simulated climate 
over SGP is too dry, as suggested in Sect.  3.1, the mod-
els’ evapotranspiration remains strongly controlled by soil 
moisture but its absolute value and variations are too small 
to impact climate variability (Seneviratne et al. 2010). An 
additional explanation can be provided by the development 
of the biases over SGP during the forecast (Fig.  9). The 
simulated climatologies look smoother than for the refer-
ence data because they result from a ten-member averag-
ing. The comparison of the precipitation daily climatolo-
gies (Fig.  9a) show that for four models out of five, the 
deficit of daily rainfall establishes at the beginning of June 
and persists throughout summer. On the contrary, the  Tmax 
biases (Fig.  9b) develop at a different rate and reach dif-
ferent amplitudes among forecast systems. Nonetheless, all 
of them switch from neutral or cold biases during the first 
month to warm by the end of summer. In some cases, this 
warm systematic error starts to grow up to 40 days after the 
appearance of the precipitation bias. The contrast between 
simultaneous precipitation biases and asynchronous tem-
perature biases supports, albeit without confirming it, 
the hypothesis that the majority of models have a limited 
capacity to represent accurate precipitation in summer over 
this region. A number of studies suggest that summer pre-
cipitation regime in that region has particular features that 
makes it very challenging to model properly. These particu-
larities are the atypical diurnal cycle of precipitation with 
a nocturnal maximum in summer (Klein et  al. 2006), the 
meso-scale systems that account for much of the warm sea-
son precipitation (Mearns et al. 2012), or the atmospheric 
low-level jet that substantially contributes to the moisture 
budget of this region and influences nocturnal convection 
triggering (Bellprat et al. 2016). If confirmed, this dry bias 
would trigger the excessive soil drying and its reduced 

ability to respond to the evaporative demand, eventu-
ally leading to the aforementioned feedback loop with the 
atmosphere that amplifies temperature biases.

Tackling this bias issue seems to be a prerequisite for the 
forecast systems to make the most out of the soil moisture 
initial conditions and thus to improve the prediction skill 
over SGP Nonetheless, a dedicated study would be required 
to disentangle the role of the biases from that of potential 
shortcomings in the simulated surface processes.

4.2  BKS region

Over BKS, the two hottest summers of the period, namely 
2003 and 2007, had both drier initial soil moisture condi-
tions than average. These are correctly predicted only with 
the INIT ensemble (Fig. 7). Similar results are found with 
the cooler than average summers of 1996, 1997 and 2006 
despite wet initial anomalies of relatively low amplitude. 
Observations, as well as the INIT multi-model ensemble, 
show significant correlation between the initial soil mois-
ture and summer T2M for the BKS region (Table 4). Yet, 
when considering the individual forecast systems, no rela-
tionship could be established between this correlation and 
the gain of skill permitted by land surface initialization 
over BKS (as shown in Figure S6). Hence, the increase in 
T2M correlation related to land surface initialization in this 
region does not result from local linear processes—such as 
persistence—derived from initial soil moisture anomalies.

A correlation analysis similar to that performed for 
the SGP region (Fig.  8) is displayed for the BKS region 
on Fig.  10. It shows very distinct correlation features 
among forecast systems. The different systems do not 
highlight any common process that would help explain-
ing the gain of skill in this region. It is likely that a wider 
range of processes related to soil moisture coupling with 

Fig. 9  Individual model ensemble mean and observations daily climatologies of a cumulated precipitation in mm and b maximum temperature 
in K over the SGP region
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the atmosphere with contradictory effects are at play. As 
opposed to the SGP region, the BKS region is character-
ized by a steep topography and the proximity of the sea. 
Based on regional meso-scale simulations over France, 
Stéfanon et  al. (2014) highlighted different soil moisture-
temperature responses over low-elevation plains, mountains 
and coastal regions during heat waves. Over plains, the 
dominant mechanism is consistent with the positive feed-
back loop described earlier. Over mountains, on the other 
hand, enhanced heat fluxes due to dry anomalies can rein-
force upslope winds and favor convective precipitation with 
a subsequent cooling effect, hence a negative feedback. Dry 
anomalies can also enhance the gradient of diurnal near 
surface temperature between the air above coastal land and 
sea. This could trigger anomalous moist advection from the 
sea through the breeze process, resulting in a negative feed-
back on T2M over land. These last two meso-scale mecha-
nisms may compete with the first one over BKS, in spite of 
the relatively low resolution of the models used. Since the 
five forecast systems have quite distinct spatial resolutions, 
it is likely that the impact of these mesoscale processes, if 
represented, differs greatly.

What could therefore explain the successful predic-
tion of the hottest summers of 2003 and 2007 conditioned 
to realistic soil moisture initialization, as indicated by 

Fig. 7? The study from Conil et al. (2008) based on a single 
AGCM showed that the benefit of a realistic land surface 
initialization for summer predictions appears when wide-
spread and strong soil moisture anomalies are observed 
at the beginning of the season. This result was found over 
typical land–atmosphere coupling hotspots, namely cen-
tral North America and Eastern Europe. The present work 
tends to generalize this result for the latter region when 
initial anomalies are negative. Furthermore, Quesada et al. 
(2012) showed observational evidence of an asymmetry in 
hot day predictability over Europe. Wet springs lead to a 
reduced number of hot summer days regardless of the dom-
inant large-scale weather pattern during summer, while dry 
springs precede a greater number of hot days only if anticy-
clonic weather types prevail during the summer. From these 
studies and our results, we can infer that initializing soil 
moisture realistically is a necessary condition for models to 
predict abnormally warm summers, but not a sufficient one. 
We hypothesize here that in the case of pronounced dry ini-
tial anomalies over the BKS region, forecast systems agree 
on the dominant process of positive feedback between 
low soil moisture, reduced fraction of latent heat flux and 
warmer temperature. However, as mentioned earlier, veri-
fying this statement would require additional studies with a 
dedicated experiment framework.

Fig. 10  Same as Fig. 8 over the BKS region
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5  Conclusion and discussions

A set of multi-model seasonal prediction experiments 
aiming at assessing the impact of land surface initial con-
ditions on boreal summer predictability has been carried 
out in the framework of the FP7-SPECS European pro-
ject. Five distinct global coupled ocean–atmosphere fore-
cast systems were run with ten members each, initialized 
on May 1st over the period 1992 to 2010 with climatolog-
ical soil moisture conditions for the reference experiment, 
and realistic ones for the sensitivity experiment. For both 
experiments, the 50 resulting members have been con-
sidered together as a large multi-model ensemble. This 
is the first multi-model experiment assessing the added-
value of initializing the land surface in a ‘real’ predic-
tion context, as opposed to potential predictability and/or 
purely AGCM frameworks. It therefore provides the most 
robust assessment of land surface initialization impact on 
boreal summer prediction quality to date. The compari-
son of precipitation and near surface temperature scores 
show evidence of an enhanced predictive skill over large 
parts of Europe for realistically versus climatologically 
initialized simulations, although mainly for temperature 
and with a significant increase limited to a few regions. 
No such conclusion can be drawn for Asia and North 
America.

Previous studies had identified several mid-latitude 
regions with a high summer prediction potential a few 
months in advance, stemming from intense land–atmos-
phere coupling combined with long-lasting soil moisture 
memory. Among them, the Balkans proved to actually gain 
predictability from a more accurate soil moisture initiali-
zation, unlike the Southern Great Plains of North Amer-
ica where no improvement was achieved. Over the latter 
region, the five models show very similar overestimates of 
the correlation between initial soil moisture anomalies and 
summer daily maximum temperature  (Tmax) and daily mean 
precipitation with respect to the correlation estimated from 
reference data. A locked positive feedback settles between 
dry (wet) soil moisture anomalies leading to increased 
(decreased) Tmax and precipitation deficit, which favours 
in turn an increase of the soil moisture anomaly. This over-
estimated feedback over SGP is likely related to the sys-
tematic errors for temperature and precipitation, and in the 
excessive decrease of soil water content during the early 
stage of the summer simulated by the majority of forecast 
systems. Thus, biases appear as potential culprits in the 
lack of predictive skill enhancement with respect to soil 
moisture initialization over SGP. Previous studies based 
on CMIP experiments pointed out at model deficiencies in 
both cloud physics and evapotranspiration processes that 
should be addressed over the Great Plains to reduce sys-
tematic biases (Cheruy et al. 2014).

For the BKS region, the coupling of soil moisture with 
temperature and precipitation could be driven by various 
processes with opposite feedbacks. Nonetheless, for some 
years with a pronounced dry initial anomaly, summer pre-
dictions from distinct models agree on a warm JJA T2M 
anomaly. It is likely that in the case of dry soil moisture 
anomalies combined with prevailing anticyclonic weather 
regimes during summer such as Blocking or Atlantic Low 
(Quesada et  al. 2012), the land–atmosphere coupling pro-
cesses simulated by different models over BKS converge 
towards a similar dominant process or feedback loop.

Previous studies suggested a potential remote impact of 
soil moisture initialization on summer temperature predic-
tion (Van den Hurk et  al. 2012; Koster et  al. 2014), that 
could be related to an alteration of the atmospheric circu-
lation either locally or remotely (Fischer et al. 2007). The 
correlations between JJA T2M averaged over BKS and 
initial soil moisture computed on every grid point for OBS 
and INIT (Fig. S7a) do not rule out such a hypothesis, since 
a few common patterns appear such as high positive cor-
relations over Northern Europe and negative correlations 
East of the Black Sea. However these patterns are not large 
or significant enough to conclude on this potential remote 
influence.

A limitation of this study stems from the discrepancies 
between experimental protocols for each participating 
forecast system. For instance, it does not clearly disen-
tangle the potential impact of snowpack initial conditions 
as two contributors out of five averaged out snow cover 
parameters in addition to soil moisture parameters to 
produce climatological initial conditions. According to 
Xu and Dirmeyer (2011), the snow-atmosphere coupling 
strength can be considerable during snowmelt and up to 
several weeks after that, due to the albedo and subsequent 
soil moisture states. Even if the similarity of the models’ 
response in this study suggests a limited impact in our 
regions of interest, this pleads for a more careful assess-
ment of snow cover and snow water equivalent in the 
initial conditions of subseasonal to seasonal summer pre-
dictions. The diversity of spatial resolution also hampers 
the investigation of potential physical processes at play. 
Furthermore, our study does not take into account the 
proportion of the total soil water content in models and 
in the reference data that is prone to imprint the atmos-
phere at seasonal scale by means of evapotranspiration. 
A focus on the soil wetness index of the root layer instead 
of the total soil water content is required to further disen-
tangle the processes involved in the soil-moisture surface 
climate interplays and the associated predictability. The 
use of ERALand for soil moisture initialization and as a 
reference data might be a source of uncertainties since no 
in-situ nor remote-sensed soil observations are assimi-
lated in this product. Nonetheless, state-of-the-art global 
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remote sensed soil moisture products usually estimate 
superficial soil wetness. Hirschi et  al. (2014) pointed 
out the limitations of a mere extrapolation of observed 
superficial soil moisture to the root-zone and suggests 
an assimilation of these data in a land-surface model to 
obtain a more realistic product. These limitations should 
be addressed when defining the set-up of the predictabil-
ity experiment of the Land Surface, Snow and Soil mois-
ture Model Intercomparison Project (LS3MIP; van den 
Hurk et al. 2016).

In the light of our results, two main topics would require 
future research and attention in the community. The first 
one is that of the initialization technique, a potential caveat 
of this study. The climatology and variability of distinct 
AOGCM land components may differ greatly because of 
the diversity of parametrizations and the limited constraints 
with respect to the atmospheric component. This questions 
the technique of initializing a model with data derived from 
another model. However, even if the land initial conditions 
are computed from an offline simulation of the same LSM 
that is then used in the coupled model simulation, initial 
shocks and spin-up may occur due to inconsistencies at 
the land–atmosphere interface and ultimately degrade the 
prediction skill. A cleaner initialization would imply to 
perform either a coupled data assimilation or a coupled 
nudging towards observational data for each forecast sys-
tem individually. However, this technique does not explic-
itly correct the simulated precipitation, which can remain 
biased and thus lead to an unrealistic soil water content. A 
correction of precipitation in this case might jeopardize the 
water balance of the model. Therefore, the best initializa-
tion strategy is still an open question, and may very well be 
model-dependent.

The role of vegetation and land-use on continental cli-
mate predictability is the second issue that could be of 
great interest in future works. Previous studies have dem-
onstrated that the use of interactive vegetation affects pre-
cipitation variability (Alessandri and Navarra 2008) as well 
as T2M seasonal predictability over the continents (Weiss 
et  al. 2012; Alessandri et  al. 2016). The extensive use of 
irrigation and crop growing practices can affect water 
fluxes between the soil and the atmosphere. Mueller et al. 
(2015) showed evidence that agricultural intensification—
and to a lesser extent increased irrigation—over the past 
century led to cooler temperature extremes and enhanced 
rainfall during the growing season in the North Ameri-
can Midwest. These features are not taken into account in 
the coupled models used in this paper whereas they affect 
atmospheric observations assimilated in the reference data. 
The results of the present study plead for a coordinated sea-
sonal prediction effort aiming at enlightening the impact 
of vegetation and land-use on summer predictive skill over 
mid-latitudes.
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