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the three-pattern decomposition model offers new opportu-
nities to quantitatively study the interaction mechanisms of 
the Rossby, Hadley and Walker circulations using the vor-
ticity equation.
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1 Introduction

The large-scale atmospheric motion in the middle–high lat-
itudes is mainly characterized by the Rossby wave, which is 
quasi-horizontal and nondivergent (Rossby 1939; Charney 
1947). There exist ridges and troughs as well as high- and 
low-pressure systems developed by the perturbation of the 
zonal atmospheric motions, and the centers and strength of 
the Rossby wave reflect the characteristics of the atmos-
pheric circulation in the corresponding region. In contrast, 
at low latitudes, the motion is dominated by overturning 
Hadley and Walker circulations within the meridional and 
zonal planes, respectively (Hartmann 1994). The Hadley 
circulation is considered one of the most important circu-
lations affecting the balance of the incoming and outgoing 
physical quantities of the global atmospheric circulations 
(Oort and Peixóto 1983; Trenberth and Solomon 1994), 
whereas the Walker circulation is considered a component 
of the El Niño Southern Oscillation (ENSO) phenomenon 
in the tropical ocean and atmosphere (Julian and Chervin 
1978; Hosking et  al. 2012). The Rossby, Hadley and 
Walker circulations within the horizontal, meridional and 
zonal planes, respectively, are the most important global 

Abstract This study investigates the differences and con-
nections between the three-pattern decomposition of global 
atmospheric circulation, the representation of the hori-
zontal vortex circulation in the middle–high latitudes and 
the local partitioning of the overturning circulation in the 
tropics. It concludes that the latter two methods are based 
on the traditional two-dimensional (2D) decomposition of 
the vortex and divergent circulations in the fluid dynam-
ics and that the three-pattern decomposition model is not 
a simple superposition of the two traditional methods but 
a new three-dimensional (3D) decomposition of global 
atmospheric circulation. The three-pattern decomposition 
model can decompose the vertical vorticity of atmosphere 
into three parts: one part is caused by the horizontal circu-
lation, whereas the other two parts are induced by divergent 
motions, which correspond to the zonal and meridional 
circulations. The diagnostic results from the decomposed 
vertical vorticities accord well with the classic theory: the 
atmospheric motion at 500  hPa is quasi-horizontal and 
nondivergent and can represent the vertical mean state of 
the entire atmosphere. The analysis of the climate charac-
teristics shows that the vertical vorticities of the zonal and 
meridional circulations are the main cause of the differ-
ences between the three-pattern circulations and traditional 
circulations. The decomposition of the vertical vorticity by 
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large-scale circulations. Their movements and evolutions 
can greatly affect the global atmospheric circulation and 
the thermal and water vapor exchange between the high 
and low latitudes and between the ocean and continent, and 
thus impact the formation and evolution of weather and cli-
mate (Bowman and Cohen 1997; Diaz and Bradley 2004; 
Lau and Waliser 2012; England et al. 2014).

The huge importance of the Rossby, Hadley and Walker 
circulations has motivated numerous studies on their 
dynamics. For instance, according to the traditional two-
dimensional (2D) decomposition of the vortex and diver-
gent circulations in the fluid dynamics, the horizontal 
velocity components of the Rossby wave at middle–high 
latitudes can be represented by the stream function when 
ignoring the influence of the vertical motion. The evolution 
of the Rossby wave can then be studied and predicted by 
introducing the stream function into the vorticity equation 
(Holton 2004). In contrast, the horizontal vortex motion is 
often neglected in low latitudes since the vertical motion is 
intense. Based on this assumption, Schwendike et al. (2014, 
2015) have proposed a method for the partitioning of the 
tropical vertical motion into meridional and zonal circula-
tions called the local Hadley circulation and local Walker 
circulation. Schwendike et al. (2014, 2015) also examined 
the evolution characteristics of the Hadley and Walker cir-
culations and their connections with ENSO and proved that 
the method is useful for studying the Hadley and Walker 
circulations, particularly at the local scale.

The horizontal vortex circulation at middle–high latitudes 
and the vertical motion at low latitudes are focused, whereas 
the vertical motion at middle–high latitudes and the hori-
zontal vortex motion at low latitudes are often ignored when 
analyzing the global large-scale circulations, which leads to 
two subjects in the modern theory of the atmosphere, i.e., the 
middle–high-latitude and low-latitude atmospheric dynam-
ics (Holton 2004). Nevertheless, such a division undermines 
the integrity of the global atmospheric motion, resulting in 
an insufficient understanding of the interactions between the 
motions at low latitudes and those at middle–high latitudes 
(Kiladis and Weickmann 1992; Kiladis and Feldstein 1994; 
Haarsma and Selten 2012; Farneti et al. 2014) and the inter-
actions between the horizontal and overturning circulations 
(Held and Phillips 1990; Kiladis 1998; Houze et  al. 2000). 
Furthermore, although the vertical motion is smaller than the 
horizontal motion in the middle–high latitudes, it plays an 
important role in the exchange of physical quantities in the 
meridional and zonal planes. Similarly, the horizontal motion 
at low latitudes also plays an important role in the evolution 
of the meridional and zonal overturning circulations. Based 
on these important features of the global atmospheric circu-
lations, the mathematical definitions of three-pattern circula-
tions, which means the three-dimensional (3D) horizontal, 
meridional and zonal circulations, are proposed to obtain a 

unified description of the atmospheric circulation. This is the 
three-pattern decomposition of global atmospheric circula-
tion (Xu 2001; Hu 2006; Liu et al. 2008; Hu et al. 2015).

The following questions arise: Is the three-pattern decom-
position model a simple superposition of the representation 
method of the horizontal vortex circulation at middle–high 
latitudes and the local partitioning of the overturning circula-
tion at low latitudes? What are the differences and connec-
tions between the representation method of the horizontal 
vortex circulation at middle–high latitudes, the local parti-
tioning of the overturning circulation in the tropics and the 
three-pattern decomposition of global atmospheric circula-
tion? What are the advantages of the new proposed three-pat-
tern decomposition model? This study aims to answer these 
questions.

In Sect. 2, we introduce the representation method of the 
horizontal vortex circulation at middle–high latitudes and the 
local partitioning of the overturning circulation in the trop-
ics (Schwendike et al. 2014) and investigate the connections 
between them. In Sect.  3, we briefly introduce the three-
pattern decomposition of global atmospheric circulation and 
point out that the dynamic theory of velocity fields can be 
naturally converted into the dynamic theory of large-scale cir-
culations by inserting the three-pattern decomposition model 
into the primitive equations of the atmosphere. The differ-
ences and connections between the three-pattern decomposi-
tion model and the methods proposed in Sect. 2 are discussed 
in Sect. 4. The advantages of the three-pattern decomposition 
model in representing the local Hadley and Walker circula-
tions are discussed in Sect. 5. Section 6 provides the conclu-
sions of this study.

2  Traditional 2D decomposition

The 3D velocity fields of the atmosphere satisfy the following 
continuity equation in the pressure coordinates:

where V⃗(𝜆,𝜑, p) = u(𝜆,𝜑, p)⃗i + v(𝜆,𝜑, p)⃗j  is the horizontal 
velocity, �(�,�, p) is the vertical velocity, p is the atmos-
pheric pressure, � is the latitude and � is the longitude. The 
vectors i⃗  and j⃗  are the horizontal unit vectors in the spheri-
cal p-coordinate system and ∇p =

1

a cos𝜑

𝜕

𝜕𝜆
i⃗ +

1

a

𝜕

𝜕𝜑
j⃗  is the 

gradient operator along a pressure surface. For any given 
pressure surface, we can decompose the horizontal velocity 
V⃗  into V⃗div and V⃗rot using the traditional 2D decomposition 
of the vortex and divergent circulations (“Appendix A”),

where V⃗div and V⃗rot represent the divergent (irrotational) 
part and the vortex (nondivergent) part of the horizontal 

(1)∇p ⋅ V⃗ +
𝜕𝜔

𝜕p
= 0,

(2)V⃗(𝜆,𝜑, p) = V⃗div(𝜆,𝜑, p) + V⃗rot(𝜆,𝜑, p),



3575Novel three-pattern decomposition of global atmospheric circulation: generalization of…

1 3

velocity V⃗  along the given pressure surface, respectively. 
We then have the following two parts of Eq. (1) when we 
combine Eq. (2) with Eq. (1):

Equations  (3) and (4) represent the horizontal vortex 
motion (nondivergent) and vertical motion in the continuity 
Eq.  (1), respectively. Next, we will provide the traditional 
representation process of the horizontal vortex circulation at 
middle–high latitudes and the local partitioning of the over-
turning circulation in the tropics using the continuity Eqs. (1), 
(3) and (4).

2.1  Horizontal vortex circulation at middle–high 
latitudes

Since the large-scale atmospheric motion at middle–high lati-
tudes is mainly the vortex Rossby wave, the velocity compo-
nents of V⃗div and � that induce the vertical motions are always 
neglected in the traditional studies for the large-scale motion. 
Applying Eqs. (1) and (2), we can then obtain the horizontal 
vortex circulation at middle–high latitudes as follows:

which satisfies the continuity Eq. (3), i.e.,

According to “Appendix A”, for the given vertical vorti-
city �p on a given pressure surface, Eq. (6) ensures that V⃗rot 
can be represented by the stream function �R:

where �R satisfies

Equations (7) and (8) indicate that after neglecting the ver-
tical circulations, the large-scale atmospheric motion at mid-
dle–high latitudes can be expressed by the stream function 
�R, which is the reason we usually represent the evolution of 
the Rossby wave at middle–high latitudes using the image of 
�R and the vorticity equation performed by �R.

2.2  Local partitioning of the overturning circulation 
in the tropics

Similarly, we usually neglect the horizontal vortex circu-
lation V⃗rot and represent the large-scale motion in the low 
latitudes as the following overturning circulation:

(3)∇p ⋅ V⃗rot = 0,

(4)∇p ⋅ V⃗div +
𝜕𝜔

𝜕p
= 0.

(5)V⃗rot = uroti⃗ + vrot j⃗,

(6)∇p ⋅ V⃗rot =
1

a cos𝜑

𝜕urot
𝜕𝜆

+
1

a cos𝜑

𝜕vrot cos𝜑

𝜕𝜑
= 0.

(7)urot = −
1

a

��R

��
, vrot =

1

a cos�

��R

��
,

(8)Δ2�R = �p.

which satisfies the continuity Eq. (4), i.e.,

where k⃗ is the vertical unit vector in the spherical p-coordi-
nate system.

Using Eqs.  (9) and (10), Schwendike et al. (2014, 2015) 
defined the zonal overturning circulation V⃗𝜆 and the meridi-
onal overturning circulation V⃗𝜑 in the tropics as

which satisfy the following continuity equations:

The divergent wind (udiv, vdiv) is denoted by (u�, u�) in the 
studies by Schwendike et  al. (2014, 2015). Equations  (12) 
and (13) ensure that the components udiv, ��, vdiv and �� can 
be represented by the stream functions �� and �� as follows:

Combined with Eqs. (9), (11), (12) and (13), we have

which means that V⃗𝜆 and V⃗𝜑 represent a decomposition of 
the overturning circulation at low latitudes. Meanwhile, 
Eqs.  (12) and (13) also represent a decomposition of the 
continuity Eq. (10). Schwendike et al. (2014, 2015) referred 
to Eq. (16) as the local partitioning of the overturning cir-
culation in the tropics and V⃗𝜆 and V⃗𝜑 as the local Hadley 
circulation and local Walker circulation, respectively.

According to Eq. (48) in “Appendix A” and Eqs. (14) and 
(15), we have

where � is the velocity potential function of V⃗div, which 
satisfies the 2D Poisson equation (49) in “Appendix A”. 
Equation  (17) shows that the velocity potential function 
� determines the stream functions �� and �� and further 
determines the vertical velocity components �� and ��. 
Thus, when V⃗𝜆 and V⃗𝜑 are defined as in Eqs. (11), (12) and 
(13), the overturning circulation in the tropics defined by 

(9)V⃗ = V⃗div + 𝜔k⃗,

(10)

∇p ⋅ V⃗div +
𝜕𝜔

𝜕p
=

1

a cos𝜑

𝜕udiv
𝜕𝜆

+
1

a cos𝜑

𝜕vdiv cos𝜑

𝜕𝜑
+

𝜕𝜔

𝜕p
= 0,

(11)V⃗𝜆 = udivi⃗ + 𝜔𝜆k⃗, V⃗𝜑 = vdivj⃗ + 𝜔𝜑k⃗,

(12)
1

a cos�

�udiv
��

+
���

�p
= 0,

(13)1

a cos�

�vdiv cos�

��
+

���

�p
= 0.

(14)udiv = −
���

�p
, �� =

1

a cos�

���

��
,

(15)vdiv = −
���

�p
, �� =

1

a cos�

��� cos�

��
.

(16)V⃗ = V⃗div + 𝜔k⃗ = V⃗𝜆 + V⃗𝜑,

(17)udiv = −
���

�p
=

1

a cos�

��

��
, vdiv = −

���

�p
=

1

a

��

��
,
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Eq. (9) is decomposed into the two orthogonal overturning 
circulations V⃗𝜆 and V⃗𝜑 by the traditional 2D decomposition 
process (2).

The decomposition methods in this section show that we 
usually neglect the effect of the vertical motion when we 
describe the middle–high-latitude atmospheric motion, and 
we only keep the vertical circulations when we represent 
the low-latitude motion, leading to a natural defect that the 
traditional studies cannot describe the global circulation in a 
united way. At the same time, since the traditional 2D decom-
position leads to ∇p × V⃗rot = 𝜁pk⃗ and ∇p × V⃗div = 0, it can-
not separate the vertical vorticity induced by the divergent 
motion from the total vertical vorticity �p. This problem can 
be resolved using the three-pattern decomposition model.

3  Three-pattern decomposition of global 
atmospheric circulation

For the convenience of the 3D vorticity vector calculation 
in right-hand orthogonal coordinates, the spherical �-coor-
dinate system is introduced in the three-pattern decompo-
sition of global atmospheric circulation (Hu et  al. 2015) 
without loss of generality. Namely, we have

where (u�, v�, �̇�) and (u, v,�) denote the three velocity com-
ponents in the spherical �-coordinate system and spheri-
cal p-coordinate system, respectively. Here, Ps=1000  hPa 
denotes the pressure at earth surface and � is the colatitude. 
Thus, we have

which represents the 3D velocity field, and we rewrite the 
continuity Eq. (1) as follows:

We define the global horizontal circulation V⃗ ′
R
 as

and the following continuity equation is satisfied:

Equation (22) is the sufficient condition such that u′R and 
v′R can be represented by a stream function R(�, �, �) as 
follows (Hu et al. 2015):

Similarly, we define the global meridional circulation V⃗ ′
H

 
and zonal circulation V⃗ ′

W
 as

(18)u� =
u

a
, v� =

v

a
, �̇� =

𝜔

Ps

, 𝜎 =
p

Ps

,

(19)V⃗ �(𝜆, 𝜃, 𝜎) = u�(𝜆, 𝜃, 𝜎 )⃗i + v�(𝜆, 𝜃, 𝜎 )⃗j + �̇�(𝜆, 𝜃, 𝜎)k⃗,

(20)1

sin 𝜃

𝜕u�

𝜕𝜆
+

1

sin 𝜃

𝜕(sin 𝜃v�)

𝜕𝜃
+

𝜕�̇�

𝜕𝜎
= 0.

(21)V⃗ �

R
(𝜆, 𝜃, 𝜎) = u�R(𝜆, 𝜃, 𝜎 )⃗i + v�R(𝜆, 𝜃, 𝜎 )⃗j,

(22)1

sin �

�u�R
��

+
1

sin �

�(sin �v�R)

��
= 0.

(23)u�R = −
�R

��
, v�R =

1

sin �

�R

��
.

and the following continuity equations are satisfied:

Equations (26) and (27) allow the components of V⃗ ′
H

 and 
V⃗ ′
W

 to be represented by the stream functions H(�, �, �) and 
W(�, �, �) as follows (Hu et al. 2015):

As noted above, the global atmospheric circulation should 
include the horizontal and vertical circulation in a unified 
manner at both middle–high and low latitudes. Thus, we nat-
urally decompose the atmospheric circulation V⃗ ′ into V⃗ ′

R
, V⃗ ′

H
 

and V⃗ ′
W

 from a global perspective:

According to Eqs. (23), (28) and (29), the components of 
Eq. (30) can be written as follows:

We refer to Eqs. (30) or (31) as the three-pattern decompo-
sition of the global atmospheric circulation (Hu et al. 2015). 
In contrast to the traditional 2D decomposition methods 
described in Sect. 2, Eqs. (22), (26) and (27) cannot ensure 
the uniqueness of H, W and R because V⃗ ′

H
, V⃗ ′

W
 and V⃗ ′

R
 have 

three spatial dimensions and we need the following restric-
tion condition to select the correct ones (Hu et al. 2015):

Equation (32) guarantees both the uniqueness of H, W and 
R and the physical rationality of the three-pattern decomposi-
tion of the global atmospheric circulation. A more detailed 
discussion can be found in Theorem 2 in Hu et al. (2015).

Combining Eq. (32) with Eq. (31), we have

(24)V⃗ �

H
(𝜆, 𝜃, 𝜎) = v�H(𝜆, 𝜃, 𝜎 )⃗j + �̇�H(𝜆, 𝜃, 𝜎)k⃗,

(25)V⃗ �

W
(𝜆, 𝜃, 𝜎) = u�W (𝜆, 𝜃, 𝜎 )⃗i + �̇�W (𝜆, 𝜃, 𝜎)k⃗,

(26)1

sin 𝜃

𝜕(sin 𝜃v�H)

𝜕𝜃
+

𝜕�̇�H
𝜕𝜎

= 0,

(27)1

sin 𝜃

𝜕u�W
𝜕𝜆

+
𝜕�̇�W
𝜕𝜎

= 0.

(28)v�H = −
𝜕H

𝜕𝜎
, �̇�H =

1

sin 𝜃

𝜕(sin 𝜃H)

𝜕𝜃
,

(29)u�W =
𝜕W

𝜕𝜎
, �̇�W = −

1

sin 𝜃

𝜕W

𝜕𝜆
.

(30)V⃗ � = V⃗ �

H
+ V⃗ �

W
+ V⃗ �

R
.

(31)

⎧⎪⎪⎨⎪⎪⎩

u� = u�
W
+ u�

R
=

𝜕W

𝜕𝜎
−

𝜕R

𝜕𝜃
,

v� = v�
R
+ v�

H
=

1

sin 𝜃

𝜕R

𝜕𝜆
−

𝜕H

𝜕𝜎
,

�̇� = �̇�H + �̇�W =
1

sin 𝜃

𝜕(sin 𝜃H)

𝜕𝜃
−

1

sin 𝜃

𝜕W

𝜕𝜆
.

(32)1

sin �

�H

��
+

1

sin �

�(W sin �)

��
+

�R

��
= 0.

(33)Δ3R = � ,
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where � =
1

sin �

�v�

��
−

1

sin �

�(u� sin �)

��
 represents the ver-

tical vorticity of the entire atmospheric layer and 
Δ3 =

1

sin
2�

�2

��2
+

1

sin �

�

��
(sin � �

��
) +

�2

��2
 denotes the 3D Lapla-

cian in the spherical �-coordinate system. We determine 
the stream functions H, W and R and then obtain the three-
pattern decomposition of the global atmospheric circula-
tion by solving Eqs. (33), (34) and (35).

The three-pattern decomposition model (31) can be rewrit-
ten as an operator equation:

A new set of dynamical equations of the large-scale cir-
culations V⃗ ′

R
, V⃗ ′

H
 and V⃗ ′

W
 is then established by applying the 

operator Eq.  (36) to the primitive equations of the atmos-
phere. The new dynamical equations replace the three 
velocity components (u�, v�, �̇�) in the primitive equations 
with the three stream functions (H,W,R). They can be used 
to uncover the mechanisms of the large-scale circulation 
evolutions through the perspective of the stream functions.

4  Comparison of the three-pattern decomposition 
and traditional 2D decomposition

Comparing the decomposition methods in Sects.  2 and 3, 
except for the regional division of the middle–high latitudes 
and low latitudes, we consider whether the three-pattern 
decomposition method can be taken as a simple superposi-
tion of the representation method of the horizontal vortex 
circulation at middle–high latitudes and the local partition-
ing of the overturning circulation in the tropics. This sec-
tion attempts to answer this question.

4.1  Theoretic comparison: decomposition 
of the vertical vorticity

The stream function �R of the vortex circulation V⃗rot at mid-
dle–high latitudes defined by the traditional 2D decomposi-
tion method satisfies the 2D Poisson Eq. (8),

However, the stream function R of the horizontal circu-
lation V⃗ ′

R
 defined by the three-pattern decomposition proce-

dure satisfies the 3D Poisson Eq. (33),

(34)
�H

��
=

1

sin �

�R

��
− v�,

(35)
�W

��
=

�R

��
+ u�,

(36)
⎛
⎜⎜⎝

u�

v�

�̇�

⎞⎟⎟⎠
=

⎛
⎜⎜⎜⎝

0
𝜕

𝜕𝜎
−

𝜕

𝜕𝜃

−
𝜕

𝜕𝜎
0

1

sin 𝜃

𝜕

𝜕𝜆
1

sin 𝜃

𝜕 sin 𝜃

𝜕𝜃
−

1

sin 𝜃

𝜕

𝜕𝜆
0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

H

W

R

⎞⎟⎟⎠
.

(37)Δ2�R = �p.

(38)Δ3R = Δ2R +
�2R

��2
= � ,

where �p is the value of the vertical vorticity � on a given 
pressure surface. To determine the differences between the 
two horizontal circulations V⃗rot and V⃗ ′

R
, we have to analyze 

the physical meaning of each term in Eqs.  (37) and (38). 
First, for Eq.  (37), Δ2�R =

1

a cos�

�vrot
��

−
1

a cos�

�urot cos�

��
= �p 

using Eq. (7), which shows that Δ2�R represents the verti-
cal vorticity of V⃗rot. Nevertheless, for Eq.  (38), 
Δ2R =

1

sin �

�v�R
��

−
1

sin �

�u�R sin �

��
 (represented as �R) denotes 

the vertical vorticity of V⃗ ′
R
 using Eq. (23). �

2R

��2
 represents the 

vertical vorticity of the divergent motion (represented by 
u′W and v′H) because it has the following form using 
Eqs. (22), (28), (29), (31) and (32):

where

and D is the divergence field of the original velocities u′ 
and v′. This suggests that Δ2R and �

2R

��2
 decompose the verti-

cal vorticity � into two parts: one part is caused by the hori-
zontal circulation, whereas the other one is induced by the 
divergent motion. Furthermore, �

2R

��2
 can be decomposed to 

1

sin �

�v′H
��

 (represented as �H) and − 1

sin �

�u�W sin �

��
 (represented 

as �W) according to Eq.  (39). From definitions (24) and 
(25), �H and �W are the vertical vorticities of the meridional 
circulation V⃗ ′

H
 and zonal circulation V⃗ ′

W
, respectively. The 

decomposition of the vertical vorticity (� = �R + �H + �W) 
using the three-pattern decomposition model is helpful for 
studying the interaction mechanisms of the three-pattern 
circulations through the vorticity equation.

The quantitative differences between the horizontal cir-
culations V⃗rot and V⃗ ′

R
 inevitably cause differences between 

the overturning circulations (V⃗𝜑, V⃗𝜆) defined by the local 
partitioning method of the overturning circulation in the 
tropics and the overturning circulations (V⃗ �

H
, V⃗ �

W
) defined 

by the three-pattern decomposition method of the global 
atmospheric circulation. Next, we will focus on this issue.

Since the stream functions �� and �� of the overturning 
circulations V⃗𝜑 and V⃗𝜆 satisfy Eqs. (14) and (15), we have

which shows that V⃗𝜆 and V⃗𝜑 are completely determined by 
the divergent winds udiv and vdiv (udiv and vdiv are irrotational 
with zero vertical vorticity) on the given pressure surfaces. 
We then obtain

(39)�2R

��2
=

1

sin �

�v�H
��

−
1

sin �

�u�W sin �

��
,

(40)

1

sin �

�u�W
��

+
1

sin �

�(v�H sin �)

��
=

1

sin �

�u�

��
+

1

sin �

�(v� sin �)

��
= D,

(41)�� = −∫
p

0

vdivdp or �� =
a

cos� ∫
�

−
�

2

�� cos�d�,

(42)�� = −∫
p

0

udivdp or �� = a∫
�

0

�� cos�d�,
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where ‘[]’ represents the global zonal average andand 
‘< >5◦N

5◦S
 ’ denotes the meridional average of 5 degrees of 

the northern and southern latitudes. Referring to “Appen-
dix B”, [��] and < 𝜓𝜆 >

5◦N
5◦S

 are the same as the traditional 
mass stream functions �H and �W (see “Appendix B”) of 
the Hadley and Walker circulations except for multiple 
constants.

However, if we rewrite the partial differential Eqs. (34) 
and (35) using Eq. (23) as

then the stream functions H and W of the vertical circula-
tions V⃗ ′

H
 and V⃗ ′

W
 are determined by the divergent motions 

v′H and u′W. Different from udiv and vdiv, u′W and v′H are 
rotational with the vertical vorticity �

2R

��2
. The stream func-

tions (H,W) are not equal to (��,��), and ([H],< W >5◦N
5◦S

) 
are different from (�H ,�W ) for the differences in the diver-
gent winds (udiv, vdiv) and (u�W , v�H).

The differences between the stream functions (��,��) 
and (H,W) correspond to the differences between the over-
turning circulations (V⃗𝜑, V⃗𝜆) and (V⃗ �

H
, V⃗ �

W
). The circulations 

V⃗ ′
H

 and V⃗ ′
W

 have vertical vorticities (�H and �W) caused by 
the divergent motions v′H and u′W, but V⃗𝜑 and V⃗𝜆 have zero 
vertical vorticities. Thus, the different definitions of the 
horizontal circulations V⃗rot and V⃗ ′

R
 induce the differences 

between the local partitioning of the overturning circula-
tion in the tropics and the three-pattern decomposition of 
the global atmospheric circulation.

Furthermore, if we let �
2R

��2
= 0, then V⃗ ′

R
 must be equal to 

V⃗rot. The overturning circulations V⃗ ′
W

 and V⃗ ′
H

 are also equal 
to V⃗𝜆 and V⃗𝜑, and the three-pattern decomposition model 
reduces to the traditional 2D decomposition method. Thus, 
the three-pattern decomposition of the global atmospheric 
circulation can be considered a generalization of the tradi-
tional 2D decomposition methods.

4.2  Climate characteristics of the decomposed vertical 
vorticities

To verify the above-mentioned theoretical analysis, 
we calculate H, W and R using Eqs.  (33)–(35) and the 
ERA-Interim reanalysis with a horizontal resolution of 
2.5

◦ × 2.5
◦ for the period from 1979 to 2013. We then 

determine the six velocity components of circulations V⃗ ′
R
, 

(43)[��] = −∫
p

0

[vdiv]dp, ⟨��⟩5◦N5◦S
= −∫

p

0

⟨udiv⟩5◦N5◦S
dp,

(44)

H = ∫
�

1

(
1

sin �

�R

��
− v�

)
d� =∫

�

1

(v�R − v�)d� = − ∫
�

1

v�Hd�,

(45)

W = ∫
�

1

(
�R

��
+ u�

)
d� =∫

�

1

(−u�R + u�)d� =∫
�

1

u�Wd�,

V⃗ ′
H

 and V⃗ ′
W

 using Eqs. (23), (28) and (29). The climatologi-
cal mean of the vertical vorticities derived from Eqs. (37), 
(38) and (39) in boreal winter (DJF) at 850 hPa (the first 
row), 500  hPa (the second row), 200  hPa (the third row) 
and the vertical mean surface (the fourth row) are shown 
in Fig. 1. The first and second columns of Fig. 1 represent 
Δ2R and �

2R

��2
, respectively, the third column provides the 

sum of Δ2R and �
2R

��2
, and the fourth column provides the 

vertical vorticity � calculated by the horizontal wind from 
the ERA-Interim reanalysis.

A comparison of the four columns in Fig. 1 shows that 
the actual vertical vorticity � (the fourth column) is nearly 
identical to Δ2R +

�2R

��2
 (the third column), which means that 

� is decomposed into two parts, where one is caused by the 
vortex motion (u′R and v′R, the first column) and the other 
one is caused by the divergent motion (u′W and v′H, the sec-
ond column). The component �

2R

��2
 caused by the divergent 

motion cannot be ignored at 850 hPa (Fig. 1b) and 200 hPa 
(Fig. 1j). However, it equals approximately zero at 500 hPa 
(Fig.  1f) and the vertical mean surface (Fig.  1n). This 
behavior corresponds to the classic theory that the motion 
at 500 hPa is quasi-horizontal and nondivergent and can be 
used to represent the mean state of the entire atmospheric 
layer. The vertical vorticity � and its decomposed compo-
nents in boreal summer (JJA) share the same characteristics 
in winter (see Fig. S1), and the results based on the NCEP1 
and NCEP2 data are similar to that derived from the ERA-
Interim data (not shown), which indicates the robustness of 
the results shown in Fig. 1.

In general, the traditional 2D decomposition meth-
ods cannot separate the vertical vorticity of the diver-
gent motions from the total vertical vorticity [comparing 
Eq.  (37) with Eq.  (38)] because they always need to limit 
the motions along a pressure surface and then decompose 
the horizontal velocity into V⃗div (irrotational) and V⃗rot (non-
divergent). The vortex circulation V⃗rot has the total value of 
the vertical vorticity � on a given pressure surface (denoted 
by �p). However, the three-pattern decomposition method 
quantitatively decomposes the actual vertical vorticity 
� into Δ2R and �

2R

��2
, where Δ2R denotes the vertical vorti-

city of the horizontal motion and �
2R

��2
 represents the effect 

of the entire layer of divergent motions on �. The climate 
characteristics of Δ2R and �

2R

��2
 reveal the rationality of the 

decomposition of the vertical vorticity (Fig.  1). Thus, the 
three-pattern decomposition method is not the simple 
superposition of the representation method of the horizon-
tal vortex circulation at middle–high latitudes and the local 
partitioning of the overturning circulation in the tropics. 
Instead, it is a new 3D decomposition of the global atmos-
pheric circulation.
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4.3  Comparison of the three-pattern circulations 
and the traditional circulations

In this section, for convenience and to distinguish from the 
traditional methods, we call the Rossby, Hadley and Walker 
circulations derived from the three-pattern decomposition 
model the Horizontal, Meridional and Zonal circulations. 
We will compare the climate characteristics of the two sets 
of large-scale circulations.

Because the stream functions [��] and ⟨��⟩5◦N5◦S
 and the 

traditional mass stream functions �H and �W are identi-
cal except for a difference in factors, we compare the tra-
ditional stream functions (�R, �H and �W) with the stream 
functions (R, [H] and ⟨W⟩5◦N

5◦S
) defined by the three-pattern 

decomposition model.

4.3.1  Horizontal circulations

The climatological means of the Horizontal circulation 
and Rossby circulation and the difference between them in 
winter are shown in Fig. 2. A comparison of the first two 
columns in Fig.  2 shows that the Horizontal and Rossby 

circulations are generally similar. They share the same 
characteristics at 500  hPa and the vertical mean surface, 
whereas the differences are apparent at 850 and 200 hPa, 
which shows that the Horizontal circulation captures the 
main characteristics of the Rossby circulation.

The third column in Fig. 2 indicates that the differences 
between the two circulations are mainly presented as the 
differences in the zonal wind, compared to the meridional 
wind (also see Figs. S2 and S3). Specifically, the main dif-
ferences between the two circulations appear as the west 
wind at 850 hPa and the east wind at 200 hPa. The differ-
ence at 500 hPa mainly occurs at low latitudes, except for 
an anticyclone over eastern Asia to western North America 
at mid–high latitudes. However, the magnitudes of the dif-
ferences at 500 hPa and the vertical mean surface are con-
siderably smaller than those at 850 and 200 hPa (Note the 
reference vector in the top right corner of Fig. 2c, f, i, l).

The above characteristics are correspond to the theoreti-
cal analysis in Sect. 4.1 that the spatial distribution of �

2R

��2
 

is the main cause of the difference between the Horizon-
tal and Rossby circulations. �

2R

��2
 at 500 hPa and the vertical 

mean surface is nearly zero and smaller than that at 200 and 
850 hPa, which causes more apparent differences between 

Fig. 1  a Climatological mean of Δ2R at 850  hPa from the ERA-
Interim reanalysis (1979–2013) for DJF. b–d same as a, but for �

2
R

��2
, 

Δ2R +
�2R

��2
 and �, respectively. e–h, i–l and m–p same as a–d, but for 

500, 200 hPa and the vertical mean surface, respectively. The unit of 
the vertical vorticities is 1.0 × 10−6 s−1
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the Horizontal and Rossby circulations at 850 and 200 hPa 
than that at 500 hPa.

In addition, the vertical shear of the horizontal winds 
is usually used to represent the baroclinicity of the atmos-
phere. Because the magnitude of u200hPa − u850hPa is larger 
than v200hPa − v850hPa (compare Figs. S2 and S3), the baro-
clinicity of the Horizontal and Rossby circulations can be 
mainly represented by the zonal wind. According to the 
third column of Fig.  2 and Figs. S2 and S3, we find that 
the baroclinicity of the Horizontal circulation defined by 
three-pattern decomposition model is smaller than that of 
the Rossby circulations. The three-pattern decomposition 
model attributes more baroclinicity of atmosphere to the 
Zonal and Meridional circulations, compared with the tra-
ditonal ones. The results in summer share the same charac-
teristics in winter (see Figs. S4–S6).

4.3.2  Vertical circulations

According to Eqs.  (31), (44) and (45), the difference 
between the Horizontal circulation (u�R, v

�
R) and the 

Rossby circulation (urot, vrot) will cause differences in the 
zonal winds of the Zonal and Walker circulations and dif-
ferences in the meridional winds of the Meridional and 
Hadley circulations (see Figs. S7 and S8), leading to dif-
ferences between the Zonal and Walker circulations and 

differences between the Meridional and Hadley circulations 
(Figs. 3, 4).

The spatial patterns of �H and [H] are nearly identical. 
There are three meridional cells in both the northern and 
southern hemispheres, which are the Hadley, Ferrel and 
polar cells (Fig.  3a, b). In the northern hemisphere win-
ter, the Hadley circulation in the northern hemisphere is 
the strongest, moving upward at the equator and southern 
tropical areas and downward at the northern subtropical 
latitudes. However, it is weak in the southern hemisphere, 
covering only a small region (Fig.  3a, b). The difference 
between the Meridional and Hadley circulations illustrates 
that the Meridional circulation is generally stronger than 
the Hadley circulation and that the anomalous circulation 
has a system south shift compared to the mean state of the 
Meridional and Hadley circulation (Fig.  3). However, the 
magnitude of the difference is small compared to the mean 
state of the two meridional circulations (Note the reference 
vector in the top right corner of Fig. 3).

For both �W and ⟨W⟩5◦N
5◦S

, the tropical zonal circulation 
contains three main components: the Indian Ocean circula-
tion, the Pacific Walker circulation and the Atlantic Ocean 
circulation (Fig.  4a, b). However, the vertical motion of 
the Zonal circulation V⃗ ′

W
 is more intense than that of the 

circulation V⃗𝜆 (Fig. 4a, b). The difference between �W and 
⟨W⟩5◦N

5◦S
 (Fig. 4c) is more notable than that between �H and 

Fig. 2  a Climatological mean 
of the Horizontal circulation 
represented by the stream 
function R (shaded) and the 
streamlines at 850 hPa for DJF 
(1979–2013). b Same as a, 
but for the Rossby circulation 
represented by the stream func-
tion �

R
 and related streamlines. 

c The difference between 
Horizontal and Rossby circula-
tions represented by the vectors 
at 850 hPa. Only the regions 
where the statistical significance 
is above the 95% confidence 
level are plotted. d–f, g–i and 
j–l Same as a–c, but for 500, 
200 hPa and the vertical mean 
surface, respectively. The unit 
of R is 1.0 × 10−6 s−1 and the 
unit of �

R
 is 1.0 × 108 m2 s−1
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[H] (Fig.  3c), which corresponds to the difference in the 
zonal and meridional winds (Figs. S7 and S8).

According to the theoretical analysis in Sect. 4.1, the 
main cause for the above differences is that the verti-
cal circulations V⃗ ′

W
 and V⃗ ′

H
 have vertical vorticities (�W 

and �H), whereas the overturning circulations V⃗𝜆 and V⃗𝜑 
have zero ones. Meanwhile, the meridional average of 
�W over 5 degrees of northern and southern latitudes is 
considerably larger than the global zonal average of �H 
(Fig. S9), which leads to the notable difference between 
�W and ⟨W⟩5◦N

5◦S
 or V⃗𝜆 and V⃗ ′

W
 (Fig. 4c). Similarly, because 

the regional zonal average of �H is non-zero, the verti-
cal vorticity �H of the meridional circulation V⃗ ′

H
 has an 

important influence on the local Hadley circulation (Figs. 
S10 and S11). Thus, the contributions of the vertical 

vorticities �W and �H should not be neglected when study-
ing the regional overturning circulations. The results in 
summer (see Figs. S9, S10 and S12–S16) share the same 
characteristics as those in winter.

5  Advantages in representing the local Hadley 
and Walker circulations

Referring to the studies by Schwendike et  al. (2014, 
2015), the meridional and zonal components of the 
vertical velocity are useful for quantitatively studying 
the local Hadley and Walker circulations. According 
to Eqs.  (18) and (31), the three-pattern decomposition 
model can decompose the vertical velocity 𝜔 = Ps�̇� into 

Meridional circulation Hadley circulation

(a) (b) (c)

Fig. 3  a Climatological mean of the global zonal averaged Meridi-
onal circulation for DJF (1979–2013). 

[
�
H

]
 is shaded, [H] is in con-

tour and the vectors represent the wind (
[
v
H

]
,
[
�
H

]
). b Same as a, 

but for the Hadley circulation. 
[
��

]
 is shaded, 

[
�
H

]
 is in contour and 

the vectors represent the wind (
[
v
div

]
,
[
��

]
). c Difference between 

the Meridional and Hadley circulations represented by the vectors 
and the vertical wind (shaded). Only the regions where the statistical 
significance is above the 95% confidence level are plotted. The verti-
cal winds in vector are scaled by a factor of −150. The unit of H is 
1.0 × 10−6 s−1 and the unit of �

H
 is 1.0 × 109 kg s−1

Zonal circulation Walker circulation

(a) (b) (c)

Fig. 4  a Climatological mean of the Zonal circulation aver-
aged between 5°S and 5°N for DJF (1979–2013). ⟨�

W
⟩5◦N
5◦S

 is 
shaded, ⟨W⟩5◦N

5◦S
is in contour and the vectors represent the wind �⟨u

W
⟩5◦N
5◦S

, ⟨�
W
⟩5◦N
5◦S

�
. b Same as a, but for the Walker circulation. 

⟨��⟩5◦N5◦S
 is shaded, ⟨�

W
⟩5◦N
5◦S

 is in contour and the vectors represent the 
wind 

�⟨u
div
⟩5◦N
5◦S

, ⟨��⟩5◦N5◦S

�
. c Difference between the Zonal and Walker 

circulations represented by the vectors and the vertical wind (shaded). 
Only the regions where the statistical significance is above the 95% 
confidence level are plotted. The vertical winds in vector are scaled 
by a factor of −150. The unit of W is 1.0 × 10−6 s−1 and the unit of �

W
 

is 1.0 × 109 kg s−1
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meridional component 𝜔H = Ps�̇�H and zonal component 
𝜔W = Ps�̇�W. In this section, we introduce the advantages 
of the three-pattern decomposition method in represent-
ing the local Hadley and Walker circulations.

Figures 5 and 6 show the climate characteristics of the 
global (regional) zonal mean of the meridional circula-
tion and the global (regional) meridional mean of the 
zonal circulation in winter from 1979 to 2013, respec-
tively. In the case of the global zonal average, though 
[�] = [�W ] + [�H], the vertical velocity of zonal circula-
tion is zero, which means that [�W ] = 0, the contribution 
of the zonal circulation vanishes and [�] contains only [�H] 
(Fig. 5a, b). Thus, it is appropriate to use [�] to represent 
the Hadley circulation in the previous studies. Similarly, in 
the case of the global meridional average (denoted by ‘< 
>’), though ⟨�⟩ = ⟨�W⟩ + ⟨�H⟩, the vertical velocity of the 
meridional circulation is zero, which means that ⟨�H⟩ = 0 
and the contribution of the meridional circulation vanishes 
(Fig. 5c, d).

However, the traditional definition of the Walker circula-
tion is often restricted to the tropical Pacific region, and 
⟨�⟩5◦N

5◦S
 is used to represent the Walker circulation. In this 

case, ⟨�⟩5◦N
5◦S

= ⟨�H⟩5◦N5◦S
+ ⟨�W⟩5◦N5◦S

 but ⟨�H⟩5◦N5◦S
≠ 0, which 

means that the contribution of the meridional circulation is 
included in the vertical velocity of the Walker circulation 
(Fig. 6d–f). The effect of ⟨�H⟩5◦N5◦S

 on ⟨�⟩5◦N
5◦S

 over the tropi-
cal region is notable (Fig. 6f). Thus, it is not accurate to use 
⟨�⟩5◦N

5◦S
 to represent the Walker circulation because ⟨�⟩5◦N

5◦S
 

includes the vertical velocity ⟨�H⟩5◦N5◦S
 of the local Hadley 

circulation. Similarly, it is not accurate to use [�]�2
�1

 to repre-

sent the local Hadley circulation for the contribution of the 
local Walker circulation (Fig. 6a–c). Here, ‘[ ]�2

�1
’ represents 

the zonal average over the longitudes �1 to �2. Thus, [�H]
�2
�1

 

and ⟨�W⟩5◦N5◦S
 should be used instead of [�]�2

�1
 and ⟨�⟩5◦N

5◦S
 to 

represent the local Hadley and Walker circulations. The 
results in summer (see Figs. S17 and S18) exhibit the same 
characteristics as in winter.

6  Summary

The main purpose of this study is to analyze the essen-
tial differences and connections between the three-pattern 
decomposition of the global atmospheric circulation, the 
representation method of the horizontal vortex circulation 
in the middle–high latitudes and the local partitioning of 
the overturning circulation in the tropics. We conclude that 
the latter two available methods are based on the traditional 
2D decomposition of the vortex and divergent circulations 
in the fluid dynamics. The three-pattern decomposition 
model is not a simple superposition of the representation 
methods of the horizontal vortex circulation at middle–high 
latitudes and the overturning circulations in the tropics. 
Instead, it is a new 3D decomposition method of the global 
atmospheric circulation.

Because the traditional 2D decomposition methods must 
restrict the motions on a pressure surface through the 2D 
Poisson Eq.  (37), they decompose the horizontal velocity 

Fig. 5  a Climatological mean 
zonal mean of the meridional 
circulation for DJF (1979–
2013). The vertical velocity 
[�

H
] is shaded and the vectors 

represent the wind ([v
H
], [�

H
]).

b Same as a, but for [�] and 
([v

H
], [�]). c Same as a, but 

for the meridional mean of 
the zonal circulation. ⟨�

W
⟩ is 

shaded and the vectors represent 
the wind (⟨u

W
⟩, ⟨�

W
⟩). d Same 

as c, but for ⟨�⟩ and (⟨u
W
⟩, ⟨�⟩). 

The vertical winds in vector are 
scaled by a factor of −100 for a 
and b, and −300 for c and d

(a) (b)

(c) (d)
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into divergent wind V⃗div (irrotational) and vortex wind 
V⃗rot (nondivergent) such that V⃗rot has the total value of the 
vertical vorticity � on the given pressure surface. The tra-
ditional 2D decomposition methods cannot separate the 
contributions of the divergent motions from the total verti-
cal vorticity �. However, through the 3D Poisson Eq. (38), 
the three-pattern decomposition method can quantitatively 
decompose the vertical vorticity � into two components: 
Δ2R and �

2R

��2
, where Δ2R denotes the vertical vorticity of the 

horizontal circulation V⃗ ′
R
 and �

2R

��2
 is the vertical vorticity of 

the divergent motions u′W and v′H. �
2R

��2
 is the main cause of 

the differences between the three-pattern circulations and 
traditional circulations.

The effect of �
2R

��2
 cannot be ignored at 850 and 200 hPa. 

However, it equals approximately zero at 500 hPa and the 
vertical mean surface. This corresponds to the classic the-
ory that the motion at 500 hPa is quasi-horizontal and non-
divergent and can be used to represent the mean state of the 
entire atmospheric layer. The three-pattern decomposition 
model reduces to the traditional 2D decomposition proce-
dure when �

2R

��2
= 0. This emphasizes that the three-pattern 

decomposition of the global atmospheric circulation can be 
considered a generalization of the representation method of 
the horizontal vortex circulation at middle–high latitudes 
and the local partitioning of the overturning circulation in 
the tropics.

The comparison of the climate characteristics of the 
traditional mass stream functions and the stream func-
tions derived from the three-pattern decomposition model 
shows that the spatial patterns of the three-pattern circula-
tions are similar to that of the traditional circulations. The 
differences between the horizontal and Rossby circulations 
are mainly presented as the differences in the zonal wind, 
especially the differences in the west wind at 850 hPa and 
the east wind at 200 hPa. However, because the effect of �

2R

��2
 

is weakened by the global zonal mean process, the meridi-
onal circulation is nearly equal to Hadley circulation except 
a system south shift of the anomalous circulation. Since the 
differences in the zonal winds are significant than that in 
the meridional winds, the zonal and Walker circulations in 
the tropics have more notable differences than the global 
zonal mean meridional circulation and Hadley circulation.

Like the studies of Schwendike et al. (2014, 2015), the 
three-pattern decomposition model can also effectively 
separate the vertical velocities of the meridional and zonal 
circulations from the total vertical velocity. Compared with 
the zonal or meridional mean of the total velocities, the 
three-pattern decomposition model more accurately rep-
resents the regional vertical circulations, particularly the 
local Hadley and Walker circulations.

The vertical vorticitiy �2R

��2
 caused by the divergent 

motions can also be decomposed into the vertical vorti-
citiy �H of the meridional circulation V⃗ ′

H
 and the vertical 

(a) (b) (c)

(d) (e) (f)

Fig. 6  a Climatological mean of the regional meridional circula-
tion for DJF (1979–2013). The vertical velocity [�

H
]140

◦

E

60
◦

E
 is shaded 

and the vectors represent the wind ([v
H
]140

◦

E

60
◦

E
, [�

H
]140

◦

E

60
◦

E
). b Same 

as a, but for [�]140◦E
60

◦

E
 and ([v

H
]140

◦

E

60
◦

E
, [�]140

◦

E

60
◦

E
). c The vertical veloc-

ity [�
W
]140

◦

E

60
◦

E
 is shaded. d Same as a, but for the meridional mean of 

the regional zonal circulation. ⟨�
W
⟩5◦N
5◦S

 is shaded and the vectors rep-
resent the wind (⟨u

W
⟩5◦N
5◦S

, ⟨�
W
⟩5◦N
5◦S

). e Same as d, but for ⟨�⟩5◦N
5◦S

 and 
(⟨u

W
⟩5◦N
5◦S

, ⟨�⟩5◦N
5◦S

). f The vertical velocity ⟨�
H
⟩5◦N
5◦S

 is shaded. The ver-
tical winds in vector are scaled by a factor of −120



3584 S. Hu et al.

1 3

vorticitiy �W of the zonal circulation V⃗ ′
W

, then the three-
pattern decomposition model actually decomposes the ver-
tical vorticity � into three components: � = �R + �H + �W
. The vertical vorticitiy decomposition is useful for quan-
titatively studying the effects of the horizontal circulation 
V⃗ ′
R
, meridional circulation V⃗ ′

H
 and zonal circulation V⃗ ′

W
 on 

the evolution of the vertical vorticity �. In the future, we 
will fit the three components �R, �H and �W into the vertical 
vorticity equation to analyze the source terms that change 
the circulations V⃗ ′

R
, V⃗ ′

H
 and V⃗ ′

W
 and to study the interaction 

mechanisms of these large-scale circulations.
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Appendix

Appendix A The 2D decomposition of the vortex 
and divergent circulation

In general, the velocity of the fluid motions contains both 
the vortex part and divergent part. Thus, the 2D horizon-
tal velocities V⃗(𝜆,𝜑) = u(𝜆,𝜑)⃗i + v(𝜆,𝜑)⃗j  can be quantita-
tively decomposed into two parts:

where V⃗div = udivi⃗ + vdivj⃗  is the divergent (irrotational) part 
and V⃗rot = uroti⃗ + vrot j⃗  is the vortex (nondivergent) part. In 
this section, we will detailly introduce the calculation pro-
cess of V⃗div and V⃗rot.

Since the vortex part V⃗rot is nondivergent, we have the 
following divergence formula using Eq. (46):

where ∇2 =
1

a cos𝜑

𝜕

𝜕𝜆
i⃗ +

1

a

𝜕

𝜕𝜑
j⃗  is the 2D gradient operator on 

a horizontal plane, D is the divergence field of the velocity 
field V⃗  and a is the earth radius. Because the gradient of 
arbitrary scalar function is irrotational, there exists a poten-
tial function � that satisfy

Furthermore, by inserting Eq.  (48) into Eq.  (47), we 
obtain

(46)V⃗(𝜆,𝜑) = V⃗div(𝜆,𝜑) + V⃗rot(𝜆,𝜑),

(47)∇2 ⋅ V⃗ = ∇2 ⋅ V⃗div = D,

(48)V⃗div = ∇𝜒 .

(49)Δ2� = D,

where Δ2 =
1

a2cos2�

�2

��2
+

1

a2 cos�

�

��
(cos� �

��
) is the 2D 

Laplacian. The potential function � can be obtained by 
solving Poisson Eq. (49) and the divergent part V⃗div is then 
obtained using Eq. (48).

Similar to the velocity potential function �, the stream-
line and its intuitive physical picture are important for 
depicting the nondivergent vortex motions. For vortex part 
V⃗rot, we have V⃗rot × dS⃗ = 0 according to the definition of 
streamline, i.e.,

where dS⃗ = a cos𝜑d𝜆i⃗ + ad𝜑j⃗  represents the stream-
line element on the isobaric surface. Equation  (50) is the 
streamline equation of the velocity field V⃗rot. The following 
nondivergent condition is then established:

and Eq.  (51) is the necessary and sufficient condition that 
Eq. (50) can be expressed as the total derivative of a stream 
function �(�,�, t), i.e.,

We then have

where � is the stream function of the velocity V⃗rot.
Since the divergent part V⃗div is irrotational, we have the 

following vorticity formula using Eq. (46):

where � =
1

a cos�

�v

��
−

1

a cos�

�u cos�

��
 represents the vertical 

vorticity field of velocity field V⃗ . According to Eq. (54), �
can be rewritten as the following:

Fitting Eq. (53) into Eq. (55), we then have

Similar to the calculation process of V⃗div, we can get the 
stream function � by solving Poisson Eq.  (56) and obtain 
the vortex part V⃗rot using Eq. (53).

Appendix B The traditional mass stream functions

In order to describe the Hadley circulation using tradi-
tional mass stream function, we usually zonally average the 
continuity Eq.  (4) of the vertical circulations in the pres-
sure coordinate (Hartmann 1994; Trenberth et al. 2000) as 
follows:

(50)vrota cos�d� − urotad� = 0,

(51)∇2 ⋅ V⃗rot =
1

a cos𝜑

𝜕urot
𝜕𝜆

+
1

a cos𝜑

𝜕vrot cos𝜑

𝜕𝜑
= 0,

(52)d� = vrota cos�d� − urotad� = 0.

(53)urot = −
1

a

��

��
, vrot =

1

a cos�

��

��
,

(54)∇2 × V⃗ = ∇2 × V⃗rot = 𝜁 k⃗,

(55)� =
1

a cos�

�vrot
��

−
1

a cos�

�urot cos�

��
.

(56)Δ2� = � .
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If we use [vdiv] =
1

2�
∫ 2�

0
vdivd� and [�] = 1

2�
∫ 2�

0
�d� to 

represent the global zonal mean of vdiv and �, respectively, 
Eq. (57) can then be expressed as the following according 
to the 2� periodicity of udiv about the longitude �:

In order to use the mass flow to describe the Hadley circu-
lation, we should rewrite Eq. (58) as follows:

Similar to the process of Eq. (53), for the Hadley circula-
tion, there exists a 2D mass stream function �H such that the 
velocities of the Hadley circulation satisfy the following for-
mulas using Eq. (59),

Thus, the mass stream function �H can be expressed as 
follows:

or

Because the vertical velocity � is not the observing vari-
able, we usually use Eq. (61) to calculate �H.

Similarly, in order to describe the Walker circulation, we 
often meridionally average the continuity Eq. (4) after multi-
plying both sides with cos�, i.e.,

We use ⟨udiv⟩ = 1

�
∫ �

2

−
�

2

udivd� and 

⟨� cos�⟩ = 1

�
∫ �

2

−
�

2

cos��d� to represent the global meridi-

onal mean of udiv and � cos�, respectively. We then obtain

where ‘< >’ represents global meridional mean. We 
rewrite Eq. (64) as the following:

(57)

1

2� ∫
2�

0

(
1

a cos�

�udiv
��

+
1

a cos�

�vdiv cos�

��
+

��

�p

)
d� = 0.

(58)
1

a cos�

�[vdiv] cos�

��
+

�[�]

�p
= 0.

(59)
2�a

g

�[vdiv] cos�

��
+

2�a2 cos�

g

�[�]

�p
= 0.

(60)[vdiv] =
g

2�a cos�

��H

�p
, [�] = −

g

2�a2 cos�

��H

��
.

(61)�H =
2�a cos�

g ∫
p

0

[vdiv]dp,

(62)�H = −
2�a2

g ∫
�

−
�

2

cos�[�]d�.

(63)
1

� ∫
�

2

−
�

2

(
1

a

�udiv
��

+
1

a

�vdiv cos�

��
+

�� cos�

�p

)
d� = 0.

(64)
1

a

�⟨udiv⟩
��

+
�⟨� cos�⟩

�p
= 0,

(65)
�a

g

�⟨udiv⟩
��

+
�a2

g

�⟨� cos�⟩
�p

= 0.

Thus, for the Walker circulation, Eq.  (65) determines a 
2D mass stream function �W such that the velocities of the 
Walker circulation satisfy

The stream function �W can then be expressed as

or

Similarly, we use Eq. (67) to calculate �W since the ver-
tical velocity � is not the observing variable. However, it is 
well-known that the Walker circulation is restricted in the 
tropics, we usually use the meridional mean ⟨udiv⟩5◦N5◦S

 in the 
low latitudes instead of the global meridional mean ⟨udiv⟩ in 
Eq. (67) to calculate mass stream fuction �W.

References

Bowman KP, Cohen PJ (1997) Interhemispheric exchange by seasonal 
modulation of the Hadley circulation. J Atmos Sci 54:2045–
2059. doi:10.1175/1520-0469(1997)054<2045:IEBSMO>2.0
.CO;2

Charney JG (1947) The dynamics of long waves in a 
baroclinic westerly current. J Meteor 4:135–162. 
doi:10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2

Diaz HF, Bradley RS (2004) The Hadley circulation: present, past, 
and future. Kluwer Academic Publishers, The Netherlands

England MH et al (2014) Recent intensification of wind-driven circu-
lation in the Pacific and the ongoing warming hiatus. Nat Clim 
Change 4:222–227. doi:10.1038/Nclimate2106

Farneti R, Molteni F, Kucharski F (2014) Pacific interdecadal vari-
ability driven by tropical-extratropical interactions. Clim Dyn 
42:3337–3355. doi:10.1007/s00382-013-1906-6

Haarsma RJ, Selten F (2012) Anthropogenic changes in the Walker 
circulation and their impact on the extra-tropical planetary wave 
structure in the Northern Hemisphere. Clim Dyn 39:1781–1799. 
doi:10.1007/s00382-012-1308-1

Hartmann DL (1994) Global physical climatology. Academic Press, 
San Diego

Held IM, Phillips PJ (1990) A barotropic model of the interac-
tion between the Hadley Cell and a Rossby Wave. J Atmos Sci 
47:856–869. doi:10.1175/1520-0469(1990)047<0856:Abmoti>
2.0.Co;2

Holton JR (2004) Synoptic-scale motions I: quasi-geostrophic analy-
sis. In: Cynar F (ed) An introduction to dynamic meteorology, 
4th edn. Elsevier Academic Press, Amsterdam, pp 139–176

Hosking JS, Russo MR, Braesicke P, Pyle JA (2012) Tropical con-
vective transport and the Walker circulation. Atmos Chem Phys 
12:9791–9797. doi:10.5194/acp-12-9791-2012

Houze RA, Chen SS, Kingsmill DE, Serra Y, Yuter SE (2000) Con-
vection over the Pacific warm pool in relation to the atmos-
pheric Kelvin-Rossby wave. J Atmos Sci 57:3058–3089. 
doi:10.1175/1520-0469(2000)057<3058:COTPWP>2.0.CO;2

(66)⟨udiv⟩ = g

�a

��W

�p
, ⟨� cos�⟩ = −

g

�a2
��W

��
,

(67)�W =
�a

g ∫
p

0

⟨udiv⟩dp,

(68)�W = −
�a2

g ∫
�

0

⟨� cos�⟩d�.

https://doi.org/10.1175/1520-0469(1997)054%3C2045:IEBSMO%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1997)054%3C2045:IEBSMO%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1947)004%3C0136:TDOLWI%3E2.0.CO;2
https://doi.org/10.1038/Nclimate2106
https://doi.org/10.1007/s00382-013-1906-6
https://doi.org/10.1007/s00382-012-1308-1
https://doi.org/10.1175/1520-0469(1990)047%3C0856:Abmoti%3E2.0.Co;2
https://doi.org/10.1175/1520-0469(1990)047%3C0856:Abmoti%3E2.0.Co;2
https://doi.org/10.5194/acp-12-9791-2012
https://doi.org/10.1175/1520-0469(2000)057%3C3058:COTPWP%3E2.0.CO;2


3586 S. Hu et al.

1 3

Hu S (2006) The three-dimensional expansion of global atmospheric 
circumfluence and characteristic analyze of atmospheric vertical 
motion. Dissertation, Lanzhou University (in Chinese)

Hu S, Chou J, Cheng J (2015) Three-pattern decomposition of global 
atmospheric circulation: part I- decomposition model and theo-
rems. Clim Dyn. doi:10.1007/s00382-015-2818-4

Julian PR, Chervin RM (1978) A study of the Southern Oscilla-
tion and Walker Circulation phenomenon. Mon Weather Rev 
106:1433–1451. doi:10.1175/1520-0493(1978)106<1433:ASOT
SO>2.0.CO;2

Kiladis GN (1998) Observations of Rossby waves linked to convec-
tion over the eastern tropical Pacific. J Atmos Sci 55:321–339. 
doi:10.1175/1520-0469(1998)055<0321:Oorwlt>2.0.Co;2

Kiladis GN, Feldstein SB (1994) Rossby wave propagation into the 
tropics in two GFDL general circulation models. Clim Dyn 
9:245–252. doi:10.1007/BF00208256

Kiladis GN, Weickmann KM (1992) Extratropical forcing of tropi-
cal Pacific convection during northern winter. Mon Weather Rev 
120:1924–1938. doi:10.1175/1520-0493(1992)120<1924:Efotpc
>2.0.Co;2

Lau WKM, Waliser DE (2012) Intraseasonal variability in the atmos-
phere-ocean climate system. Springer, Berlin

Liu H, Hu S, Xu M, Chou J (2008) Three-dimensional decomposi-
tion method of global atmospheric circulation. Sci China Ser D 
51:386–402. doi:10.1007/s11430-008-0020-9

Oort AH, Peixóto JP (1983) Global angular momentum and energy 
balance requirements from observations. Adv Geophys 25:355–
490. doi:10.1016/S0065-2687(08)60177-6

Rossby CG (1939) Relation between variations in the intensity of the 
zonal circulation of the atmosphere and the displacements of the 
semi-permanent centers of action. J Mar Res 2:38–55

Schwendike J, Govekar P, Reeder MJ, Wardle R, Berry GJ, Jakob C 
(2014) Local partitioning of the overturning circulation in the 
tropics and the connection to the Hadley and Walker circulations. 
J Geophys Res 119:1322–1339. doi:10.1002/2013jd020742

Schwendike J, Berry GJ, Reeder MJ, Jakob C, Govekar P, Wardle R 
(2015) Trends in the local Hadley and local Walker circulations. 
J Geophys Res 120:7599–7618. doi:10.1002/2014jd022652

Trenberth KE, Solomon A (1994) The global heat balance: heat 
transports in the atmosphere and ocean. Clim Dyn 10:107–134. 
doi:10.1007/BF00210625

Trenberth KE, Stepaniak DP, Caron JM (2000) The global monsoon 
as seen through the divergent atmospheric circulation. J Clim 
13:3969–3993. doi:10.1175/1520-0442(2000)013<3969:Tgmast
>2.0.Co;2

Xu M (2001) Study on the three dimensional decomposition of large 
scale circulation and its dynamical feature. Dissertation, Lan-
zhou University (in Chinese)

https://doi.org/10.1007/s00382-015-2818-4
https://doi.org/10.1175/1520-0493(1978)106%3C1433:ASOTSO%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1978)106%3C1433:ASOTSO%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1998)055%3C0321:Oorwlt%3E2.0.Co;2
https://doi.org/10.1007/BF00208256
https://doi.org/10.1175/1520-0493(1992)120%3C1924:Efotpc%3E2.0.Co;2
https://doi.org/10.1175/1520-0493(1992)120%3C1924:Efotpc%3E2.0.Co;2
https://doi.org/10.1007/s11430-008-0020-9
https://doi.org/10.1016/S0065-2687(08)60177-6
https://doi.org/10.1002/2013jd020742
https://doi.org/10.1002/2014jd022652
https://doi.org/10.1007/BF00210625
https://doi.org/10.1175/1520-0442(2000)013%3C3969:Tgmast%3E2.0.Co;2
https://doi.org/10.1175/1520-0442(2000)013%3C3969:Tgmast%3E2.0.Co;2

	Novel three-pattern decomposition of global atmospheric circulation: generalization of traditional two-dimensional decomposition
	Abstract 
	1 Introduction
	2 Traditional 2D decomposition
	2.1 Horizontal vortex circulation at middle–high latitudes
	2.2 Local partitioning of the overturning circulation in the tropics

	3 Three-pattern decomposition of global atmospheric circulation
	4 Comparison of the three-pattern decomposition and traditional 2D decomposition
	4.1 Theoretic comparison: decomposition of the vertical vorticity
	4.2 Climate characteristics of the decomposed vertical vorticities
	4.3 Comparison of the three-pattern circulations and the traditional circulations
	4.3.1 Horizontal circulations
	4.3.2 Vertical circulations


	5 Advantages in representing the local Hadley and Walker circulations
	6 Summary
	Acknowledgements 
	References


