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1  Introduction

One major challenge in the study of global climate change 
is monitoring and modeling surface water and energy 
budgets. Two recent studies (e.g., Trenberth et  al. 2009; 
Stephens et  al. 2012) summarized our current knowledge 
about global annual mean water and energy budgets. These 
studies conclude that the existing estimates of the surface 
(radiative and turbulent) fluxes have substantial uncertain-
ties and do not close the surface energy budget. Uncertain-
ties of the surface turbulent fluxes are in general twice as 
large as those of surface radiative fluxes. In addition, there 
are “no estimates of the sensible heat fluxes over the polar 
regions of sea ice” and no estimates of surface water heat 
fluxes over oceans. The estimates of global surface energy 
fluxes at sub-annual time scales are expected to have even 
higher uncertainties.

The difficulties in obtaining accurate estimates of surface 
turbulent heat fluxes are arguably resulting from the draw-
backs of the fluxes models. The turbulent fluxes over the 
Earth–atmosphere interface are commonly modeled using 
the bulk transfer method (e.g., Arya 1988). Further improve-
ment of the bulk fluxes faces theoretical and technical obsta-
cles. Bulk fluxes in general do not conserve energy (and 
mass)—the primary cause of unbalanced surface energy 
budget. Large measurement errors of the bulk gradients 
between surface and near-surface temperature and humidity 
directly lead to the uncertainties of the bulk fluxes. Empiri-
cal transfer coefficients in the bulk transfer formula add 
more uncertainties to the bulk fluxes. Specifically, parame-
terization of transfer coefficients in terms of wind speed and 
surface roughness length(s) (SRL) may cause substantial 
errors in the bulk fluxes. Renfrew et al. (2002) showed that 
the parameterization of SRL used to compute bulk trans-
fer coefficient in the National Centers for Environmental 
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Prediction (NCEP) bulk algorithm leads to overestimations 
of turbulent heat fluxes (latent and sensible) under mod-
erate to high wind speed conditions. The effects of wind 
speed biases on bulk fluxes have been shown to be most 
pronounced in winter months (Moore and Renfrew 2002). 
Wind speed also affects the bulk fluxes through the parame-
terization of SRL. Earlier studies (Zeng et al. 1998; Renfrew 
et al. 2002) suggested that commonly used formulae of SRL 
have difficulties in producing consistent estimates of surface 
momentum and heat fluxes, especially heat fluxes, under 
weak wind as well as moderate to high wind conditions. 
Besides, measuring of wind speed and surface roughness 
over large regions are difficult. Remote sensing retrievals 
of surface wind speed based on, for example, the empirical 
relationship between wind speed and ocean surface rough-
ness are known to be subject to substantial biases and uncer-
tainties (Katzberg et al. 2001; Komjathy et al. 2004; Katz-
berg and Dunion 2009; Clarizia et al. 2012). Lack of energy 
conservation is a fundamental drawback of the bulk fluxes 
with no obvious solution. The measurement error of a bulk 
gradient computed from the difference of two close numbers 
is also difficult to reduce given existing technology. Even if 
all bulk gradient variables are free of measurement errors, 
the bulk fluxes have inherent modeling errors since the bulk 
transfer models are based on the first-order closure of the 
Reynolds decomposition of turbulent flows subject to sub-
stantial and unknown modeling errors. Closure problem in 
turbulence models remains “one of the unsolved problems 
in classical physics” (Stull 1988). As a result, the estimation 
errors of bulk fluxes are often unbounded without the con-
straint of surface energy balance.

A new innovative approach, the maximum entropy pro-
duction (MEP) model (Wang and Bras 2009, 2011; Wang 
et al. 2014), was recently developed to overcome the draw-
backs of the existing approaches. The foundation of the 
MEP model is the contemporary non-equilibrium thermo-
dynamics built on the Bayesian probability theory, infor-
mation theory and well established atmospheric boundary 
layer turbulence theory. In the MEP model, the surface 
turbulent and/or conductive energy fluxes effectively result 
from the partitioning of radiation fluxes automatically bal-
ancing the energy budget. The modeling errors of the MEP 
fluxes are bounded by the measurement errors of surface 
radiation fluxes. As the first humidity (and temperature)-
gradient independent, physically-based model of evapora-
tion, the MEP model does not make explicit uses of near-
surface water vapor deficit (and temperature gradients) data 
to avoid the substantial measurement errors of the bulk 
gradient variables. The MEP model also uses fewer model 
parameters (than existing models) that are independent 
of wind speed and SRLs. With its theoretical and techni-
cal advantages, the MEP model provides a promising new 

method to meet the challenge of monitoring and modeling 
global surface energy fluxes.

In this study, the global climatology of the surface heat 
fluxes together with the corresponding uncertainties is re-
estimated using the MEP model utilizing the input data 
of radiation and temperature from the National Aeronaut-
ics and Space Administration (NASA) Clouds and the 
Earth’s Radiant Energy System (CERES) products supple-
mented by the (land) surface specific humidity data from 
the NASA Modern-Era Retrospective analysis for Research 
and Applications (MERRA) products. The MEP estimated 
climatology of surface heat fluxes will be compared with 
previous estimates. Since surface heat fluxes data over the 
polar regions do not exist, the analyses of the MEP surface 
heat fluxes exclude the contributions from the polar regions 
for the purpose of consistency.

2 � Method and data

2.1 � Surface energy balance equations

The energy balance equations over the Earth surface 
depend on the transparency of the surface material to sun-
light. Over the land masses (Fig. 1a) where surface media 
are non-transparent to sunlight, the conservation of energy 
at the land–atmosphere interface is expressed as,

where Rn,R
↓
S ,R

↓
S ,R

↓
L , and R

↓
L are net radiation, incoming 

solar, reflected solar, downward atmospheric long-wave 
and surface emitted long-wave radiation, respectively. The 
radiative fluxes towards the surface are defined as positive. 
Latent E, sensible H and ground heat Q fluxes entering the 
atmosphere and/or soil layer are defined as positive.

Over water, snow, and ice surfaces (Fig. 1b) where the 
surface media are transparent to sunlight, the conservation 
of energy is expressed as (e.g., Badgley 1966; Saunders 
1967; Weller 1968; Fairall et al. 1996; Wang et al. 2014),

where R0 is the (net) solar radiation entering the (water–
snow–ice) media equal to RS

n ,R
L
n the net long-wave radia-

tion, Q the surface water–snow–ice heat flux analogous to 
ground heat flux. Equations (1) and (2) are identical when 
solar radiation vanishes during nighttime. Specifically, the 
net ocean heat flux or ocean heat uptake is Rn −  E −  H 
equal to R0 + Q according to Eq. (2). Note that solar radia-
tion enters the surface energy balance equation through Q. 

(1)E + H + Q = Rn ≡ R
↓
S − R

↑
S + R

↓
L − R

↑
L ,

(2)
E + H + Q = RL

n ≡ R
↓
L − R

↑
L ,

R0 = RS
n ≡ R

↓
S − R

↑
S
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An analytical expression of Q in terms of Ro and Ts is given 
in (Wang et al. 2014).

Rn = E + H, the usually assumed global long-term sur-
face energy budget, does not hold in general over sunlight 
transparent surfaces. Rn = E + H or R0 + Q = 0 implies 
that all solar radiation entering, e.g., ocean water, is trans-
ferred back into the atmosphere to balance ocean surface 
net long-wave radiation and turbulent heat fluxes as shown 
in Eq. (2). This is physically unrealistic since part of solar 
radiation absorbed by the water must dissipate through 
a number of physical, chemical and biological processes 
in the ocean including the thermal energy transport down 
to deeper ocean indicated by the decreasing ocean water 
temperature with depth (Liu et  al. 2010; Kuhlbrodt and 
Gregory 2012), the conversion of thermal energy to kinetic 
energy for sustaining the global ocean general circulations 
(Laurent and Simmons 2006; Toggweiler and Samuels 
1998), the energy consumed by chemical reactions such as 
photosynthesis (Behrenfeld and Falkowski 1997; Falkowski 
and Raven 2007; Pisciotta et al. 2010) among others. These 
previous studies suggested that the thermal energy respon-
sible for the observed increasing ocean water temperature 

[increasing ocean heat content, e.g., Levitus et al. (2012)], 
the quantity usually used to evaluate the imbalance between 
Rn and E + H (e.g., Stephens et al. 2012), is only a fraction 
of the solar radiation absorbed by the oceans.

Theoretically, Rn  =  E  +  H may not hold either over 
land surfaces. Even at annual (or longer) time scale, (quasi) 
steady-state of soil temperature does not necessarily lead to 
vanishing Q. The annual mean Q over land would be zero if 
(1) soil temperature has no trend at inter-annual timescales 
(no change of thermal energy storage), (2) annual mean soil 
heat flux at the bottom of the top soil layer vanishes, and 
(3) annual mean soil temperature profile is uniform, which 
rarely occurs (e.g., Gilichinsky et  al. 1998; Qian et  al. 
2011; Bai et al. 2014) indicating that Q over land is likely 
non-zero at annual scale. The thermal energy entering the 
land surface (Q) is transferred through several mechanisms 
not limited to heat conduction. For example, Heitman et al. 
(2008, 2010) showed that part of thermal energy enter-
ing the soil is used for subsurface evaporation (subsurface 
latent heat sink). The thermal energy in the soil may also 
be transferred downward by infiltrating rain water reaching 
groundwater aquifers much deeper than the top soil layer. 
Additionally, in situ measurements of Q could be underes-
timated by 18–66 % (in magnitude) due to the systematic 
negative bias of heat flux sensors (Ochsner et al. 2006).

2.2 � Formulation of the MEP model

The MEP theory (Wang and Bras 2009) allows the tur-
bulent latent heat E, sensible heat H and conductive heat 
flux Q over the Earth–atmosphere interface to be simulta-
neously solved in terms of analytical functions of surface 
radiation fluxes, temperature and/or humidity as the most 
probable partitioning of radiation fluxes while closing 
the surface energy budgets (satisfying the conservation of 
energy) by seeking an answer to the question “What is the 
best prediction of energy partitioning of surface radiation 
fluxes into surface heat fluxes based on the available sur-
face energy and moisture states?”.

The MEP model formulation is described in (Wang and 
Bras 2011) for the case of land surfaces, and in (Wang 
et  al. 2014) for the case of water–snow–ice surfaces due 
to different surface energy balance equations over solar 
radiation transparent and non-transparent media (soil vs. 
water–snow–ice) described in Eqs.  (1)–(2). The MEP 
model predicted heat fluxes are expressed through the fol-
lowing algebraic equations by extremizing the dissipation 
(or entropy production) functions in Eqs. (7) (for land sur-
faces) and (12) (for water–snow–ice surfaces) (see “Appen-
dix”) under the constraints of surface energy budgets as in 
Eqs. (1)–(2),

(a)

(b)

Fig. 1   Surface energy balance equations over (a) land surfaces; 
(b) ocean (water–snow–ice) surface. R↑

S
,R

↑
S
,R

↑
L
,R

↑
L
 are downward 

shortwave, upward shortwave, downward longwave, upward long-
wave radiation; Rn the net radiation; E, H, Q the latent, sensible, and 
ground/surface water–snow–ice heat flux; R0 is the (net) solar radia-
tion entering the (water–snow–ice) media. Radiation fluxes are posi-
tive (negative) when the surface receiving (emitting or reflecting). 
Thermal energy fluxes are positive when entering the atmosphere 
and/or surface media
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where qs is the surface (skin) specific humidity, Ts the sur-
face (skin) temperature, λ the latent heat of vaporization of 
liquid/solid water, cp the heat capacity of the air at constant 
pressure, and Rv the gas constant of water vapor. Is the ther-
mal inertia of the surface material (i.e., soil, leaf matrix of 
canopy, water, snow, and ice). For soil surface, Is may be 
parameterized as a function of soil moisture (see “Appen-
dix”). For canopy or dense forest land cover, Is is negligi-
ble since the thermal inertia of leaf matrix is two orders 
of magnitudes smaller than that of soil. Iss of water, snow, 
and ice surfaces (=

√
ρc� with the density ρ, the specific 

heat c, and the thermal conductivity λ of water–snow–ice 
media) are 1.56 ×  103, 0.6 −  1.4 ×  103 (for snow den-
sity varied between 100 and 500 kg m−3), and 1.92 × 103 
J m−2 K−1 s−1/2, respectively. I0 is the “apparent” thermal 
inertia of the turbulent air as an eddy-diffusivity depend-
ent parameter characterizing the boundary layer turbulence 
(see “Appendix”).

B(σ) is recognized as the reciprocal Bowen ratio. σ is a 
dimensionless diagnostic parameter characterizing the rela-
tive role of surface humidity and temperature in the parti-
tioning of the radiative fluxes. For the limiting case of dry 
soil, for example, vanishing σ (qs = 0) from zero soil mois-
ture leads to E = 0 (as B(σ) = 0), i.e., the obvious solution 
of zero evaporation over dry soil. For the limiting case of 
saturated soil, qs becomes the saturated specific humidity 
at Ts and σ becomes Δ/γ with Δ the slope of the saturation 
water vapor pressure curve at Ts, and γ the psychometric 
constant. The corresponding E according to Eq.  (3) is the 
potential evaporation by definition.

The surface heat fluxes E, H, and Q can be solved from 
Eq.  (3) given Rn, Ts, and qs data for the case of land sur-
faces and Rn, R

L
n, and Ts data for the case of water, snow 

and ice surfaces. The MEP model only uses Rn and Ts data 
for the case of saturated land surfaces (e.g., saturated soils, 
irrigated farm lands and canopy under no water stress) 
where qs is a function of Ts alone according to the Clau-
sius–Clapeyron equation. Over water, snow, and ice sur-
faces, qs is often assumed to be the saturation humidity at 
Ts. It can be shown that the solutions of E, H, and Q from 
the nonlinear algebraic equations in Eq.  (3) are unique. B 
in general is a function of qs/Ts

2 and of Ts only for saturated 
land and water–snow–ice surfaces. During nighttime, the 

(3)

[

1+ B(σ )+
B(σ )

σ

Is

I0
|H|−

1
6

]

H = Rn,

E = B(σ )H,

Q =
{

Rn − E − H

RL
n − E − H

land

water, snow, ice,

B(σ ) = 6

(

√

1+
11

36
σ − 1

)

, σ ≡
�
2

cpRv

qs

T2
s

expressions of the MEP model over land and water–snow–
ice surfaces are identical as RS

n vanishes (i.e., Rn = RL
n). 

Over water–snow–ice surface, the MEP E and H are solved 
from Ts and Rn only, while the MEP Q requires RS

n or RL
n 

(Q = RL
n − E − H) according to Eq.  (3). In contrast, the 

MEP Q over land surfaces only needs input of Rn since soil 
is non-transparent to sunlight.

The MEP modeled fluxes as the partition of given radia-
tion fluxes automatically close the surface energy budgets. 
As shown below, the uncertainties of the MEP modeled 
fluxes are dominated and bounded by the uncertainties of 
the surface radiation fluxes. The MEP model predicts heat 
fluxes without using temperature and humidity gradients, 
wind speed, and surface roughness data. However, its inde-
pendence of these variables should not be interpreted as 
temperature/humidity gradients, wind speed, and surface 
roughness playing no role in the corresponding transport 
processes. The absence of these variables in the MEP for-
malism reflects strong and effective surface–atmosphere 
interactions so that the surface radiation fluxes together 
with surface temperature and/or humidity contain essen-
tial and sufficient information for the retrieval of the heat 
fluxes. Using the extremum solution of the Monin–Obuk-
hov similarity equations (MOSE) (Wang and Bras 2010), 
temperature gradient and wind speed (or wind shear) 
are expressed as analytical functions of sensible heat and 
momentum fluxes, hence can be eliminated in the param-
eterization of eddy-diffusivity [through the “apparent” ther-
mal inertia of the turbulent air I0 in Eq. (3)] in the MEP for-
malism. As is well understood, the use of roughness lengths 
in the formulation of transfer coefficients of the bulk 
transfer formulae based on the Monin–Obukhov similarity 
theory is a mathematical artefact. Roughness lengths are 
excluded from the variables in the MOSE derived using the 
Buckingham π theorem in the dimensional analysis (e.g., 
Arya 1988). They are only introduced by integrating the 
MOSE down to close-to-surface levels beyond the domain 
within which the premises underlying the MOSE hold.

The effect of horizontal advection of thermal energy, 
momentum and moisture on the surface energy budget is 
represented by the given surface variables Rn, Ts, and qs 
used in the MEP model. Therefore, the MEP method, as an 
inference algorithm as well as a physical principle, allows 
the heat fluxes to be retrieved using only radiation, tem-
perature and/or humidity data. It is important to recognize 
that the MEP model parameterizes the same physical pro-
cesses underlying the fluxes as those in the existing mod-
els including bulk transfer model. The difference is that the 
MEP method makes more effective use of the information 
most relevant to the heat fluxes provided by the surface var-
iables (radiation, temperature, and/or humidity) than con-
ventional methods.
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2.2.1 � Uncertainties of the MEP fluxes

The MEP model predicted fluxes as in Eq.  (3) are mathe-
matically expressed as functions of Rn, dimensionless vari-
able σ ∝ qs/T

2
s  and model parameter β ≡ Is/I0. The uncer-

tainty of a flux X (X = E, H, Q), ΔX, may be expressed as, 
for the case of land surface,

where ΔRn, Δσ, and Δβ, are the uncertainties of Rn, σ, and 
β, respectively, with Δσ and Δβ related to the uncertainties 
of the physical variables ΔTs, Δqs, and parameters ΔIs, ΔI0 
through,

The partial derivatives in Eq.  (4) are derived from 
Eq. (3),

For the cases of water–snow–ice surfaces, Δqs in Eq. (5) 
drops out as qs over saturation surface is a function of Ts, 
while ΔIs = 0 since the thermal inertia of still liquid water, 
snow and ice are known constants. Δσ is dominated by Δqs 
due to relatively large uncertainty of humidity measure-
ments (Δqs/qs ≅ 10 % vs. ΔTs/Ts ≅ 0.3 %). In this study, 
uncertainty of I0 is ignored when the empirical coefficients 
in the MOSE are assumed to be known as fixed constants 

(4)�X =
∂X

∂Rn

�Rn +
∂X

∂σ
�σ +

∂X

∂β
�β,

(5)

�σ =
∂σ

∂Ts
�Ts +

∂σ

∂qs
�qs = σ

(

�qs

qs
− 2

�Ts

Ts

)

�β =
∂β

∂Is
�Is +

∂β

∂I0
�I0 = β

(

�Is

Is
−

�I0

I0

)

(6)

∂H

∂Rn

=
[

1+ B+
5B

6σ
|H|−

1

6

]−1

∂E

∂Rn

= B
∂H

∂Rn

∂Q

∂Rn

= 1−
∂E

∂Rn

−
∂H

∂Rn

∂H

∂σ
= H

[

−
11

2(B+ 6)
+

2B(B+ 6)− 11σ

2σ(B+ 6)

β

σ
|H|−

1

6

]

×
[

1+ B+
5B

6σ
|H|−

1

6

]−1

∂E

∂σ
=

11

2(B+ 6)
H + B

∂H

∂σ

∂Q

∂σ
= −

∂E

∂σ
−

∂H

∂σ

∂H

∂β
= −

11

2(B+ 6)
H|H|−

1

6

[

1+ B+
5B

6σ
|H|−

1

6

]−1

∂E

∂β
= B

∂H

∂β

∂Q

∂β
= −

∂E

∂β
−

∂H

∂β

(see “Appendix”). Then, the uncertainty of Is, hence β, is 
caused by that of the thermal inertia of the soil materials Id 
and soil moisture θ according to Eq. (8). The uncertainty of 
Is due to the measurement error of soil moisture ~ 0.04 m3 
m−3 is about 50 thermal inertia unit (tiu = J m−2 K−1 s−1/2) 
according to Eq. (8) (Yi et  al. 2011; Lakshmi 2013). The 
dominant soil types of the Earth include sandy loam, 
loam, silt loam, sandy clay loam and clay loam (Nachter-
gaele et al. 2012) with thermal inertia in the range of 600–
1000 tiu (Farouki 1982; Wang et al. 2010). In this analysis, 
a constant Id = 800 tiu is used as a representative value of 
Id. Combing the two sources of uncertainties of Is leads to 
a maximum ΔIs/Is ≅ 20 %. Note that Is and the associated 
uncertainty only affect the MEP fluxes over two-third of 
the land masses not covered with dense forest.

2.2.2 � Data

In this study, surface radiation and temperature data from 
NASA CERES during 2001–2010 are used as the input of 
the MEP model (Wielicki et al. 1996). The CERES is a set 
of radiometers designed based on the Radiation Budget 
Experiment (ERBE) (Barkstrom et al. 1989). The CERES 
data is derived from observations made by the Terra and 
Aqua satellites with improved spatial resolution and instru-
ment calibration than previous generation of ERBE prod-
ucts. The surface radiation from the CERES SYN 1 deg-
3Hour data product (Edition 3A, Level 3) with 3-hourly 
1° × 1° resolution is used (http://ceres.larc.nasa.gov/prod-
ucts.php?product=SYN1deg). The CERES SYN1 deg-
3Hour surface radiative fluxes are computed based on the 
Langley Fu-Liou radiative transfer model (Fu and Liou 
1993) using the cloud properties from Moderate Resolution 
Imaging Spectroradiometer (MODIS) and geostationary 
(GEO) satellite, atmospheric profiles from Global Mod-
eling and Assimilation Office (GMAO), and aerosol prop-
erties from MODIS. The modeled radiative fluxes are con-
strained (tuned) to the observed CERES top-of-atmosphere 
fluxes. The CERES surface temperature data are obtained 
using the GMAO Goddard Earth Observing System Model 
(GEOS). The uncertainty of CERES global, land, and ocean 
annual surface net radiation (12, 16, and 14 W m−2, respec-
tively) is estimated based on the observations of cloud and 
aerosols properties from Cloud–Aerosol Lidar and Infrared 
Pathfinder Satellite Observations (CALIPSO), CloudSat, 
and MODIS (Kato et  al. 2012). They will be used in the 
uncertainty analysis of the MEP fluxes in this study.

Surface specific humidity and top layer soil mois-
ture over the same period are available from the NASA 
MERRA reanalysis dataset with hourly 0.5°  ×  0.67° 
resolution (Bosilovich et  al. 2011; Rienecker et  al. 2011) 
(http://disc.sci.gsfc.nasa.gov/daac-bin/DataHoldings.pl). 
The ocean surface (conductive) heat flux is computed as the 

http://ceres.larc.nasa.gov/products.php?product=SYN1deg
http://ceres.larc.nasa.gov/products.php?product=SYN1deg
http://disc.sci.gsfc.nasa.gov/daac-bin/DataHoldings.pl


1536 S.-Y. Huang et al.

1 3

residual of the energy balance equation as in Eq. (2) since 
it is not available from the MERRA product (and other rea-
nalysis data products). Land-cover data are from the Inter-
national Geosphere-Biosphere Programme (IGBP) data 
set with 1/60° resolution (Townshend 1992) (http://modis-
atmos.gsfc.nasa.gov/ECOSYSTEM/format.html). All the 
input variables of the MEP model are converted to 3-hourly 
1° × 1° resolution.

3 � Results

Tests of the MEP model using field observations reported 
previously by the model developers (Wang and Bras 2009, 
2011; Wang et  al. 2014) provide evidence that the MEP 
model is able to predict the surface heat fluxes of both 
land and water–snow–ice surface at field scales. Independ-
ent tests of the MEP model have also been reported (e.g., 
Nearing et al. 2012; Yang and Wang 2014; Shanafield et al. 
2015) showing that the MEP model matches or outper-
forms other existing models. These early applications of the 
MEP model justify its potential as an alternative approach 
for modeling the surface heat fluxes at regional and global 
scales.

Figure  2a shows the MEP model predicted 2001-2010 
climatology of evapotranspiration or latent heat flux E 
(top panel) over land using the 3-hourly CERES net radia-
tion and surface temperature data supplemented by the 
MERRA surface specific humidity and soil moisture. The 
MEP annual mean E, 480 mm year−1 (1.31 mm day−1 or 
38  W  m−2), is consistent with earlier estimates includ-
ing, for example, 467  mm  year−1 (37  W  m−2) from the 
NASA Global Land Data Assimilation System (GLDAS) 
reanalysis data (Rodell et  al. 2004; Wang and Dickinson 
2012), the 1982–2008 climatology 478  mm  year−1 (Jung 
et al. 2010) based on the analysis combining global ground 
fluxes network (Fig. 2c), satellite remote sensing with sur-
face meteorological data but lower than 642  mm  year−1 
from the MERRA reanalysis data (Fig. 2b) although with 
similar spatial patterns. The MEP global annual mean E is 
also comparable to other existing reports and data products 
shown in Table 1. Other reported estimates, e.g., Figure 1(a) 
in (Mueller et  al. 2011), Table 8 in (Wang and Dickinson 
2012), range from 303  mm  year−1 (0.83  mm  day−1 or 
24.1 W m−2) to 730 mm year−1 (2 mm day−1 or 58 W m−2). 
The uncertainty of the global annual mean of the MEP 
E over land mass is 126  mm  year−1 (0.35  mm  day−1 or 
10  W  m−2) calculated using Eqs.  (4)–(6) at the global 
annual mean fluxes given in Table 1.

Table  2 provides the representative values of the par-
tial derivatives and model input/parameter uncertainties 
of MEP heat fluxes as in Eq.  (4) and the relative con-
tributions of Rn, σ, and β to the MEP fluxes. 57 % of the 

uncertainty of MEP modeled E over land is attributed to 
that of the net radiation data, 27 % to the parameter σ rep-
resenting the uncertainties from temperature and humidity 
data, 16 % to the thermal inertia parameter β (see Table 2). 
We emphasize that the MEP modeled E is obtained using 
fewer input data and model parameters than those of the 
existing models and balances the surface energy budget. 
The global annual mean E over land has an increasing 
trend of 5.05 mm year−1 year−1 (0.4 W m−2 year−1) dur-
ing 2001–2010 with the 95  % confidence interval (CI) 
estimated as 2.78 mm year−1 year−1 (0.22 W m−2 year−1). 

Fig. 2   a MEP model predicted annual mean E (2001–2010) accord-
ing to Eq. (3) using the 3-hourly CERES SYN1 deg-3Hour net radia-
tion, GMAO GEOS surface temperature, and the MERRA reanaly-
sis surface specific humidity data; b MERRA data of annual mean E 
(2001–2010); c annual mean E (1982–2008) based on FLUXNET, 
satellite remote sensing and surface meteorological data (Jung et al. 
2010)

http://modis-atmos.gsfc.nasa.gov/ECOSYSTEM/format.html
http://modis-atmos.gsfc.nasa.gov/ECOSYSTEM/format.html
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The increasing trend of MEP E results from the increasing 
trends of CERES Rn and MERRA qs as shown in Fig.  3, 
while Jung et al. (2010) reported a decreasing trend of the 

global annual mean E due to the negative trend of global 
soil moisture during 1998–2008 derived from the Tropical 
Rainfall Measuring Mission’s (TRMM) (Owe et al. 2008). 

Table 1   The global climatology of the MEP modeled surface heat 
fluxes (W m−2) according to Eq. (3) and products from Global Land 
Data Assimilation System (GLDAS), Objectively Analyzed Air–Sea 
Fluxes (OAFlux), NCEP/NCAR reanalysis, NCEP/DOE II reanalysis, 

and Japanese reanalysis (JRA); Hamburg Ocean Atmosphere Parame-
ters and Fluxes from Satellite Data (HOAPS), SeaFlux data, and other 
published studies

Ro = Rs
↓ − Rs

↑ is defined in Eq. (2)

* Rn − E − H = Q over land surfaces
a  Q calculated as the residual of the energy balance equation as in Eq. (1)
b  Q calculated as the residual of the energy balance equation as in Eq. (2)
1  Wang et al. (2011)
2  Trenberth et al. (2009)
3  Clayson et al. (2014)

Global E H Q Rn RL
n

Rn − E − H (= R
0
+ Q)

MEP 53 ± 6 30 ± 4 – 114 ± 12 −57 ± 10 31 ± 5

Stephens et al. (2012) 88 ± 10 24 ± 7 – 113 ± 15 −57 ± 14 1

Trenberth et al. (2009) 80 17 – 98 −63 0

MERRA (2001–2010) 81 23 – 111 −66 7

NCEP/NCAR1 81 16 – 100 −61 3

NCEP/DOE II1 91 8 – 103 −57 4

CFSR1 84 16 – 110 −57 10

JRA2 90 19 – 97 −73 −12

Land

 MEP 38 ± 10 33 ± 7 12 ± 10 84 ± 16 −69 ± 11 −*

 Trenberth et al. (2009) 39 27 0a 66 −80 −*

 MERRA (2001–2010) 51 41 0a 92 −74 −*

 GLDAS (2001–2010) 37 51 0.5 88 −65 −*

 NCEP/NCAR1 51 26 3a 80 −73 −*

 NCEP/DOE II1 52 13 7a 72 −71 −*

 CFSR1 38 35 0a 74 −66 −*

 JRA2 39 27 2a 69 −87 −*

 Jiménez et al. (2011) 45 ± 15 45 ± 15 0a 90 ± 15 – −*

 Mueller et al. (2011) 48 ± 6 – – – – –

 Mueller et al. (2013) 39 ± 12 – – – – –

 Wang and Dickinson (2012) 35 ± 9 – – – – –

 Vinukollu et al. (2011) 42 ± 5 – – – – –

 Yuan et al. (2010) 33 ± 3 – – – – –

 Zhang et al. (2010) 43 – – – – –

Ocean

 MEP 58 ± 7 28 ± 3 −139 ± 10 125 ± 14 −52 ± 12 39 ± 4

 Trenberth et al. (2009) 97 12 −166b 110 −57 1

 MERRA (2001–2010) 92 16 −171b 118 −63 10

 OAFlux (2001–2010) 98 ± 7 10 ± 1 −161b 134 −52 25

 NCEP/NCAR1 94 11 −161b 109 −56 4

 NCEP/DOE II1 106 6 −163b 116 −51 4

 CFSR1 103 9 −166b 124 −54 12

 JRA2 109 17 −194b 107 −68 −19

 HOAPS2 104 ± 10 15 – – – –

 SeaFlux3 90 ± 14 18 ± 6 – – – –
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Greater Rn and qs lead to higher E according to the MEP 
model. Higher Rn implies more radiation energy, while 
higher qs favors radiation energy dissipated through latent 
heat of phase change.

Figure  4 shows the MEP modeled global annual mean 
H and Q over land compared with the MERRA reanalysis 
data. It is evident that the spatial pattern of the MEP mod-
eled H is consistent with the corresponding MERRA data. 
The MEP global annual mean H, 33 W m−2, agrees with 
several earlier estimates (Table 1), but lower than GLDAS 
(51 W m−2) and MERRA (41 W m−2) products. Noticeable 
differences between the MEP and GLDAS annual mean 
H(not shown) occur over Greenland where the MEP model 
predicts small (<10  W  m−2) and positive H, while the 
GLDAS H is ~30 W m−2. The uncertainty of the MEP mod-
eled global annual mean H, 7 W m−2 (Table 1), is attributed 
to that of Rn (67 %), σ (14 %), and β (19 %) as shown in 
Table 2. The MEP global annual mean H has an increasing 
trend of 0.18 W  m−2  year−1 (not shown) associated with 
the increasing trend of the CERES Rn (Fig. 3). The uncer-
tainty of the trend was estimated as 0.18 W m−2 year−1.

The MEP model predicts a global annual mean Q of 
12  W  m−2 over land shown in Fig.  4 and Table  1. The 

Table 2   The representative values of (a) the partial derivatives and uncertainties of variables in Eq. (3) calculated at the annual mean radiation 
fluxes, temperature and humidity data; (b) relative contributions of uncertainties of the independent variables Rn, σ, and β to the uncertainties of 
the MEP fluxes according to Eqs. (4)–(6)

Global |∂X/∂Rn| ∆Rn |∂X/∂σ| ∆σ |∂X/∂β| ∆β

(a)

 E 0.44 12.82 5.39

 H 0.26 12 4.97 0.05 3.14 0.07

 Rn − E − H (= R
0
+ Q) 0.3 17.77 8.53

Land

 E 0.35 17.06 4.80

 H 0.31 16 6.93 0.15 4.33 0.32

 Q 0.35 10.10 9.13

Ocean

 E 0.47 11.26 5.23

 H 0.24 14 4.26 0.02 2.72 0

 Q 0.71 7.00 7.95

Global Rn σ β

(b)

 E 83 11 6

 H 86 7 6

 Rn − E − H (= R
0
+ Q) 71 17 12

Land

 E 57 27 16

 H 67 14 19

 Q 55 16 29

Ocean

 E 97 3 0

 H 98 2 0

 Q 99 1 0
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Fig. 3   Global annual mean of CERES Rn (left y axis) and MERRA 
qs (right y axis) over land during 2001–2010
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spatial distribution of the MEP modeled Q depends on land 
cover with vanishing Q over dense canopy covered areas 
including the Amazonia, high latitude North America and 
Eurasian continent. Negative Q over Greenland is physi-
cally realistic since the thermal energy from the absorption 
of solar radiation is transferred from snow–ice layer into 
the atmosphere. 55, 16, and 29 % of the 10 W m−2 uncer-
tainty of the global annual mean Q are caused by the uncer-
tainty of Rn, σ, and β, respectively.

12  W  m−2 global annual mean Q over land using the 
3-hourly CERES data of net radiation and surface tempera-
ture is likely over-estimated due to the effect of the tem-
poral resolution of the data. A sensitivity analysis (Huang 
et  al. 2014) on the effect of the temporal resolution of 
input data on the MEP fluxes using field observations 
showed that using daily data in the MEP model tends to 
over-estimate daily Q by one-third compared to that using 
half-hourly data. The land mass gaining thermal energy at 
the annual scale predicted by the MEP model is consistent 
with the NCEP reanalysis (Table 1), while the MERRA and 
GLDAS reanalysis products have nearly zero annual mean 
Q (<1 W m−2 in Table 1). The MEP modeled global annual 
mean Q has an increasing trend of 0.20  W  m−2  year−1 
associated with the increasing trend of the CERES Rn. The 
95 % CI of the trend was estimated as 0.18 W m−2 year−1.

The zero global annual mean Q estimated by MERRA is 
likely underestimated presumably caused by the underesti-
mated soil temperature gradient. In the MERRA land sur-
face scheme, Q is linearly proportional to the near surface 
temperature gradient (Pan and Mahrt 1987). However, the 
“surface temperature” in the MERRA land surface scheme 

to compute temperature gradient is the soil temperature of 
the top soil layer (0–5  cm) instead of “skin” temperature 
(Koster et al. 2000). As a result, the surface soil tempera-
ture gradient in MERRA is underestimated given the sharp 
gradient of soil temperature near the surface, leading to 
underestimated Q.

Figure 5 shows the MEP modeled annual mean E and H 
over oceans using the 3-hourly CERES radiation fluxes and 
sea surface temperature (SST) data for the period 2001–
2010 compared with the MERRA data. The spatial pattern 
of the MEP E is consistent with the MERRA data, while 
the spatial pattern of the MEP H is substantially different 
from the MERRA data. The spatial patterns of the MEP 
E and H are consistent with that of the CERES Rn. The 
MEP estimated E and H are constrained by Rn, while the 
MERRA estimated E and H over several regions such as 
western and northern Pacific and Atlantic oceans are unre-
alistically large (greater than Rn, which violates the conser-
vation of energy). The MEP E is lower than the MERRA 
E in most of areas, while the MEP H is in general greater 
than the MERRA H as shown in Fig. 5.

Previous studies showed that the MERRA E and H are 
subject to large uncertainty caused by the biases of model 
inputs, especially wind and vertical temperature/humidity 
gradient (Brunke et al. 2011; Roberts et al. 2012). The large 
uncertainty in the MERRA data makes it difficult to validate 
the discrepancy between the MEP and MERRA estimates. 
Roberts et  al. (2012) compared the MERRA E and H over 
oceans with directly measured E and H and other obser-
vational-based datasets (satellite-based and pseudo-obser-
vational flux product). They found that the MERRA E is 

Fig. 4   The MEP modeled a 
sensible heat flux H; b MERRA 
H; c MEP modeled ground heat 
flux Q; d MERRA Q. The MEP 
modeled H and Q are obtained 
according to Eq. (3) using the 
3-hourly CERES SYN1 deg-
3Hour surface net radiation 
and surface temperature, and 
the MERRA surface specific 
humidity data. All fluxes are 
annual means over 2001–2010
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generally overestimated, while the MERRA H is often under-
estimated. The overestimates of MERRA E mainly result 
from the positive biases of wind speed and vertical humid-
ity gradient. The underestimation of MERRA H compared 
to observations is primarily caused by the corresponding 
negative bias of vertical temperature gradient, while the areas 
with high H are presumably due to the large positive wind 
bias. They also found that the MERRA E and H have vari-
able biases corresponding to different regimes of observed 
heat fluxes. MERRA overestimates E about 25 W m−2 when 
observed E below 50  W  m−2, while MERRA underesti-
mates E up to 100 W  m−2 when the observed greater than 
250 W m−2. For most densely observed regions from 50 to 
100 W m−2, the MERRA E is overestimated about 10 W m−2. 
MERRA overestimates H by 50–75  % when observations 
are less than −15 W m−2, however, MERRA underestimates 
H by 20–50 W m−2 when observed H greater than 40 W m−2.

The MEP global annual mean ocean fluxes versus some 
previous estimates are summarized in Table  1. The MEP 
modeled annual mean E over oceans is 733 ± 88 mm year−1 
(58 ± 7 W m−2), which is lower than the previous estimates 
in the range of 1130–1370 mm year−1 (90 − 109 W m−2). 
The MEP model estimated H is 28 ± 3 W m−2, which is 
higher than the previous estimates of ~10–20 W m−2. The 
MEP estimated E and H have decreasing trends of −0.05 
and −0.03  W  m−2  year−1 associated with an decreasing 
trend of RL

n. The uncertainties of the trends of MEP E and 
H were estimated as 0.06 and 0.04 W m−2 year−1, respec-
tively. Note that the MEP annual mean E + H, 86 W m−2, 
is not equal to the CERES annual mean Rn, 125 W  m−2 
with a positive net ocean heat flux (ocean heat uptake) 
Rn − E − H, for the reason discussed in Sect. 2.

The MEP model gives the first directly modeled global 
ocean surface heat flux Q as shown in Fig. 6a (positive –Q 
indicates that thermal energy is transferred from the ocean 
to the atmosphere). Note that Q is not available from exist-
ing data products including MERRA, NCEP, and European 
Centre for Medium-Range Weather Forecasts (ECMWF) 
reanalysis products. For the purpose of comparison, the 
MERRA annual mean Q shown in Fig.  6b is calculated 
as the residual of the ocean surface energy balance equa-
tion as in Eq.  (2) where E, H, and RL

n data are from the 
MERRA reanalysis product. The spatial pattern of MEP Q 
is largely consistent with the MERRA based Q. The MEP 
global annual mean Q is about −139 ± 10 W m−2, which 
is 15–20 % lower than the other data products (also derived 
as the residual of the energy balance equation) as shown in 
Table 1. The MEP Q over the global oceans has a decreas-
ing trend of −0.09 W m−2 year−1 during 2001–2010 with 
uncertainty of 0.16 W m−2 year−1. Also shown in Fig. 6c–f 
are the CERES and MERRA ocean surface net solar radia-
tion Ro and net ocean heat flux R0 +  Q =  Rn −  E −  H, 
which are consistent with that of Rn, but substantially differs 
from the MERRA based estimates. Nevertheless, the posi-
tive Ro + Q predicted by the MEP model (39 ± 4 W m−2) 
indicates that the oceans gain thermal energy at the annual 
scale, which is qualitatively in agreement with previous 
estimates ranging from 3 to 33  W  m−2 (Yu and Weller 
2012) and most of data products listed in Table  1 except 
for the Japan reanalysis (JRA). Yet we argue that non-zero 
Ro + Q is a physical reality rather than a numerical artefact 
due to modeling errors and uncertainties of model param-
eters as discussed above. Quantitative analysis of energy 
dissipation in the oceans is needed but beyond the scope of 

Fig. 5   The 2001–2010 clima-
tology of the MEP modeled 
annual mean latent E and sen-
sible H heat fluxes over ocean 
(left panel) derived using the 
3-hourly surface net radiation 
and net long-wave radiation 
from CERES SYN1 deg-3Hour 
data and sea surface tempera-
ture (SST) from GMAO GEOS 
versus the MERRA reanalysis 
data (right panel)
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this study. The uncertainties of the global annual mean of 
MEP heat fluxes over oceans are dominated by the uncer-
tainty of Rn measurements (≥97 %).

The MEP modeled global annual mean fluxes are sum-
marized in Table  1. The newly estimated global annual 
mean E, 53 ± 6 W m−2, is lower than previous estimates of 
80–90 W m−2 largely due to the lower MEP E over oceans. 
The new estimate of annual mean H is 30 ±  4  W  m−2, 
while previously reported annual mean H has a range of 
8–24 W m−2. The MEP estimate of global annual net sur-
face heat flux is ~31 ± 5 W m−2, while previous reanalysis 
products all have nearly zero annual ground/water–snow–
ice heat flux.

Since direct measurements of heat fluxes over oceans 
are limited, the MEP fluxes may be validated indirectly 
by comparing the net ocean heat flux with the change of 
ocean heat content (ΔOHC) of the top ocean layer of cer-
tain depth as ΔOHC is expected to be positively correlated 
with Rn − E − H. Figure 7 shows that the MEP modeled 
global annual mean Rn −  E −  H has a decreasing trend 
during 2001–2010 qualitatively consistent, as expected, 
with the decreasing trend of the ΔOHC of the top 700-m 
layer from the National Climatic Data Center (NCDC) data 
(Levitus et al. 2012). One explanation for the large values 

MEP Rn −  E −  H relative to ΔOHC is that part of the 
absorbed solar radiation by the oceans is transferred into 
deeper ocean layers and dissipated through other physical, 
chemical and biological processes within the oceans.

The MEP modeled fluxes have reduced uncertainties 
compared to the existing data products as the bulk gradi-
ents of temperature/humidity gradients, wind speed, and 

Fig. 6   The 2001-2010 climatol-
ogy of the (a) MEP modeled 
annual mean ocean surface 
heat flux Q (−Q is shown), (c) 
net solar radiation R0, and (e) 
net ocean heat flux (ocean heat 
uptake) R0 + Q (Rn − E − H) 
derived using the same input 
data as in Fig. 5 versus the cor-
responding MERRA reanalysis 
data (right panel)
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Fig. 7   The annual mean MEP modeled net ocean heat flux (ocean 
heat uptake) Rn − E – H versus the change in the top 700 m ocean 
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surface roughness lengths subject to large uncertainties are 
excluded from the MEP model. The uncertainties of MEP 
fluxes are mainly caused by the uncertainties of the surface 
radiation data as shown in Table  2. The model parameter 
caused uncertainties of the MEP fluxes are limited com-
pared to previous estimates using the conventional methods 
(Mueller et al. 2011, 2013; Vinukollu et al. 2011; Stephens 
et al. 2012; Yuan et al. 2010; Yu et al. 2008; Bourras 2006; 
Clayson et  al. 2014). The uncertainties of the MEP esti-
mated heat fluxes can be further reduced with the improved 
accuracy of radiation measurements in the future.

4 � Conclusion

The MEP model produces new estimates of global annual 
mean evaporation rate of 667 mm year−1 (±76 mm year−1), 
sensible heat flux of 30 W m−2 (±4 W m−2), ground (con-
ductive) heat flux (over land) of 12 W m−2 (±10 W m−2) 
and ocean surface heat flux of 139 W m−2 (±10 W m−2) 
(through conductive cool-skin). The MEP estimate of the 
net ocean heat flux (or ocean heat uptake) is 39  W  m−2 
(±4 W m−2). The new estimate of terrestrial evapotranspi-
ration based on the MEP model is in close agreement with 
previous estimates while the estimate of ocean evaporation 
is lower than bulk flux based estimates. The MEP model 
produces the first estimate of global ocean surface heat flux 
that is not available from existing data products.

The MEP modeled surface heat fluxes not only (by defi-
nition) close surface energy budgets at all space–time scales, 
but also avoid explicit uses of temperature/moisture gradi-
ents, wind speed and surface roughness as model inputs and 
parameters. These unique properties make the MEP model a 
potentially powerful tool facilitating the monitor and evalu-
ation of regional and global surface water and energy budg-
ets, especially over sparsely instrumented polar regions, sea 
ice surfaces, and remote continental areas. The MEP model 
may serve as an effective physical parameterization of the 
land–ocean–atmosphere interaction in regional and global 
numerical weather prediction and climate models, contribut-
ing to the study of changes of water–energy–carbon cycles 
in response to radiative forcing perturbations of both natural 
and anthropogenic origins. The discrepancies between the 
MEP-based heat flux estimates and those based upon more 
traditional approaches arise from multiple sources including 
uncertainties from both input variables and model param-
eters. These issues are further exacerbated by difficulties 
in obtaining “ground-truth” measurements of heat fluxes 
over oceans and significant uncertainties in deriving surface 
radiative fluxes through radiative transfer calculations (e.g., 
in the presence of clouds). Constructing a new global sur-
face energy budget and putting the MEP model results in 
a broader perspective of the climate system’s energy cycle 

is the first step of our ongoing efforts. New results will be 
reported in the near future.
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Appendix: Dissipation functions and thermal 
inertia parameters

For the case of land surface (non-transparent media), the 
dissipation function D is expressed as the function of latent 
E, sensible H and ground Q heat flux (Wang and Bras 2011),

where Is, Ie and Ia are the thermal inertia parameters 
(J m−2 K−1 s−1/2) associated with the corresponding fluxes. 
Thermal inertia of soil Is may be parameterized using an 
empirical equation,

where θ is the volumetric water content, Id the thermal iner-
tia of dry soil, and Iw the thermal inertia of (still) liquid 
water. Ia and Ie characterizing turbulent transport of heat 
and water vapor in the boundary layer are parameterized 
based on the Monin–Obukhov similarity theory (Wang and 
Bras 2010, 2011),

where σ given in Eq. (3) is a dimensionless coefficient char-
acterizing the thermal and moisture condition on the parti-
tion of radiation energy. I0 is the “apparent” thermal inertia 
of the turbulent air representing the turbulent transport pro-
cesses in the boundary layer. I0 in Eqs. (3) and (9) was for-
mulated using the extremum solution of the Monin–Obuk-
hov similarity equations (Wang and Bras 2009) as,

with a universal empirical constant C0 related to the coef-
ficients in the dimensionless functions characterizing the 
atmospheric stability (Businger et al. 1971),

(7)D(E,H,Q) ≡
2Q2

Is
+

2E2

Ie
+

2H2

Ia
,

(8)Is =
√

I2d + θ I2w,

(9)Ia = I0|H|
1
6 , Ie = σ Ia,

(10)I0 = C0ρacp
√
κz

(

κgz

ρacpT0

)
1
6

,
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where ρa is the density of air, κ = 0.4 the von Kármán con-
stant, T0 (~300  K) a representative environment tempera-
ture, and g the gravitational acceleration. z is the distance 
from the material surface above which the Monin–Obukhov 
similarity equations hold. Based on the tests over the land 
surfaces, z may be chosen as 2–3 m for the case of flat bare 
soil, 4–5 m for the case of short vegetation, and 9–10 m for 
the case of tall trees. In this study, z for the case of oceans is 
set at 2.5 m above which the sensitivity of the MEP model 
predicted heat fluxes on z is weak.

For the cases of water, snow, and ice surfaces (transpar-
ent media), D is expressed as the function of latent E, sen-
sible H and (conductive) water/snow/ice surface Q heat flux 
(Wang et al. 2014),

where RS
n is the surface net solar radiation, Is the thermal 

inertia of (still) liquid water, snow or ice, and Ia and Ie are 
identical to those in Eq. (9) for the case of land surface.
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