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model, lead time, month, or region. Overall, we find that 
the skill of the ensemble mean is equal to or greater than 
that of any of the individual models. At the seasonal scale, 
the drought events are better forecast than the flood events, 
and are predicted equally well in terms of high tempera-
ture and low precipitation. Overall, our findings provide a 
systematic diagnosis of the strengths and weaknesses of 
the eight models over a wide range of temporal and spatial 
scales.

Keywords Seasonal forecasting · NMME · Flood · 
Drought · Multi-model ensemble · Model biases

1 Introduction

The North American Multimodel Ensemble (NMME) is 
an experimental project which was established in response 
to the U.S. National Academies’ recommendation to sup-
port regional climate forecasting and decision-making over 
intraseasonal to interannual timescales (National Research 
Council 2010). Participating North-American agencies, 
which include the National Oceanic and Atmospheric 
Administration (NOAA)’s National Centers for Environ-
mental Prediction (NCEP) and Geophysical Fluid Dynam-
ics Laboratory (GFDL), the International Research Insti-
tute for Climate and Society (IRI), the National Center for 
Atmospheric Research (NCAR), the National Aeronaut-
ics and Space Administration (NASA)’s Global Modeling 
and Assimilation Office (GMAO), the Rosenstiel School 
of Marine & Atmospheric Science from the University of 
Miami (RSMAS), the Center for Ocean-Land–Atmosphere 
Studies (COLA), and Environment Canada’s Meteorologi-
cal Service of Canada—Canadian Meteorological Center 
(CMC), have been contributing model predictions from 

Abstract This paper examines the forecasting skill of eight 
Global Climate Models from the North-American Multi-
Model Ensemble project (CCSM3, CCSM4, CanCM3, 
CanCM4, GFDL2.1, FLORb01, GEOS5, and CFSv2) over 
seven major regions of the continental United States. The 
skill of the monthly forecasts is quantified using the mean 
square error skill score. This score is decomposed to assess 
the accuracy of the forecast in the absence of biases (poten-
tial skill) and in the presence of conditional (slope reliabil-
ity) and unconditional (standardized mean error) biases. We 
summarize the forecasting skill of each model according 
to the initialization month of the forecast and lead time, 
and test the models’ ability to predict extended periods of 
extreme climate conducive to eight ‘billion-dollar’ histori-
cal flood and drought events. Results indicate that the most 
skillful predictions occur at the shortest lead times and 
decline rapidly thereafter. Spatially, potential skill varies 
little, while actual model skill scores exhibit strong spatial 
and seasonal patterns primarily due to the unconditional 
biases in the models. The conditional biases vary little by 
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their hindcasts (dating back to the early 1980s) and real-
time forecasts since August 2011. Each model consists of 
between 6 and 28 “members,” and the forecasts are pro-
vided at lead times that range between 0.5 and 11.5 months 
ahead of the forecast (Table 1). The two key advantages of 
the NMME, in comparison with other projects, are that the 
data are made freely available and that the focus is not just 
on retrospective forecasts, but also on real-time information.

A central component of the NMME project consists in 
quantifying model ensemble skill (Kirtman et al. 2014) to 
generate the most reliable climate forecasts. Model accu-
racy can be measured on several levels, by comparing each 
model’s individual members, each model’s ensemble mean 
(of model members), or the multi-model ensemble mean, 
against the observed climate data. Typically, multi-model 
means are found to have greater skill than single models 
(Hagedorn et al. 2005). Such averaging schemes are usu-
ally computed either by giving the same weight to each 
model’s ensemble mean, or by giving equal weight to all 
members (thus assigning more weight to the models with 
more members) (e.g., Tian et al. 2014). The first assess-
ments of NMME skill consistently suggest that the multi-
model ensemble mean performs as well as, or better than, 
the best model (Becker et al. 2014; DelSole and Tippett 
2014; Wood et al. 2015; Ma et al. 2015a; Thober et al. 
2015). This increased skill of the NMME multi-model 
ensemble in contrast with the individual models appears to 
be related to the addition of new signals (from new mod-
els), rather than to the reduction of noise due to model 
averaging (DelSole et al. 2014).

However, because of the broad spatial and temporal scope 
of the NMME, most analyses of model skill are limited by 
necessity to specific lead times, regions, or seasons. Global, 
1°-by-1° resolution studies tend to focus either on just one 
model, or on the shortest available lead time. For instance, 
Jia et al. (2015) characterize the skill of the high-resolution 
GFDL model FLOR, while Saha et al. (2014) investigate 
the skill of the NCEP Climate Forecast System (CFSv2) at 
the global scale. Conversely, Becker et al. (2014) provide a 
comprehensive analysis of temperature, precipitation, and 
sea surface temperature forecasts for multiple models at the 
global scale, but focus mainly on the shortest available lead 
time. Wang (2014) examines the global skill of NMME pre-
cipitation forecasts for the summer months and only at the 
shortest lead time. Mo and Lettenmaier (2014) interpolate 
the NMME forecasts bilinearly to a 0.5° grid over the con-
tinental United States to evaluate runoff and soil moisture 
forecasts, but only up to the 3-month lead time.

In contrast, analyses of the NMME conducted at the 
sub-continental scale often allow for a more comprehen-
sive examination of model skill and of the relationship 
between ensemble forecasts and climate oscillations, and 
reveal regional agreement between models (Infanti and 

Kirtman 2016). In the southeastern United States, for 
example, it is shown that temperature and precipitation 
forecasts become increasingly skillful in the winter months 
at short lead times (Infanti and Kirtman 2014). Stud-
ies found that the predictability of precipitation (Mo and 
Lyon 2015), and/or temperature (Roundy et al. 2015) and 
drought (Ma et al. 2015b) generally improves in regions 
that are significantly affected by the El Niño-Southern 
Oscillation (ENSO). In North America, the majority of 
high correlations between temperature/precipitation fore-
casts and observations are found in the south-east (SE), 
south-west (SW), and north-west (NW) during Eastern 
Pacific El Niño events (Infanti and Kirtman 2016). Such 
analyses also help determine which models are the most 
useful at the regional/seasonal scale; for instance, over 
continental China, the CFS models performed the best, 
followed by GFDL, NASA, the Canadian models, IRI and 
CCSM3 (Ma et al. 2015b) (see Table 1 for an overview of 
models and acronyms—note that we did not include IRI’s 
fourth-generation atmospheric GCM (ECHAM4p5) in our 
model selection because it no longer issues real-time fore-
casts). In an analysis of four NMME models over the con-
tinental United States and the Atlantic Warm Pool (AWP), 
the CFSv2 and GFDL models showed the most skill for 
predicting seasonal rainfall anomalies in the July–October 
season (Misra and Li 2014).

Thus, despite an increasing number of analyses focused 
on the quantification of NMME skill, a systematic investi-
gation across different models, regions, seasons, and lead 
times is still lacking. Additionally, very little is known 
regarding the skill of these models for forecasting extended 
periods of high temperature and/or low precipitation lead-
ing to drought conditions, as well as extreme precipita-
tion leading to flooding. For instance, we know that most 
NMME models were unable to forecast the 2012 North 
American drought correctly, while those that correctly pre-
dicted its occurrence did so fortuitously, and “for the wrong 
reason” (Kam et al. 2014). Therefore, a thorough evalua-
tion of the NMME models’ ability to forecast the occur-
rence of different extremes over extended periods of time 
is also missing.

To fill these gaps, the research questions that we address 
in this study are the following: 

•	 At the intraseasonal scale, what is the skill of the eight 
individual NMME model ensembles in predicting pre-
cipitation and temperature patterns, for every available 
lead time, every month of the year, and for every sub-
region of the continental United States? How do their 
biases compare? Do certain models perform better than 
others for certain regions, lead times, and months, and 
does the eight-model ensemble mean outperform the 
individual models?
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•	 At the seasonal scale, what is the ability of these eight 
models to forecast extended periods of high temperature 
and low precipitation leading to drought conditions, as 
well as prolonged periods of extreme precipitation lead-
ing to flooding?

To answer these questions, we conduct a systematic 
decomposition of the forecasting skill of the eight individual 
model ensembles (computed as the mean of all members in 
each model) as well as of the eight-model ensemble mean 
(computed by assigning the same weight to each mod-
el’s mean), using the NMME forecast data and observed 
monthly data for verification. Section 2 presents the fore-
cast and observed data, and Sect. 3 provides an overview of 
the statistical methods used to perform forecast verification 
and the diagnosis of each model’s ability to predict seasonal 
extremes. The results are presented in Sect. 4, while Sect. 5 
summarizes the main findings and conclusions of the study.

2  Data

2.1  NMME temperature and precipitation data

Here we focus on eight GCMs from the NMME project, for 
which temperature and precipitation forecasts are available 
from the early 1980s to the present. The GCMs we con-
sider are: CCSM3 and CCSM4 from NCAR, COLA and 
RSMAS; CanCM3 and CanCM4 from Environment Can-
ada’s CMC; CM2.1 and FLORb01 from NOAA’s GFDL; 
GEOS5 from NASA’s GMAO; CFSv2 from NOAA’s 
NCEP. The characteristics of the different models are sum-
marized in Table 1.

The data were downloaded from the IRI/Lamont 
Doherty Earth Observatory (LDEO) Climate Data Library 
(http://iridl.ldeo.columbia.edu/) in netCDF format, on 
a 1.0° latitude by 1.0° longitude grid. Monthly total pre-
cipitation (variable name “prec”, in mm/day) and monthly 
reference mean temperature at 2 meters (variable name 
“tref”, in Kelvin units) were obtained for all available lead 
times and ensemble members over the continental United 
States. Temperature data were converted from Kelvin units 
to degrees Celsius. For CanCM3, CanCM4, and CFSv2, 
the hindcast and forecast data were downloaded separately 
and combined for the analysis. In the case of CFSv2 we 
used the pentad realtime forecasts which match the pattern 
of the CFSv2 hindcasts.

Data were extracted for each model from netCDF files 
in R using the ncdf4 package (Pierce 2014). The files typi-
cally contain five dimensions, which are the longitude, lati-
tude, member, lead, and forecast reference time. The num-
ber of ensemble members ranges from 6 for COLA to 12 
for GEOS5 and FLORb01, and 28 for CFSv2 (Table 1). To 

limit the scope of the analysis, we consider the mean of each 
model’s ensemble members, rather than analyze each model 
member individually. The focus of our analysis is monthly to 
seasonal predictions, ranging from 0.5 to 11.5 month leads. 
The term “lead” indicates the period between the forecast 
initialization time and the month that is predicted (so a “0.5-
month lead forecast” refers to a monthly forecast that was 
made about 15 days ahead of the forecast period). Model 
forecast lead times vary from 0.5 to 8.5 months for GEOS5, 
up to 9.5 months for CFSv2, and up to 11.5 months for all 
of the other models (Table 1). Here, the expression “forecast 
reference time” refers to the date when the forecasts were 
issued (e.g., July 2015).

To analyze forecast skill at the regional scale, we define 
seven major regions of the United States based on the 
boundaries described in Kunkel et al. (2013), which are 
a modification of the regions that were originally used in 
the 2009 National Climate Assessment Report (Karl et al. 
2009) by dividing the Great Plains Region into North and 
South (Fig. 1). The NMME data are projected as stacked 
rasters and cropped to the dimensions of these seven 
regions using the ‘raster’ package in R (Hijmans 2015), to 
extract the mean weighted forecast value of all of the grid 
cells falling within each region (as defined by the polygons) 
for every month and lead time.

2.2  Reference temperature and precipitation data

To verify model skill, we use temperature and precipitation 
data from the Parameter-elevation Regression on Independ-
ent Slopes Model (PRISM) climate mapping system (Daly 
et al. 2002), which represents the reference dataset for 
the continental United States. PRISM’s temporal and spa-
tial resolutions are monthly and approximately 4 km. The 
data are freely available from the web (http://www.prism.
oregonstate.edu/index.phtml) and cover the period from 
1890 to the present. We divide precipitation monthly totals 
by the number of days in each historical month to obtain 
daily values, and to match the units of the NMME models. 
Extracted precipitation and temperature data time series 
are plotted against reference PRISM data for every model, 
region, month, and lead time for verification purposes (see 
Supplementary materials, pp 2–25).

Other studies (e.g., Becker et al. 2014; Infanti and Kirt-
man 2014) have used as verification field the station obser-
vation–based Global Historical Climatology Network and 
Climate Anomaly Monitoring System (GHCN + CAMS) 
for temperature, and the Climate Prediction Center (CPC) 
global daily Unified Raingauge Database (URD) gauge anal-
ysis for precipitation rate. Here we chose to use PRISM data 
instead because they account for elevation in the interpola-
tion scheme, have a fine spatial resolution, and are the offi-
cial product for the U.S. Department of Agriculture.

http://iridl.ldeo.columbia.edu/
http://www.prism.oregonstate.edu/index.phtml
http://www.prism.oregonstate.edu/index.phtml
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3  Methodology

3.1  Forecast verification

Different approaches and methods have been developed to 
quantify the skill of a forecast system. Here we quantify 
the accuracy of the forecast relative to the climatology 
(used as reference) using the mean square error (MSE) 
skill score SSMSE (e.g., Hashino et al. 2007):

where σx represents the standard deviation of the observa-
tions. A perfect forecast receives a skill score of 1. As the 
value tends to zero, the forecast skill decreases. A value of 
0 indicates that the forecast accuracy is the same as would 
be achieved using climatology as the forecast. Negative 
values indicate that the accuracy is worse than the clima-
tology forecast. The value of SSMSE can be decomposed 
into three components (Murphy and Winkler 1992):

(1)SSMSE = 1−
MSE

σ 2
x

(2)SSMSE = ρ
2

fx −

[

ρfx −
σf

σx

]2

−

[

µf − µx

σx

]2

where ρfx is the correlation coefficient between obser-
vations and forecasts and quantifies the degree of linear 
dependence between the two; µf and µx are the forecast 
and observation means, respectively; σf represents the 
standard deviation of the forecasts. Based on this decom-
position, the value of the correlation coefficient (or its 
squared counterpart, the coefficient of determination) 
reflects the forecast accuracy in the absence of biases. For 
this reason, it represents the potential skill (PS), which 
is the skill that could be achieved without the quantifica-
tion of the biases. Thus, it is commonly assumed (e.g., 
Boer et al. 2013; Younas and Tang 2013) that the differ-
ence between the potential and actual skill represents 
“room for model improvement”; however, as explained 
by Kumar et al. (2014), there is not necessarily a relation-
ship between the potential and the actual skill of climate 
models, and assuming that there should be one amounts to 
expecting that the real-world data should behave identi-
cally to the model predictions.

The second term in the right hand side of Eq. (2) quan-
tifies the conditional biases and is referred to as the slope 
reliability (SREL). The last term quantifies the uncondi-
tional biases and it is referred to as the standardized mean 
error (SME).

Fig. 1  Location of the seven regions across the continental United States. Black outline indicates the extent of the regions. Pale gray outline 
indicates the states within each region. Colored topographic shaded relief is shown in the background
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Forecast verification using the skill score and its decom-
positions in Eq. (2) is a diagnostic tool that produces a 
more realistic quantification of the forecast skill com-
pared to taking the correlation coefficient at face value. 
Moreover, the decomposition of the skill in different bias 
sources can provide model developers with feedback about 
strengths and weaknesses of their models. In general, 
unconditional biases (large SME) can easily be removed 
with bias-correction methods (Hashino et al. 2007), while 
conditional biases (large SREL) may require more sophis-
ticated calibration. Any forecasts with low potential skill 
(PS) will have limited predictability, even if biases are 
eliminated.

To perform the skill verification of the NMME, we tai-
lor the PRISM and NMME data to cover the same months 
between January 1982 and December 2014. The verifica-
tion is carried out for each model ensemble mean, region, 
and lead time following the above procedure, as also 
described in Bradley and Schwartz (2011). A separate skill 
verification is conducted on the eight-model ensemble 
mean, which is the mean forecast of all models (where one 
model already represents the arithmetic mean of its own 
ensemble members), for each region and lead time.

3.2  Extreme event diagnosis

The second part of the diagnosis is the assessment of each 
model’s ability to predict extreme floods and droughts at 
the seasonal scale. To do this, we investigate the models’ 
capacity to capture prolonged periods of extreme precipita-
tion and temperature lasting several months. Eight extreme 
flood and drought events affecting different parts of the 
continental United States were selected based on their 
severity and duration. The event had to last at least one 
full month, and less than a year, so that we might evalu-
ate its predictability for multiple lead times. The severity 
of the events was evaluated using the NOAA’s Billion Dol-
lar Weather and Climate Disasters Table of Events (https://
www.ncdc.noaa.gov/billions/events). The chosen events 
include four floods (July–August 1993, January–March 
1995, June–August 2008, and March 2010) and four 
droughts (June–August 1988, March–November 2002, 
March–August 2011, and May–August 2012). For the flood 
events, we focus on positive precipitation anomalies (high 
rainfall), and for the droughts, we observe positive temper-
ature anomalies and negative precipitation anomalies (high 
temperature and lack of rainfall).

We first define the extent of each event based on the 
description given in the Billion Dollar Weather Table. The 
PRISM data are aggregated over the entire continental 
United States at the 1° × 1° resolution to match the spa-
tial resolution of the NMME data. At each 1° pixel and for 
the period of interest for a given event, we compute the 

standardized anomalies with respect to the mean and stand-
ard deviation computed over the 1983–2014 period (the 
years 1982 and 2015 are excluded systematically because 
not all models have a complete forecast for 1982, and 
2015 forecast data were not yet available for all events at 
the time of the analysis). We then extract all the cells with 
standardized anomalies larger than 1 and smaller than −1 
(depending on whether we are considering excess temper-
ature/precipitation or lack of rainfall). The resulting ras-
ter contains only the grid cells for that event which were 
“anomalously” high or low with respect to the 1983–2014 
climatology. The boundaries of the event are tailored to 
the locations indicated in the Billion Dollar Weather Table 
(Fig. 2). We then average all of the pixels within the region 
for the months characterizing each event (e.g., total rain-
fall for June–August 2008, for each year between 1983 and 
2014) and compute the “domain averaged” standardized 
anomalies. Confidence intervals are computed around the 
anomaly using the approach described in Stedinger et al. 
(1993, Sect. 18.4.2).

Last, we use a similar procedure to calculate the corre-
sponding NMME anomalies within the defined region. One 
mean (spatially-averaged) model forecast is extracted for 
the entire region for the selected months between 1983 and 
2014, for each lead time. To obtain the seasonal forecast we 
compute the sum of forecasts initialized ahead of the entire 
season. Thus, for an event such as the June–August 2008 
flood, the seasonal forecast initialized in June 2008 (just 
before the event) is calculated as the sum of the 0.5-, the 
1.5-, and the 2.5-month lead forecasts initialized in June. 
If we initialize the forecast one month earlier, in May, the 
forecast can be calculated as the sum of the 1.5-, the 2.5- 
and the 3.5-month lead forecasts initialized that month. The 
forecast is calculated for increasingly long initialization 
times by going back in monthly time steps, as far the avail-
able lead times will allow. The resulting seasonal forecasts 
are then computed as anomalies, to allow a direct compari-
son with the average PRISM climatological anomaly for 
the event.

4  Results

4.1  Regional temperature and precipitation forecast 
skill

4.1.1  Temperature

The potential skill of the eight-model ensemble mean, as 
measured by the squared correlation coefficient between 
model forecasts and PRISM observations, ranges between 
0 and 0.6 (Fig. 3a). We find that the highest skill is dis-
played at the shortest lead time (0.5-month lead) and 

https://www.ncdc.noaa.gov/billions/events
https://www.ncdc.noaa.gov/billions/events
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declines rapidly thereafter, so most regions and months 
display a skill of less than 0.1 by the 1.5-month lead time 
(Fig. 3a). The Northwest and Southwest tend to show better 
skill than the other regions at longer lead times, e.g., over 
the January–March and June–July periods respectively, 
possibly because of the good predictability of temperature 
anomalies arising from ENSO conditions during the same 
months (see e.g., Wolter and Timlin 2011, and mapping of 
the likelihood of seasonal extremes by the NOAA/ESRL 
Physical Science Division at http://www.esrl.noaa.gov/
psd/enso/climaterisks/). Other regions such as the Midwest 
show almost no skill beyond the shortest lead time, possi-
bly because of the weaker relationship with ENSO states.

Overall, the ensemble mean displays better ability than 
any of the individual models, with potential skill maxima 
that exceed that of any single model (see for example April 
temperatures in the Midwest at the 0.5-lead time, Figs. 3, 
4), in agreement with other assessments of NMME model 
skill (Infanti and Kirtman 2014; Kirtman et al. 2014). 
There is not one model that clearly outperforms any of the 
others, although CCSM4, CanCM3, CanCM4, GEOS5 and 
CFSv2 do display better skill than CCSM3, GFDL2.1, and 
FLORb01 (Fig. 4). The same seasonal and regional patterns 

can be seen for the individual models as for the ensemble 
mean, with a clear peak in potential skill in the Southwest 
in the summer months (CCSM4, CanCM4).

The actual skill score is relatively low for all models and 
is mainly driven by the large unconditional biases (SME) 
in the models. The influence of the unconditional biases 
on the skill score is clearly detectable in the mirror-image 
pattern between the two (Figs. 3, 4). Dark blue colors indi-
cating low skill scores are reflected by the dark red colors 
indicating a high unconditional bias. Overall, the skill score 
tends to be highest at the shortest lead times. The skill score 
of the ensemble mean can be quite high in specific regions 
such as the Midwest at the 0.5-month lead time during the 
cold season. Individual models, however, exhibit low skill 
scores over most regions and months, with values reaching 
below −10 most of the time (see Supplementary Materials 
pp. 26–29 for additional graphs indicating skill decomposi-
tion for the eight-model ensemble mean and for each indi-
vidual model).

The unconditional biases display strong seasonal vari-
ability: they tend to be the lowest (white) in most regions 
in the winter/spring months, and tend to increase dramati-
cally (red) in the summer. By contrast, the Northwest and 

Fig. 2  Location of the studied flood and drought events across the 
continental United States. Computed climatological anomalies are 
indicated as red shades for temperature, and as blue shades for pre-
cipitation. Thick black outline indicates the spatial extent of the event. 
Color intensity indicates the anomaly of the observed climatology 
for the given season (>1 or <−1), as calculated on a pixel-by-pixel 
level across the entire United States. a 1993 July–August flood, 
precipitation anomalies. b 1995 January–March flood, precipita-
tion anomalies. c 2008 June–August flood, precipitation anomalies. 

d 2010 March flood, precipitation anomalies. e 1988 June–August 
drought, temperature anomalies. f 2002 March–November drought, 
temperature anomalies. g 2011 March–August drought, temperature 
anomalies. h 2012 May–August drought, temperature anomalies. i 
1988 June–August drought, precipitation anomalies. j 2002 March–
November drought, precipitation anomalies. k 2011 March–August 
drought, precipitation anomalies. l 2012 May–August drought, pre-
cipitation anomalies

http://www.esrl.noaa.gov/psd/enso/climaterisks/
http://www.esrl.noaa.gov/psd/enso/climaterisks/
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Southwest exhibit systematically higher biases in the win-
ter and spring (particularly in the model ensemble). There-
fore, as a result of this seasonality (e.g., better characteriza-
tion of initial land surface conditions in the cold seasons), 
the unconditional biases also show some lead-dependence: 
during the summer months, they are the highest at the 
shortest leads (dark red), and decrease progressively with 
lead time (as is visible in the case of CanCM4/CanCM3, 
and to a lesser extent CFSv2). These seasonal fluctuations 

have a notable influence on the overall skill score, and sug-
gest that forecasts made in the summer months could gen-
erally be improved by eliminating the unconditional biases.

The conditional biases (SREL) tend to range between 
0 and 1, and are thus about an order of magnitude lower 
than the unconditional biases, which are mostly between 
about 0 and 10. Conditional biases are typically very low 
during most of the year (Fig. 3), and do not vary notably 
by lead time for most of the models (Fig. 4). One visible 

Fig. 3  Color maps indicating average skill of the eight-model 
ensemble mean for a Temperature and b Precipitation. For each indi-
vidual color map (1 box), x-axis indicates the lead time of the cli-
mate forecast, ranging from 0.5 to 11.5 months; y-axis indicates the 
month that is forecast, ranging from 1 (January) to 12 (December). 
Labels at the top of the figure indicate each of the 7 regions shown in 
Fig. 1 (Northwest, Southwest, Great Plains North, Great Plains South, 

Midwest, Northeast, and Southeast). Right side of the figure indicates 
the computed components of the ensemble skill: potential skill, skill 
score, unconditional biases (SME), and conditional biases (SREL). 
The color scale on the right side of the figure is used for all compo-
nents of the skill score, and ranges from less than −10 (blue shades) 
to more than 10 (red shades)
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exception is the case of CanCM3 and CanCM4, which 
exhibit a ‘stepped’ appearance, so the conditional biases 
increase (become redder) as lead time increases. These 
biases in the Canadian models tend to develop more rap-
idly in the earlier months of the year than in the later 
months (see CanCM4 conditional biases in the Southwest, 
for an example). Some of the other models, like GFDL2.1 
and GEOS5, also reveal some seasonality in their condi-
tional biases.

4.1.2  Precipitation

Precipitation forecasts generally have lower potential skill 
than temperature (Fig. 3b), as expected and found in other 
studies, due to the greater variability in rainfall patterns 
(e.g., Infanti and Kirtman 2016). The eight-model ensem-
ble mean has better skill than any of the individual models 
(Fig. 3b vs. Fig. 5), and the regions with the highest eight-
model potential skill reflect the ability of the most skillful 

Fig. 4  Skill of the eight individual GCMs in forecasting tempera-
ture (CCSM3, CCSM4, CanCM3, CanCM4, GFDL2.1, FLORb01, 
GEOS5, and CFSv2). The layout of the panels is the same as 

described in Fig. 3. Note that GEOS-5 and CFSv2 only have 9 and 10 
lead times, respectively, in comparison with the other models
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models (e.g., CCSM4, CFSv2 in the Southeast). However, 
the individual models display relatively low potential skill, 
especially after the 0.5-month lead [consistent with results 
found by Mo and Lyon (2015)], and little spatial variation 
on the regional scale (Fig. 5). The models with the poor-
est forecasting ability (e.g., CCSM3 and FLORb01) do not 
even display potential skill at the 0.5-month lead. Other 
models (e.g., CCSM4, the Canadian models, GEOS5 and 
CFSv2) display some skill at longer lead times, but only 
for specific months, such as July in the Northwest (for 
CCSM4, GFDL2.1, CanCM4, and FLORB01), or May in 
the Southwest (e.g., CanCM4, GEOS5).

Similarly to temperature, the skill score for precipitation 
is mainly driven by unconditional biases in the models: the 
positive unconditional biases (red patterns) are mirrored 
by the negative skill score (blue patterns). Overall, how-
ever, the skill score for precipitation displays slightly less 
extreme (positive and negative) values than for tempera-
ture. This ‘subdued’ behavior may be caused by the greater 
variability in precipitation rates (i.e., lower agreement 
among forecast patterns) in space and time, for different 
months, lead times, and models. In other words, because of 
the small spatial scales of precipitation forecasts (compared 
to temperature), better results might be achieved by focus-
ing on smaller spatial regions than the seven broad regions 
used here.

Interestingly, the seasonality of model skill also var-
ies regionally for precipitation, but is different from the 
regional patterns for temperature. For the Northwest, 
Southwest, Great Plains North, Midwest, and Northeast 
regions, the highest unconditional biases in the precipita-
tion forecasts tend to occur more frequently (lower skill) 
in the winter months (Fig. 3b). The Great Plains South and 
Southeast regions, on the contrary, display lower uncondi-
tional biases (higher skill) in the winter months. This find-
ing is consistent with that of Infanti and Kirtman (2014) for 
the southeastern United States, and suggests that improved 
model skill in the winter months may well be related to 
the influence of ENSO (e.g., Mo and Lyon 2015; Roundy 
et al. 2015). In some regions, the unconditional biases 
tend to increase as the lead time of the forecast increases, 
so the color maps become progressively redder towards 
the right side of the plots (e.g., the Northwest region for 
CanCM3, FLORb01, or CFSv2) (Fig. 5). Elsewhere the 
biases decrease with increasing lead time (e.g., Great Plains 
South, FLORb01). All eight models display considerable 
biases, but CCSM3 displays the largest biases, specifically 
in the Great Plains North region.

The conditional biases are again much lower than the 
unconditional biases, and much more variable, displaying 
little regularity by month or by lead time. Some months dis-
play slightly higher conditional biases (e.g., April or July), 
but such patterns are infrequent. CCSM3 and CCSM4 have 

the largest conditional biases (red), followed by GFDL2.1, 
while the Canadian models, GEOS5 and CFSv2 tend to 
show lower conditional biases. Regionally, there seem to 
be slightly greater biases in the Southwest and Great Plains 
North.

4.2  Individual extreme events

4.2.1  Floods

We evaluate the skill of the eight NMME models in pre-
dicting four flood events (the 1993 July–August flood, the 
1995 January–March flood, the 2008 June–August flood, 
and March 2010) by comparing the observed climatology 
(Fig. 2a–d) to the model precipitation forecasts (positive 
anomalies). As a caveat, it should first be conceded that 
we do not expect the models to reflect the observed his-
torical precipitation anomalies perfectly over such broad 
spatial scales, even in the best-case scenarios, because 
of convection patterns that occur at local scales (and that 
cannot be captured in the same way as extreme tempera-
ture anomalies, which exhibit more spatially-consistent 
patterns). Overall, results indicate that the four flood 
events were relatively poorly predicted by all eight mod-
els (Fig. 6a–d). The 1993 Midwest flooding stands out as 
the least poorly forecast, since all models with the excep-
tion of CCSM3 predicted positive anomalies. CanCM4, 
CCSM4, FLORb01, CFSv2 and CanCM3 all forecast 
anomalies that were more than 2 times greater than their 
own average seasonal value (Fig. 6a). However, the 
actual historical anomaly was much greater than any of 
the predicted values, at 3.80. Generally speaking, skillful 
predictions tend to occur in regions that have strong air-
sea coupling, so the initial condition of the atmosphere 
plays an important role in the forecast for several months 
(Materia et al. 2014). In the case of the 1993 flood, it 
is likely that the skill of the models resulted from the 
strength of the El Niño, which displaced the storm track 
over the central United States, with atmospheric rivers 
transporting large amounts of moisture from the Gulf 
of Mexico over the Mississippi River basin (Trenberth 
and Guillemot 1996; Lavers and Villarini 2013). The El 
Niño conditions also likely explain why the ability of the 
eight models to predict the 1993 flood visibly decreased 
here with initialization time (i.e., the further ahead of the 
event, the less able the models were to forecast the high 
rainfall).

The other three events were relatively less well forecast, 
although CFSv2 performed better than all other models 
in 2008 (Fig. 6c), as did FLORb01 in 2010 at the shortest 
lead time (Fig. 6d). The observed event anomalies (PRISM 
data) were of 2.34, 2.55, and 2.78 while the model fore-
casts, at best, attained 1.8 (GFDL2.1–1995 flood), 1.5 
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(CFSv2–2008 flood) and 2.3 (CFSv2–2010 flood), but 
somewhat fortuitously, since some of the highest anomalies 
were predicted many months ahead of the actual events. 
In fact, for all three of these flood events (Fig. 6b–d), the 
eight-model ensemble mean was near or below zero, and 
half of the individual model forecasts predicted a “drier-
than-average” season. Figure 6b–d indicates that most mod-
els fluctuate between positive and negative anomalies, and 
in 2008 were mostly wrong, predicting a drier-than-average 
season overall; as for the other flood events, the predicted 

anomalies were as low as −1.5 (1995 flood–GEOS5), −2.5 
(2008 flood–CanCM4), and −2.4 (CFSv2–2010 flood). 
Thus, no model consistently outperformed any of the oth-
ers, and no single model was reliable in terms of consist-
ently predicting these three flood events (Fig. 6b–d).

4.2.2  Droughts

Droughts tend to develop more slowly than floods, as it can 
take between five and eight months for the water deficit to 

Fig. 5  Skill of the eight individual GCMs in forecasting precipitation (CCSM3, CCSM4, CanCM3, CanCM4, GFDL2.1, FLORb-01, GEOS5, 
and CFSv2). Layout of the panels is the same as described in Fig. 4
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drop beneath a certain threshold and begin a drought (Mo 
2011). Hence, skillful intraseasonal to interannual fore-
casts may prove particularly vital ahead of major drought 
events. Additionally, droughts also tend to be more pre-
dictable than floods because of the influence of the Pacific 
Decadal Oscillation (PDO) and the Atlantic Multi-decadal 
Oscillation (AMO) (McCabe et al. 2004) and the effects of 
land surface/atmosphere coupling (e.g., Koster et al. 2006, 
Seneviratne et al. 2010). Thus, droughts that are strongly 
influenced by initial conditions tend to be well-forecast 
(Roundy and Wood 2015).

Here we evaluate the ability of NMME models to pre-
dict droughts as high temperature anomalies (excess heat 
Fig. 2e–h) on the one hand, and low precipitation anomalies 
(lack of rainfall, Fig. 2i–l) on the other, in comparison with the 
observed climatology (red shades for excess temperature, blue 
shades for lack of rain). The comparison between temperature 
and precipitation predictions for drought events also allows 
us to assess whether the NMME models are more accurate in 

predicting excess heat or deficient rainfall, and to what extent 
temperature actually contributed to drought severity for each 
of these events. For instance, the 2014 California drought was 
driven principally by low precipitation, but intensified by high 
temperatures (Shukla et al. 2015).

The comparison between observed extreme temperature 
and observed extreme precipitation anomalies reveals a 
relatively good overlap in spatial extents (Fig. 2) with the 
exception of the 2002 March-November drought, which was 
also the least predictable of the four droughts (only small 
isolated parts of the south-east and south-west United States 
were affected by the positive temperature anomaly, Fig. 2f). 
During droughts, strong precipitation deficits and high heat 
anomalies tend to occur over the same regions, as was the 
case during the 1934, 1936, 2011 and 2012 events (Donat 
et al. 2016). The discrepancies between temperature and 
precipitation patterns tend to be relatively limited in space 
and are mainly caused by the noise associated with the 
precipitation signal; for instance, localized thunderstorms 

Fig. 6  Skill of the eight NMME models in predicting four flood and 
four drought events, in comparison with the observed climatology. 
Flood and drought events (a–l) are the same as in Fig. 2. Thick hori-
zontal black line indicates the PRISM observed climatological anom-
aly, with 95 % confidence intervals indicated as shaded grey rectan-
gles in the background. NMME anomalies are indicated as colored 
lines. Long/short-dashed black line indicates the eight-model ensem-

ble mean. Panels f and j:  note that GEOS5 only exhibits one lead 
time and CFSv2 two, because the event lasted for nine months and 
these models only issue nine- and 10-month lead times, respectively. 
Panels g and k: note that the two Canadian models have data gaps in 
2011, so are not included in the evaluation of the 2011 March–August 
drought.
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occurring in spring and summer may influence the rainfall 
anomalies computed for an entire season.

Of the four drought events, it appears that the 1988 
drought was remarkably well predicted at the shortest ini-
tialization time by four models (GEOS5, CFSv2, CanCM3 
and GFDL2.1) in terms of high temperature (Fig. 6e). The 
first two of those models actually exceeded the observed 
anomaly (PRISM = 2.1), with forecast values of 2.6 and 
2.4. However, the skill of all models decreased rapidly 
with increasing lead time, indicating that they were una-
ble to predict the event more than one month ahead of its 
actual occurrence. For the same event, the precipitation 
forecasts (lack of rainfall) were also relatively success-
ful in June 1988 (anomaly values of −3.2 for GEOS5, 
−2.3 for CFSv2, −2.2 for GFDL2.1, in comparison with 
the observed −2.8) but the skill declined when predicted 
further ahead (Fig. 6e). CCSM3 performed the least well 
among all models, while CanCM3 predicted the drought 
successfully both in terms of temperature and precipita-
tion eight months ahead of the actual event (Fig. 6e). Over-
all, the good predictability of the 1988 drought is likely a 
result of the strong La Niña conditions (e.g., Trenberth and 
Guillemot 1996) that occurred in conjunction with a cool-
ing phase of the PDO and the warming phase of the AMO 
(McCabe et al. 2004).

The other three droughts were relatively less well pre-
dicted. For 2002, the eight-model ensemble mean was close 
to climatology (anomaly value around 0), and in the month 
preceding the event, only GEOS5 predicted a positive tem-
perature anomaly of 1.3 versus 1.77 for the observed clima-
tology, while half of the models actually predicted excess 
rainfall (Fig. 6f). In 2011, the March-August forecasts were 
slightly more accurate, likely because the drought resulted 
from a strong La Niña (Seager and Hoerling 2014) and the 
mean flow moisture divergence anomalies driven by the 
negative North Atlantic Oscillation of the previous winter 
(Seager et al. 2014). GFDL2.1 and FLORB01 both consist-
ently predicted high positive temperature anomalies and 
low negative precipitation anomalies, even at the longer 
times before the event, and the eight-model ensemble mean 
correctly predicted positive/negative anomalies (Fig. 6g). 
Last, the 2012 drought was relatively well predicted, with 
slightly better results for temperature than precipitation. 
However, contrary to model forecasts, Pacific sea surface 
temperature (SST) did not play a major role in the drought 
(Kumar et al. 2013; Hoerling et al. 2014), so the skill-
ful prediction of the drought was in fact “fortuitous, due 
to the erroneous coupling with pan-Pacific SSTs” (Kam 
et al. 2014). CanCM3 and CanCM4 display good results, 
but they become less skillful as one approaches the begin-
ning of the event (Fig. 6h). As suggested by Roundy and 
Wood (2015), the varying skill of drought forecasts among 
years implies that they are driven by different mechanisms; 

atmospheric and land initial conditions, SST and radiative 
forcing may have varying influences to strengthen/weaken 
the predictability of events (Jia et al. 2016).

Overall, it is interesting to note that the precipitation 
and temperature forecasts are more similar than one might 
expect in terms of their ability to forecast the extreme 
events. In fact, comparing the positive temperature anom-
alies with the negative precipitation anomalies (Fig. 6e–l) 
indicates that seasonal precipitation and temperature fore-
casts do tend to reflect one another to a certain extent. 
When the temperature forecast is skillful, the precipita-
tion forecast tends to be also (e.g., GEOS5 and CanCM3 
in 1988, or GFDL in 2011, Fig. 6g). Likewise, the lack of 
skill is also mirrored for both temperature and precipitation 
(e.g., CCSM3 in 2011, Fig. 6g).

Comparing our results with historical ENSO forecasts 
suggests that when the land surface/atmosphere interac-
tion is well represented, events tend to be better predicted; 
hence, the lack of land surface/atmosphere coupling in 
2002 may explain why the drought was poorly predicted 
and why there was little consistency between temperature 
and precipitation patterns. Therefore, as different models 
have different abilities depending on seasonality and lead 
times, strategic multi-model averaging procedures may 
help increase the forecasting skill of these extreme flood 
and drought events (e.g., Luo and Wood 2008; Bradley 
et al. 2015), especially in locations with strong antecedent 
ENSO signal (e.g., Yuan and Wood 2013).

5  Summary and conclusions

By decomposing the skill score of the individual climate 
models into potential skill, unconditional and conditional 
biases, we have assessed the strengths and weaknesses of 
the eight GCM ensemble means and of the eight-model 
ensemble mean over a range of lead times and initialization 
months. Our findings provide a diagnostic tool that can pro-
vide model developers with feedback about the strengths 
and weaknesses of their models, and help develop model-
averaging strategies.

The results can be summarized as follows: 

1. The highest potential skill in temperature and precipi-
tation forecasts is displayed at the shortest lead time 
(0.5 month) and declines rapidly thereafter. For both 
temperature and precipitation, the potential skill of 
the eight-model ensemble mean tends to surpass the 
skill of the best model within the ensemble. However, 
there is room for more sophisticated model averaging 
approaches (i.e., weighting individual models based on 
their strengths and weaknesses) to improve the model 
ensemble skill. Overall, the skill score is quite low for 
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all models. The eight-model ensemble displays posi-
tive values mostly at the shortest lead times, and there 
is not one model that clearly outperforms any of the 
others.

2. The biases in these eight models are predominantly 
unconditional (SME), with strong seasonal- and lead-
dependent biases driving the negative skill scores 
(which are likely dependent on the initialization con-
ditions in different regions and seasons). For tempera-
ture, in most regions, the unconditional biases tend 
to be the lowest in the winter/spring months, and to 
increase in the summer (while the reverse is true in 
the Northwest and Southwest). For precipitation, the 
unconditional biases tend to be the lowest in the sum-
mer and fall (while the reverse is true in the Great 
Plains South and Southeast). Thus, it appears that the 
skill of these forecasts could be improved by attenuat-
ing the unconditional biases that are specific to certain 
regions and seasons. The conditional biases (SREL) 
are generally about an order of magnitude smaller than 
the unconditional biases, and display much more vari-
ability across all regions, months, and lead times.

3. Overall, the skill of the eight NMME models in pre-
dicting four flood events and four drought events 
shows some inconsistencies. The droughts tend to be 
better forecast than the floods, even in terms of precipi-
tation, likely because they are more tightly connected 
to SST-driven climate conditions (McCabe et al. 2004). 
However, air-sea coupling may also lead to fortuitous 
forecasts (Kam et al. 2014) as some of the best fore-
casts seem to occur randomly, sometimes many months 
ahead of the actual events. While some models are able 
to predict specific events well, and sometimes months 
in advance (e.g., CFSv2 for the 1988 drought, or 
CanCM3 for the 2012 drought), no model consistently 
outperforms any of the others, or is reliable in terms of 
consistently predicting events.

4. Perhaps more unexpectedly, although average tempera-
ture forecasts tend to outperform average precipitation 
forecasts, we find that the seasonal positive tempera-
ture anomalies for the droughts are not more accu-
rately predicted than negative precipitation anomalies. 
In fact, the ability of the models to forecast drought is 
remarkably similar in terms of temperature and pre-
cipitation. Generally speaking, most forecast anoma-
lies are at least one standard deviation beneath the 
observed anomaly, suggesting that the ensemble means 
of models cannot accurately forecast strongly deviating 
departures from the climatology over such broad spa-
tial scales. Thus, in future work, extreme values may 
be better forecast by individual model members and 
over smaller regions, particularly in the case of pre-

cipitation, to avoid the influence of noise arising from 
localized convective events.

These findings highlight some of the strengths and weak-
nesses of the NMME models across all lead times, months, 
and for seven major regions of the United States. One of 
the remaining challenges is our ability to extend precipita-
tion forecast skill beyond the shortest lead time, as is rec-
ognized in similar studies (Wood et al. 2015). The overall 
skill of the eight-model ensemble shows promise for multi-
model averaging procedures (e.g., Luo et al. 2007; Brad-
ley et al. 2015) that might enable more skillful forecasts at 
longer lead times. Moreover, future studies should exam-
ine whether it is possible to utilize these precipitation and 
temperature forecasts for impact studies including seasonal 
discharge forecasting.
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