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1  Introduction

Natural climate variability at decadal-to-multidecadal time-
scales in the Pacific Ocean is termed as the Pacific decadal 
variability, which is generally referred as the Interdecadal 
Pacific Oscillation (IPO; Power et  al. 1998, 1999; Allan 
2000; Folland et al. 1999) for the basin-wide pattern, or the 
Pacific Decadal Oscillation (PDO; Mantua et al. 1997) for 
the North Pacific pattern. The time series of IPO is analo-
gous to the PDO index of Mantua et al. (1997). The signa-
ture of warm (cold) phase of IPO is characterized as warm 
(cold) SST anomalies (SSTAs) in the tropical Pacific and 
cold (warm) SSTAs in the central North Pacific (Trenberth 
and Hurrell 1994; Meehl et al. 2009).

The regional climate is significantly influenced by the 
large-scale climate variability in the Pacific region. Many 
preceding studies (e.g., Power et  al. 1999; Folland and 
Salinger 1995; Salinger and Mullan 1999; Dai 2013) have 
shown that the IPO acts as a modulator of climate in many 
parts over the globe. The IPO has immense impact on pre-
cipitation as well as on other climate variables. It strongly 
modulates the teleconnection between El Niño-Southern 
Oscillation (ENSO) and precipitation on yearly basis over 
Australia (Power et al. 1999) and the sub-bidecadal climate 
variations, which were also recognized in the temperature 
signal (Folland and Salinger 1995), over New Zealand 
(Salinger and Mullan 1999). The IPO-like variability also 
modulates the ENSO teleconnections on interdecadal time-
scales over North America (Gershunov and Barnett 1998). 

Abstract  The present study evaluates the fidelity of 32 
models from the fifth Coupled Model Intercomparison Pro-
ject (CMIP5) in simulating the observed teleconnection of 
Interdecadal Pacific Oscillation (IPO) with Indian summer 
monsoon rainfall (ISMR). Approximately two-thirds of 
the models show well-defined spatial pattern of IPO over 
the Pacific basin and most amongst these capture the IPO-
ISMR teleconnection. In general, the models that fail to 
reproduce the IPO-ISMR teleconnection are the ones that 
are also showing a poor spatial pattern of IPO, irrespec-
tive of the extent to which they reproduce the precipitation 
climatology and seasonal cycle. The results reveal a strong 
relationship between the quality of reproducing the IPO 
pattern and the IPO-ISMR teleconnection in the models, in 
particular with respect to the tropical–extratropical as well 
as the equatorial Pacific-Indian Ocean sea surface tempera-
ture gradients during IPO phases. Furthermore, the CMIP5 
models that are capable of reproducing the IPO-ISMR 
teleconnection also reasonably simulate the atmospheric 
circulation as well as the convergence/divergence patterns 
associated with the IPO. Thus, for the better understanding 
of decadal-to-multidecadal variability and to improve dec-
adal prediction of rainfall over India it is therefore vital that 
models should simulate the IPO skillfully.
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Over West and Central United States (especially the South-
west), decadal precipitation variations also follow the IPO, 
i.e., the warm (cold) phase of IPO is linked with wet (dry) 
periods of rainfall (Dai 2013).

There is a large variability in the Indian summer mon-
soon rainfall (ISMR) and this variability is related with 
SSTAs over different oceanic basins at multiple timescales 
(Rasmusson and Carpenter 1983; Shukla 1987; Shukla and 
Paolino 1983; Krishnamurthy and Goswami 2000; Joshi 
and Rai 2015). At interdecadal timescales, ISMR shows 
alternate epochs of above- and below-normal rainfall each 
lasting for about three decades or so (Kripalani et al. 1997; 
Krishnamurthy and Goswami 2000; Goswami 2005). The 
interdecadal variation of ISMR is strongly correlated with 
interdecadal variations of ENSO (Krishnamurthy and Gos-
wami 2000). Krishnan and Sugi (2003) found an inverse 
relationship between the interdecadal fluctuations of Pacific 
Ocean SST and Indian monsoon rainfall. Kucharski et  al. 
(2009) stated that the tropical Pacific related SSTs force the 
decadal monsoonal variability over Indian region. Based 
on long observational records, Joshi and Pandey (2011) 
reported that the cold phase of IPO is associated with 
increase in rainfall over Indian region. Joshi and Rai (2015) 
found that the negative phase of IPO enhances the rainfall 
over west central, northwest, and peninsular regions of 
India, while over northeast region it causes reduction of 
rainfall. Further, it was stated that during the cold phase 
of IPO the southwesterlies over Indian region get strength-
ened by the easterlies from the equatorial Pacific.

However, up to now, only few studies have analyzed 
the simulated impact of IPO on Indian monsoon rainfall in 
Coupled General Circulation Models (CGCMs). In a 1360-
year control run of a global coupled climate model, Meehl 
and Hu (2006) found large multidecadal variations in pre-
cipitation over India and reported that these variations are 
linked to multidecadal SST variations in the Pacific that 
resemble the observed IPO. Using observations and cou-
pled model simulation, Krishnamurthy and Krishnamurthy 
(2014) investigated the relation between Indian summer 
monsoon and the IPO-like variability observed in SST of 
the North Pacific Ocean and reported that its warm (cold) 
phase is associated with deficit (excess) rainfall over India.

Multi-model products from the fifth Coupled Model 
Intercomparison Project (CMIP5; Taylor et  al. 2012) pro-
vide state-of-the-art model simulations to scrutinize tel-
econnections over multiple timescales. The capability of 
climate models in simulating the key modes of natural vari-
ability and their teleconnection provides essential ground 
for the interpretation and use of climate change projection. 
Recently, many studies have been performed to assess the 
fidelity of models in evaluating teleconnections between 
the Pacific basin SSTs and the climate of Sahel and 
North America (Sheffield et  al. 2013; Polade et  al. 2013; 

Villamayor and Mohino 2015; Fuentes-Franco et al. 2015). 
The observation as well as CMIP5 simulations show that 
the warm phase of IPO leads to a drought like condition 
over Sahel (Mohino et  al. 2011; Villamayor and Mohino 
2015). Sheffield et  al. (2013) evaluated CMIP5 histori-
cal simulations of intraseasonal to multidecadal variabil-
ity and teleconnections with North American climate and 
reported that the models capture the spatial pattern of IPO-
like variability and its influence on continental temperature 
and West Coast precipitation. Dong et al. (2014) analyzed 
CMIP5 model realizations to explore the relative contribu-
tions of internal variability, greenhouse gases (GHGs), and 
anthropogenic aerosols (AAs) in driving the magnitude and 
evolution of interdecadal variability in the Pacific during 
the twentieth century and reported that its phase transition 
is dominated by internal variability and also significantly 
affected by external forcing agents such as GHGs and aero-
sols. Dong and Dai (2015) examined the influence of IPO 
on temperature and precipitation using observational and 
reanalysis data as well as model simulations and reported 
that more than half of the interdecadal variations in temper-
ature and precipitation over northeastern Australia, western 
Canada, and northern India are explained by the IPO.

In the present study, the impact of IPO on Indian rainfall 
has been scrutinized using the historical simulations of 32 
models that participated in the CMIP5 (Taylor et al. 2012). 
This study addresses the following issues: (1) Are the 
CMIP5 models under consideration capable of simulating 
IPO? (2) Do the CMIP5 models have capability to repro-
duce the IPO-ISMR teleconnection? (3) Is there any rela-
tionship between the quality of reproducing IPO and IPO-
ISMR teleconnection in the models? (4) Are the CMIP5 
models capable of reproducing the atmospheric circulation 
and the convergence/divergence patterns associated with 
the IPO?

The datasets used in the present study are discussed in 
Sect.  2. The method of analysis is elucidated in Sect.  3. 
Results evaluating the models fidelity in representing 
the IPO-ISMR teleconnection are discussed in Sect.  4. 
Section 5 describes the summary and conclusion.

2 � Data

The monthly precipitation and SST fields from the histori-
cal simulations of 32 climate models from CMIP5 data-
base are used. The twentieth century historical climate 
simulations are forced by observed atmospheric composi-
tion changes that reflect both natural (volcanic influences, 
solar forcing, aerosols, and emissions of short-lived species 
and their precursors) and anthropogenic components (i.e., 
GHGs and AAs) as well as time-varying estimates of land 
cover (Taylor et  al. 2012). The list of 32 CMIP5 models 



2377Impact of Interdecadal Pacific Oscillation on Indian summer monsoon rainfall: an assessment…

1 3

under consideration and their pertinent information is pro-
vided in Table 1. For each model, the first ensemble mem-
ber (i.e., r1i1p1) run has been used and the analysis is gen-
erally carried out for the period 1901–2004 for all models, 
except CanCM4 (1961–2004) and MIROC4h (1950–2004). 
More details on models and experiments can be found in 
Taylor et al. (2012). All model outputs are freely accessible 
at http://esgf-index1.ceda.ac.uk maintained by Earth Sys-
tem Grid Federation (ESGF).

To scrutinize the observed IPO and its impacts on Indian 
rainfall, the monthly SST data from the U.K. Met office’s 
Hadley Centre Sea Ice and Sea Surface Temperature data-
set, version 1.1 (HadISST 1.1; Rayner et al. 2003) and the 
precipitation from Climatic Research Unit time series ver-
sion 3.22 (CRU TS3.22; Harris et al. 2014) for the period 
1901–2004 are used. For assessing CMIP5 model’s fidel-
ity in simulating the rainfall climatology and seasonal 
cycle, the monthly precipitation dataset from the Global 

Table 1   List of CMIP5 models along with their modeling groups and resolution

Model Institution Resolution 
(latitude ×  
longitude)

BCC-CSM1-1 Beijing Climate Center, China Meteorological Administration, China 64 × 128

BCC-CSM1-1-m Beijing Climate Center, China Meteorological Administration, China 160 × 320

BNU-ESM College of Global Change and Earth System Science, Beijing Normal University, China 64 × 128

CCSM4 National Center for Atmospheric Research, USA 192 × 288

CMCC-CESM Centro Euro-Mediterraneo per I Cambiamenti Climatici, Italy 48 × 96

CMCC-CMS Centro Euro-Mediterraneo per I Cambiamenti Climatici, Italy 96 × 192

CanCM4 Canadian Centre for Climate Modelling and Analysis, Canada 64 × 128

CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada 64 × 128

GFDL-CM3 Geophysical Fluid Dynamics Laboratory, USA 90 × 144

GFDL-ESM2G Geophysical Fluid Dynamics Laboratory, USA 90 × 144

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory, USA 90 × 144

GISS-E2-H NASA Goddard Institute for Space Studies, NY 90 × 144

GISS-E2-R NASA Goddard Institute for Space Studies, NY 90 × 144

HadCM3 Met Office Hadley Centre, UK 73 × 96

HadGEM2-AO National Institute of Meteorological Research/Korea Meteorological Administration,  
South Korea

145 × 192

HadGEM2-CC Met Office Hadley Centre, UK 145 × 192

HadGEM2-ES Met Office Hadley Centre, UK 145 × 192

INM-CM4 Institute for Numerical Mathematics, Russia 120 × 180

IPSL-CM5A-LR Institut Pierre-Simon Laplace, France 96 × 96

IPSL-CM5A-MR Institut Pierre-Simon Laplace, France 143 × 144

IPSL-CM5B-LR Institut Pierre-Simon Laplace, France 96 × 96

MIROC4h Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute  
for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology, Japan

320 × 640

MIROC5 Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute  
for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology, Japan

128 × 256

MIROC-ESM Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research  
Institute (The University of Tokyo), and National Institute for Environmental Studies, Japan

64 × 128

MIROC-ESM-CHEM Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research  
Institute (The University of Tokyo), and National Institute for Environmental Studies, Japan

64 × 128

MPI-ESM-LR Max Planck Institute for Meteorology (MPI-M), Germany 96 × 192

MPI-ESM-MR Max Planck Institute for Meteorology (MPI-M), Germany 96 × 192

MPI-ESM-P Max Planck Institute for Meteorology (MPI-M), Germany 96 × 192

MRI-CGCM3 Meteorological Research Institute, Japan 160 × 320

MRI-ESM1 Meteorological Research Institute, Japan 160 × 320

NorESM1-M Norwegian Climate Centre, Norway 96 × 144

NorESM1-ME Norwegian Climate Centre, Norway 96 × 144

http://esgf-index1.ceda.ac.uk
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Precipitation Climatology Project (GPCP version 2.2, 
Huffman et al. 2009) for the period 1979–2004 is used.

To examine the large-scale features associated with IPO, 
the National Center for Environmental Prediction (NCEP)/
National Center for Atmospheric Research (NCAR) atmos-
pheric reanalysis V1 (Kalnay et al. 1996) monthly data for 
zonal (u), meridional (v) wind, and sea level pressure (SLP) 
for the period 1948–2004 are obtained from http://www.
esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html. 
The resolution of each model dataset differs, therefore, for 
ease of comparison all model outputs as well as observa-
tional data are interpolated into common latitude-longitude 
grid (2.5° × 2.5°) by bilinear interpolation.

3 � Method of analysis

Firstly, the annual mean SSTAs have been computed. The 
computed annual mean SSTAs are then smoothened by 
applying 3-year moving average to reduce the influence 
of interannual variability on the shape of pattern, there-
after the obtained field is detrended to remove the global 
component of the anthropogenic forcing. The unfiltered 
IPO index from observation is then defined as the first 
principal component (PC-1) of the detrended smoothed 
annual mean SSTAs, allied to the first empirical orthogo-
nal function (EOF-1) computed over the Pacific basin 
(45°S–60°N, 140°E–80°W). As reported in many previous 
studies (Zhang et al. 1997; Dai 2013; Dong and Dai 2015), 
the “horse-shoe” shape of this EOF (i.e., EOF-1; Fig. 13a) 
exhibits ENSO-like SST patterns in the Pacific basin (Alex-
ander et al. 2002) and PDO like SST patterns in the North 
Pacific (Mantua et  al. 1997). Thus, Fig.  13a clearly sug-
gests that the PDO is a part of the IPO that extends to the 
whole Pacific basin. The temporal coefficient (i.e., PC-1; 
Fig. 13b) contains both ENSO-related multi-year variations 
as well as decadal-to-multidecadal variations.

Since the focus of the present study is to examine the 
IPO-ISMR teleconnection on multidecadal basis, the 
obtained unfiltered IPO index is filtered using Butterworth 
low-pass filter of order 4 and cut-off frequency 21-year 
(shown by red line; Fig. 13b). It should be noted that due to 
the end effects of low-pass filter, there is an uncertainty in 
defining the low-pass filtered time series at the ends; there-
fore, the first and last 10-points of the filtered time series 
are ignored in the analysis (Joshi and Rai 2015). Thus, our 
analysis focuses mainly on the multidecadal variations 
from the entire Pacific, in contrast to many previous stud-
ies (e.g., Zhang et  al. 1997; Power et  al. 1999; Krishnan 
and Sugi 2003; Meehl et al. 2013), in which most decadal 
(10–20 year) variations were often retained. The low-pass 
filtered IPO indices for the forced simulations are also 
derived using the same methodology as discussed above.

In the present study, the methodology adopted to derive 
IPO is very similar to the one used in Dai (2013) as well 
as Dong and Dai (2015), with the difference that they do 
not de-trend the data prior to perform EOF analysis and 
consider therefore second EOF (EOF-2) as IPO. Further, it 
has been verified that the observed EOF-1 and PC-1 of our 
analysis (Fig.  13) are very consistent to EOF-2 and PC-2 
shown as Fig.  1 in Dai (2013) as well as Dong and Dai 
(2015).

4 � Results and discussion

Before examining the IPO-ISMR teleconnection in the 
CMIP5 models, it is essential to assess the model’s fidelity 
in simulating the precipitation over the Indian domain as 
well as the IPO related SST pattern over the Pacific basin.

4.1 � Simulation of the rainfall in CMIP5 models

The capability of CMIP5 models in simulating the pre-
cipitation is assessed through the use of two Taylor dia-
grams (Taylor 2001), based on the fidelity in simulating 
the annual cycle that represents the climatological monthly 
mean of precipitation area-averaged over the monsoon core 
region (10°N–30°N, 70°E–100°E) and the spatial pattern 
of climatological seasonal, i.e., June–September (JJAS) 
mean rainfall over the Indian monsoon region (15°S–30°N, 
50°E–120°E).

Taylor diagrams are well accepted performance metrics 
for climate models that provide a succinct statistical outline 
of how well the spatial/temporal patterns match each other 
in terms of their correlation coefficients (CCs), their root-
mean-square error (RMSE), and the simulated to observed 
ratio of their variances. The distance from the origin speci-
fies the standardized deviation of each model, i.e., the dis-
tance from the origin is the standard deviation (SD) of the 
model, normalized by the SD of the observation. If the 
SD of model is same as that of the observation, then the 
radius will be 1. The distance from the reference point to 
the plotted point gives the RMSE. The closer the plotted 
point to the reference point, the smaller will be the RMSE. 
The correlation between the model and the observation is 
the cosine of the polar angle. If the correlation between the 
model and observation is 1, then the point will lie on the 
horizontal axis. Using this metric, the models having the 
highest CC, standardized deviation close to the unity (i.e., 
close to the observation), and smaller RMSE are consid-
ered to be the best.

Figure  1 shows the fidelity of each model to simulate 
the annual cycle that represents the climatological monthly 
mean of precipitation area-averaged over the monsoon core 
region. Except IPSL-CM5B-LR and IPSL-CM5A-LR, all 

http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
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other models show a correlation value greater than 0.9. 
Although these 30 models exhibit large correlations, some 
underestimate or overestimate the variance. In terms of 
both magnitude and phase, the models BCC-CSM1-1, 
CMCC-CESM, CMCC-CMS, GFDL-ESM2G, MPI-ESM-
LR, MPI-ESM-MR, and MPI-ESM-P are very close to the 
observation (Fig.  1) and hence, simulate the best annual 
cycle as compared to other models.

The Taylor diagram, shown in Fig. 2, depicts the mod-
el’s fidelity to simulate the spatial pattern of climatologi-
cal seasonal (JJAS) mean rainfall over the Indian monsoon 
region. The majority of models show good correlations, but 
some of them either underestimate or overestimate the spa-
tial variance. The models BNU-ESM, GFDL-CM3, GFDL-
ESM2G, and MIROC5 have largest correlation in terms of 

simulating the spatial pattern of climatological seasonal 
mean precipitation. However, BNU-ESM and GFDL-
CM3 slightly underestimate the spatial variance, while 
the remaining two overestimate it. To identify models that 
can simulate a reasonable spatial pattern of climatologi-
cal seasonal mean precipitation compared to other models, 
we defined a criterion CC > 0.6 and normalized SD lying 
between 0.75 and 1.25. Based on this criterion, the mod-
els MIROC-ESM and MIROC-ESM-CHEM have lowest 
correlation, while the models GISS-E2-H, GISS-E2-R, 
CMCC-CESM, CMCC-CMS, HadGEM2-AO, HadGEM2-
CC, HadGEM2-ES, and MPI-ESM-MR are highly over-
estimating the climatological seasonal mean precipitation. 
The models are not selected based on the above criterion 
for the analysis of the IPO-ISMR teleconnection, because 
all models are to some extent able to reproduce the ISMR 
seasonal cycle and climatology. Also, a selection would 
involve the risk of excluding models from further analysis 
because of ad-hoc and subjectively chosen thresholds.

4.2 � Simulation of the IPO in CMIP5 models

Figure 3 shows the regression maps of annual SSTAs onto 
the normalized low-pass filtered IPO index for observation 
and CMIP5 models. The sign convention is such that the 
IPO index is taken as positive if the mean tropical Pacific 
SSTAs are positive as observed in the regression maps 
(otherwise the index is multiplied by −1). It is clearly 
seen that most of the models show well defined spatial 
pattern of IPO over the Pacific basin having warm SSTAs 
in the tropical Pacific as well as in the north and south of 
the eastern part of the basin and cold SSTAs in the west-
ern part of the basin, poleward of 25° and more protuber-
ant in the Northern Hemisphere, except BCC-CSM1-1, 
CCSM4, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, 
GISS-E2-R, HadGEM2-AO, HadGEM2-CC, HadGEM2-
ES, IPSL-CM5B-LR, MIROC-ESM, and MPI-ESM-MR. 
These CMIP5 models poorly represent the spatial pattern 
of IPO and amongst these GFDL-CM3, GFDL-ESM2G, 
GISS-E2-R, HadGEM2-AO, and IPSL-CM5B-LR show 
strong positive SSTAs over the western Pacific basin pole-
ward to 25°N. The models GISS-E2-H, MIROC5, and 
MRI-CGCM3 show weak positive SSTAs over the tropi-
cal Pacific. It should be noted that the spatial structures 
of GFDL-CM3, GFDL-ESM2G, HadGEM2-AO, and 
MIROC-ESM do not look very IPO-like and appear as 
an overall warming pattern. On verifying the time series 
of their first PCs, it is observed that they do have decadal 
variations (figure not shown). Further, on scrutinizing the 
regression patterns of annual SSTAs onto the normal-
ized low-pass filtered second PCs for these models, it is 
observed that the resulting structures appear even less IPO-
like (figure not shown) as compared to the ones derived 

Fig. 1   Taylor diagram of the annual cycle, representing the climato-
logical monthly mean of precipitation area-averaged over the mon-
soon core region (10°N–30°N, 70°E–100°E), simulated in the CMIP5 
models. The monthly GPCP data is used as a reference data

Fig. 2   Taylor diagram of the spatial pattern of climatological sea-
sonal (JJAS) mean precipitation simulated in the CMIP5 models over 
the Indian monsoon region (15°S–30°N, 50°E–120°E). The monthly 
GPCP data is used as a reference data
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from first PCs. In order to test the robustness of results, all 
analyses from the following sections are repeated without 
including the above-mentioned four models (figures not 
shown), and the results are very similar to the ones pre-
sented in this study. Thus, the results are not sensitive to the 
exclusion or inclusion of these models. The multi-model 
ensemble (MME; computed by averaging across all mod-
els) also shows an explicit spatial pattern of IPO, which is 
quite consistent with observation, although smaller in mag-
nitude because of averaging across models. Consistent with 
observation, most of the models show warming over the 
Indian and Atlantic Oceans, except BNU-ESM, CCSM4, 
and MRI-CGCM3. These models show cooling over the 
Indian Ocean. The robustness of the result shown in Fig. 3 
is also tested for different cut-off frequencies like 15-, 17- 
and 19-year. The results are in good agreement with the 
one reported in Fig. 3.

The overall fidelity of each model to simulate the spatial 
pattern of IPO over the Pacific basin is also assessed using 

Taylor Diagram Metric (Taylor 2001). Taylor diagram 
of spatial regression coefficients obtained by regressing 
annual SSTAs onto the normalized low-pass filtered IPO 
index over the Pacific basin (Fig.  4) shows negative cor-
relation for the models like IPSL-CM5B-LR, HadGEM2-
AO, GISS-E2-R, and GISS-E2-H, which is consistent 
from Fig. 3, while the models like MRI-CGCM3, GFDL-
ESM2G, and GFDL-CM3 show weak, but positive correla-
tion. Out of 32 CMIP5 models under consideration, more 
than 50 % models show good correlation, but some of them 
either underestimate or overestimate the spatial variance 
(Fig.  4). The models IPSL-CM5A-MR, MIROC-ESM-
CHEM, CanCM4, and CMCC-CMS have highest correla-
tion in terms of simulating the spatial pattern of IPO. How-
ever, the first three highly overestimate the spatial variance, 
while the last highly underestimates it. The correlation in 
case of MME is fairly good, i.e., around 0.7, but it highly 
underestimates the spatial variance. The models having 
CC  >  0.4 and SD lying between 0.75 and 1.25 are good 

Fig. 3   Regression maps of annual SSTAs onto the standardized 
low-pass filtered IPO index (units are °C per standard deviation) for 
observation and 32 CMIP5 models. The grey contours in observation 
and CMIP5 models indicate the regions where the regression coef-

ficient is statistically significant at 95  % confidence level, which is 
assessed via a two-tailed t test; whereas in MME (computed by aver-
aging across all models) it indicate the regions where the regression 
coefficient coincides in at least 28 out of the 32 models considered
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in simulating the spatial pattern of IPO. Considering the 
variance part, BCC-CSM1-1-m, CMCC-CESM, and MPI-
ESM-LR are the best models.

4.3 � IPO‑ISMR teleconnection

In order to assess the model’s fidelity in representing the 
IPO-ISMR teleconnection, the JJAS precipitation anoma-
lies are regressed onto the normalized low-pass filtered 
IPO Index (Fig. 5). The observed regression pattern shows 
negative anomalies over most parts of India, except north-
east region. This regression pattern is fairly consistent with 
Fig. 4a of Joshi and Rai (2015) in which the India Mete-
orological Department (IMD) gridded rainfall data (Rajee-
van et al. 2008) is used for computing the correlation map 
between low-pass filtered IPO and rainfall. The regression 
pattern of most models shows negative anomalies over 
all-India, except BCC-CSM1-1, CCSM4, GFDL-CM3, 
GFDL-ESM2G, GFDL-ESM2M, GISS-E2-R, HadGEM2-
AO, HadGEM2-CC, HadGEM2-ES, IPSL-CM5B-LR, 
MIROC-ESM, and MPI-ESM-MR. Amongst these, the 
first five CMIP5 models reasonably simulate the climato-
logical seasonal mean rainfall, but fail to represent the IPO 
related spatial pattern; whereas, the rest neither simulates 
the rainfall well nor the IPO related spatial pattern. It is 

Fig. 4   Taylor diagram of the spatial regression coefficients obtained 
by regressing annual SSTAs onto the standardized low-pass filtered 
IPO index over the Pacific basin (45°S–60°N, 140°E–80°W)

Fig. 5   Regression maps of JJAS precipitation anomalies onto the 
standardized low-pass filtered IPO index (units are mm/d per standard 
deviation) for observation and 32 CMIP5 models. The green stippling 
in observation and CMIP5 models indicates the grid point where the 

regression coefficient is statistically significant at 90  % confidence 
level, which is assessed via a two-tailed t test; whereas in MME it 
depicts the grid point where the sign of regression coefficient coin-
cides in at least 20 out of the 32 models considered
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also seen that the models BNU-ESM, CanCM4, CanESM2, 
MIROC4h, and NorESM1-M show the best regression pat-
tern as seen in the observation, i.e., the negative anoma-
lies over most parts of India and the positive anomalies 
over northeast region, which signifies that the warm phase 
of IPO causes decrease in rainfall over all-India, while it 
causes enhancement of rainfall over northeast region and 
vice versa. It should be noted that the time span of mod-
els CanCM4 and MIROC4h are relatively short for assess-
ing the IPO-ISMR teleconnection, but these models are 
amongst those which are showing the best regression pat-
terns. So the purpose of including these models is to inform 
the modeling communities that the long runs of these mod-
els will be more beneficial for further studies. The MME 
fails to represents the IPO-ISMR teleconnection over 
northeast region, while over rest of India it is quite consist-
ent with observation.

Figure  6a depicts the area average of each regression 
map shown in Fig.  5 over Indian land points (i.e., area 
enclosed within the black boundary shown in Fig.  6b), 

excluding northeast region (i.e., area enclosed within the 
red boundary shown in Fig. 6b). It is observed that approx-
imately two-thirds of the models show negative aver-
age regression coefficients over all-India. The models for 
which the average regression coefficient is positive are the 
ones that are generally showing the poor spatial pattern 
of IPO, regardless of the extent to which they reproduce 
the precipitation climatology or seasonal cycle. In order to 
support the above statement, a scatter plot between the IPO 
precipitation regressions averaged over Indian land points, 
excluding northeast region and CCs (shown in Fig. 4) rep-
resenting the fidelity of CMIP5 models to simulate the 
IPO patterns is computed (Fig. 14). The resulting relation 
is strong (−0.574) and statistically significant, indicating 
that the models that are capable of simulating the spatial 
pattern of IPO also produces stronger negative Indian land 
rainfall responses. This scatter plot clearly depicts that in 
general the IPO-ISMR teleconnection does not hold for 
the models, which are poorly simulating the spatial pattern 
of IPO.

Fig. 6   a Area average of the IPO precipitation regression maps 
(shown in Fig. 5) over Indian land points (i.e., area enclosed within 
the black boundary shown in b), excluding northeast region (i.e., area 
enclosed within the red boundary shown in b). CMIP5 model’s hav-
ing negative (positive) average regression coefficient is categorized 
as good (poor) model shown by blue (red) bar in a. b, c Ensemble 

means of the IPO precipitation regression patterns of 20 good (MME 
good) and 12 poor (MME poor) CMIP5 models, respectively. The 
green stippling in MME good and MME poor indicates the grid point 
where the sign of regression coefficient coincides in at least 15 out of 
the 20 good and 9 out of the 12 poor models, respectively. The unit of 
regression coefficient is mm/d per standard deviation
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Based on the sign of average regression coefficients, 
the models are categorized into two groups (1) good (hav-
ing negative average regression coefficients; shown by 
blue bars in Fig. 6a) and (2) poor (having positive average 
regression coefficients; shown by red bars in Fig. 6a). Fol-
lowing this criterion, 20 models (BCC-CSM1-1-m, BNU-
ESM, CMCC-CESM, CMCC-CMS, CanCM4, CanESM2, 
GISS-E2-H, HadCM3, INM-CM4, IPSL-CM5A-LR, 
IPSL-CM5A-MR, MIROC4h, MIROC5, MIROC-ESM-
CHEM, MPI-ESM-LR, MPI-ESM-P, MRI-CGCM3, MRI-
ESM1, NorESM1-M, and NorESM1-ME) are identified 
as good and 12 models (BCC-CSM1-1, CCSM4, GFDL-
CM3, GFDL-ESM2G, GFDL-ESM2M, GISS-E2-R, 
HadGEM2-AO, HadGEM2-CC, HadGEM2-ES, IPSL-
CM5B-LR, MIROC-ESM, and MPI-ESM-MR) are identi-
fied as poor. The ensemble mean of the IPO precipitation 
regression maps of 20 good models (MME good; Fig. 6b) 
closely resembles the observation (observed regression 
pattern; Fig. 5), i.e., showing negative anomalies over all-
India and positive anomalies over most parts of northeast 
region, whereas the ensemble mean of 12 poor models 
(MME poor; Fig. 6c) shows a reverse pattern. Model like 
GISS-E2-H represents reasonably well the IPO-ISMR tel-
econnection as compared to observation, even though this 
model is highly overestimating the climatological sea-
sonal mean rainfall (Fig.  2) and also showing weak posi-
tive SSTAs over the tropical Pacific (Fig. 3) as well as the 
Taylor diagram of spatial regression coefficients, obtained 
by regressing annual SSTAs onto the standardized low-pass 
filtered IPO index over the Pacific basin, also reveals feeble 
negative correlation (Fig. 4). On the other hand, MIROC-
ESM-CHEM and CMCC-CESM show well-defined spatial 
structure of the IPO (Fig. 3) having a CC of 0.77 and 0.66 

as compared to observation (Fig. 4), but the impact of IPO 
on rainfall for these models is very weak, though negative 
(Fig. 6a). This may be due to the fact that these models are 
not simulating the climatological seasonal mean rainfall 
well. MIROC-ESM-CHEM is showing weak correlation 
with observed climatological seasonal mean precipitation 
having a CC 0.47; whereas, CMCC-CESM is highly over-
estimating the rainfall (Fig. 2).

This result raises the question if there is any relation 
between the quality of reproducing IPO and the IPO-ISMR 
teleconnection in the models. In order to get further insight 
into the crucial elements in the modeled IPO pattern, the 
ensemble means of the IPO SST regressions of good (MME 
good; Fig.  7a) and poor (MME poor; Fig.  7b) models are 
computed by averaging the regression maps of annual 
SSTAs onto the standardized low-pass filtered IPO index 
(shown in Fig.  3) across all 20 good and 12 poor models 
shown by blue and red bars in Fig. 6a, respectively. Clearly, 
a striking feature of the good model’s composite is the pro-
nounced tropical–extratropical SST gradient of the IPO 
regression pattern, which compares well with the observa-
tions (observed IPO SST regression in Fig. 3). On the other 
hand, the poor models show a weak tropical–extratropical 
SST gradient. This result suggests to use the tropical–extra-
tropical gradient in the IPO SST regression as a parameter. 
Figure  8a shows the scatter plot of the mean regression 
coefficient of precipitation over Indian land points and the 
difference of tropical Pacific (15°S–15°N, 180°E–95°W) 
and extratropical Pacific (25°N–45°N, 150°E–140°W) 
SSTAs in the IPO regressions of the models. There is a 
strong and 95  % statistically significant negative correla-
tion (−0.66) between the tropical–extratropical SST gradi-
ent in the IPO regressions and the mean Indian land rainfall 

Fig. 7   Ensemble means of the 
IPO SST regressions of a good 
(MME good) and b poor (MME 
poor) CMIP5 models, which 
are computed by averaging 
the regression maps of annual 
SSTAs onto the standardized 
low-pass filtered IPO index 
(shown in Fig. 3) across all 20 
good and 12 poor models that 
are shown by blue and red bars 
in Fig. 6a, respectively. The 
green stippling in MME good 
and MME poor indicates the 
grid point where the sign of 
regression coefficient coincides 
in at least 15 out of the 20 
good and 9 out of the 12 poor 
models, respectively. The unit 
of regression coefficient is °C 
per standard deviation
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IPO regressions. This indicates that models with larger 
tropical–extratropical IPO SST regression gradient also 
produce larger negative Indian land rainfall responses. It is 
also worth noting that the observation is quite close to the 
regression line, indicating that models which have a correct 
tropical–extratropical IPO SST regression gradient also pro-
duce an ISMR response that is close to the observed. This 
result is consistent with Feudale and Kucharski (2013), who 
also identified the tropical–extratropical SST gradient most 
important feature of the global SST pattern responsible for 
common multidecadal African and Indian rainfall variabil-
ity. Such an SST gradient also leads to a surface pressure 
gradient change in the Indian Ocean region that modifies the 
ISMR. Since the ensemble means of the IPO SST regres-
sions of good and poor models also show differences over 
the Indian Ocean, therefore, a scatter plot between the IPO 
precipitation regressions averaged over Indian land points, 
excluding northeast region and the IPO SST regressions 
averaged over the Indian Ocean (10°S–10°N, 60°E–90°E) 
is computed (figure not shown). The resulting correlation is 
rather weak (0.23) and not statistically significant.

Figure 7 suggests that several other features of the dif-
ferences between the SST pattern for good and poor mod-
els may also be relevant. Therefore, several other scat-
ter plots have also been considered, for example, the IPO 
precipitation regressions averaged over Indian land points 

as in Fig. 8a versus (a) the IPO SST regressions averaged 
over Niño 3.4 (5°S–5°N, 120°W–170°W; figure not shown) 
region, (b) the IPO SST regressions averaged over Niño 4 
(5°S–5°N, 160°E–150°W; figure not shown) region, and 
(c) the difference between mean IPO SST regressions over 
Niño 3.4 region and Indian Ocean as shown in Fig. 8b. For 
the first two scatter plots, the correlation is rather weak 
(−0.28 and −0.25, respectively), and not statistically sig-
nificant. For the latter one the correlation becomes stronger 
(−0.45) and is statistically significant, but still much 
smaller than for the tropical–extratropical Pacific SST gra-
dient. It is therefore possible that the tropical–extratropical 
Pacific SST gradient is the most important feature for the 
good models, with some contribution also from the zonal 
equatorial Pacific-Indian Ocean SST gradient.

4.4 � Atmospheric circulation, velocity potential, and sea 
level pressure associated with the IPO

In order to investigate the atmospheric circulation pattern 
associated with the IPO, the JJAS zonal and meridional 
wind anomalies (from NCEP/NCAR reanalysis) at 850 hPa 
and the annual SSTAs are regressed onto the normalized 
low-pass filtered IPO index for the period 1948–1993. The 
IPO SST regression pattern for the period 1948–1993 (fig-
ure not shown) is quite consistent with the one obtained for 

Fig. 8   Scatter plot of the IPO precipitation regressions (units are 
mm/d per standard deviation) averaged over Indian land points, 
excluding northeast region versus the difference between mean IPO 
SST regressions (units are °C per standard deviation) over a the 
tropical (15°S–15°N, 180°E–95°W, box over the tropical Pacific in 

Fig. 7a) and extratropical (25°N–45°N, 150°E–140°W, box over the 
extratropical Pacific in Fig.  7a) Pacific Ocean and b the Niño 3.4 
(5°S–5°N, 120°W–170°W) region and Indian Ocean (10°S–10°N, 
60°E–90°E)
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the period 1912–1993 (observed IPO SST regression pat-
tern; Fig. 3), i.e., exhibiting positive SSTAs over the tropi-
cal Pacific and negative over the extratropics (poleward of 
25°), especially in the northern Pacific sector. This indi-
cates that the wind circulation pattern shown in Fig. 9a is 
linked with the warm phase of IPO.

The observed regression pattern of winds (850  hPa) 
depicts that the positive SSTAs in the tropical Pacific are 
allied with westerly anomalies along the equator. This is in 
agreement with the findings of Joshi and Rai (2015) who 
reported that the easterlies in the equatorial Pacific are 
strengthened during the cold phase of IPO as compared to its 
warm phase. The regression pattern also reveals that during 
the warm phase of IPO the winds are blowing away from the 
continent into the Arabian Sea, reducing the moisture flow 
over India, which is consistent with the drought condition. 

Wang et  al. (2013) stated that the warming in the eastern 
Pacific and cooling in the western Pacific will weaken the 
easterly trade winds that will cause the divergence of mois-
ture from the Asian and African monsoon regions, which in 
turn decrease the Northern Hemisphere summer monsoon 
(NHSM) rainfall and vice versa. Meehl and Hu (2006) also 
proposed that the warm phase of IPO is characterized with 
relatively warm tropical SSTs, positive convective precipita-
tion and convective heating anomalies in the tropical Pacific, 
weak trade winds and subtropical cells that will produce 
multidecadal drought like conditions over the extended 
Indian monsoon region and anomalously wet conditions over 
the Great Basin region in the southwestern United States.

Figure  9b, c show the composites of the IPO wind 
regressions for good and poor CMIP5 models, respectively. 
The composite of good models shows westerly anomalies 

Fig. 9   a Regression of JJAS 
seasonal anomalies of zonal and 
meridional winds at 850 hPa 
(plotted as vectors) from NCEP/
NCAR reanalysis (1948–1993) 
onto the standardized low-pass 
filtered IPO index. b, c Same 
as in a, but for the averaged 
regressions of 20 good and 12 
poor CMIP5 models, respec-
tively. Magnitude of winds is 
represented by shaded color and 
vectors represent wind direc-
tion. The unit of wind is m/s per 
standard deviation
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along the equator, which are slightly weaker in magnitude 
as compared to observation (Fig.  9a). On the other hand, 
the poor model’s composite also shows westerly anoma-
lies, but of very small magnitude as compared to observed 
regression pattern (Fig.  9a). The composite of IPO wind 
regressions for good models also divulges that the winds 
are blowing away from the Indian subcontinent, though the 
pattern seems to be shifted substantially towards the north-
east with respect to  observation. Nevertheless, the IPO 
wind regression of good models is also indicating the lack 
of moisture over India, which is consistent with the drought 
condition. On the contrary, the poor models completely 
fail to represent the circulation pattern over the Indian 
subcontinent.

The atmospheric general circulation is basically charac-
terized by flows in the lower as well as in the upper tropo-
sphere. In general, the convergence (divergence) at lower 
level typically coincides with divergence (convergence) 
at upper level that strongly indicates the large-scale mon-
soonal overturning circulations. Velocity potential is a 
measure of divergent flow and is often used as a proxy for 
the Walker circulation. At upper level, a region of nega-
tive (positive) potential has diverging (converging) winds, 
which exemplifies strong convection (subsidence), i.e., ris-
ing (sinking) motion at lower level.

Figure  10a (Fig.  11a) shows the regression of the 
unfiltered JJAS anomaly of velocity potential at 850  hPa 

(150 hPa) from NCEP/NCAR reanalysis (1948–1993) onto 
the standardized low-pass filtered IPO index. Figure  10a 
depicts that the warm phase of IPO is associated with 
anomalous convergence (i.e., positive potential) over 
the central tropical Pacific as well as over the Southwest 
United States [in accordant with the findings of Dai (2013)] 
and divergence over West Africa [in agreement with the 
findings of Villamayor and Mohino (2015)] as well as over 
the extended Indian monsoon region at low levels and with 
anomalous divergence and convergence over the respective 
regions at high levels (Fig. 11a).

The anomalous convergence at low levels over the cen-
tral tropical Pacific is consistent with the eastern Pacific 
warming signal that indicates anomalous Walker cell, i.e., 
the weakening of zonal overturning circulation. Because 
of the subsidence, the atmosphere over the western end of 
Pacific is highly stable, which is unfavorable to and lim-
its the occurrence of deep clouds and precipitation. In con-
trast, over the eastern–central tropical Pacific the atmos-
phere is unstable and deep convective clouds and heavy 
precipitation will occur frequently. This anomalous circu-
lation reduces the easterly trade winds across the tropical 
Pacific in the lower atmosphere, which is clearly distinct in 
the observed winds regression pattern at 850 hPa (Fig. 9a). 
On the other hand, this anomalous circulation also weakens 
the westerly winds across the tropical Pacific in the upper 
atmosphere (figure not shown). This is in agreement with 

Fig. 10   a Regression of JJAS 
anomaly of velocity potential 
at 850 hPa from NCEP/NCAR 
reanalysis (1948–1993) onto 
the standardized low-pass 
filtered IPO index. b, c Same 
as in Fig. 10a, but for the aver-
aged regressions of 20 good 
and 12 poor CMIP5 models, 
respectively. The unit of veloc-
ity potential is 106 m2/s per 
standard deviation. The vectors 
represent the divergent wind 
(m/s)



2387Impact of Interdecadal Pacific Oscillation on Indian summer monsoon rainfall: an assessment…

1 3

Krishnamurthy and Krishnamurthy (2014) who proposed 
a mechanism that the warm phase of IPO-like variability 
affects the equatorial trade winds, which in turn weakens 
the equatorial Walker circulation that leads to enhanced 
ascending motion in the central Pacific and descending 
motion over the Maritime Continent.

Figure  10b, c (Fig.  11b, c) show the averaged regres-
sions of the unfiltered JJAS anomaly of velocity potential 
at 850  hPa (150  hPa) for good and poor CMIP5 models, 
respectively. The regression pattern of good models also 
shows positive (negative) potential over the central tropi-
cal Pacific as well as over the Southwest United States and 
negative (positive) potential over West Africa as well as 
over the extended Indian monsoon region at lower (upper) 
level, which is fairly consistent with the observed regres-
sion pattern as shown in Fig. 10a (Fig. 11a). On the con-
trary, poor models fail to show the divergence (conver-
gence) over the Indian subcontinent at 850 hPa (150 hPa). 
They are showing feeble convergence over the tropical 
Pacific at 850 hPa, but fail to show divergence over south of 
the Equator at 150 hPa.

Figure  12 shows the regression maps of the unfiltered 
JJAS SLP onto the normalized low-pass filtered IPO index 
for observation as well as for good and poor CMIP5 mod-
els. In general, the Walker circulation is associated with 
low SLP over the western end of Pacific and high over the 

eastern end. This basin-wide pressure gradient is the main 
driving force for the low-level zonal winds (i.e., the east-
erly trade winds) of the Walker circulation.

During the warm phase of IPO, the center of rising 
motion shifts east into the central-eastern Pacific, i.e., away 
from the western end of Pacific. This is consistent with 
the eastern Pacific warming signal as discussed earlier. 
This region is accompanied by low SLP, while the western 
end of Pacific will have high SLP, which is clearly seen in 
the observed IPO SLP regression pattern (Fig.  12a). This 
basin-wide pressure gradient (i.e., low pressure over the 
central-eastern tropical Pacific and high pressure over the 
western end of the Pacific) is the key driving force for the 
low-level westerly anomalies over the equatorial Pacific as 
seen in Fig. 9a.

The IPO SLP regression pattern shows positive anoma-
lies over South Asia as well over Sahel, which is consist-
ent with below-normal precipitation as discussed earlier. 
The composites of IPO SLP regression patterns for both 
good (Fig. 12b) and poor (Fig. 12c) CMIP5 models show 
positive SLP anomalies over India as well as over tropical 
Indian Ocean, though weaker in magnitude as compared to 
the observed regression pattern (Fig. 12a). The good mod-
els also reproduce the IPO SLP regression pattern over the 
tropical Pacific and Sahel, whereas the poor models fail to 
reproduce them.

Fig. 11   a Regression of JJAS 
anomaly of velocity potential 
at 150 hPa from NCEP/NCAR 
reanalysis (1948–1993) onto the 
standardized low-pass filtered 
IPO index. b, c Same as in a, 
but for the averaged regressions 
of 20 good and 12 poor CMIP5 
models, respectively. The unit 
of velocity potential is 106 m2/s 
per standard deviation. The 
vectors represent the divergent 
wind (m/s)
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Overall atmospheric pattern associated with the IPO 
for good and poor models indicate that good models 
(and also observations) have a more pronounced altera-
tion of the Walker circulation compared to poor models. 
This is also consistent with the fact that models with a 
larger zonal equatorial Pacific-Indian Ocean SST gradi-
ent also show larger negative precipitation responses over 
India, as discussed in Sect. 4.3. The tropical–extratropical 
Pacific SST gradient, which shows the strongest relation 
with Indian precipitation (see Fig.  8a), may contribute 
to enhance the Walker circulation response in the Indian 
Ocean in the good compared to the poor models (Fig. 11). 
The IPO SLP regression (Fig.  12) indicates low pressure 
in the subtropical western Pacific (around 20°N) for obser-
vations and the good models, whereas there is high pres-
sure in the poor models. This feature may be responsible 
for a westward shifted and strengthened Walker circulation 
response in the good models compared to the poor models 
(e.g., Figure 11). It could be that the increased baroclinic-
ity induced by the stronger SST gradient in the western 
Pacific plays a role in this response. However, the details 
of the mechanism for the tropical–extratropical SST gradi-
ent influence on the South Asian monsoon are still unclear 
and may be further investigated using idealized Atmos-
pheric General Circulation Model (AGCM) simulations in 
a future study.

5 � Summary and conclusion

In this study we have investigated the reproduction of the 
observed IPO-ISMR teleconnection in 32 CMIP5 models. 
Most models reproduce the IPO structure satisfactorily 
(with pattern correlation larger than 0.4), but with vary-
ing strength. Out of the 32 models considered about two-
thirds also reproduce the observed negative IPO-ISMR 
relationship. In general, the models that fail to represent 
the IPO-ISMR teleconnection are the ones that are gener-
ally showing a poor spatial pattern of IPO, regardless of 
the extent to which they simulate the observed precipita-
tion climatology and seasonal cycle. Considering models 
with good and poor reproduction of the IPO-ISMR telecon-
nection, we have identified the tropical–extratropical SST 
gradient in the IPO pattern as crucial parameter. Indeed, a 
scatter plot of the average rainfall regression over Indian 
land points versus the tropical–extratropical SST gradi-
ent in the IPO pattern shows a strong negative relation-
ship between the two (CC −0.66), indicating that models 
with a strong tropical–extratropical IPO SST gradient also 
show a strong negative ISMR response over India. Also, the 
regression line is consistent with the observed IPO-ISMR 
relationship. On the other hand, several other scatter plots 
have also been considered, for example, the IPO precipi-
tation regressions averaged over Indian land points versus 

Fig. 12   a Regression of JJAS seasonal anomaly of SLP from NCEP/
NCAR reanalysis (1948–1993) onto the standardized low-pass fil-
tered IPO index. b, c Same as in Fig. 12a, but for the averaged regres-
sions of 20 good and 12 poor CMIP5 models, respectively. The green 
stippling in observation indicates the grid point where the regression 

coefficient is statistically significant at 90 % confidence level, which 
is assessed via a two-tailed t test; whereas in MME good and MME 
poor it depicts the grid point where the sign of regression coefficient 
coincides in at least 15 out of the 20 good and 9 out of the 12 poor 
models, respectively. The unit of SLP is hPa per standard deviation
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the IPO SST regressions averaged over (a) Niño 3.4, (b) 
Niño 4, and (c) Indian Ocean as well as (d) the difference 
between mean IPO SST regressions over Niño 3.4 region 
and Indian Ocean. For the first three scatter plots, the rela-
tionship is rather weak and not statistically significant. For 
the latter one the correlation becomes stronger (−0.45) and 
is statistically significant, but smaller than for the tropi-
cal–extratropical Pacific SST gradient. This signifies that 
the tropical–extratropical Pacific SST gradient is the most 
important feature for the good models, with some contri-
bution also from the zonal equatorial Pacific-Indian Ocean 
SST gradient.

The composite of IPO wind regressions at 850  hPa 
(150 hPa) for good CMIP5 models reveals that the warm 
SSTAs in the equatorial tropical Pacific are associated with 
westerly (easterly) anomalies across the tropical Pacific, 
which is quite consistent with the observed regression pat-
tern. The composite of IPO velocity potential regressions 
for good CMIP5 models at low (high) level depicts anoma-
lous convergence (divergence) over the eastern-central trop-
ical Pacific and Southwest United States and divergence 
(convergence) over the western end of Pacific extending to 
Indian subcontinent and West Africa. This is in agreement 
with the observed velocity potential regression pattern. On 
the contrary, the poor models fail to show the divergence 
(convergence) over the Indian subcontinent at 850  hPa 
(150 hPa). Furthermore, the averaged IPO SLP regression 
pattern for good CMIP5 models shows anomalous low over 
the eastern-central tropical Pacific and anomalous high over 
the western end of Pacific extending to Indian subcontinent 
and over South Africa, which is affiliated with low level 
convergence and divergence over the respective regions. In 
general, the CMIP5 models that are capable of reproducing 
the IPO-ISMR teleconnection also reasonably simulate the 
atmospheric circulation as well as the convergence/diver-
gence patterns associated with the IPO.

The natural variability on decadal-to-multidecadal time-
scales in the Pacific Ocean, often referred to as IPO, affects 
the climatic conditions of India. This raises the possibil-
ity that the decadal SST variability of the Pacific, which is 
relatively smaller in variance as compared to ENSO, may 
provide supplementary information that will improve mon-
soon predictions over India. The decadal prediction gener-
ally focuses on time-evolving regional climatic conditions 
over the next 10–30 years, which is basically a time period 
of interest to infrastructure planners, water resource man-
agers, and others. The predictions on decadal scale will 
in turn help society in improving the plans to mitigate the 
adverse effect of monsoon droughts or floods. The decadal 
time scale offers a critical bridge for informing adaptation 
strategies as climate varies and changes. Thus, for the bet-
ter understanding of decadal-to-multidecadal variability as 
well as for improving the decadal predictions of rainfall 

over India it is essential that the models should simulate the 
IPO skillfully.
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Appendix

See Figs. 13 and 14.

Fig. 13   a The first EOF (EOF-1) of the detrended smoothed (3-year 
moving average) annual mean SSTAs computed over the Pacific 
basin (45°S–60°N, 140°E–80°W) and b the time series of the associ-
ated first principle component [PC-1; blue bars for annual data and 
the red curve is a smoothed time series obtained by applying But-
terworth low-pass filter (order 4, cut-off frequency 21-year) to the 
annual bars]. The first and last 10-points of the filtered time series are 
ignored due to end effects of low-pass filter (shown by dashed line)

http://www.esrl.noaa.gov/psd
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