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of fronts passing over the region. The continuation of this 
trend is evident in all models by an increase in winter mean 
sea level pressure in SWWA, and a reduced number of win-
ter front days. Winter rainfall does not show any marked 
variations in daily intensity.

Keywords  Regional climate modelling · WRF · Western 
Australia

1  Introduction

High resolution projections of climate change are valuable 
for informing adaption planning and impact assessment 
studies. Industries as diverse as agriculture, forestry, con-
servation and urban planning can benefit from this infor-
mation to help ensure their future viability. While general 
circulation models (GCMs) are currently the most authori-
tative resource on projected climate change, these models 
provide data at a resolution of 100–250 km that does not 
adequately represent finer scale influences on climate such 
as topography and land surface interactions (Mishra et al. 
2012) nor do they allow for the adequate development of 
mesoscale weather systems (Salathé et  al. 2010; Wehner 
et al. 2010; Donat et al. 2010). As a consequence, a knowl-
edge gap exists between GCM output and the demand for 
high resolution climate data, particularly in those regions 
where local effects strongly influence the climate.

Regional climate models (RCMs) have been developed 
as one means to bridge this gap. By dynamically downs-
caling GCM data, RCMs can enhance the value of a GCM 
over limited areas by accounting for the influence of local 
topography and land use, therefore providing data at a 
resolution that can be useful for management strategies at 
a local scale. RCMs have been found to improve on the 

Abstract  Projections of future climate change (1970–1999 
compared to 2030–2059) for southwest Western Australia 
(SWWA) are analysed for a regional climate model (RCM) 
ensemble using the Weather Research and Forecasting 
Model with boundary conditions from three CMIP3 gen-
eral circulation models (GCMs); CCSM3, CSIROmk3.5 
and ECHAM5. We show that the RCM adds value to the 
GCM and we suggest that this is through improved repre-
sentation of regional scale topography and enhanced land–
atmosphere interactions. Our results show that the mean 
daytime temperature increase is larger than the nighttime 
increase, attributed to reduced soil moisture and hence 
increased surface sensible heat flux in the model, and 
there is statistically significant evidence that the variance 
of minimum temperatures will increase. Changes in sum-
mer rainfall are uncertain, with some models showing rain-
fall increases and others projecting reductions. All models 
show very large fluctuations in summer rainfall intensity 
which has important implications because of the increased 
risk of flash flooding and erosion of arable land. There is 
model consensus indicating a decline in winter rainfall and 
the spatial distribution of this rainfall decline is influenced 
by regional scale topography in two of the three simula-
tions. Winter rainfall reduction is consistent with the histor-
ical trend of declining rainfall in SWWA, which has been 
attributed in previous research to a reduction in the number 
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representation of rainfall in GCMs (Feldmann et al. 2008; 
Song et al. 2008; Evans and McCabe 2013) as well as the 
distribution of extreme temperatures (Argüeso et al. 2012; 
Gao et al. 2012). However, RCMs introduce an additional 
level of uncertainty into future climate projections (Pielke 
and Wilby 2012), and as such the added value of using an 
RCM is not always guaranteed. Xue et al. (2014) examined 
the conditions that need to be met to establish whether a 
RCM adds value to the GCM being downscaled. These 
conditions include; establishing the merits of the model’s 
domain set up, testing the sensitivity of its physics options, 
and finally evaluating historical RCM performance against 
observations, to determine how well the model can simu-
late the region’s climatology and whether it can do this 
better than the GCM that is being downscaled. In addi-
tion to the dynamical downscaling approach employed by 
RCMs, statistical downscaling can also be applied to GCM 
data. These downscaling techniques are less computation-
ally expensive compared to dynamical downscaling how-
ever they do not directly resolve regional dynamics and 
processes.

A further challenge when evaluating climate change 
scenarios lies in establishing whether changes are statisti-
cally significant. Because of the uncertainty associated with 
regional climate projections, some studies do not attempt 
to assign a statistical significance to their results (Gao et al. 
2012; Salathé et al. 2010). One common approach has been 
to use a form of the Student’s t test (Argüeso et al. 2012; 
Leibensperger et  al. 2012) however this test assumes that 
climate variables are normally distributed which is not 
always the case, particularly when daily temperature dis-
tributions are considered (Perron and Sura 2013). Further-
more, the Student’s t test only considers the significance of 
mean changes and does not provide a mechanism for test-
ing the significance of other changes in the distribution, 
such as variance, skewness or kurtosis. Relative entropy 
(RE) has been used as a measure of the difference between 
observations and historical climate simulations (Tippett 
et al. 2004; Shukla et al. 2006; Andrys et al. 2015b), while 
Naveau et al. (2014) used RE to detect historical trends in 
climate extremes. The RE statistic, used in conjunction with 
a resampling technique following the method employed by 
Tippett et al. (2004), has scope to be used as a measure of 
the difference between future and historical climate vari-
ables that do not meet the necessary assumptions for the 
Student’s t test because this method does not make any 
assumptions regarding the shape of the distribution.

This study focuses on the south west of Western Aus-
tralia (SWWA), a globally recognised biodiversity hotspot 
(Malcolm et  al. 2006), that has been found to be acutely 
at risk of negative impacts from climate change (Hughes 
2003). Rising temperatures will put industries such as 
cropland farming and viticulture at risk (Webb et al. 2013) 

while increased forest mortality events have been attributed 
to an increase in the diurnal temperature range (Evans and 
Lyons 2013). In terms of economic cost, changes to the 
region’s hydrological regime present arguably the biggest 
risk because they threaten the yield of rain-fed cereal crops; 
the second largest export industry for the region (Varnas 
2014). SWWA has already experienced reduced rainfall 
since the 1970s (Bates et al. 2008) which agricultural sys-
tems have been able to adapt to through a combination of 
advanced farming practices and because most of the rain-
fall decline has occurred in July and August, when rainfall 
exceeds cropping requirements (Turner and Asseng 2005). 
However, future changes in rainfall may impact the viabil-
ity of agriculture in SWWA, especially in the marginal 
farming areas further inland. Hence, the demand for high 
resolution data on future climate projections is high. Hirsch 
et al. (2014) found that SWWA is a region of strong land–
atmosphere coupling while Pitts and Lyons (1990) showed 
that model resolutions of 0.5 km were needed to fully rep-
resent the influence of topography on the regional meteor-
ology. Because of these strong local influences, RCMs in 
the SWWA have the potential to add significant value to 
GCM projections.

This paper aims to explore future changes in mean and 
extreme climate for SWWA under a high emissions sce-
nario using the Weather Research and Forecasting Model 
(WRF) Advanced Research Core. The utility of WRF as 
a RCM has been extensively evaluated for the region fol-
lowing the criteria recommended by Xue et  al. (2014). 
Namely, Kala et al. (2015) conducted a sensitivity analysis 
of WRF to determine the most appropriate model physical 
parameterisations for SWWA. Andrys et  al. (2015b) then 
used the best performing physical paramaterisations from 
Kala et  al. (2015) to carry out a 30-year climatology of 
SWWA using reanalysis boundary conditions from ERA-
Interim (Dee et al. 2011) and showed that a 5 km domain 
provided a skillful representation of both mean and extreme 
climate variables. Following on from this work, Andrys 
et al. (2015a) evaluated the historical (1970–1999) perfor-
mance of the model against observations with an ensemble 
of GCMs from the Coupled Model Intercomparison Project 
Phase 3 (CMIP3) and found that WRF was able to improve 
the representation of several climate variables, particularly 
rainfall intensity, when compared to the raw GCM output 
for three of the four GCMs that were evaluated. Based on 
this thorough evaluation of WRF for SWWA, and the skill 
shown by the model in reproducing historical climate when 
using GCMs as boundary conditions, we are confident 
that the RCM is indeed adding value to the GCMs in the 
study region. Therefore, we further extend on the work of 
Andrys et al. (2015a) here and compare near future (2030–
2059) with historical (1970–1999) simulations to examine 
changes in temperature and precipitation and investigate 
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their drivers. In addition to examining daily temperature 
distributions and mean seasonal changes we also consider 
extreme climate indices and changes in the higher order 
statistical moments of daily climate variables. The RE sta-
tistic is used for testing the significance of changes in daily 
variables.

2 � Methods

2.1 � Model description

The WRF RCM was set up following the configuration 
described by Andrys et al. (2015b). Regional climate simu-
lations were carried out over 30 years between 1970–1999 
and 2030–2059 from a single initialisation with a 2-month 
model spin-up using lateral boundary conditions from three 
CMIP3 GCMs. We note that CMIP5 (Taylor et  al. 2012) 
now represents the current state of the art for GCMs how-
ever at the time these simulations were undertaken, the 
6-hourly fields necessary to run WRF were not routinely 
available from the CMIP5 archive. The CMIP3 GCMs 
used include the Max Planck Institute ECHAM5 model 
(Roeckner 2003) (ECHAM), National Center for Atmos-
pheric Research Community Climate System Model ver-
sion 3 (CCSM) (Collins et  al. 2006) and Commonwealth 
Scientific and Industrial Research Organisation Mark 3.5 
(CSIRO) (Gordon et al. 2002). We use simulations follow-
ing the SRES A2 emissions scenario (Nakićenović et  al. 
2000). GCMs used for boundary conditions were chosen 
based on the availability of 6-hourly data and with consid-
eration of the GCM performance over Australia (Perkins 
et al. 2007). Andrys et al. (2015a) evaluated the historical 
performance of four CMIP3 GCMs which were down-
scaled using WRF against observations. The three GCMs 
used in this study were found to represent the historical cli-
mate of SWWA skillfully, with the CCSM driven simula-
tion providing the best results overall. A fourth simulation, 
which downscaled MIROC3.2 data has been excluded from 
this study because it was found by Andrys et al. (2015a) to 
demonstrate poor skill in representing the seasonal climate 
of SWWA.

The WRF model uses three nested domains (shown in 
Fig. 1) with a 50:10:5 km resolution. The choice of model 
physics follow the model configurations used in previ-
ous sensitivity studies and regional climate simulations in 
SWWA (Kala et al. 2015; Andrys et al. 2015a, b). Parame-
terisation options include the Single-Moment 5 class micro-
physics scheme (Hong et al. 2004), RRTM for long-wave 
radiation (Mlawer et  al. 1997), Dudhia short-wave radia-
tion (Dudhia 1989), Yonsei University planetary boundary 
layer scheme, the MM5 surface layer scheme (Grell et al. 
2000) and Noah land surface model (Chen and Dudhia 

2001). Convective parameterisation using Kain Fritsch 
(Kain 2004) is employed on the first and second domains 
only. The innermost 5 km domain explicitly resolves con-
vection and has been found by Andrys et  al. (2015b) to 
have the most accurate representation of rainfall, particu-
larly in the cases of summer rainfall and rainfall around 
the Darling Scarp. Consequently, we focus our analysis on 
this domain. To help retain the large scale features from the 
lateral boundary conditions, the model uses spectral nudg-
ing. Nudging is applied in the outer domain only, above the 
PBL and for wavelengths exceeding 1000 km.

2.2 � The southwest of Western Australia (SWWA)

The climate of the SWWA, illustrated in Fig. 2, is highly 
seasonal with cool wet winters and hot, dry summers. This 
seasonality is driven by the position of the subtropical high 
pressure belt (Gentilli 1971). The high pressure belt con-
trols the passage of rain bearing cold fronts over the region 
in the winter and these frontal systems are the primary 
source of rain for much of the SWWA. Historical trends 
in SWWA indicate declining winter rainfall, attributed to a 
poleward shift of the subtropical ridge and hence a pole-
ward shift of storm tracks (Frederiksen and Frederiksen 
2007). A strong winter precipitation gradient is apparent 
between the region’s comparatively wet coast and its dry 
interior.

Infrequent summer rainfall is caused by sporadic surface 
convection and large scale rain events which take place 
approximately every 3 to 5 years. Large scale rain events 
occur when the meriodonal coastal heat trough, a persistent 
summer feature, interact with tropical disturbances in the 
north of Western Australia, advecting moisture southwards 
(Wright 1974). Andrys et al. (2015a) found that while WRF 
was able to capture the magnitude of these summer rain 
events well over a 30 years climatology, the temporal dis-
tribution of this rainfall was replicated with less accuracy. 
WRF predicted rainfall events every 3–5  years however 
the timings of these events rarely correlated with observed 
events.

SWWA is an area of low relief, however local topogra-
phy does influence the region’s climatology, particularly 
coastal precipitation. The most notable topographical influ-
ence on climate is the Darling Scarp; an escarpment that 
produces a rapid change in elevation of approximately 
300 m and runs parallel to the coast, 25 km inland (Fig. 1b). 
The escarpment results in a narrow band of elevated rain-
fall on its windward flank. Most of the agricultural produc-
tion in SWWA takes place inland of the Darling Scarp and 
the growing season for these croplands is during the cooler 
months of May–October. During the growing season, the 
SWWA cereal crop is at risk from both frost and heat stress; 
research has found that screen temperatures below 2 ◦C and 
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above 34 ◦C can have a significant impact on grain yield 
(Zheng et al. 2012; Asseng et al. 2011). When Andrys et al. 
(2015b) evaluated WRF for SWWA using ERA-Interim 
reanalysis, they found a high negative rainfall bias in the 
extreme south west corner of the landmass which was 
attributed to the edge of the WRF domain being too close 
to the coastline. Because of the high bias in this region, we 
interpret results from this area with caution.

2.3 � Evaluation criteria

We compare the 5  km resolution future climate simula-
tions against the historical model simulations for the period 
1970–1999 which were evaluated against observations by 
Andrys et al. (2015a) and found to represent the climatol-
ogy of the region well, albeit with some systematic biases. 
In particular, daytime temperatures were found to have a 
cold bias of around 2  ◦C. To account for these biases, a 
clearer picture of projected change is possible by examin-
ing the change between future and historical simulations, 
as we assume that the same bias is inherent in both simula-
tions. Because model output is not bias corrected, the pro-
jections we refer to in the Sects. 3 and 4 are not expecta-
tions of future climate in SWWA. Rather, they represent 
simulations of future climate for the purposes of model 
process understanding in the region.

Cold fronts are the major source of rainfall in SWWA 
and as such our evaluation needs to quantify the occurrence 
of fronts in the region. The thermal gradient recognition 
(TGR) method of Hope et al. (2014) for recognising fronts 
was found to detect SWWA cold fronts accurately and the 
technique was also employed by Andrys et  al. (2015a) to 
compare simulated against observed front days. Here, we 
use TGR to compare the average number of winter front 
days between the historical and future climate periods for 
the 10 km domain. The approach detects baroclinicity using 
thermal gradients at the 850  hPa level. Following Andrys 
et al. (2015a) a front day is defined when the thermal gra-
dient is >2.5 ◦C 100  km−1 accompanied by daily domain 
averaged rainfall, for land based grid points only, >0.5 mm.

We use indices developed by the World Meteorological 
Organisation working group, the Expert Team on Climate 
Change Detection and Indices (ETCCDI) (Persson et  al. 
2007) to explore changes in climate extremes between the 
historical and future simulations. With respect to tempera-
ture, we examine the mean annual diurnal temperature range 
(DTR), the hottest annual maximum temperature (TXX) and 
the coldest annual minimum temperature (TNN). During the 
SWWA growing season, cereal crops are at risk from heat 
stress above 34  ◦C (Asseng et  al. 2011), consequently we 
measure the number of days in the growing season where 
temperatures exceed 34  ◦C using the summer days (SU) 
index. Frost is also a concern during the growing season and 

Kala et al. (2009) has shown that screen temperatures below 
2 ◦C are sufficient to result in foliage temperatures below 0 ◦

C. Hence, we record the number of frost days (FD) when 
temperatures fall below 2 ◦C. The use of threshold-based indi-
ces allows for an exploration of climate change in the context 
of biologically important thresholds however, there are issues 
using this type of index when the model has large biases. 
These issues were demonstrated by Andrys et  al. (2015a), 
where cold biases prevented one ensemble member from rep-
licating threshold based indices. In this study we do not apply 
bias correction to model data, which limits the interpretation 
if these indices. However, Andrys et al. (2015a) also demon-
strated that the three ensemble members we examine in this 
study had relatively small biases (<±2 ◦C) and were able to 
represent the historical SU and FD indies well. Hence we 
have confidence that these indices will be well represented by 
the non bias corrected data in this instance.

Rainfall intensity is measured by the simple precipita-
tion intensity index (SDII);

where RRwj is the daily precipitation amount on days 
when rainfall is >1 mm in period j and W is the number of 
days in j when rainfall is >1 mm.

The total number of rain days (PRCPTOT) is a count of 
days where daily rainfall exceeds 1 mm. We also use the ETC-
CDI metrics, maximum length of dry spell (CDD) and maxi-
mum length of wet spell (CWD). These indices measure the 
longest span of days where rainfall is <1 mm for CDD and the 
longest span of days where rainfall is >1 mm for CWD.

We calculate seasonal means of temperature and rain-
fall and for the precipitation indices SDII and PRCPTOT. 
Annual means are calculated for the remaining indices. The 
statistical significance (α = 0.05) of mean changes between 
the historical and future climate variables is quantified 
using the modified Student’s t test following the methods 
described by Zwiers and von Storch (1995) to account for 
serial correlation.

Probability density functions (PDFs) are calculated for 
daily minimum and maximum temperatures. RE between 
the historical and future distributions of these variables is 
then evaluated following Cover and Thomas (2012);

where p(x) and q(x) are the historical and future simulation 
PDFs respectively. The statistical significance of the differ-
ences in the PDFs is calculated using a Monte Carlo resa-
mpling technique. Random samples, with a size of 10,000, 
are extracted from the historical distributions and the RE 
of the sample with respect to the historical simulation is 

(1)SDIIj =

∑W
w=1

RRwj

W

(2)RE(p||q) =
∑

x∈X

p(x)log
p(x)

q(x)
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calculated. This process is then repeated 1000 times and 
the sorted results provide the likelihood that the entropy of 
the future simulations exceeds the entropy of the historical 
simulation by chance. Changes in the future simulation are 
considered to be significant if they exceed the 95 % percen-
tile of the sorted random relative entropy values. Sensitiv-
ity to the number of resamples taken was tested and it was 
found that increasing the number of repetitions above 1000 
did not improve our results, hence we use this value for 
computational efficiency. This statistical method is applied 
in this instance because it is apparent that the distributions 
of daily temperatures do not follow a normal distribution. 
Furthermore, this method allows for an analysis of shifts 
in standard deviation and higher order statistical moments 
in the temperature distributions. This is achieved by sub-
tracting the mean temperature from all data points and then 
applying the significance test to the standardised data.

Our conventions for illustrating an ensemble mean 
include displaying the mean only if all simulations agree on 
the direction of the change. Where simulations do not agree 
on the direction of the change the grid square is not shaded. 
Stippling is included on ensemble plots if all ensemble 
members agree on the direction of the change and that the 
change at that point is statistically significant.

3 � Results

3.1 � Mean sea level pressure

We first examine the large scale changes by examining sea-
sonal differences in mean sea level pressure (SLP) between 

1970–1999 and 2030–2059 from the outer model domain 
(Fig. 1a) as shown in Fig. 3. Simulations show a consist-
ent increase in SLP to the south of Western Australia dur-
ing summer and winter with the SLP increase centered to 
the southwest in summer. Increases tend to correspond with 
areas of lower pressure (not shown). The simulation using 
ECHAM5 boundary conditions (W-ECH) shows the largest 
winter SLP increase in this region of up to 2 hPa while the 
CCSM and CSIRO driven simulations (W-CCS and W-CSI 
respectively) show a winter SLP increase in this region of 
approximately 1  hPa. Models demonstrate less consist-
ency in SLP changes over the Australian landmass; win-
ter SLP tends to show either no change or a small increase 
while summer SLP is decreasing in W-CCS, increasing 
in W-ECH and shows very little change in W-CSI. For all 
simulations the smallest changes to SLP are in autumn.

3.2 � Daily distribution of temperature

The PDFs for historical and future daily maximum temper-
atures for the 5 km domain are shown in Fig. 4a. It is appar-
ent that distributions for future simulations are shifted to the 
right, indicating a greater likelihood of hotter temperatures. 
Additionally, the W-ECH and W-CSI simulations show that 
the frequency of the modal temperature is reduced, indi-
cating that temperature spread has also increased. Sum-
mary statistics (Table 1) show that future simulations have 
an increased mean and standard deviation with reduced 
skewness and kurtosis. Figure 4b illustrates spatial differ-
ences in mean daily maximum temperatures, and stippling 
in this plot highlights that the distribution shift is statisti-
cally significant using the RE test for significance described 

Table 1   Summary statistics (◦C) for the distribution of daily maximum temperatures across the land based grid points of the 5 km domain for 
historical (1970–1999) and future (2030–2059)

W-CCS W-ECH W-CSI

Historical/future Historical/future Historical/future

Mean 22.23/23.75 20.72/21.88 23.22/24.93

Standard deviation 7.303/7.322 7.514/7.795 7.569/7.982

Skewness 0.466/0.436 0.517/0.462 0.439/0.404

Kurtosis −0.651/−0.663 −0.502/−0.627 −0.741/−0.837

Table 2   Same as in Table 1 but for minimum temperatures

W-CCS W-ECH W-CSI

Historical/future Historical/future Historical/future

Mean 10.49/11.80 10.44/11.34 12.05/13.42

Standard deviation 5.122/5.171 5.540/5.945 5.896/6.173

Skewness 0.259/0.266 0.344/0.331 0.261/0.269

Kurtosis 0.173/0.155 0.057/−0.138 −0.214/−0.243
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in Sect. 2.3. To determine whether changes in the standard 
deviation, skewness or kurtosis of the maximum tempera-
ture PDF are significant, we subtract the respective means 
from each distribution and apply the significance test to 
this standardised data. The results are illustrated in Fig. 4c, 
which shows differences in standard deviation and stip-
pling to indicate where differences in the standardised dis-
tributions are statistically significant. It is apparent that the 

Table 3   Results from analysis of yearly summer rainfall showing 
the number of wet and dry summers for historical (1970–1999) and 
future (2030–2059)

W-CCS W-ECH W-CSI

Historical/future Historical/future Historical/future

Wet summer 2/4 15/17 10/9

Dry summer 28/26 15/13 20/21

Fig. 1   Topographical map from 
Andrys et al. (2015b) of a the 
model outer domain showing 
the extent of nested grids 2 
(10 km resolution) and 3 (5 km 
resolution) used for simulations 
and b the location of Perth and 
the topography of the Darling 
Scarp (area of rapidly increas-
ing elevation from 0 to 300 m, 
extending from 31S to 34S, and 
between approximately 114.5E 
and 115.5E) within the 5 km 
domain

(a)

(b)
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standard deviation of maximum temperatures is expected to 
increase for both W-ECH and W-CSI however this change 
is not statistically significant. W-CCS shows only small 
differences in standard deviation and in the south east of 
the region this difference is negative and corresponds with 
statistically significant distribution differences. In addition, 
W-CCS shows areas where there are statistically significant 
differences between the standardised distributions with no 

change to the standard deviation (areas where there is stip-
pling but little to no change in the standard deviation). This 
suggests that these changes must be related to the higher 
order moments of skewness and/or kurtosis.

PDFs for historical and future daily minimum tempera-
tures are shown in Fig. 5a and summary statistics for these 
distributions are shown in Table 2. The shift towards hot-
ter future temperatures is apparent across all simulations 

(a)

(b)

(c)

Fig. 2   SWWA seasonal means of a maximum temperatures, b min-
imum temperatures and c rainfall between 1970–1999 for the 5 km 
domain using a gridded observational dataset from the Austral-
ian Bureau of Meteorology (Jones et  al. 2009) from Andrys et  al. 

(2015b). The stations which have been used to generate the gridded 
data set are shown as white dots on the DJF plots in (a) for tempera-
ture and (c) for precipitation
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and this is also shown by the increased daily temperature 
and the spatially consistent statistically significant changes 
shown in Fig. 5b. Figure 5c illustrates that simulated mini-
mum temperature variance is expected to increase and there 
is model consensus on the statistical significance (using the 
RE significance test) of differences between the standard-
ised distributions in the north west of the region. Similar 
to maximum temperatures, we find that W-CCS is display-
ing areas with statistically significant differences between 
standardised distributions where there is little change in 
standard deviation indicating changes to skewness and/or 
kurtosis.

3.3 � Seasonal changes in temperature and precipitation

The differences in mean seasonal temperatures between the 
GCMs and their corresponding RCMs are shown in Fig. 6. 
With the exception of W-CSI, the RCMs tend to underes-
timate temperature increases relative to the GCMs. The 
finer spatial resolution of the RCM also allows for a greater 
range of temperature change within the domain (up to 1 ◦

C) as opposed to the GCM which in most cases finds the 
range of temperature change in the domain to be <0.5 ◦C. 
The increased spatial resolution of the RCM also shows 
greater warming on the west coast, particularly in the sum-
mer, which is not apparent in the GCMs.

Seasonal maximum temperature differences between the 
historical and future RCMs are shown in Fig.  7. Simula-
tions show temperature increases in all seasons and these 
increases are statistically significant (using the modified 
Student’s t test) across the domain with the exception of 
an area in the north east corner of the region in W-ECH. 
The simulations show that temperature increases will be 
the greatest along the west coast and in the north of the 
domain. W-CSI shows the largest increase, of up to 3 ◦C 
during the summer while winter temperature increases tend 
to be no >2 ◦C. Seasonal minimum temperature differences 
are shown in Fig. 8. Similar to maximum temperatures, all 
minimum temperature changes are positive, by up to 3 ◦C 
in W-CSI. However, overall increases are not as large as 
for maximum temperatures. Simulations agree that mini-
mum temperature increases are significant for all seasons 
except for autumn and winter, when the W-ECH simulation 
does not show a significant increase over all areas of the 
landmass.

Differential changes between daytime and nighttime 
temperatures have been previously attributed to changes 
in cloud cover (Dai et  al. 1999) and soil moisture (Fis-
cher et  al. 2007; Stéfanon et  al. 2014). Hence, to attrib-
ute the spatial differences in these simulated temperature 
increases and the differential daytime and nighttime warm-
ing, we consider changes in seasonal cloud fraction and 

Fig. 3   Seasonal mean sea level pressure difference between historical (1970–1999) and future (2030–2059) climate simulations for the WRF 
outer domain using CCSM3 (W-CCS), ECHAM5 (W-ECH) and CSIRO Mk 3 (W-CSI) lateral boundary conditions
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soil moisture. Seasonal cloud fraction data is not shown 
because there are no marked differences in cloud cover 
(<0.3 %) found. Conversely, soil moisture (Fig. 9), which 
is predominantly driven by changes in rainfall, displays 
considerable differences. A decline in soil moisture is 

consistent across all models in winter and spring however 
in the summer and autumn, W-CCS and W-ECH illustrate 
that areas in the east will have increased soil moisture. Soil 
moisture influences temperature by altering the partitioning 
of net radiation between sensible and latent heat flux, hence 

W-CCS W-ECH W-CSI

1970-99 
2030-59 

1970-99 
2030-59 

1970-99 
2030-59 

(a) 

(b) 

(c) 

Fig. 4   The distribution of historical (1970–1999) and future (2030–
2059) daily maximum temperatures for the 5 km domain shown by 
a probability density functions (PDFs), b mean differences in daily 
maximum temperature with stippling displaying where differences in 

the PDFs are significant at a 95 % confidence level and c differences 
in standard deviation with stippling highlighting where differences in 
standardised distributions (mean removed) are significant
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we show seasonal surface sensible heat flux in Fig. 10 and 
it is apparent that areas of soil moisture deficit correspond 
with areas of increased sensible heat flux. For W-CCS 
and W-ECH, areas of increased surface sensible heat flux 
closely match areas with the highest daytime temperature 
increase, most notably in summer and spring.

Seasonal rainfall differences are shown in Fig. 11 for the 
GCMs and in Fig. 12 for the corresponding RCMs. GCMs 
and RCMs all show a decline in winter rainfall however 
there is less agreement between GCMs and RCMs in the 
other seasons. For example, both CCS and ECH show that 
summer precipitation will decline by up to 8 mm month−1 

W-CCS W-ECH W-CSI

1970-99 
2030-59 

1970-99 
2030-59 

1970-99 
2030-59 

(a) 

(b) 

(c) 

Fig. 5   Same as in Fig. 4 but for minimum temperatures
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while W-CCS and W-ECH show a small increase in rain-
fall. The improved spatial resolution of the RCM is bet-
ter able to represent the influence of the Darling Scarp on 

winter precipitation and the west to east precipitation gradi-
ent. It should be noted however that when the RCM model 
was evaluated by Andrys et  al. (2015b), WRF displayed 

Fig. 6   Mean seasonal temperature differences (1970–1999 to 2030–2059) for the GCMs CCSM (CCS), CSIRO (CSI), ECHAM5 (ECH) and the 
corresponding RCMs



1734 J. Andrys et al.

1 3

high negative rainfall biases in the far south west corner 
of the SWWA landmass. It is likely that results from this 
region have been impacted by this strong bias.

When the RCMs are compared with each other, simula-
tions are not consistent on the direction of rainfall change. 
For example, the W-CCS and W-ECH simulations indicate 
that summer rainfall is likely to increase while W-CSI sug-
gests that summer rainfall will decline. Models do agree 
that winter rainfall in the south west of the landmass will 

decline however there is a large range with respect to the 
magnitude of this change and only W-ECH and W-CCS 
show the decline to be statistically significant. W-ECH 
shows that the reduction in rainfall in this region will exceed 
20 mm month−1 while W-CSI suggests that rainfall decline 
will not exceed 10 mm month−1 and that some areas will 
receive more winter rainfall. The ENS plot highlights the 
model consensus on a decline in winter rainfall however 
it also illustrates the lack of model agreement on areas of 

Fig. 7   Seasonal mean maximum temperature differences between historical (1970–1999) and future (2030–2059) climate simulations. Stippling 
shows areas where there is a statistically significant difference in the distribution at a 95 % confidence interval
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significant rainfall change. Because winter rainfall is pre-
dominantly caused by cold fronts, we consider the number 
of winter front days present in the historical and future sim-
ulations as shown in Fig.  13. In all cases, there are fewer 
front days in the future simulation, however this difference 
is negligible in the W-CSI simulation (0.4 days a season).

To investigate why summer rainfall changes differ 
so markedly between simulations, we examine changes 
in the simulated number of large scale summer rain-
fall events. Observations show that SWWA experiences 
these rain events approximately once every 3–5  years 
and to evaluate how these events change change in the 

simulations, we follow the methodology of Andrys et al. 
(2015a) who define a wet summer as having at least one 
month where domain averaged rainfall exceeds 20 mm. 
These results are shown in Table  3. The incidence of 
large scale summer rainfall events doubles in the future 
W-CCS simulation, from a 1 in 10  years event to 1 in 
5  years. However, there is no marked increase in the 
number of simulated rain events for W-ECH and W-CSI 
as the return value for these simulations remains rela-
tively constant between the historical and future simu-
lations at approximately 1 in 2  years and 1 in 3  years 
respectively.

Fig. 8   Same as in Fig. 7 but for minimum temperatures
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3.4 � Indices

Annually averaged differences in temperature indices are 
shown in Fig. 14. With the exception of the southern coast 
in the W-CCS simulation, all models agree that diurnal 
temperature range (DTR) will increase. Simulation DTR 
increases tend to be largest in the west and away from the 
moderating influences of the coast however none of the 
simulations show large areas of statistically significant 
changes when the modified Student’s t test is applied. TNN, 
a measure of the coldest nighttime temperature of the year, 
increases in the near future for W-CCS and W-CSI. W-ECH 
shows a small increase in most areas however in some cases 
W-ECH shows that the coldest nighttime temperatures 
will actually decline. Because of the low significance of 
changes to TNN in W-ECH, ensemble agreement on a sta-
tistically significant change in TNN is not spatially consist-
ent. The hottest annual maximum temperature is measured 
by TXX, and it is apparent that simulated future changes 
in TXX are higher than changes to TNN. W-CSI shows the 
highest increase in TXX, of up to 3 ◦C on the south coast. 

Simulations generally agree that this increase will exceed 
1.2 ◦C throughout the domain. Ensemble changes in TXX 
are also statistically significant over a greater portion of the 
domain than for TNN.

Models agree that FD in the growing season is expected to 
decline for most of SWWA with the exception of the coastal 
region however Andrys et  al. (2015b) demonstrated that 
under current climate, frost in the coastal region is already 
uncommon and hence unlikely to decline further. The reduc-
tion in frost is greatest in W-CCS, which shows up to 10 
fewer FD every growing season. The ENS plot highlights the 
model consensus on a reduction in FD and also that models 
agree this decline is significant over the north of the region. 
An increase in growing season SU is expected in the north 
of SWWA for all models while the incidence of SU does not 
change in the south. Models are consistent on the spatial dis-
tribution of the increase in SU and also the magnitude of the 
increase, with the very north of the region expecting up to 3 
more SU each growing season. This increase to the north of 
the region is statistically significant for all models in patches, 
which is highlighted by the ENS plot.

Fig. 9   Seasonal mean surface soil moisture differences between historical (1970–1999) and future (2030–2059) climate simulations
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Figure 15 shows changes in summer and winter rainfall 
SDII and PRCPTOT and annual CWD and CDD. Simu-
lations show small and generally insignificant changes in 
winter SDII and models do not agree on the direction of 
these changes. Simulations do however agree on the direc-
tion of changes in PRCPTOT, suggesting that there will be 
an average of 5 fewer rain days each winter, a result which 
is statically significant mainly in the south. Rainfall indi-
ces during summer tend to display higher variability when 
compared to winter however these changes are not statisti-
cally significant. All models indicate that there will be areas 
where SDII increases markedly, by up to 6  mm day−1, 
however models generally do not agree on the spatial dis-
tribution of these increases. Similarly each model shows 
patches of reduced intensity, by as much as −3 mm day−1. 
The ENS plots show those areas where models agree and 
it is apparent that results over large areas of the domain 
remain highly uncertain. W-CCS and W-ECH agree that 
the region’s south coast will experience an increase in sum-
mer PRCPTOT however this is not supported by the W-CSI 
simulation, which shows a general decrease in summer 

PRCPTOT. Overall, the simulated number of consecutive 
dry days (CDD) is expected to increase and the number of 
consecutive wet days (CWD) will decrease however these 
results are not found consistently across the region, nor are 
they statistically significant.

4 � Discussion

4.1 � Temperature changes

Significant increases in minimum and maximum tem-
peratures found by the RCM are broadly consistent with 
SWWA temperature increases projected by the CMIP3 
GCMs shown in Fig. 6 and found by others over this region 
(Suppiah et  al. 2007). The RCM simulations illustrate a 
broader range of temperature change than GCMs in SWWA 
and their higher resolution allows for the development of 
finer spatial features in the distribution of warming. Sup-
piah et al. (2007) found a distinct north–south warming gra-
dient while our results show that there is also an east–west 

Fig. 10   Same as in Fig. 9 but for surface sensible heat flux
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component to this gradient, particularly for summer and 
autumn maximum temperatures which show greater warm-
ing on the west coast of SWWA for W-CCS and W-ECH. 
Simulations showing greater warming along the coast dif-
fers from the findings of a number of GCM studies [for 
example Collins et al. (2013), Meehl et al. (2007)] because 
the highest rate of warming is most commonly projected to 
be inland; a response which is attributed to feedback from 
reduced relative humidity (Fasullo 2010). While this land 
sea thermal contrast is a major influence on temperature 
distribution at the resolution of the GCM, its influence at 
the scale of the RCM appears to be somewhat diminished 
as local effects are also resolved. The summer and autumn 
coastal soil moisture deficit seen in W-ECH and W-CCS 
(Fig.  9), caused by the simulated rainfall decline in these 
areas, results in increased sensible heat flux (Fig. 10). This 
results in the simulation of larger temperature increases on 
the coast compared to inland areas where there is a smaller 
decline in soil moisture. Our finding of a relationship 
between dry soils and sensible heat flux impacting day-
time temperatures is supported by Fischer et al. (2007) and 

Stéfanon et al. (2014) who found that soil moisture deficits 
contributed to higher maximum temperatures and hence 
heatwaves in western Europe. While GCMs also simulate 
soil moisture feedbacks, it is likely that the parameterisa-
tions and increased resolution of the RCM are enabling soil 
moisture to have a greater influence on temperature com-
pared to the GCM. However, the ability of the WRF model 
to simulate soil moisture in SWWA has not been validated 
against observations and as such this model limitation 
needs to be considered when interpreting this finding.

Globally, GCMs tend to project a reduction in the future 
diurnal temperature range (DTR) (Collins et  al. 2013). 
Reduced DTR is frequently attributed to an increase in 
cloud cover which inhibits outgoing longwave radiation 
and causes minimum temperatures to rise faster than maxi-
mum temperatures (Dai et al. 1999). Contrary to these find-
ings, our results indicate that there is strong model agree-
ment for increased DTR in SWWA. We explore possible 
attributions as to why this is the case and find that models 
simulate very little difference in mean seasonal cloud cover 
between the two climate periods. Models therefore suggest 

Fig. 11   Mean seasonal rainfall differences (1970–1999 to 2030–2059) for the GCMs CCSM (CCS), CSIRO (CSI), ECHAM5 (ECH)
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that nighttime temperatures in SWWA may not experience 
amplified warming through increased cloud cover. How-
ever, this finding is uncertain because the performance of 
the model at replicating SWWA climatological cloud pro-
cesses has not been evaluated as a part of this study. Sum-
mer soil moisture deficits have been associated with areas 
of enhanced daytime warming in SWWA and we now sug-
gest that the soil moisture deficit, which is ubiquitous for 
all simulations in winter and spring, and the subsequent 
increase in daytime sensible heat flux is amplifying day-
time warming in the model, leading to an increased DTR.

Standardised distributions of daily minimum and maxi-
mum temperature provide some evidence that there are 
changes in standard deviation between historical and 
future simulations (Figs. 4c, 5c). These are in line with the 
findings of Donat and Alexander (2012) who also found 
observed increases in nighttime temperature standard devi-
ation in Western Australia. We do not examine possible 
attributions for increased nighttime temperature variability 
here, however we do note that previous studies examining 
Australian daily temperatures have suggested that distribu-
tions of temperature are compound in nature, comprising 

Fig. 12   Seasonal mean rainfall differences between historical (1970–1999) and future (2030–2059) climate simulations. Stippling shows areas 
where there is a statistically significant difference at a 95 % confidence interval
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of two or more distributions relating to specific air masses 
(Trewin 2001; Grace and Curran 1993). It is possible there-
fore, that increased variability is a result of unequal warm-
ing between the individual distributions comprising the 
compound distribution. Understanding the physical pro-
cesses driving increased temperature variability will be the 
focus of future research.

Statistically significant differences between the stand-
ardised distributions for W-CCS in areas where there is no 
change in standard deviation are apparent. This suggests 
that shifts in skewness and kurtosis may also contribute to 
differences between historical and future simulated tem-
perature distributions. Perron and Sura (2013) examined a 
number of climate variables, including daily temperature 
distributions, and found that in addition to mean and stand-
ard deviation, the distribution of air temperature was also 
defined by skewness and kurtosis. Hence, our finding that 
skewness and kurtosis influence temperature distributions, 
is in line with the findings of Perron and Sura (2013). Posi-
tive changes to skewness indicate that the distribution is 
skewing further to the right, or hotter temperatures, while 
increases in kurtosis mean that the distribution is becom-
ing more peaked, with more data in the middle of the dis-
tribution and less at the tails. Our simulations suggest that 

the skewness and kurtosis of maximum temperatures may 
decrease in the future. Simulated minimum temperature 
kurtosis is also expected to decline however the direction 
of change in skewness is uncertain because models do not 
agree on the direction of the change. It is therefore appar-
ent from our findings that changes in skewness and kurtosis 
exist between the historical and future climate simulations 
and more research is needed to understand both the statisti-
cal significance of these changes and their implications.

Notwithstanding, our simulation results indicate 
that the standard deviation of minimum temperatures 
is increasing. Nighttime temperature PDFs show an 
increased spread of temperatures and it is apparent that 
the TNN index does not increase as much as mean night-
time temperatures in the simulation. Furthermore, stand-
ardised minimum temperature PDFs show a significant 
difference which is consistent across all simulations in the 
north west corner of SWWA and in patches on the south-
ern coastline. Hence, these simulations suggest that, while 
average minimum temperatures are likely to increase, the 
likelihood of very cold nighttime temperatures may not 
necessarily decrease. Despite this finding, simulations 
do indicate that the incidence of frost, illustrated by the 
FD index in Fig. 14, in SWWA will decline significantly. 
Recent research on observed historical (1980–2011) frost 
trends in SWWA by Dittus et  al. (2014) found that the 
number of frost days in some areas of SWWA is increas-
ing, despite increases in average nighttime temperatures 
over the same period. The finding from our simulations of 
a future frost decline is in contrast to Dittus et al. (2014). 
One possible explanation for this contrast is that, by 2030, 
the simulated increase in mean nighttime temperature 
is large enough to offset the trend found by Dittus et  al. 
(2014), outweighing the effect of increased minimum 
temperature variability on frost risk. Establishing this 
however requires further analysis as to whether WRF is 
able to capture the increasing trend in frost at these loca-
tions under current climate.

Only W-CSI and W-ECH PDFs show an increase 
in standard deviation for maximum temperatures, and 
increases in the TXX index are fairly consistent with 
increases in mean summer daytime temperatures. Increased 
temperature variability has been found previously by 
Ylhaisi and Raisanen (2013) in the northern hemisphere 
mid-latitudes, however they found that the signal to noise 
ratio of increased variability outside of this region was gen-
erally low. These findings are consistent with our simula-
tion results which do not suggest an increase in maximum 

Fig. 13   Boxplot showing the range of winter front days comparing 
historical (1970–1999) and future simulations. The centre line dis-
plays mean values, the box bounds one standard deviation from the 
mean and tails represent the range of values

Fig. 14   Mean annual difference between historical (1970–1999) 
and future (2030–2059) for DTR, TXX and TNN temperature indices 
mean growing season difference is shown for the FD and SU indices. 
Stippling shows where the changes in the distribution of the indices is 
significant at the 95 % confidence level

▸
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temperature variability. Furthermore, an analysis of temper-
ature extremes by Kharin et al. (2007) found that changes 
in maximum temperature extremes generally followed 
mean changes in summer maximum temperatures and our 
simulations support this finding also. Notwithstanding, the 
significant increases in the TXX and SU indices found in 
the simulations illustrate that mean temperature changes 
alone are sufficient to increase the likelihood of extreme 
temperature events. In particular, simulated increases in 
SU underscore the increased risk of heat stress in SWWA 
cereal crops in the future.

4.2 � Rainfall changes

Compared to temperature results, there is far greater 
uncertainty as to the direction and magnitude of future 
precipitation changes in results from the RCM. This high 
degree of uncertainty is unsurprising because interannual 
rainfall variability in SWWA is much higher than tempera-
ture variability and GCMs generally demonstrate greater 
uncertainty with respect to precipitation (Alexander and 
Arblaster 2009). Notwithstanding, our simulation results 
show an overall decline in rainfall, particularly in winter 
which is the dominant rainfall season. Simulation results 
are generally consistent with findings from GCMs, shown 
in Fig. 11, and found by other GCM studies including the 
SWWA region (Suppiah et  al. 2007). However, spatial 
patterns are apparent in the RCM results which are not 
found at the resolution of the GCM. For example, results 
from W-CCS and W-ECH highlight a differential rain-
fall decline in the vicinity of the Darling Scarp. In these 
simulations, rainfall on the western side of the Scarp is 
expected to experience a relatively small decline compared 
to the east of the Scarp.

Historical winter rainfall decline in SWWA has been 
attributed to a poleward movement of the subtropical ridge, 
which diverts storm tracks to higher latitudes and results 
in fewer rain bearing cold fronts traversing the region. 
Seidel et  al. (2008) found that this transition of the ridge 
could be attributed to the strengthening of the Hadley Cell 
and GCMs indicate that this strengthening will continue 
throughout the twenty-first century, reducing the baro-
clinic instability at the latitude of SWWA (Grainger et al. 
2013). All of our simulations illustrate increased winter 
mean SLP to the south of Western Australia which reflects 
the projected ongoing poleward shift of the subtropical 
ridge. Smith et al. (2000) found that SLP was well corre-
lated with winter rainfall in SWWA and could account for 
up to 60 % of rainfall variability. This relationship between 
SLP and rainfall is illustrated by the different winter rain-
fall responses between the three simulations; W-ECH has 
the largest winter SLP increase and the largest decline 
in winter rainfall. Conversely, W-CSI has the smallest 

winter precipitation decline and shows very little change 
in SLP. Analysis of the number of simulated winter front 
days also suggests a decline in the number of cold fronts 
traversing the region, however these differences are gen-
erally small. Our finding that the simulated winter PRCP-
TOT is expected to decline by an average of approximately 
5 days per season further supports the attribution of rainfall 
decline to fewer fronts traversing the region. However, it 
should be noted that fronts are not the only systems deliv-
ering winter rainfall to SWWA. Pook et  al. (2012) dem-
onstrated that cutoff lows are also responsible for rain in 
the region, particularly in the the autumn, and Risbey et al. 
(2013) showed that the rainfall from cutoff systems in the 
growing season has declined since the 1990s. While the 
rainfall contribution of cutoff lows is greatest in the autumn 
(Pook et al. 2012), these systems do contribute somewhat 
to winter rainfall. Because our study does not examine the 
occurrence of cutoff systems in the simulation, it is possi-
ble that winter changes in the frequency and/or magnitude 
of these systems events are impacting our findings on simu-
lated frontal changes.

While there is strong evidence to support a poleward 
transition of the subtropical ridge and hence extra-tropical 
storms, there is little evidence to suggest an intensification 
or reduction in the strength of these systems (Bengtsson 
et al. 2009). It is therefore not surprising that our simula-
tion results show little change in winter rainfall intensity. 
This result is also in line with the findings of Alexander and 
Arblaster (2009) who, in their analysis of CMIP3 GCMs, 
determined that SWWA SDII would remain fairly constant 
throughout the twenty-first century.

Changes to summer rainfall display less model agree-
ment, and hence more uncertainty, than winter rainfall. 
Relative to the observed mean summer rainfall (Fig. 2), the 
magnitude of simulated changes are very large. For exam-
ple, W-ECH projects that summer rainfall will as much as 
double in some areas. This increase can be attributed to 
an intensification of summer rainfall events as opposed to 
more frequent events. We refer to the fact that the simu-
lated number of large scale summer rain events (Table 3) 
and summer PRCPTOT (Fig. 15) remain relatively constant 
as evidence to support this finding. Simulated changes to 
summer rainfall intensity are exceptionally large com-
pared to our winter SDII and changes seen in other stud-
ies. For example, W-ECH shows summer SDII increases 
of up to 6  mm day−1 while other studies have reported 
annual changes to SDII of under 0.001 mm day−1 (Alex-
ander and Arblaster 2009). The very large magnitude 

Fig. 15   Mean summer and winter differences (1970–1999 to 2030–
2059) for SDII and PRCPTOT. Mean annual differences are shown 
for CDD and CWD. Stippling shows areas where the difference is 
significant at a 95 % confidence interval

▸
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of these intensity shifts can be attributed to the fact that 
simulated summer rainfall changes are relatively high and 
because there are so few summer rain days in the region. 
Consequently, a small number of very large rain events 
in the simulation can shift this index markedly, even over 
a 30  years climatology. SWWA summer rain events are 
caused by interactions with tropical disturbances in Aus-
tralia’s north west and recent work has established that the 
frequency and intensity of these disturbances has increased 
in the last two decades (O’Donnell et al. 2015). This trend 
is poorly represented in CMIP3 GCMs (Cai et  al. 2011) 
and this uncertainty is a likely source of the lack of model 
agreement for summer rainfall changes seen in our results. 
Although our confidence in the simulated findings of sum-
mer rainfall change is low, the established impact of tropi-
cal cyclones on SWWA summer rainfall and the risk of 
serious consequences, including flash flooding and erosion 
of arable land, mean that a greater understanding of the 
processes driving summer rainfall in SWWA is needed.

Indices which measure the maximum length of wet 
(CWD) and dry (CDD) spells provide some indication 
of how rainfall patterns are likely to vary. Alexander and 
Arblaster (2009) found that by the end of the twenty-first 
century, SWWA can expect much longer dry spells. In 
our simulated results we find that, with the exception of 
the southern coast, CDD will increase by approximately 
15 days a year and this result is significant over patches of 
the SWWA. Similarly, simulations show that the number of 
consecutive wet days will decline as fewer storms traverse 
the region in winter.

While our simulation ensemble has drawn from a num-
ber of GCMs to reduce uncertainty in our findings, the fact 
that we use only a single RCM configuration is a limita-
tion of our experimental design because WRF has a known 
sensitivity to the choice of model physical parameterisa-
tions (Argueso et al. 2011). We note that other RCM stud-
ies [for example Evans et  al. (2011)] use an ensemble of 
RCM configurations to reduce the uncertainty from using 
a single cohort of physical parameterisations. However, 
our research was limited by the computational resources 
required to undertake a larger ensemble using both multi-
ple RCMs and GCMs. Our results are also constrained by 
limitations in our model domain configuration, which lead 
to high negative precipitation biases in the extreme south 
west corner of the region (Andrys et al. 2015b). As a conse-
quence of these biases, future climate data from this small 
region should be interpreted with caution.

5 � Conclusion

Projections of future climate change (2030–2059) for 
SWWA are analysed for a RCM ensemble using WRF with 

lateral boundary conditions from three CMIP3 GCMs; 
CCSM3, CSIRO mk3.5 and ECHAM5. By dynamically 
downscaling GCM output, WRF provides climate data at 
a horizontal scale that allows for the resolution of local 
topography and the development of local effects, such as 
land atmosphere interactions, which have been found to 
have a strong impact on the climate of SWWA (Hirsch et al. 
2014). We find that the RCM adds value to GCM output 
in SWWA by illustrating the importance of regional scale 
soil moisture feedback and its impact on enhanced daytime 
warming, and resolving differential rainfall changes in the 
vicinity of regional scale topography such as the Darling 
Scarp.

Our simulation results indicate that daytime tempera-
tures will increase more than nighttime temperatures. This 
is attributed to a simulated decline in soil moisture which in 
turn increases sensible heat flux at the surface, hence ampli-
fying daytime temperature increases and the DTR. Climate 
change is more commonly associated with a decline in 
DTR, caused by increased cloud cover enhancing the rate 
of nighttime warming, however we find no evidence for 
increased cloudiness in SWWA in these simulations. While 
the rate of nighttime warming is lower, simulations do pro-
vide evidence that the variability of minimum temperatures 
is increasing because the coldest nighttime temperatures 
are not increasing at the same rate as mean temperatures.

There is model consensus indicating a decline in winter 
rainfall and two of the simulations (W-ECH and W-CCS) 
show that this decline is statistically significant. However, 
there is little statistically significant change for all other 
seasons. W-ECH and W-CCS also show that the spatial dis-
tribution of winter rainfall decline is influenced by the Dar-
ling Scarp, because smaller rainfall reductions are expected 
on the western side of the Scarp than to the east. Declin-
ing winter rainfall is consistent with historical trends of 
rainfall in SWWA which is attributed to a southerly shift 
in storm tracks reducing the number of fronts passing over 
the region. The continuation of this southerly shift in storm 
tracks is indicated by the simulated increase in winter mean 
SLP in SWWA. We also find that the number of simulated 
winter front days and the number of winter precipitation 
days are expected to decrease. The lack of marked variation 
in winter SDII in the simulations indicates that the intensity 
of those winter storms which do bring rain to SWWA is not 
expected to change.

Summer precipitation in SWWA has been shown to be 
difficult to replicate (Andrys et al. 2015b; Kala et al. 2015) 
and this difficulty is reflected here as models vary widely 
in their projections. Unfortunately, this variation makes 
it difficult to draw any conclusions for summer rainfall. 
However, the summer SDII index does display some very 
large changes to precipitation intensity which, due to the 
potential risks posed by such considerable changes to 
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the hydrological regime, warrant further research to fully 
understand the mechanisms driving the projected changes.

Changes in temperature and precipitation are likely 
to impact cereal cropping in SWWA in the future. While 
agriculture is likely to benefit from a reduction in frost, this 
benefit may be offset by an ongoing decline in rainfall and 
the increased likelihood of heat stress which will be the 
greatest in the region’s northeast.

We attribute the simulated spatial distribution of daytime 
warming to changes in soil moisture which in turn influ-
ences the partitioning of surface heat flux. Areas with soil 
moisture deficits show increased sensible heat flux and tend 
to display greater daytime temperature increases. Changes 
in soil moisture are predominantly caused by variations in 
rainfall and we have shown that simulated rainfall changes, 
with the exception of winter rainfall, are highly uncertain. 
Therefore, it follows that a degree of this uncertainty needs 
to be applied to our temperature findings also. Our research 
highlights the significance of interrelationships between 
climate variables and also the importance of land atmos-
phere interactions on climate in SWWA.
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