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1  Introduction

Model-based projections of anthropogenic climate change 
form an important source of information for policy mak-
ers to guide in environmental decisions. Therefore, it is an 
important question how to best use and interpret the avail-
able model simulations.

It is widely accepted that multi-model predictions are 
superior to single model projections and that an ensemble 
of models can outperform individual ensemble members 
(Weigel et al. 2008; Räisänen and Ylhäisi 2012). Reviews 
of methods to combine multimodel ensemble predictions 
are given from a weather predictions perspective in Wilks 
(2006) and from a climate projection perspective in Tebaldi 
and Knutti (2007). In weather forecasts, many of the meth-
ods are based on assigning equal weights for all models 
and subtracting biases of each model that are determined 
based on past model performance. In climate projections, 
however, a difficulty arises due to limited knowledge of 
how the model biases might change between the present 
and future periods.

A common assumption is that the changes in model 
biases are small compared to the changes in climate. Sev-
eral studies, however, show that biases may change as 
climate changes. State dependent bias models have also 
been proposed. For example, Buser et al. (2009) proposed 
a constant relation assumption. With this bias model, the 
bias in the mean climate changes with climate if the base-
line interannual variability in the model differs from the 
observed variability. Furthermore, Christensen et al. (2008) 
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and Boberg and Christensen (2012) demonstrate that many 
models overestimate warm-season temperature variability. 
To avoid the implicated overestimate of long-term warm-
ing, they propose temperature dependent bias correction 
based on quantile-quantile plots. The approach was also 
applied to the CMIP5 dataset in Christensen and Boberg 
(2012), Christensen and Boberg (2013). This approach is 
somewhat equivalent to the Buser’s et al. constant relation 
assumption. Similar bias corrections were also considered 
in Bellprat et al. (2013), Kerkhoff et al. (2014) and Ho et al. 
(2012).

In this paper we consider the hybrid bias model pro-
posed in Buser et  al. (2010a), which combines the con-
stant bias and constant relation assumptions. The hybrid 
bias model includes a parameter which scales the weight-
ing between these two bias assumptions, and the parameter 
can either be considered as fixed or can be estimated from 
the data as an unknown parameter simultaneously with the 
other model parameters.

It is a difficult task to find the most appropriate bias 
model, since validation based on the future climate is 
impossible. In this paper, we analyse the choice of the bias 
model using a cross-validation approach. A key assump-
tion in the cross-validation is that climate model outputs 
are random samples of possible future climates. Therefore, 
we can ask how well the output of a selected model can be 
predicted based on the data provided by all the other mod-
els in the ensemble. A similar approach known as the pseu-
doreality framework has been widely used in other studies 
(see e.g. Maraun 2012; Bellprat et al. 2013; Kerkhoff et al. 
2014).

A similar cross-validation approach was used to con-
firm Bayesian predictions in Smith et  al. (2009). How-
ever, the focus of the cross validation in this paper is the 
choice of the bias parameter in the hybrid bias model pro-
posed by Buser et al. (2010a). The cross validation based 
selection leads to an optimal bias parameter in the sense 
that the distance of the model based climate prediction 
and the (simulated) scenario climate is minimized with 
respect to some metric. In this paper we mainly consider 
the continuous ranked probability score (CRPS), which 
is a widely used metric in weather and climate predic-
tions (Hersbach 2000; Jolliffe and Stephenson 2011). The 
CRPS is also a strictly proper score, i.e., it is uniquely 
minimized by using true probabilities (see Gneiting and 
Raftery 2007).

We use the latest CMIP5 (World Climate Research Pro-
gramme’s Coupled Model Intercomparison Project phase 
5) multi-model dataset, which includes a large number of 
general circulation model (GCM) outputs. Although several 
recent Bayesian multi-model methods (Buser et  al. 2009, 
2010a; Heaton et  al. 2013) have used regional climate 
model (RCM) data, we use only outputs of GCMs due to 

the large number of available models in the CMIP5 data 
set. However, it is also straightforward to apply the method 
presented in this paper to RCM model outputs when an 
extensive dataset (comparable to the size of CMIP5) 
becomes available.

This paper is organized as follows. In Sect. 2 we describe 
the data and the aggregation procedure used in this study. 
In Sect.  3, we briefly outline the Bayesian multimodel 
method and the hybrid bias model presented in Buser et al. 
(2010a) that form the basis of our cross-validation analysis. 
The cross-validation approach is also presented in Sect. 3. 
The results are presented in Sect.  4 and conclusions are 
drawn in Sect. 5.

2 � Data

In this section, we summarize the climate model and 
observational data used in this study. In the cross-valida-
tion approach presented in this paper, only simulated data 
(climate model data) is used for the selection of the bias 
parameter. However, we will also compute climate pre-
dictions using the true observational data to compare 
the results of the cross-validated bias model with other 
predictions.

The variable we consider in this study is 2m land-sur-
face temperature and the ultimate aim of the analysis is to 
compute predictions for temperature change between the 
control period (1961–2005) and the scenario period (2046–
2090). However, the methodology can also be extended to 
other variables. For example, the cross-validation can be 
connected to the predictions of both 2m -temperature and 
precipitation using Bayesian multimodel projections pre-
sented in Buser et al. (2010b) with a similar bias model; see 
also Heaton et al. (2013), Tebaldi and Sansó (2009).

In the analysis, both climate model and observational 
data are averaged both temporally over the summer and 
winter seasons and spatially over the regions introduced 
in the IPCC SREX report (Seneviratne et  al. 2012). The 
regions are listed in Table 1. For each area, the spatial aver-
ages are calculated over all land grid points inside the area. 
The analysis is carried out separately for each season and 
each region.

2.1 � Climate model data

This study uses data from coupled atmosphere-ocean gen-
eral circulation models and Earth system models partici-
pating in the World Climate Research Programme Fifth 
Coupled Model Intercomparison project (CMIP5). We use 
19 models for which we were able to download monthly 
2 m-temperature data corresponding to the historical simu-
lations for the recent past (the control period 1961–2005) 
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and the simulations for the future (the scenario period 
2046–2090) based on the Representative Concentration 
Pathways (RCP) 4.5 scenario (Thomson et  al. 2011). The 
sea grid boxes are masked out by using the model-specific 
land-sea masks. Since in the analysis different model runs 
will be assumed to be independent, we chose only one 
model run per model family or institute. The models are 
summarized in Table 2.

2.2 � Observational data

The observational data used in this study is the TS 3.21 
high resolution monthly gridded data provided by Climate 
Research Unit (CRU). The data is based on station data, 
which have been interpolated to a regular 0.5 lon × 0.5 lat 
grid and can be accessed via the CRU website (http://www.

cru.uea.ac.uk/data). The Land-Sea mask provided by the 
CRU is used as a mask for land-surface temperatures. In 
this study we assume that the CRU observations represent 
the true climate. For a detailed description of the data, see 
Harris et al. (2014).

3 � Methods

In this paper, we consider the choice of bias model in 
Bayesian multi-model projection. More specifically, we 
apply cross-validation to find a value for the weighting 
parameter κ for the hybrid bias model proposed by Buser 
et  al. (2010a). This hybrid bias model is a combination 
of commonly used constant bias and constant relation 
assumptions and the parameter κ is a weighting parameter 
between these bias models.

Before going to the details of our cross-validation 
approach, we briefly outline the Bayesian multi-model pro-
jection methodology by Buser et al. (2010a), which forms 
the basis of the cross-validation approach.

3.1 � Notations

We follow the representation and notations of Buser et al. 
(2010a): X0,t denotes temperatures during the control 
period of the chosen reference model in year 1960+ t , 
t = 1, . . . ,T  (T = 45) and Y0,t denotes the correspond-
ing scenario temperatures in year 2045+ t, t = 1, . . . ,T . 
For the i’th model (i = 1, . . . ,Nm), the model outputs for 
the control period are denoted as Xi,t and for the scenario 
period as Yi,t.

3.2 � Bayesian multi model projections

As in Buser et  al. (2010a), the multi-model climate pre-
dictions are made using a Bayesian framework. For other 
Bayesian multi-model approaches, see Tebaldi et al. (2005), 
Tebaldi and Sansó (2009), Heaton et al. (2013). The idea is 
to construct a probability distribution for the scenario cli-
mate given all the available data:

In this approach, we specify the likelihood density p(D|Θ) 
where Θ is a set of model parameters (specified below). 
In Bayesian formalism, the model parameters Θ are also 
considered as random quantities and the prior distribution 
p(Θ) incorporates our prior beliefs about the parameters 
(also specified below).

Then the posterior distribution, given by the Bayes 
formula

D = {X0,t ,Xi,t , Yi,t; t = 1, . . . ,T , i = 1, . . . ,Nm}.

(1)p(Θ|D) ∝ p(D|Θ)p(Θ),

Table 1   The regions (SREX) used in this study

 The table also includes the mean temperatures μ0 of the regions for 
DJF (Northern Hemisphere winter) and JJA (Northern Hemisphere 
summer) seasons that are used as prior information in Bayesian mul-
timodel analysis (see Table 3). For the coordinates of region corners, 
we refer to Appendix 3.A of Seneviratne et al. (2012)

Label Number µ0 (
◦C)

DJF JJA

ALA 1 −24 10

CGI 2 −22 5

WNA 3 −4 18

CNA 4 0 24

ENA 5 −3 20

CAM 6 20 25

AMZ 7 25 25

NEB 8 25 25

WSA 9 14 9

SSA 10 23 12

NEU 11 −4 14

CEU 12 −2 18

MED 13 8 25

SAH 14 17 32

EAF 16 24 24

WAF 15 25 25

SAF 17 24 17

NAS 18 −24 14

WAS 19 8 28

CAS 20 −2 24

TIB 21 −12 15

EAS 22 −3 21

SAS 23 15 25

SEA 24 25 25

NAU 25 29 17

SAU 26 21 10

http://www.cru.uea.ac.uk/data
http://www.cru.uea.ac.uk/data
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gives a probability distribution for the parameters given the 
data.

Given the posterior probability density of the parame-
ters, the conditional probability distribution for the scenario 
climate is given by

The first task is to specify the distributions for historical 
and scenario temperatures given the parameters Θ, and also 
distributions for model predictions Xi,t and Yi,t given Θ.

3.3 � Distribution of data

The distribution of data is chosen in the same manner as 
in Buser et al. (2010a). All data is assumed to be normally 
distributed and mutually independent. The chosen statisti-
cal models for X0,t, Xi,t and Y0,t are:

(2)p(Y0,t|D) =

∫

p(Y0,t|Θ)p(Θ|D) dΘ .

(3)X0,t ∼N (µ+ γ (t − T0), σ
2)

(4)Xi,t ∼N (µ+ βi + (γ + γi)(t − T0), σ
2b2i )

(5)Y0,t ∼N (µ+∆µ+ (γ +∆γ )(t − T0), σ
2q2)

where T0 = (T + 1)/2. Centering the time around T0 
allows us interpret the parameter µ as the mean value of the 
temperature during the control period and the parameter γ 
represents the linear trend of temperature during the control 
period. The parameter σ represents the interannual standard 
deviation of the temperature during the control period. For 
the i’th model, the parameters βi and γi are additive biases 
during the control period and bi is the multiplicative bias 
in the interannual variation. The parameter ∆µ represents 
mean temperature change between the control and scenario 
periods, q is the change in the interannual variability and 
∆γ is the change in the trend.

In this paper we consider the choice of the model for the 
bias between the control and scenario period. A common 
choice for the change of bias is the constant bias assump-
tion (Buser et al. 2009, 2010b):

where ∆βi and ∆γi are additive changes in the biases 
between the control and scenario periods and qbi is the 
change in the multiplicative bias. In addition, ∆βi and 
∆γi are assumed to be close to zero, which means that the 

(6)

Yi,t ∼ N (µ+∆µ+ βi +∆βi

+ (γ +∆γ + γi +∆γi)(t − T0), σ
2q2b2i q

2
bi
)

Table 2   The CMIP5 climate 
models used in this study

i Model Institution

1 CSM1.1(m) Beijing Climate Center, China Meteorological Administration

2 BNU-ESM Beijing Normal University, China

3 CanESM2 Canadian Centre for Climate Modelling and Analysis

4 CMCC-CM Centro Euro-Mediterraneo per I Cambiamenti Climatici, Italy

5 CNRM-CM5 Centre National de Recherches Meteorologiques/Centre Europeen de 
Recherche et Formation Avancees en Calcul Scientifique

6 ACCESS-1.3 Commonwealth Scientific and Industrial Research Organisation (CSIRO), 
and Bureau of Meteorology (BoM), Australia

7 CSIRO-Mk3 CSIRO Atmospheric Research and Queensland Climate Change Centre of 
Excellence in Brisbane, Australia

8 FIO-ESM The First Institute of Oceanography, SOA, China

9 EC-EARTH EC-EARTH consortium

10 IPSL-CM5A-MR Institut Pierre-Simon Laplace, France

11 FGOALS-g2 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, 
and CESS, Tsinghua University

12 MIROC-ESM-CHEM Japan Agency for Marine-Earth Science and Technology,  
Atmosphere and Ocean Research Institute (The University of Tokyo), 
and National Institute for Environmental Studies, Japan

13 HadGEM2-ES Met Office Hadley Centre, UK

14 MPI-ESM-MR Max Planck Institute for Meteorology (MPI-M), Germany

15 CGCM3 Meteorological Research Institute, Japan

16 GISS-E2-H-CC NASA Goddard Institute for Space Studies, USA

17 CCSM4 National Center for Atmospheric Research (NCAR), USA

18 NorESM1-ME Norwegian Climate Centre

19 CESM1-CAM5 National Science Foundation, Department of Energy,  
National Center for Atmospheric Research, USA
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bias in the models is assumed to remain relatively stable 
between the control and scenario period. In other words, 
with the constant bias assumption, the models are assumed 
to predict the climate shift between the control and scenario 
period accurately. Another common bias model is the con-
stant relation assumption (Buser et al. 2009, 2010b) given 
by

With the constant relation bias model, a model which over-
estimates (or underestimates, resp.) the difference between 
a warm and a cold year (as characterized e.g. by the stand-
ard deviation) in the control period by the factor bi, is also 
assumed to overestimate (or underestimate) the climate 
change by the same factor. For more details about these 
bias models, we refer to Buser et al. (2009).

We adopt the hybrid bias model for the climate model 
outputs introduced in Buser et al. (2010a):

where the parameter κ takes values between 0 and 1. For 
κ = 0, the model corresponds to the constant bias model 
and for κ = 1, it corresponds to the constant relation model. 
In this paper, the task is to select κ by applying a cross-
validation approach.

Due to the independency assumption, the likelihood 
p(D|Θ) is the product of the Gaussian distributions (3)–
(5), (8),

(7)

Yi,t ∼ N (µ+ bi∆µ+ βi +∆βi

+ (γ + bi∆γ + γi +∆γi)(t − T0), σ
2q2b2i q

2
bi
).

(8)

Yi,t ∼ N (µ+∆µ+ βi +∆βi + κ(bi − 1)∆µ+ (γ +∆γ

+ γi +∆γi + κ(bi − 1)∆γ )(t − T0), σ
2q2b2i q

2
bi
)

3.4 � Prior distributions

We need to specify a prior distribution for all unknown 
parameters in the models (3)–(5) and (8). The prior dis-
tribution for the parameters is specified as in Buser et  al. 
(2010a). There are two types of parameters. The parameters 
µ, ∆µ, βi, ∆βi, γ, ∆γ, γi and ∆γi are related to the means of 
the normal distributions. It is a common practice to assume 
normal distributions for such parameters since this simpli-
fies the computations (e.g. see Gelman et  al. 2003). The 
other parameters σ 2, q2, b2i , and q2bi are related to the vari-
ances or multiplicative changes of the variances. It is com-
mon practice to work with the precisions (the inverses of 
the variances) and choose Gamma distribution as the prior 
distributions for such precision parameters (Gelman et  al. 
2003). Thus, as in Buser et al. (2009, 2010a), we consider 
the precision σ−2 as unknown. The same approach is also 
taken for the multiplicative factors q, bi and qbi.

The vector of the unknown parameters is

The parameter κ could also be added to Θ and estimated 
from the data; see Buser et  al. (2010a). However, for the 
cross-validation approach, the bias parameter κ is consid-
ered as known (auxiliary) parameter and not included to Θ.

All of these parameters are assumed to be mutually 
independent. Therefore only the marginal prior distribu-
tions, or more precisely the parameters of the Gaussian and 
Gamma distributions, have to be specified. The parameters 
are presented in Table  3. For µ, ∆µ, βi, γ, ∆γ, γi, q and 
bi , the parameters are chosen such that the distributions are 
almost flat and only values that are very far from the physi-
cal plausibility are excluded. Thus the posterior distribution 
for these parameters is mainly determined by the likelihood 
(i.e., the data). However, the parameters ∆βi, ∆γi and qbi 
are different due to an identifiability problem. For exam-
ple, if these parameters are allowed to vary significantly, 
a large value in ∆µ, ∆γ and σ could be compensated by 
opposite model bias changes ∆βi and qbi. To overcome the 
issue, the values of ∆βi and ∆γi are assumed to be small 

(9)

p(D|Θ) ∝

T
∏

t=1

1

σ
e
−

[X0,t−µ−γ (t−T0)]
2

2σ2

×

T
∏

t=1

Nm
∏

i=1

1

σbi
e
−

[Xi,t−µ−βi−(γ+γi)(t−T0)]
2

2σ2b2
i

×

T
∏

t=1

Nm
∏

i=1

1

σqbiqbi
e

−
[Yi,t−µ−∆µ−βi−∆βi−κ(bi−1)∆µ−...]2

2σ2q2b2
i
q2
bi .

Θ = (µ,∆µ,βi,∆βi, γ ,∆γ , γi,∆γi, σ
−2, q−2,

b−2
i , q−2

bi
; i = 1, . . . ,Nm).

Table 3   Parameters for the prior distribution p(Θ)

The mean temperatures µ0 for each region are listed in Table  1. 
N (µ, σ 2) is the normal distribution with the mean µ and the variance 
σ 2 and G(α,β) is the Gamma distribution with the shape α and rate β

Parameter Unit Distribution 95 % confidence interval

µ ◦C N (µ0, 25) µ0-9.8, µ0+ 9,8

∆µ ◦C N (0, 16) −7.8, 7,8

βi
◦C N (0, 16) −7.8, 7,8

∆βi
◦C N (0, 0.5) −1.4, 1.4

γ ◦C/yr N (0, 0.1) −0.6, 0.6

∆γ ◦C/yr N (0, 0.1) −0.6, 0.6

γi
◦C/yr N (0, 0.1) −0.6, 0.6

∆γi
◦C/yr N (0, 0.0005) −0.045, 0.045

σ−2 ◦C−2 G(0.1, 0.1) 0,9.8

q−2 G(0.1, 0.1) 0,9.8

bi
−2 G(0.1, 0.1) 0,9.8

q−2
bi

G(3, 3) 0.2,2.4
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and the values of the qbi to be close to unity. Therefore, nar-
row (more informative) distributions are chosen for the bias 
change terms.

The assumption that ∆βi and ∆γi are Gaussian and 
with a small variance is equivalent to the assumption that 
∑

i ∆β
2
i  and 

∑

i ∆γ 2
i  are small, conditions that are com-

monly used for regularisation in over-parameterized prob-
lems. On the other hand, we could consider parameters 
vi = ∆µ+ βi which would be identifiable. The Gaussian 
assumption given for βi corresponds to the priori assump-
tion that all vi’s are similar (highly correlated). See Buser 
et al. (2009) for more details.

3.5 � Integration of the posterior distribution

An explicit or numerical integration of the high dimen-
sional distributions is usually not possible. Therefore, 
as in Buser et  al. (2010a), we use Markov Chain Monte 
Carlo (MCMC) to compute approximations for the densi-
ties p(Θ|D) and p(Y0,t|D). More specifically, we use the 
Gibbs sampler (see e.g. Gilks et al. 1996) to compute sam-
ples from the posterior distribution p(Θ|D). With the Gibbs 
sampler, a set of samples is generated as follows. We start 
with some initial value

and set s = 0. First, we draw a sample µ(s+1) from the 
full conditional of µ (the distribution of µ conditioning all 
available information except the parameter itself):

We continue to the next parameter and draw ∆µ(s+1) from 
the full conditional of ∆µ

The procedure is continued until all parameters have been 
updated one at a time and we have Θ(s+1). We increase 
s ← s+ 1 and repeat the sample generation Ns times to 
obtain a set of samples {Θ(s)}

Ns

s=1. It is common to ignore 
a number of samples at the beginning (burn-in period) due 
to the fact that it takes time to converge to the stationary 
distribution p(Θ|D). For more details, see e.g. Gilks et al. 
(1996).

The generated samples give a discrete approximation for 
the posterior distribution

Θ(0) = (µ(0),∆µ(0),β
(0)
i ,∆β

(0)
i , γ (0), . . .)

(10)
p(µ|D,∆µ(s)

,β
(s)
1 ,β

(s)
2 , . . .) ∝ p(µ,∆µ(s)

,β
(s)
1 ,β

(s)
2 , . . . |D).

(11)

p(∆µ|D,µ(s+1),β
(s)
1 ,β

(s)
2 , . . .)

∝ p(µ(s+1),∆µ,β
(s)
1 ,β

(s)
2 , . . . |D).

(12)p(Θ|D) ≈
1

Ns − Nb

Ns
∑

s=Nb+1

δ(Θ −Θ(i))

where Nb is the length of the burn-in period and δ is the 
Dirac delta distribution. By Eqs. (12) and (2), the distribu-
tion of Y0,t given the data D has an approximation which 
can be formally written as

By (5), the distributions p(Y0,t|Θ(s)) are Gaussian with 
the mean µ(s) +∆µ(s) + (γ (s) +∆γ (s))(t − T0) and the 
variance σ (s)q(s). Hence, the conditional density of Y0,t 
can be approximated with a sum of the Gaussian densities 
p(Y0,t|Θ

(s)).
In general, the sampling from the full conditionals of 

p(Θ|D) is carried out numerically by evaluating the full 
conditionals on a grid and then sampling from this discrete 
distribution. The numerical sampling requires a large num-
ber of evaluations of the posterior distribution and a com-
putational implementation can be very slow. However, for-
tunately in our case the distributions are rather simple and 
it is a straightforward (but tedious) task to check that the 
full conditionals, except the conditional of b−2

i , are either 
Gaussian or Gamma distributions.1 The sampling from 
these distributions can be carried out directly using existing 
random number generators, which decreases the computa-
tional costs significantly. Sampling from the full condi-
tional of b−2

i  is carried out numerically in our implementa-
tion, but other approaches such as accept-reject sampling or 
a Metropolis update for b−2

i  can also be used (see e.g. Gilks 
et al. 1996).

3.6 � Cross‑validation approach

The cross-validation is a model validation technique, in 
which the basic idea is to partition the data into two sub-
sets: training set and testing set. In the validation, the train-
ing set is considered as known, available data and it is used 
to train the model (basically this may involve estimation of 
some parameters in the model using the data in the training 
set). The data in the testing set is considered as unknown 
scenario (future) data, which we wish to predict using the 
trained model. The performance of the model can be meas-
ured by comparing the model predictions to the testing 
data by using some metric such as the mean square error. 

(13)

p(Y0,t|D) ≈
1

Ns − Nb

Ns
∑

s=Nb+1

∫

p(Y0,t |Θ)δ(Θ −Θ(i)) dΘ

=
1

Ns − Nb

Ns
∑

s=Nb+1

p(Y0,t|Θ
(s)).

1  By the Bayes formula (1), the posterior distribution p(Θ|D) is the 
product of the likelihood distribution (9) and the prior distributions 
given in Table  3. For example, one can see that (10) and (11) are 
Gaussian densities by re-organizing the terms.
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Commonly, to reduce variability, the training and testing is 
repeated using different partitioning.

In this paper, we use so called leave-one-out cross-val-
idation for the selection of the bias parameter κ (see e.g. 
McQuarrie and Tsai 1998). A similar approach was also 
used in Räisänen et  al. (2010) and Räisänen and Ylhäisi 
(2012) to evaluate the potential effects of non-uniform 
climate model weighting on the quality of climate change 
projections. The cross-validation is used to find an opti-
mal value of the κ parameter in the hybrid model (8) in the 
sense that the distance between the climate model predic-
tions and the (simulated) scenario climate is minimized 
with respect to a chosen metric. The analysis will be car-
ried out separately for each SREX region and for summer 
and winter seasons.

The quality of a chosen bias model (or a choice of the 
parameter κ) can be measured using the cross-validation 
approach as follows. We choose the ℓ’th model to repre-
sent “the reality” such that temperatures during the control 
period are considered as the observational data of the his-
torical period and the predicted temperatures for the sce-
nario period are considered as “unknown data” of future 
temperatures. The Bayesian analysis is used to predict 
future temperatures that are then compared to the actual 
future temperatures of the ℓ’th model. For our primary 
measure of the distance between the predictions and the 
true climate, we use the Continuous Ranked Probability 
Score (CRPS) (see “Appendix”). This procedure is repeated 
by choosing all models as “the reality” one by one.

More specifically, the approach used in this paper can be 
presented as the following algorithm:

0.	 Fix the bias parameter κ.
1.	 Choose testing model ℓ ∈ {1, 2, ...,Nm} and substitute 

the observation and the future (unknown) data to be 

 and exclude Xℓ,t and Yℓ,t from the set of climate model 
data D.

2.	 Calculate the Bayesian multi-model predictions for Y0,t 
as described in Sect. 3.2. The resulting Markov chain 
approximates p(Y0,t|D) by Eq. (13).

3.	 Calculate CRPSℓ(κ) (see “Appendix” for details).
4.	 Repeat steps 1-3 until all of the Nm models have been 

used as the testing model.
5.	 Compute the mean of CRPSs: 

The mean CRPS(κ) can be considered as a measure of 
the quality of the bias model (or the bias parameter κ). 

X0,t ← Xℓ,t , Y0,t ← Yℓ,t

CRPS(κ) =
1

Nm

Nm
∑

ℓ=1

CRPSℓ(κ).

The optimal κ, in the sense of cross-validation, can be 
chosen by minimizing CRPS(κ) with respect to κ or, in 
practice, by repeating the above procedure for a discrete 
set of κ’s and choosing the κ with the smallest CRPS(κ).  
Later we call this κ as the cross-validated κ.

The cross-validation approach can also be applied 
using other scores. In this study, we have also car-
ried out computations using the logarithmic score 
LOG = − log p(Yobs

0,t |D) . The logarithmic score is another 
strictly proper score; see Gneiting and Raftery (2007). A 
comparison between these two alternative scores (CRPS 
and LOG) will be presented in Sect. 4.

4 � Results

The results are based on the Bayesian analysis described 
in Sect. 3. As in Buser et al. (2009), the length of Markov 
chains was chosen to be Ns = 500,000 samples where the 
first Nb = 100000 were discarded as the burn-in period. 
Then the sets of samples were thinned by taking only every 
tenth sample of the generated chain, i.e., the lengths of the 
final sample sets {Θ(s)} were 40000.

To check the convergence of the chains, we calculated 
the effective sample sizes of the chains that are based on 
approximative autocorrelation functions and represent the 
number of (effectively) independent samples in the chains. 
All of the chains have at least 200 effective samples and 
only 0.04 % of the all (more than 1.2 million) chains have 
less than 500 effective samples. We also studied conver-
gence by computing several chains for the same problems. 
The estimates of the parameters (the mean of the chains) 
were altered only slightly between subsequent MCMC 
runs. For example, the estimate of ∆µ for NEU/DJF was 
altered less than 0.2 % between subsequent runs.

4.1 � Cross‑validation

In the cross-validation, CRPSs were computed for 
κ = 0, 0.1, 0.2, . . . , 0.9, 1. The analysis was carried out 
separately for each SREX region and for the DJF (Northern 
Hemisphere winter) and JJA (Northern Hemisphere summer) 
seasons. The cross-validated values of κ for each region are 
shown in Figs. 1 (DJF) and 2 (JJA). Figure 3 shows CRPSℓ(κ) 
for each “reality model” as a function of κ including also the 
mean values CRPS(κ) (shown for the selected regions, see 
Fig. S1–S7 in the supplementary material for all regions).

The results show that the cross-validated κ can differ 
significantly between the summer and winter season, as 
well as between the regions.

However, regions with similar climate also have quite 
similar values for the bias parameter κ. Importantly, CRPS 
varies substantially between individual verifying models, as 
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can be seen from Fig.  3. In general, it is largest for mod-
els which are outliers in terms of the simulated climate 
change and whose future climate is therefore difficult to 
predict with our statistical model. Furthermore, the value 
of κ that is optimal in the ensemble mean sense does not 
always minimize CRPS for the individual models. This vari-
ation is important because only one realization of the future 
climate will be observed in the real world. Comparing with 
this large inter-model variation, the mean CRPS changes in 

some cases (e.g., NEU in DJF) negligibly with κ. This indi-
cates that the ensemble gives no guidance on the choice of κ 
in such cases, but does not unfortunately guarantee that the 
actual projection would be insensitive to κ (see NEU, DJF 
in Fig. 5 below). In other cases (e.g., CEU in JJA), the vari-
ation of the mean CRPS with κ might still have some practi-
cal significance, suggesting that values of κ that are close to 
the cross-validated optimum are more likely to lead to good 
climate projections than values far from this optimum.

Fig. 1   The cross-validated parameters κ that minimize CRPS (the boldface font) and LOG (the regular font) for DJF (Northern Hemisphere 
winter). The color coding corresponds to the CRPS values

Fig. 2   The cross-validated bias parameters κ that minimize CRPS (the boldface font) and LOG (the regular font) for JJA (Northern Hemisphere 
summer). The color coding corresponds to the CRPS values
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We also studied the uncertainty in the MCMC approxima-
tions by repeating the cross-validation approach several times. 
The mean CRPS curves for regions CEU, NEU and CGI in DJF 
for subsequent MCMC runs are shown in Fig. S8 in the sup-
plementary material. We note that the optimal values may vary a 
step (±0.1) between subsequent MCMC runs, or even two steps 
(±0.2) if the mean CRPS is very flat (e.g. CGI in DJF).

To compare different metrics, we have also carried 
the cross-validation analysis using the logarithmic score. 
The values of κ that minimize the CRPS and the logarith-
mic score are both shown in Figs. 1 and 2. Compared to 
CRPS, the logarithmic score tends to favor higher values 
of κ. This may be because (i) the logarithmic score is less 
tolerant against verifying observations that fall far in the 
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Fig. 3   CRPS values as a function of κ. Coloured solid lines are 
CRPSℓ(κ) for each “reality model” ℓ. The thicker black lines cor-
respond to the mean of the values. The crosses mark the minimum 
value for the each “reality model” ℓ and the vertical black line marks 

the cross-validated κ. The dashed lines corresponds to the mean 
of the CRPS value when the predictions are computed using the 
approach of Buser et al. (2010a) in which κ is also estimated
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tails of the predicted distribution, and (ii) the frequency of 
such cases tends to be reduced by increasing κ because the 
predicted distributions become wider, as can be seen from 
Fig. 5 below (to be discussed in more depth in Sec. 4.2).

Based on the assumptions behind the constant bias and con-
stant relation models, one could hypothesise that large values of 
κ would correspond to regions and seasons in which there is a 
strong correlation between the temperature increase between 
the control and scenario periods and the variability of the simu-
lated temperatures during the control period. To test this hypoth-
esis, we calculated (rough) estimates for correlations from 
the raw climate model output data using the following simple 
procedure. The temperature increase in the i’th model ∆µi 
is estimated as the difference between the means of the tem-
peratures of the scenario period Yi,1, . . . , Yi,45 and the control 
period Xi,1, . . . ,Xi,45. Furthermore, we calculate interannual 
variability in the i’th model by removing a linear trend from 
the temperatures Xi,1, . . . ,Xi,45 (using a linear least-squares fit) 
and by calculating σi as the ensemble standard deviation of the 
detrended data. This gives a set of pairs (µi, σi) for each model 
i = 1, . . . , 19 from which the correlation can be calculated. The 
procedure is carried out separately both for each region and for 
the summer and winter seasons. Figure  4 shows the correla-
tions for each region as a function of the cross-validated κ of 
the region. The figure shows that there is a linear dependency 
between the correlation and the cross-validated κ, as suspected.

The cross-validation approach can also be carried out 
for the approach proposed in Buser et al. (2010a), in which 
the parameter κ is included to the model parameters Θ 
and estimated from the data D along with all other param-
eters. Thus, instead of fixing κ, we compute the prediction 
p(Y0,t|D) using the approach of Buser et  al. (2010a) and 
compute CRPS values for these predictions. Figure  3 and 
Figs. S1–S7 in the supplementary material also include the 

means of the CRPS values computed using this approach. 
The average cross-validated CRPS for Buser’s approach 
tends to be slightly above the corresponding value for the 
cross-validated ”optimal” κ. However, the difference is gen-
erally small. Also note that this comparison is not fully fair 
because the optimal value was chosen ”after the fact”, i.e. 
after the cross-validation. For some regions and seasons, the 
use of the cross-validated κ can produce better predictions 
in terms of CRPS, but the difference may not be significant.

4.2 � Predictions from observational CRU data

To study the effect of the bias model to the predictions, we 
also computed multimodel predictions for different values 
of κ using the real CRU observational data (see Sect.  2.2). 
Bayesian multimodel predictions are computed as described 
in Sect. 3.2. Figure 5 shows the predictions for the mean tem-
perature change ∆µ between the control and scenario periods 
∆µ with 90 % confidence intervals (the intervals are estimated 
using the samples ∆µ(i)) for a selection of areas as a function 
of κ (for the complete set of the estimates, see Figs. S9–S35 
in the supplementary material). As can be seen, the bias model 
may have a significant effect on the predictions and also on the 
uncertainty intervals. However, the bias parameter κ does not 
have a significant effect to the estimates of the internal variabil-
ity parameters σ and q and the trend parameters γ and γ +∆γ.  
Similar observations were also made by Buser et al. (2010a).

In some cases, ∆µ either increases or decreases system-
atically with increasing κ, but this is not always the case. 
This likely depends on whether or not there is a systematic 
bias in the interannual variability in the models. For exam-
ple, if the models simulate too strong interannual variabil-
ity in an area, the constant relation framework (κ = 1) 
indicates that the models will also overestimate the long-
term climate change. Therefore, ∆µ becomes smaller than 
the temperature change simulated by the models (which is 
naturally close to ∆µ for the constant bias case (κ = 0)). 
However, when the simulated interannual variability is 
close to that observed, ∆µ remains close to the value 
directly simulated by the models even for large κ. As pro-
posed in Buser et al. (2010a), the parameter κ can also be 
included to the model parameters Θ and estimated from 
the data D along with all other parameters. To compare the 
estimated κ with the cross-validated κ, we have computed 
Bayesian multi-model predictions using the approach 
described in Buser et al. (2010a) (the prior model for κ is 
chosen to be uniform on the unit interval). Figure 6 shows 
the probability density functions (PDF) p(κ|D) (histo-
grams) for the selected areas.2 In most cases (exceptions 

2  Figures S35−S61 in the supplementary material show the estimates 
for each region and also estimates of the 2D joint histogram of the 
parameters ∆µ and κ for each region.
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Fig. 4   The cross-validated κ versus the correlation between tempera-
ture change ∆µ and variability σ for each region. The points corre-
sponding to DJF are marked with crosses (x) and JJA with circles (o). 
The black line is a linear fit to all of the points. The correlation coef-
ficient r = 0.87
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are discussed below), the cross-validated κ is reasonably 
close to either the mean or the maximum point of p(κ|D). 
This can also be seen from Fig. 7 which shows a signifi-
cant linear correlation between the estimated and the 
cross-validated κ. The parameters κ given by the 

cross-validation approach are in most cases slightly larger 
than the estimated parameters κ (both the mean and maxi-
mum points). In other words, the cross-validation approach 
has a slightly higher tendency towards the constant rela-
tion assumption.
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Fig. 5   The estimates of ∆µ as a function of the bias parameter κ for 
a selection of areas (all areas are shown in the supplementary mate-
rial). The circle corresponds to the means of the Markov chains 
{∆µ(i)} and the error bars correspond to 90  % confidence limits. 
The estimates corresponding to the parameter κ obtained through the 
cross-validation are marked with bold lines. The figure also includes 

estimates of ∆µ when κ is included as a parameter in the Bayesian 
approach: the gray solid horizontal line corresponds to the mean of 
∆µ and the dashed lines are 90  % confidence limits. The dashed ver-
tical gray line marks the estimate of κ obtained as the mean of the 
chain
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The reason for the larger values might be the following. 
First, the prediction method gives too narrow predictive 
distributions, in the sense that too many verifying observa-
tions fall in the tails. For example, this can be seen from 
the rank histograms which show a significant accumulation 
of observations to the tails of the predicted distributions 
(see Fig. S62 in the supplementary material). This problem 
is reduced by increasing κ, which increases the width of 
the predictive distributions. On the other hand, the Buser 
et  al. method tends to give wider predicted distributions 

by allowing for the uncertainty in κ. Thus, when κ is fixed 
without uncertainty, slightly higher values of κ are needed 
in our method to reduce the underdispersion of the pre-
dicted distribution. This underdispersion might also depend 
on the shape of the distributions assumed by the statistical 
model. Thus, it might be potentially alleviated by replacing 
the normal distributions in (3)–(8) with a distribution with 
heavier tails.

To compare the estimates of the temperature change 
∆µ , Fig.  5 includes also the estimates of ∆µ with 90  % 

Fig. 6   The forecasted prob-
ability density function of κ 
when κ is included to the set of 
the model parameters Θ in the 
Bayesian analysis. The mean is 
shown with a thin line and the 
cross-validated κ with a thick 
line
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uncertainty range when κ is included to the unknown 
parameters Θ. The means of ∆µ are similar to the esti-
mates of ∆µ for a fixed κ which is near the mean of κ. As 
expected, however, the uncertainty interval of ∆µ becomes 
slightly wider when κ is included as an unknown param-
eter. This is the case particularly when ∆µ is substantially 
affected by κ.

There are two notable exceptions, NEU and CGI in win-
ter (DJF), for which the cross-validation analysis favours 
much smaller values of κ than Buser’s et al method. How-
ever, the mean CRPS(κ) is very flat in these cases, mean-
ing that the cross-validated κ has a significant uncertainty. 
The forecasted PDFs for κ given by the Buser et al. (2010a) 
method are significantly concentrated on large values of κ. 
However, we found out that the estimates of κ given by the 
Buser et  al. (2010a) method may depend substantially on 
the selection of the models that are included to the climate 
model outputs. For example, for NEU in DJF, the PDF 
of κ for the Buser et al. (2010a) method becomes flat if a 
single model (CMCC-CM) is excluded (Fig. S63). When 
this model is included (Fig.  6), by contrast, the method 
strongly favors large values of κ. This is because much 
larger warming is simulated by the CMCC-CM model than 
the others in NEU in DJF, and this large warming is much 
more difficult to reconcile with small than large values of 
κ (note the increase in ∆µ with κ in this case in Fig.  5). 
The cross validation approach seems to be less sensitive to 
the CMCC-CM model: although the cross-validated κ is 
reduced from 0.2 to 0 when this model is excluded (Fig. 
S63), CRPS(κ) still remains flat. For similar reasons, the 
Buser et  al. method strongly favours large κ for CGI in 
DJF when including all models (Figs. S40), but not when 
excluding CanESM2 (Fig. S63). On the other hand, the 
cross-validated κ can also be sensitive to the selection of 
the models: for example, if FGOALS-g2 (the ascending 
curve in Fig. 3) is excluded from the analysis for NEU DJF, 
the cross validated κ increased from 0.2 to 0.7 (although the 
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Fig. 7   Left: the estimated κ (the mean of the MC chain) compared 
to the cross-validated κ from the cross-validation analysis for each 
region. Right: the maximum points of forecasted PDFs p(κ|D) (esti-
mated using a histogram from the MC chain) versus the cross-vali-

dated κ from the cross-validation. The points corresponding to DJF 
are marked with crosses (x) and JJA with circles (o). The solid lines 
are linear fits to the points and the dashed line is y = x. The correla-
tion coefficients are r = 0.72 (mean) and r = 0.76 (max)

Table 4   The first and second columns list the region and its index

The third and fourth columns show the relative decrease 
1−∆µκCV/∆µκ=0 (in percent) for the northern winter (DJF) and 
the northern summer (JJA), respectively. The boldface font indicates 
the warmer season in the area, except when the difference between 
DJF and JJA is very small. The last column represents values of the 
relative change presented in Christensen and Boberg (2013) for the 
warmest 50 % of months during 2071–2100

Area # DJF % JJA % Christensen and 
Boberg (2013)  (%)

ALA 1 5.4 26.7 7.7

CGI 2 2.9 −15.3 5.2

WNA 3 2.5 2.6 19.4

CNA 4 6.0 11.7 9.1

ENA 5 2.5 0.3 6.8

CAM 6 5.0 0.5 1.6

AMZ 7 5.7 21.0 16.1

NEB 8 14.9 15.2 22.4

WSA 9 0.2 −10.8 −1.2

SSA 10 4.0 3.3 −7.2

NEU 11 0.0 0.0 12.1

CEU 12 −4.6 15.2 19.4

MED 13 −0.8 −11.9 15.6

SAH 14 −0.3 5.1 18.2

WAF 15 3.9 3.8 −7.3

EAF 16 −1.0 20.8 0.3

SAF 17 4.7 12.5 −0.1

NAS 18 0.0 11.5 7.0

WAS 19 0.0 0.9 19.2

CAS 20 0.0 8.6 11.0

TIB 21 0.0 8.1 17.4

EAS 22 0.0 2.2 14.2

SAS 23 18.2 17.0 20.8

SEA 24 −2.3 4.2 5.2

NAU 25 10.4 0.0 13.4

SAU 26 −8.7 0.0 3.6
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mean CRPS(κ) still remains flat). Thus, the largest discrep-
ancies between our cross-validation method and the Buser 
et al. method appear to be associated with different sensi-
tivities to outlying models.

In an earlier study, Christensen and Boberg (2012, 2013) 
used regression between simulated present-day tempera-
ture variability and future temperature changes to infer 
how multi-model mean, constant-bias-model temperature 
change estimates should be adjusted to account for biases 
in simulated variability. In most regions, the adjustment 
reduced the estimated warm-season (warmest 50  % of 
months) warming. We conducted a similar analysis, com-
paring ∆µ between the cross-validated κ and the constant-
bias model (κ = 0) (Table 4). We also find that the warming 
is commonly reduced, particularly in JJA. The magnitude 
of this change, in some cases up to over 20  %, is similar to 
that reported by Christensen and Boberg (2013). However, 
at the level of individual regions, there is no detailed agree-
ment with their study. This relates probably both to differ-
ences in the ensembles used and those in methodology. In 
particular, Christensen and Boberg used the data for the 
warmest 50 % of months (for 2071-2100) simultaneously, 
thus including in their variability analysis a contribution 
from the seasonal cycle in addition to interannual variabil-
ity. Here, only interannual variability is considered.

5 � Conclusions and discussion

This paper considered Bayesian multi-model predictions 
or computation of the predictions for temperature change 
between control and scenario periods using an ensemble 
of model outputs. We have developed a cross-validation 
approach to find, in a specific sense, an optimal value for 
the parameter κ in the bias model proposed by Buser et al. 
(2010a). The key of the approach is to select one of the 
model outputs as “the reality” and predict the output using 
other climate model output. The predictions are then com-
pared to the actual outputs of the ”reality” model and the 
difference is measured using the CRPS. The procedure is 
repeated by selecting each climate model output as “the 
reality” one by one. The approach can also be applied to 
predictions of other variables such as precipitation.

The cross-validation approach was applied to the CMIP5 
dataset by considering separately all IPCC SREX regions 
(Seneviratne et al. 2012) and summer and winter seasons. 
The results show that the cross-validated bias parameter 
can vary significantly between the regions and seasons. 
This gives an indication that the pre-specification of a fixed 
bias model such that the commonly known constant bias 
assumption (corresponds to κ = 0) or the constant relation 

assumption proposed by Buser et al. (2009) (κ = 1) should 
be in principle avoided.

Buser et  al. (2010a) proposed an approach to estimate 
the bias parameter κ by including the parameter as one 
of the unknown parameters in the Bayesian multi-model 
approach. Our results show that there is a significant cor-
relation between the estimated κ and the cross-validated κ 
calculated using the proposed cross-validation approach. 
However, comparing to the estimated values of κ, the cross-
validated parameters κ are slightly larger favouring the 
constant relation assumption. These slightly larger values 
could perhaps be caused by too narrow predictive distribu-
tions, which are compensated by increasing κ in the cross-
validation analysis. This may indicate that the uncertainty 
is underestimated in the estimation which may be caused 
by, for example, too narrow prior distribution.

For several regions, the mean CRPS in cross valida-
tion depends only very weakly on κ. This indicates that the 
cross-validated κ may be very uncertain. This could indi-
cate that there is no single value for κ that would be suit-
able to model bias changes with all of the climate models 
included to the inference.

There were also two notable exceptions for which our 
method and Buser et al’s method give significantly differ-
ent results. Namely, for the regions NEU and CGI in win-
ter, our cross-validation analysis results in very small val-
ues of κ preferring constant bias assumption, but Buser’s 
et al method prefers large values of κ. On the other hand, 
we found out that the results of Buser’s method are sig-
nificantly changed if we exclude climate models predicting 
large winter warming. When such models are excluded, the 
difference of the approaches is greatly reduced.

Due to all these complications, our general conclusion 
is that predictions of future climate change should be pref-
erably computed using all approaches available (e.g. the 
method by Buser et  al. (2010a) and our cross-validation 
method). If all of the methods give similar predictions, the 
predictions could be trusted with more support. However, 
if the approaches yield significantly different predictions, 
the causes of the discrepancies should be investigated and 
studied further.

Finally we note that the CMIP5 dataset was chosen due 
to the large number of output of different models. However, 
due to the relatively low spatial resolution of many of these 
models, we found it prudent to only present the projections 
at the scale of the SREX regions. To obtain more spatially 
detailed predictions of temperature (or e.g. precipitation) 
change, the approach could be applied to regional climate 
model data (as in Buser et al. 2009, 2010a) or high-resolu-
tion general circulation model data if a large ensemble of 
such model output becomes available.
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Appendix

Continuous ranked probability score

Let x be a scalar variable (e.g. 2 m-temperature). Suppose 
that a probability function forecast of x is given by p(x) and 
we have also an observation xobs of the x. The Continuous 
Ranked Probability Score (CRPS) (Stanski et  al. 1989; 
Hersbach 2000; Candille and Talagrand 2005; Grimit et al. 
2006) is defined as

where Ppred(x) =
∫ x

−∞
p(x′) dx′ is the cumulative distribu-

tion function of p(x) and Pobs is the cumulative distribution 
function for the observation:

where H is the Heaviside function (H(x) = 1 if x ≥ 0 and 
0 otherwise).

In this paper, the “distance” between the predictions of 
the future temperatures Y0,t (when ℓ’th model is taken as 
the “truth” in the cross-validation) and the actual future 
temperatures Yℓ,t is measured using the CRPS. The (total) 
CRPS score is calculated as the mean of CRPSs calculated 
for every year t = 1, . . . ,T . By Eq. (13), the prediction dis-
tribution is a (weighted) sum of Gaussian distributions and 
the CRPS for such Gaussian mixture model can be calcu-
lated in closed form using an expression given in Grimit 
et al. (2006).
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