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1 Introduction

Extreme events have large and potentially adverse impacts 
on human and natural systems. As such, reliable projec-
tions of future climate extremes are essential for the devel-
opment and implementation of effective adaptation strate-
gies. Coarse resolution global climate models (GCMs) are 
often used to develop and examine projected changes in cli-
mate extremes (Field et al. 2012). Confidence in the direc-
tion and magnitude of climate projections stem partially 
from reliable simulations of the current climate (Senevi-
ratne et al. 2012), yet the coarse resolution of GCMs means 
they cannot provide information on climate extremes at a 
spatial scale required by many users of climate information 
(Giorgi et al. 2009). Regional climate models (RCMs) are 
used to downscale GCMs to a higher resolution that gener-
ates more regionally relevant climate information, beyond 
that of the driving model (Feser 2006). The nesting of 
RCMs in reanalysis products allows them to be evaluated 
against the past in a way that GCMs cannot be. As such, 
RCM evaluation and improved understanding of a model’s 
ability to simulate extreme events in the current climate is a 
key research challenge.

Climate extremes are often studied in one of two ways, 
either through the use of extreme value theory (Kharin 
et al. 2007, 2013), or by using indices of climate extremes 
(Zhang et al. 2011). Here we have followed the World 
Meteorological Organisation’s Expert Team on Climate 
Change Detection and Indices (ETCCDI) to calculate 
extreme indices from daily rainfall and temperature data 
(Zhang et al. 2011).

Abstract We assess the ability of two Canadian regional 
climate models (RCMs), CanRCM4 and CRCM5, to sim-
ulate North American climate extremes over the period 
1989–2009. Both RCMs use lateral boundary conditions 
derived from the ERA-Interim reanalysis and share the 
same dynamical core but use different nesting strategies, 
land-surface and physics schemes. The annual cycle and 
spatial patterns of extreme temperature indices are generally 
well reproduced in both models but the magnitude varies. 
In central and southern North America, maximum tempera-
ture extremes are up to 7 °C warmer in CanRCM4. There 
is a cool bias in minimum temperature extremes in both 
RCMs. The shape of the annual cycle of extreme rainfall 
varies between simulations. There is a wet bias in CRCM5 
extreme rainfall on the west coast throughout the year and in 
winter rainfall elsewhere. In summer both RCMs have pre-
cipitation biases in the south-east. These rainfall and tem-
perature biases are likely associated with differences in the 
physical parameterisation of rainfall. CanRCM4 simulates 
too little convective rainfall, while over-estimating large-
scale rainfall; nevertheless, cloud cover is well simulated. 
CRCM5 simulates more large-scale rainfall throughout the 
year on the west coast and in winter in other regions. The 
spatial extent, intensity and location of atmospheric river 
(AR) landfall are well reproduced by the RCMs, as is the 
fraction of winter rainfall from AR days. Spectral nudging 
improves agreement on landfall latitude between the RCM 
and the driving model without greatly diminishing the inten-
sity of the rainfall extreme.
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The need for reliable climate information on a local or 
regional scale is a central issue addressed by the COordi-
nated Regional climate Downscaling EXperiment (COR-
DEX) framework (Giorgi et al. 2009). In North America, 
CORDEX follows on from the North American Regional 
Climate Change Assessment Program (NARCCAP), the 
first coordinated regional climate change assessment pro-
gram for the continent (Mearns et al. 2009). Assessment 
of model performance using ‘perfect boundary conditions’ 
from reanalysis products is a key part of the CORDEX 
Model Evaluation Framework (Giorgi et al. 2009).

The focus here is on the simulation of North American 
climate extremes by two CORDEX generation Canadian 
RCMs, “CRCM5” and “CanRCM4”. Both models use lateral 
boundary conditions derived from the ERA-Interim reanaly-
sis (Dee et al. 2011). Previous research has evaluated both 
NARCCAP and CORDEX generation RCMs in the current 
climate. Mean seasonal temperature in both summer and win-
ter was reproduced well by the NARCCAP suite of models 
when run with ‘perfect boundary conditions’. Less skill is 
generally found for precipitation, but a previous version of 
the CRCM was found to have the lowest precipitation bias 
over North America, even outperforming the ensemble aver-
age in several seasons (Mearns et al. 2012). Extreme monthly 
cool-season precipitation in the NARCCAP suite of RCMs 
is well simulated for the south-west coast of North America 
and in the upper Mississippi River basin, with a dry bias in 
the previous version of the CRCM compared to observations 
(Gutowski et al. 2010). From the CORDEX suite of RCMs, 
daily mean, 5th and 95th percentile rainfall and temperature 
in CRCM5 has been evaluated compared to ERA-Interim and 
other observational data sets (Martynov et al. 2013; Šeparović 
et al. 2013). These studies show that CRCM5 was able to 
reproduce the current climate reasonably well. However, in 
winter there is a cool bias in mean temperature and a wet bias 
in mean rainfall over western and southern North America, 
in the Central, South, PNW and PSW regions (see Table 1 
for region names, Šeparović et al. 2013). Mean temperature 

is also biased low over the Rocky Mountains in summer and 
throughout the year in Mexico (Martynov et al. 2013).

Atmospheric rivers (ARs) have a large impact on the west 
coast of North America in winter. They are long (>2000 km), 
narrow (<1000 km) corridors of concentrated water vapor that 
transport moisture from the tropics to higher latitudes (Det-
tinger et al. 2011; Lavers and Villarini 2013; Neiman et al. 
2008a, b; Newell et al. 1974). ARs are an important source of 
rainfall, particularly in mountainous regions and are also asso-
ciated with extreme rainfall that can cause flooding, landslides 
and loss of property and life. The impact of ARs on extreme 
rainfall has been well established on the west coast from the 
observational record (Dettinger 2013; Dettinger et al. 2011; 
Weller et al. 2012, 2013). Differences between the simula-
tions of extreme rainfall in models may be associated with the 
high uncertainty in the sign and magnitude of rainfall projec-
tions (Pierce et al. 2013). However, regardless of the driving 
model’s projections, it is important to also assess the ability 
of regional climate models to reproduce the extreme rainfall 
events that are associated with ARs. Simulations using bound-
ary conditions from reanalysis allow us to evaluate how well 
these processes are simulated by RCMs. This gives an indica-
tion of how confident we can be in the RCM simulation of an 
AR event, given AR conditions in the driving model. The sim-
ulation of ARs has been assessed in other RCMs, such as the 
Weather Research and Forecasting (WRF) model (Kim et al. 
2013a; Leung and Qian 2009). When using boundary condi-
tions from NCEP2 (Kanamitsu et al. 2002), WRF was able to 
adequately simulate mean and extreme precipitation, and the 
precipitation anomalies associated with AR events (Kim et al. 
2013a; Leung and Qian 2009). However, the ability of Can-
RCM4 and CRCM5 to simulate rainfall associated with AR 
events remains unknown. In addition, the availability of two 
CanRCM4 simulations that differ only in the use of spectral 
nudging allows examination of the impact of nudging on the 
simulation of extremes and the impact of ARs.

Here we assess how well these two Canadian RCMs sim-
ulate extreme temperature and rainfall in North America. It 

Table 1  List of large Bukovsky 
regions with the smaller regions 
they are comprised of and their 
abbreviations in the text

See Fig. 1 for the extent of regions

Name of composite region Names of original Bukovsky regions Abbreviation

Pacific North-West Pacific North-West PNW

Pacific South-West Pacific South-West PSW

Mountain West North, South Rockies, Great Basin MtWest

Northern North America East and West Taiga, Central, West,  
East Tundra, East and West Boreal

NNA

Desert Southwest, Mezquital Desert

Central North America North, Central, South Plains, Prairie Central

Eastern North America Appalachia East

Southern North America Southeast, Deep South South

Western North America NA WNA
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is important to understand where each RCM is skilful and 
where biases remain. A discussion of biases requires some 
‘truth’ against which the RCM can be compared; as such we 
highlight several instances of uncertainty in the comparison 
data sets (observationally-based and reanalysis products). In 
addition, it is critical to understand why these biases exist, 
particularly as they relate to climate extremes as small biases 
in mean climate can be amplified in the tails of the distribu-
tion. The study of CanRCM4 and CRCM5 in particular has 
the potential to provide useful insights concerning the causes 
of biases as they share the same dynamical core. This allows 
us to focus questions on the differences in their physics 
packages and nesting strategies. Furthermore, it is important 
to evaluate a model’s ability to simulate climate features that 
are associated with extreme events. As yet there has been no 
evaluation of CanRCM4, or of extreme indices or atmos-
pheric rivers in either model. The next section outlines the 
models and methods used, followed by results and discus-
sion in Sect. 3. Conclusions are outlined in Sect. 4.

2  Materials and methods

2.1  Models and data sets

Model simulations were assessed over the period 1989–
2009. Both models share the same dynamical core (Zadra 
et al. 2008), with further descriptions of configurations 
for CRCM5 in Martynov et al. (2013) and Šeparović et al. 
(2013), while CanRCM4 is described in Scinocca et al. 
(2015), von Salzen et al. (2013) and Diaconescu et al. (2014). 

A summary of configurations is given in Tables 2 and 3. One 
CRCM5 simulation and four CanRCM4 simulations are dis-
cussed throughout (see Tables 2, 3 for descriptions of the 
RCM simulations). Lateral boundary conditions for CRCM5 
and the CanRCM4 simulation that is the main focus of this 
work were sourced from ERA-Interim reanalysis (Dee et al. 
2011) for the study period. CRCM5 is representative of an 
independent RCM where physics packages from the driving 
model and the RCM do not match. On the other hand, Can-
RCM4 exists within a program of coordinated model devel-
opment so that it shares the same physics schemes as the 
global model, CanESM2 (Scinocca et al. 2015). CanESM2 
drives all the prognostic variables in CanRCM4 on the lateral 
boundary. To achieve this in a reanalysis driven run, spectral 
relaxation is used to nudge CanESM2 towards ERA-Interim 
reanalysis. See Scinocca et al. (2015) for more details on this 
procedure. One CanRCM4 simulation is also forced with 
boundary conditions from CanESM2 that have been relaxed 
towards NCEP2 reanalysis (“CanRCM4-NCEP2”). 

Both RCMs use a rotated pole grid (83.0°W and 42.5°N). 
The CRCM5 and CanRCM4 simulations that are the main 
focus of this work use a horizontal resolution of 0.44°. An 
additional ERA-Interim driven CanRCM4 simulation has a 
resolution of 0.22° (“CanRCM4-0.22”). If no further infor-
mation is given when referring to CanRCM4, then the 0.44° 
simulation with boundary conditions from ERA-Interim is 
being discussed (“CanRCM4”). CRCM5 and one CanRCM4 
simulation (“CanRCM4-NS”) have a free interior. All other 
CanRCM4 simulations use spectral nudging for scales larger 
than 1000 km. In these runs, relaxation is employed on u, v 
and T with a uniform time scale of 24 h from the top of the 

Table 2  Model configurations for the primary CanRCM4 simulation and CRCM5

Configurations of other CanRCM4 simulations are outlined in Table 3

Model CanRCM4 (1989–2009) CRCM5 (1979–2010)

Time-step 20-min 20-min

Dimensions (x, y) 155, 130 172, 160

Vertical levels 32 56 terrain-following levels

Physics schemes 1. Convection: Zhang and McFarlane (1995), von Salzen 
et al. (2005)

2. Radiation: Li and Barker (2005), Barker et al. (2008), 
Pincus et al. (2003)

3. Gravity wave drag: Scinocca and McFarlane (2000)
4. Microphysics: Lohmann and Roeckner (1996),  

Rotstayn (1997) and Khairoutdinov and Kogan (2000)
5. Planetary boundary layer: Abdella and McFarlane  

(1997)
See Scinocca et al. (2015) for description of CanRCM4 

or von Salzen et al. (2013) for further details on physics 
schemes that are shared with CanAM4

1. Convection: Kain and Fritsch (1990), a transient version 
of Kuo (1965) scheme (Bélair et al. 2005)

2. Radiation: Li and Barker (2005)
3. Gravity-wave drag: McFarlane (1987)
4. Low-level orographic blocking: Zadra et al. (2003)
5. Planetary boundary layer: Benoit et al. (1989), Delage 

and Girard (1992) and Delage (1997)
See Martynov et al. (2013) and Šeparović et al. (2013) for 

further descriptions of CRCM5

Land-surface scheme CLASS version 2.7: 3 soil layers,  
maximum depth of 4 m (Verseghy 1991)

CLASS version 3.5: 26 soil layers,  
maximum depth of 60 m (Verseghy 1991)

Nesting Spectral nudging for scales > 1000 km  
(von Storch et al. 2000)

Free interior
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model to ~850 hPa and then smoothly increased towards the 
surface (Scinocca et al. 2015).

The model simulations were compared to several observa-
tion based data sets, (1) area-averaged station data from the 
Global Historical Climatology Network-Daily (GHCND) 
(Menne et al. 2012), (2) the HadEX2 data set that is largely 
based on GHCND stations for North America but uses a more 
complex aggregation method (Donat et al. 2013) and (3) a 
merged daily precipitation and temperature data set (ANUSP-
LIN + Livneh). Two reanalysis products were also used in 
the evaluation, (1) the North American Regional Reanalysis 
(NARR, 0.33°) (Mesinger et al. 2006) and (2) ERA-Interim 
(1.5°). HadEX2 uses a subset of high-quality GHCND sta-
tions plus several other sources of extremes indices (Donat 
et al. 2013) while the area-averaged series is based on all 
available GHCND stations. The ANUSPLIN + Livneh data 
set combines two data sets. First is the Canada-wide 1/12th 
degree ANUSPLIN data set that has daily gridded precipita-
tion and temperature values (McKenney et al. 2011). Second 
is the 1/16th degree daily gridded precipitation and temperature 
product for the continental United States (Livneh et al. 2013). 
The Livneh data set is smoothed to the resolution of ANUSP-
LIN before the data sets are concatinated and bias corrected so 
that the long-term monthly means match the WorldClim clima-
tology (Hijmans et al. 2005). The ANUSPLIN + Livneh data 
set was interpolated to the 0.44° rotated pole grid of the RCMs.

There are issues and limitations in using these data sets 
for comparison to the RCMs. Firstly, models do not sim-
ulate at the station scale; so comparison with GHCND is 
limited, particularly in regions with lower station coverage. 
Also, uneven spatial distribution of stations in the regions 
remains an issue. Secondly, despite bias correction to 
minimise discontinuities at the border, some discrepancies 
remain in the ANUSPLIN + Livneh data set.

Thirdly, an issue in using the reanalysis products for com-
parison is that in these products temperature is a ‘Type B’ 
variable. These are variables that are constrained directly by 
assimilated observations but for which the model also has a 
considerable influence (Kalnay et al. 1996). Type B variables 
should be used with caution; however, there is even greater 
uncertainty in the use of ‘Type C’ variables, which are only 
weakly constrained in the model by assimilated observations 

(Kalnay et al. 1996). Typically, precipitation would be consid-
ered to be a ‘Type C’ variable. However, in NARR, precipita-
tion observations are assimilated to adjust accumulated con-
vective and grid-scale precipitation, latent heating, moisture 
and cloud fields based on differences between modelled and 
observed hourly precipitation estimates (West et al. 2007). This 
ensures a more realistic representation of precipitation than if 
precipitation forecasts were based solely on the model (Mes-
inger et al. 2006), and renders a representation of precitation 
that is arguably better than ‘Type C’ over at least parts of the 
NARR domain. NARR precipitation agrees more closely with 
a combined rain gauge and satellite estimate of continental 
United States rainfall than ERA-Interim, likely because NARR 
assimilates rainfall data and ERA-Interim does not (Pan et al. 
2010). Good agreement has been found between NARR simu-
lated and observed precipitation over the continent, includ-
ing regions with complex topography such as western North 
America (Mesinger et al. 2006). Furthermore, the estimate of 
precipitation interannual variability in NARR is reliable (Mes-
inger et al. 2006). Precipitation in all seasons over the conti-
nental United States was well reproduced compared to other 
reanalysis products and a monthly gridded observation product 
(Bukovsky and Karoly 2009). However there is less confidence 
in the product outside the USA where fewer observations are 
assimilated (Bukovsky and Karoly 2009). Winter atmospheric 
transport and precipitation in NARR is realistic compared 
to satellites and the sub-tropical jet streams and lower tropo-
spheric moisture transport are simulated well (Mo et al. 2005). 
In summer, simulation of the North American monsoon in 
NARR is comparable to observations (Mo et al. 2005). How-
ever several issues with NARR have been identified. Spurious 
grid-scale precipitation, an issue for many mesoscale climate 
and weather models, has also been identified in NARR (West 
et al. 2007). There is an over-estimation of the Gulf of Cali-
fornia low-level jet in summer (Mo et al. 2005) and an under-
estimation of precipitation in northern oceanic cyclonic regions 
(Mesinger et al. 2006). Finally, sparse station density in Canada 
results in poorer agreement with observations (Mesinger et al. 
2006).

Although reanalysis products do not likely provide 
‘observational’ quality estimates of precipitation, NARR 
remains the best continent-wide dataset for comparison 

Table 3  The abbreviation, spatial resolution and boundary conditions used in the CanRCM4 simulations

All other configurations are as listed in Table 2

Abbreviation Spatial resolution (°) Boundary conditions Domain size Interior Time-step (min)

CanRCM4 0.44 ERA-Interim 155 × 130 Spectral nudging 20

CanRCM4-NS 0.44 ERA-Interim 155 × 130 Free 20

CanRCM4-0.22 0.22 ERA-Interim 310 × 260 Spectral nudging 10

CanRCM4-NCEP2 0.44 NCEP2 155 × 130 Spectral nudging 20

CRCM5 0.44 ERA-Interim 172 × 160 Free 20
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with RCMs due to the high agreement with observations 
and as no single gridded daily observed product currently 
exists for the North American continent. NARR has been 
used as a comparison data set in several RCM evaluation 
studies (Bowden et al. 2013; Bukovsky and Karoly 2009). 
Thus, while it is reasonable to use NARR for comparison 
of precipitation, we nevertheless expect larger differences 
than for temperature, due to the uncertainty associated 
with the data set, the more heterogeneous nature of rainfall 
and the weaker observational constraint outside of the con-
tinental United States. Finally, while there is uncertainty 
in using reanalysis products as comparison data sets, it 
should be noted that different gridded observational prod-
ucts can disagree considerably over some regions, such 
as over the Canadian Columbia river basin (Murdock and 
Sobie 2013).

2.2  Methods

We have followed the ETCCDI and calculated nine extreme 
indices (Zhang et al. 2011). The indices (Table 4) were cal-
culated from daily precipitation, maximum and minimum 
temperature for all CanRCM4 simulations, CRCM5, NARR, 
ERA-Interim and ANUSPLIN + Livneh. HadEX2 indices 
were obtained from www.climdex.org. For the area-averaged 
station series, indices were calculated on each station indi-
vidually and then combined for each region, consistent with 
HadEX2. Indices were calculated using the ‘climdex.pcic’ 
package (Bronaugh 2014) in the ‘R’ statistical computing 
environment (R Development Core Team 2014).

Grid cells representing the ocean on the native grid of 
each simulation were removed. In the continental analy-
sis, indices from each data set were then re-gridded to the 
CORDEX North America rotated pole grid using bilinear 
interpolation from the climate data operators (CDO 2013). 
In the regional analysis, indices from each simulation were 
first divided into Bukovsky regions that were adapted to 
the models’ native grids (Fig. 1; Table 1, Bukovsky 2011). 
All data sets were then re-gridded to the CORDEX North 
America grid.

In the continental analysis, spatial patterns are compared 
across averages of the annual indices. In the regional anal-
ysis, indices are spatially and temporally (for each month) 
averaged to compare the annual cycles and distribution of 
monthly indices. The differences, or discrepancies, between 
the RCMs and comparison data sets (ANUSPLIN + Livneh, 
GHCND, HadEX2, NARR, ERA-Interim) are discussed. 
The term ‘bias’ is often used in this context, although it 
should be noted that the term is not strictly applicable when 
comparing RCMs to the reanalysis products and that it does 
not necessarily mean a deficiency, although reasonable 
judgements about which is ‘better’ are sometimes implied.

Daily convective and large-scale rainfall (total precipita-
tion minus convective rainfall) was compared across the 
RCMs, NARR and ERA-Interim. The annual cycle and dis-
tributions of monthly precipitation types was analysed simi-
larly to the regional indices. Precipitation is a forecast field in 
ERA-Interim, so daily convective precipitation amount is the 
12-h forecast of twice-daily accumulated convective precipi-
tation. In both reanalysis products, convective precipitation is 
determined from a convective parameterization. The assimi-
lation of observed precipitation values in NARR allows this 
product to capture precipitation maximums associated with 
convective precipitation events (Bukovsky and Karoly 2007). 
However, the limitations of this analysis should be noted, as 
this section essentially compares four convection schemes, 
although greater confidence may be placed in NARR.

Atmospheric river days (ARs) are defined from ERA-
Interim daily, integrated water vapor transport (IWVT). 
On each day, the grid box along the North American coast 
(from 31.5° to 52.5°N) with the maximum IWVT is identi-
fied (Fig. 2). If this maximum value was above a threshold, 
neighbouring grid boxes were assessed to find the next largest 
IWVT value. This process was repeated until no pixels over 
the threshold were found or an IWVT plume over 2000 km 
long and less than 1000 km wide was identified. Days where 
such a plume was found were labelled atmospheric river days. 
Two threshold values were tested; firstly a lower threshold of 
250 kg/m/s was selected so that the frequency of ARs defined 
using daily IWVT was comparable to that from 6-hourly 

Table 4  Extreme indices Name (Abbreviation) Definition

Hottest day (TXx) Monthly maximum value of daily maximum temperature

Coolest day (TXn) Monthly minimum value of daily maximum temperature

Warmest night (TNx) Monthly maximum value of daily minimum temperature

Coolest night (TNn) Monthly minimum value of daily minimum temperature

Maximum 5-day rainfall (Rx5day) Monthly maximum five-day rainfall in non-overlapping 
periods

Number of days with rainfall > 10 mm  
(R10mm)

Annual count of days with rainfall over 10 mm

Precipitation intensity (SDII) Daily precipitation on days with rainfall over 1 mm

Total precipitation (PRCPTOT) Annual total precipitation on days with rainfall over 1 mm

http://www.climdex.org
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observed rainfall data (Rutz et al. 2013). Additionally, a higher 
threshold of 500 kg/m/s was used to select only the strongest 
AR events, as shown in the mean IWVT of each set of AR days 
(Fig. 2). A study region called Western North America (WNA, 
30°–65°N, 220°–260°E) was defined for the RCMs, NARR 
and ERA-Interim. Similar regions have been used previously to 
study ARs (Weller et al. 2012). In this region, we evaluate the 
ability of the RCM to reproduce the location of AR landfall, the 
intensity of the event and the percentage of total winter rain-
fall that is attributed to AR days. The location of AR landfall is 
quantified by taking the zonal average over the coastal strip on 
AR days. The maximum of this zonal average is the location 
of AR landfall. The probability density function of the pixels 
surrounding this coastal zonal maximum gives an indication of 
relative intensity of AR events in each data set.

3  Results and discussion

3.1  Temperature extremes

3.1.1  Hottest day (TXx)

The spatial pattern of annual-averaged extreme temperature 
is generally well reproduced by CRCM5 and CanRCM4 

compared to ANUSPLIN + Livneh and NARR (not shown). 
However, the magnitude of temperature extremes varies 
between simulations, despite use of the same lateral bound-
ary conditions and the spatially coherent nature of temper-
ature. There are statistically significant differences in the 
spatial pattern of average annual TXx simulated by both the 
RCMs compared to ANUSPLIN + Livneh, while the reanal-
ysis products agree well with observations over most of the 
continent excluding western Canada where both RCMs and 
reanalysis products are cooler than ANUSPLIN + Livneh 
(Fig. 3). Differences between reanalysis products and 
ANUSPLIN + Livneh highlights observational uncertainty 
that may stem from a lack of stations in northwestern Can-
ada (McKenney et al. 2006, 2011). Compared to ANUSP-
LIN + Livneh, the warm bias in all CanRCM4 simulations 
covers most of the continent, extending over the central 
plains, California and southeastern Canada (Fig. 3). The 
largest differences compared to observations are found in the 
Great Plains where the bias is up to 12 °C. The magnitude of 
this bias exceeds the mean summer temperature bias reported 
for CanRCM4 of up to 6 °C in the central United States 
(Scinocca et al. 2015). CRCM5 captures the magnitude of 
annual-averaged TXx in southern and western US and in 
most of Canada but is too warm in the central US (Fig. 3). 
Generally there is little difference in the simulation of TXx 

Fig. 1  Regions used in this 
study on the CORDEX grid, 
with GHCN-Daily stations 
marked with ‘dot’. See Table 1 
for full region names
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between the various CanRCM4 simulations (Table 3) over 
most of the continent. This suggests that boundary conditions 
(CanRCM4 and CanRCM4-NCEP), resolution (CanRCM4 
and CanRCM4-022) and spectral nudging (CanRCM4 and 
CanRCM4-NS) have limited influence on the annual cycle of 
temperature in CanRCM4 (except in the PNW region as will 
be mentioned subsequently), while factors common to the 

model simulations (e.g. physical parameterisations or land-
surface scheme) have a strong influence on the simulation of 
extreme temperature.

There is more agreement in the simulation of annual 
TXx in CRCM5 with NARR than there is between 
CanRCM4 and the comparison data sets in all regions 
and the whole continent (Table 5a, b). Compared to 
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(black, left) and 250 (grey, right) kg/m/s
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Fig. 3  Averages of annual TXx difference from ANUSP-
LIN + Livneh in a CanRCM4, b CanRCM4-022, c CanRCM4-noSN, 
d CanRCM4-NCEP2, e CRCM5, f NARR, g ERA-Interim, h annual 

mean in ANUSPLIN + Livneh. Stippling in a–g indicates pixels 
where differences are not significant at the 5 % significance level 
from a Student’s t-test
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ANUSPLIN + Livneh, the lowest RMSE values are found 
with CRCM5 in the East (0.9 °C) and South (1.1 °C) 
regions, while both RCMs have low RMSE in the NNA 
(1.0 °C for CanRCM4 and 1.4 °C for CRCM5, Table 5b). 
CanRCM4 has large discrepancies in the Central (7.0 °C 
from ANUSPLIN + Livneh, and 6.1 °C from NARR) and 
PNW (3.0 °C from ANUSPLIN + Livneh, and 2.4 °C from 
NARR) regions (Table 5a, b).

The shape of extreme temperature annual cycles is 
generally well reproduced by all model simulations in all 

regions (Fig. 4). For TXx, the best agreement between 
comparison data sets (ERA-Interim, NARR, GHCND, 
ANUSPLIN + Livneh, HadEX2) and the RCMs is in the 
Mt West region (Fig. 4c). For the model simulations in the 
mountainous PNW region, the annual cycle of summer 
TXx is separated by resolution, as higher elevations in the 
higher-resolution models are associated with cooler tem-
peratures; CanRCM4-0.22 (grid resolution of 25 km and 
mean elevation of 763 m) and NARR simulate the lowest 
extreme summer temperatures, followed by CanRCM4, 

Table 5  The regional root mean square error between (a, d) NARR and CanRCM4/CRCM5, (b, e) ANUSPLIN + Livneh and CanRCM4/
CRCM5 and (c, f) RCMs (CanRCM4 with CRCM5) / Observations (NARR with ANUSPLIN + Livneh) for annual TXx (left) and TNn (right)

Region TXx (°C) TNn (°C)

(a) NARR:
CanRCM4/CRCM5

(b) ANUSPLIN:
CanRCM4/CRCM5

(c) RCMs/ 
Observations

(d) NARR:
CanRCM4/CRCM5

(e) ANUSPLIN:
CanRCM4/CRCM5

(f) RCMs/
Observations

PNW 2.4/1.6 3.0/4.4 1.9/5.3 5.1/2.4 1.7/4.3 3.3/6.0

PSW 3.6/1.0 3.1/6.1 3.1/6.6 3.5/2.5 4.5/5.6 1.5/7.9

MtWest 4.8/2.7 2.7/0.9 2.4/2.2 8.5/7.6 3.8/3.2 2.0/4.8

NNA 2.0/0.9 1.0/1.4 2.2/1.2 4.3/4.3 0.7/1.1 1.0/4.6

Desert 4.7/1.1 1.8/2.3 3.9/3.0 5.4/4.7 3.2/4.0 1.2/8.5

Central 6.1/2.2 7.0/3.1 4.1/1.1 1.8/6.1 1.9/3.9 5.0/2.6

East 4.6/2.3 2.8/0.9 2.5/1.9 1.1/2.4 2.0/1.9 1.8/2.6

South 5.3/2.0 4.1/1.1 4.0/1.5 1.3/2.8 4.0/2.7 2.7/3.9

All NA 4.6/2.0 2.6/0.4 2.6/2.0 3.9/4.2 1.1/1.2 0.8/4.8
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Fig. 4  Annual cycle of TXx (°C) in a Pacific NW, b Pacific SW, c 
Mt West, d South, e Central and f Desert, for GHCND station obser-
vations (grey, solid), ANUSPLIN + Livneh (black, solid), HadEx2 
(brown, solid), ERA-Interim (light blue, dashed), NARR (green, 

dashed), CRCM5 (blue, dotted) and CanRCM4 (red, dotted), Can-
RCM4-NS (dark red, dotted), CanRCM4-0.22 (orange, dotted), and 
CanRCM4-NCEP2 (purple, dotted)
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CanRCM4-NS (grid resolution of 50 km and mean eleva-
tion of 741 m) and CRCM5 (grid resolution of 50 km and 
mean elevation of 744 m) at 0.44° and finally ERA-Interim. 
In the PNW and PSW regions (Fig. 4a, b), the annual 
cycle of TXx area-average GHCND station observations, 
ANUSPLIN + Livneh and the HadEX2 data set are warmer 

than all simulations (RCMs, NARR and ERA-Interim). 
In the Desert region observationally-based data sets are 
warmer than all simulations except for CanRCM4. Uneven 
station coverage (Fig. 1) could be a contributing factor due 
to the tendency for stations to be located in the south of 
the PNW and north of the PSW and Desert domains, and 
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Fig. 5  Averages of annual TNn difference from ANUSP-
LIN + Livneh in a CanRCM4, b CanRCM4-022, c CanRCM4-noSN, 
d CanRCM4-NCEP2, e CRCM5, f NARR, g ERA-Interim, h annual 

mean in ANUSPLIN + Livneh. Stippling in a–g indicates pixels 
where differences are not significant at the 5 % significance level 
from a Student’s t-test
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Fig. 6  Annual cycle of TNn in a Pacific NW, b Pacific SW, c Mt 
West, d South, e Central and f Desert, for GHCND station observa-
tions (grey, solid), ANUSPLIN + Livneh (black, solid), HadEx2 
(brown, solid), ERA-Interim (light blue, dashed), NARR (green, 

dashed), CRCM5 (blue, dotted) and CanRCM4 (red, dotted), Can-
RCM4-NS (dark red, dotted), CanRCM4-0.22 (orange, dotted), and 
CanRCM4-NCEP2 (purple, dotted)
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in valleys rather than uniformly across different surface 
elevations. In the PNW the exclusion of GHCND stations 
whose elevations differed from the closest CanRCM4 pixel 
by more than 200 m resulted in a shift in the annual cycle 
to cooler temperatures, particularly in summer (not shown).

In the summer months in the South and Central regions, 
CanRCM4 has a large warm bias (2–6 °C) compared to all 
other data sets (Fig. 4d, e). There is a warm mean tempera-
ture bias in CanESM2 in a similar region (Sheffield et al. 
2013). Although not as large as the warm bias in the Can-
RCM4 simulations, CRCM5 is 2–3 °C warmer than obser-
vations in summer in the Central region. These biases may 
be related to differences in cloud cover or to the treatment 
of vegetation and soil in the land-surface scheme (as will be 
discussed in Sect. 3.3). CRCM5 has been shown previously 
to have a 2 °C cool bias in the Desert region mean surface 
temperature throughout the year (Martynov et al. 2013). 
This bias is not evident in TXx compared to ERA-Interim 
or NARR but can be seen compared to the observed data 
sets. Compared to CanRCM4, the annual cycle of CRCM5 
tends to be more similar to the annual cycles of reanaly-
sis and the observationally-based data sets in regions with 
good station coverage (i.e. the Mt West, South, Central and 
East regions, Fig. 4c–e and not shown). Overall, CanRCM4 
simulates the largest discrepancies in TXx in summer for 
central, southern and eastern North America. Biases cover 

a larger area and are a larger magnitude than those in 
CRCM5, which tends to agree better with the comparison 
data sets.

3.1.2  Coolest night (TNn)

The importance of evaluating both sides of the distribu-
tion separately is emphasised by the many differences in 
the simulation of TNn compared to TXx. Compared to 
ANUSPLIN + Livneh, both RCMs have significantly 
cooler TNn along the west coast and in northeast Canada, 
although the cool bias in the CanRCM4 simulations extend 
further north on the west coast than CRCM4 (Fig. 5). The 
cool biases in annual TNn (values recorded in winter) for 
both RCMs are consistent with the continent-wide win-
ter 2-m temperature cool bias compared to an observed 
data set of a previous version of the CRCM (Mearns et al. 
2012).

The regional biases in TNn are less consistent between 
RCMs than they were for TXx. In the MtWest, East and 
South regions, the RMSE between CRCM5 and ANUSP-
LIN + Livneh are smaller than those for CanRCM4, 
while CanRCM4 agrees with observations in the PNW, 
PSW, NNA, Desert and Central regions (Table 5d, e). In 
the Central region the biases from both comparison data 
sets are larger in CRCM5 than in CanRCM4 (Table 5d, 
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Fig. 7  Probability density function (2° bins) plots showing the 
distribution of area-averaged summer TXx (top) and winter TXn 
(bottom) by GHCND station observations (grey, solid), ANUSP-
LIN + Livneh (black, solid), HadEx2 (brown, solid), ERA-Interim 

(light blue, dashed), NARR (green, dashed), CRCM5 (blue, dotted) 
and CanRCM4 (red, dotted), CanRCM4-NS (dark red, dotted), Can-
RCM4-0.22 (orange, dotted) and CanRCM4-NCEP2 (purple, dotted) 
in the a, e PNW, b, f Mt West, c, g Central and d, h South regions
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e). CanRCM4 has a substantial bias in the Mt West region 
compared to both NARR and ANUSPLIN + Livneh with 
a RMSE of 8.5 and 3.8 °C, respectively. The largest errors 
from comparison data sets are found in the Mt West, Cen-
tral and Desert regions (Table 5).

The shape of the TNn annual cycle is well reproduced 
by the RCMs, although there are substantial differences 
between RCMs, reanalysis products and observations in 
several regions, particularly in winter (Fig. 6). There is 
a high degree of observational uncertainty in the PNW, 
PSW, South and Desert regions as ANUSPLIN + Livneh 
and HadEX2 are colder than the station observations and 
reanalysis products (Fig. 6a, b, d, f). The large differences 
between HadEX2, GHCND and ANUSPLIN + Livneh in 
the PNW and PSW regions shows the importance of sta-
tion selection and averaging method when constructing a 
gridded data set. There is a large winter cool bias in the 
PSW region in HadEX2 compared to all other data sets and 
simulations, possibly related to the masking of such a small 
region on a course grid (2.5° × 3.75°) or to differences in 
the sampling of stations.

All RCM simulations (4 × CanRCM4 and CRCM5) are 
1–7 °C cooler than both reanalysis and observationally-
based products in the MtWest region, predominantly in 
winter (Fig. 6c), while CanRCM4 is cooler than CRCM5 in 
all months with the largest difference in summer (Fig. 6c). 
This is consistent with previous research that found a cool 

bias in Mt West of up to 4 °C in Mt West in CRCM5 win-
ter 2-m surface temperature (Martynov et al. 2013). In the 
Central region CRCM5 has a cool bias in winter TNn of up 
to 6 °C, while the annual cycle represented by CanRCM4 is 
more realistic compared to reanalysis products and obser-
vations throughout the year (Fig. 6e).

Overall, both RCMs have substantial biases in their 
simulation of TNn. Both RCMs have a winter cool bias 
in western North America, while the cool bias in CRCM5 
extends inland to the central plains.

3.1.3  Seasonal distributions of temperature extremes

The distributions of summer and winter area-averaged 
extreme indices in CanRCM4 and CRCM5 are different 
from reanalysis and observationally-based products in sev-
eral regions (see Fig. 7 for examples from the PNW, Mt 
West, Central and South regions). The distributions of sta-
tion-based products are well separated from reanalysis and 
RCM simulations in the PNW and South regions, highlight-
ing uncertainty in the observationally-based data sets. The 
CanRCM4 summer temperature distributions have a warm 
bias compared to reanalysis and station-based data sets 
in the Central and South regions. In summer, CanRCM4 
is very hot in these regions with the regional average of 
TXx regularly exceeding 40 °C. Spectral nudging, bound-
ary conditions and model resolution have little influence 
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Fig. 8  Probability density function (1° bins) plots showing the 
distribution of area-averaged summer TNx (top) and winter TNn 
(bottom) by GHCND station observations (grey, solid), ANUSP-
LIN + Livneh (black, solid), HadEx2 (brown, solid), ERA-Interim 

(light blue, dashed), NARR (green, dashed), CRCM5 (blue, dotted) 
and CanRCM4 (red, dotted), CanRCM4-NS (dark red, dotted), Can-
RCM4-0.22 (orange, dotted) and CanRCM4-NCEP2 (purple, dotted) 
in the a, e PNW, b, f Mt West, c, g Central and d, h South regions
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on extreme maximum temperature, as there is good agree-
ment in the distributions of CanRCM4, CanRCM4-NCEP, 
CanRCM4-NS and CanRCM4-0.22. CRCM5 is warmer 
than observationally-based data sets in the Central region, 
although not as warm as the CanRCM4 simulations.

In winter, the distributions of Central region TXn in the 
CanRCM4 simulations are shifted to slightly warmer tem-
peratures compared to the comparison data sets (Fig. 7g). 
The CRCM5 distribution is somewhat cooler than ANUSP-
LIN + Livneh and HadEX2 in the Mt West region (Fig. 7f).

In summer, when the warmest nights (TNx) are gener-
ally found, regional differences between simulations are 
quite heterogeneous (Fig. 8). There are substantial differ-
ences between observationally-based products and reanal-
ysis data sets, highlighting the observational uncertainty 
in TNx. In the Central and South regions (Fig. 8c, d) all 
observationally-based data sets are much cooler than rea-
nalysis products and RCMs, while in the PNW region only 
ANUSPLIN + Livneh is cooler (Fig. 8a) and in MtWest 
both ANUSPLIN + Livneh and GHCND stations are 
cooler (Fig. 8b). The following biases, however, are con-
sistent compared to all comparison data sets. In the Desert 
region both RCMs are cooler than reanalysis products but 
warmer than observationally-based data sets that do not 
cover the southern portion of the domain (not shown). 
The distribution of summer TNx in both RCMs is warmer 
than both reanalysis and observationally-based products in 
the Central and East regions (Fig. 8c and not shown). The 
largest difference is simulated by CRCM5 in the Mt West 
region where it is warmer than all other data sets (Fig. 8b).

The coolest TNn values are found in winter. The obser-
vationally-based products generally agree well in the dis-
tribution of TNn, except for in the South region where 
HadEX2 is substantially colder than all other data sets. 
This is likely due to the course grid of HadEX2 that does 
not resolve much of Florida, where ANUSPLIN + Livneh 
and GHCND stations contain information from this part of 
the South region. In the PNW, MtWest, NNA and Desert 
regions the distributions of winter TNn of both RCMs 
are cooler than reanalysis products (see Fig. 8e–f and not 
shown). CRCM5 is cooler than all other data sets in the 
Central region. This is consistent with previous research 
that found a cold bias in mean 2-m temperature in CRCM5 
compared to ERA-Interim in the Central, South, PNW, 
PSW, Mt West and Desert regions of between 2 and 4 °C 
(Šeparović et al. 2013). The cool bias in CRCM5 in the 
Central region is substantial (Fig. 8g) and exceeds the cold 
bias previously reported in mean temperature (Šeparović 
et al. 2013). CanRCM4, NARR and ERA-Interim simulate 
area-average winter TNn values between −35 and 0 °C, 
while in CRCM5 the values are between −40 and −5 °C.

The seasonal distributions of extreme temperature indi-
ces are consistent with the biases evident in the annual 

cycle plots. The most significant biases are found in TXx 
and TNn, with fewer differences in the simulation of TXn 
and TNx. The warm bias in central and southern North 
America seen in CanRCM4 TXx is a consistent feature, 
as is the cool bias in TNn from both RCMs in central and 
western North America.

3.2  Rainfall extremes

The spatial pattern of time-averaged annual Rx5day is 
reasonably consistent across RCMs, reanalysis products 
and observations on a continental scale (not shown). The 
largest extreme rainfall totals are found on the west coast 
and in the southeast of the continent (Fig. 9h). While this 
spatial pattern is generally captured by both RCMs, there 
are regional differences between simulations in the magni-
tude and extent of rainfall extremes. Compared to ANUSP-
LIN + Livneh, all RCM simulations have larger Rx5day 
totals in Canada and extending to parts of the central 
United States in CanRCM4 (Fig. 9a–e). The lower reso-
lution CanRCM4 simulations are drier than observed on 
the Gulf coast, while the CRCM5 simulation and Can-
RCM4-022 have few significant differences from obser-
vations in this region. There are very few statistically 
significant differences between Rx5day in NARR and 
ANUSPLIN + Livneh (Fig. 9f), while ERA-Interim is wet-
ter than observations in west and northern Canada and drier 
in the Gulf region.

For Rx5day, there is more agreement between Can-
RCM4 and observations in the PNW, Desert, and East 
regions, while the biases are smaller for CRCM5 in the 
PSW, MtWest, NNA, Central and South regions (Table 6b). 
Compared to ANUSPLIN + Livneh, CRCM5 has smaller 
RMSE values for PRCPTOT in the PSW, MtWest and 
South regions (Table 6e), while the PRCPTOT biases in 
CanRCM4 are smaller in the PNW, NNA, Desert, Central 
and East (Table 6e).

The Rx5day annual cycle is generally well reproduced in 
the RCM simulations compared to reanalysis products and 
observations (Fig. 10). In the PNW the Rx5day totals in 
ANUSPLIN + Livneh and HadEX2 are lower compared to 
all other simulations, although uncertainty in ANUSPLIN 
is highest in mountainous regions (Hijmans et al. 2005). In 
the PNW regions the shape of the annual cycle is very well 
reproduced, however, CRCM5 simulates larger Rx5day 
rainfall totals compared to all other data sets, particularly 
in winter when CRCM5 has a wet bias of up to 30 mm. 
Smaller wet biases of 3 and 1 mm/day (equating to 5-day 
totals of 15 and 5 mm) have been found previously in the 
annual cycle of daily rainfall in the PNW and PSW regions, 
respectively (Martynov et al. 2013). Additionally, the wet 
bias in mean rainfall almost disappears in summer (Mar-
tynov et al. 2013) while it remains in heavy rainfall, albeit 
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reduced compared to winter (Fig. 10a). The magnitude of 
the Rx5day annual cycle of CanRCM4 in the PNW and 
PSW regions agrees more with the comparison data sets, 
with particularly good agreement with ERA-Interim (with 
in 5 mm). Previous research suggested that biases in the 
lateral boundary conditions might account for the wet bias 
in CRCM5 mean rainfall (Martynov et al. 2013). However 
the use of spectral nudging in CanRCM4 and the greater 
agreement between the CanRCM4 and ERA-Interim sug-
gest that biases in the boundary conditions are not respon-
sible for the wet bias in CRCM5, as it is more weakly con-
strained to the boundary.

It is generally accepted that nudging an RCM too 
strongly can inhibit the development of fine scale informa-
tion (Arritt and Rummukainen 2011) that can be important 

for the simulation of extremes. There is some evidence 
that the use of spectral nudging can reduce extremes (e.g. 
Alexandru et al. 2009; Cha et al. 2011) while other stud-
ies have shown no such decrease with nudging (e.g. Colin 
et al. 2010; Glisan et al. 2013). CanRCM4-NS has Rx5day 
totals in the PNW that are similar to CanRCM4 and do not 
show the large wet bias that is present in CRCM5, suggest-
ing that the free interior of CRCM5 is not responsible for 
the wet bias and that the strength of spectral nudging used 
in CanRCM4 does not suppress extremes.

The amplitude of the Rx5day annual cycle in the 
MtWest region is small for reanalysis and observationally-
based products (Fig. 10c). None of the CanRCM4 simu-
lations capture the extended late summer (July–Septem-
ber) Rx5day minimum found in all other datasets, instead 
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Fig. 9  Averages of annual Rx5day difference from ANUSP-
LIN + Livneh in a CanRCM4, b CanRCM4-022, c CanRCM4-NS, 
d CanRCM4-NCEP2, e CRCM5, f NARR, g ERA-Interim, h annual 

mean in ANUSPLIN + Livneh. Stippling in a–g indicates pixels 
where differences are not significant at the 5 % significance level 
from a Student’s t-test

Table 6  The regional root mean square error between (a, d) NARR and CanRCM4/CRCM5, (b, e) ANUSPLIN + Livneh and CanRCM4/CRCM5 
and (c, f) RCMs (CanRCM4 with CRCM5) / Observations (NARR with ANUSPLIN + Livneh) for annual Rx5day (left) and PRCPTOT (right)

Region Rx5day (mm) PRCPTOT (mm)

(a) NARR:
CanRCM4/CRCM5

(b) ANUSPLIN:
CanRCM4/CRCM5

(c) RCMs/ 
Observations

(d) NARR:
CanRCM4/CRCM5

(e) ANUSPLIN:
CanRCM4/CRCM5

(f) RCMs/
Observations

PNW 13.4/70.1 24.9/82.9 60.2/17.2 168.1/831.2 462.1/1161.6 708.8/360.8

PSW 11.8/34.7 29.8/14.4 31.2/32.2 57.6/151.8 206.9/67.9 165.1/187.1

MtWest 7.8/7.2 6.8/6.0 3.5/2.4 95.1/59.1 116.3/76.2 53.6/35.8

NNA 19.5/17.9 17.6/16 2.4/6.3 115.5/125.2 135.1/146.1 19.5/66.5

Desert 14.8/23.5 10.6/13.9 15.4/13.2 66.2/121.2 53.7/81.6 83.5/69.2

Central 21.9/15.8 14.0/8.6 10.5/9.3 76.1/92.4 53.5/76.9 49.8/33.7

East 29.5/33.3 16.7/18.3 11.5/17.6 209/369.5 87.6/240.5 192.9/141.1

South 13.8/34.9 30.5/28.8 34.3/28.2 151.9/216 272.2/152.8 326.4/143.2

All NA 26.9/29.4 11.1/13.5 4.0/16.3 634.4/685.8 84.0/135.1 56.1/553.1



3834 K. Whan, F. Zwiers

1 3

reaching a minimum in only September. There is a wet 
bias in CanRCM4 simulations, particularly CanRCM4-
NCEP and CanRCM4-022, during the first half of the 
year. CRCM5 simulates the annual cycle more closely to 
observations but is modestly too dry in summer (1–2 mm) 
and too wet in winter (4–5 mm). These biases in extreme 
rainfall are consistent with those in the annual cycle of 
mean rainfall (Martynov et al. 2013). While the biases in 
this region are small in absolute terms, this is an interest-
ing case where a RCM is not able to correctly simulate the 
shape of the annual cycle.

The observationally-based data sets show roughly con-
sistent levels of climatological precipitation throughout the 
year in the South region, while the RCM simulations are 
more variable (Fig. 10d). CanRCM4 simulations are closely 
matched to observed data sets in the first half of the year, 
but show a marked decrease in May–June until November 
where all CanRCM4 simulations have lower extreme rain-
fall totals compared to other data sets. CRCM5 increases 
at that time along with the observationally based data sets. 
In the Central region, the shape of the annual cycle is well 
captured by all RCMs as compared to the observational 
products (Fig. 10e). However there are differences in the 
magnitude as both RCMs simulate larger Rx5day totals 
than observed from November to June, while CanRCM4 is 
too dry compared to all other data sets from July to Octo-
ber. These discrepancies may be related to differences in 
the parameterisation of convection in the RCMs.

Overall the annual cycle of extreme rainfall is well 
reproduced by the RCMs. CRCM5 has the largest bias in 
Rx5day values on the west coast and CanRCM4 tends to 

under-estimate summer extreme rainfall in the south of 
North America, consistent with the spatial plots (Fig. 9).

There are seasonal and regional differences in the distri-
butions of area-averaged extreme rainfall (Fig. 11). In sum-
mer in the PNW region, the CRCM5 distribution is shifted 
to larger extreme rainfall totals compared to other data sets 
(Fig. 11a). In the South region, the distributions of Can-
RCM4, CanRCM4-NCEP and CanRCM4-NS are shifted 
to considerably lower Rx5day values (Fig. 11d). Over-
all, these results suggest that extreme summer rainfall in 
CRCM5 is generally well represented but is over estimated 
in the west and south of the continent and under estimated 
by CanRCM4 in the south.

In winter, the distribution of Rx5day in CRCM5 is 
shifted towards much wetter values compared to observa-
tions in the PNW region (Fig. 11e), while both RCMs are 
slightly wetter in the Central region (Fig. 11g). This is con-
sistent with the wet bias in CRCM5 daily mean winter rain-
fall reported previously (Šeparović et al. 2013). The larg-
est shift in the CRCM5 distribution is in the PNW region 
(Fig. 11e), where the range of area-averaged values for 
CRCM5 is up to 40 mm higher than other data sets. The 
CanRCM4 distribution is similar to the reanalysis products 
and within the range of observations in the PNW region, 
suggesting that CanRCM4 simulates heavy rainfall ade-
quately in this region. Agreement between observations and 
CanRCM4 in all but the Central region, gives confidence 
in the simulation of extreme winter rainfall by CanRCM4. 
These results suggest that CanRCM4 has a more realistic 
representation of winter rainfall than CRCM5, particularly 
in the PNW.

Fig. 10  Annual cycle of 
Rx5day in a Pacific NW, 
b Pacific SW, c Mt West, 
d South, e Central and f 
Desert, for GHCND station 
observations (grey, solid), 
ANUSPLIN + Livneh (black, 
solid), HadEx2 (brown, 
solid), ERA-Interim (light 
blue, dashed), NARR (green, 
dashed), CRCM5 (blue, dotted) 
and CanRCM4 (red, dotted), 
CanRCM4-NS (dark red, dot-
ted), CanRCM4-0.22 (orange, 
dotted), and CanRCM4-NCEP2 
(purple, dotted)
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The differences in the time averaged annual rainfall 
indices (R10mm, Rx5day, SDII and Total Precipitation) 
between CRCM5 and CanRCM4 are consistent with these 
regional patterns and across indices (not shown). CRCM5 
is wetter than CanRCM4 in the southern USA and on the 
northeast coast of North America. In other words, the pre-
vious results are not confined to Rx5day totals and are 
common across different extreme rainfall indices.

3.3  Precipitation types and cloud fraction

The previous sections (Sects. 3.1, 3.2) outlined two major 
spatially coherent biases in the CanRCM4 and CRCM5 
simulation of rainfall and temperature extremes: the warm 
bias in CanRCM4 summer TXx in the Great Plains and 
south of the continent, and the winter wet bias in CRCM5 
on the west coast. Here we explore whether differences in 
cloud fraction and precipitation types between the models 
are associated with these biases.

The shapes of the annual cycles of total, convective 
and large-scale (Fig. 12) precipitation are reasonably well 
reproduced by both models compared to NARR and ERA-
Interim; as expected, convective rainfall peaks in the sum-
mer months and large-scale rainfall is dominant in winter. 
However, for both rainfall types, the models exhibit large 
differences in the magnitude of the annual cycle, with some 

large differences also apparent between NARR and ERA-
Interim for certain seasons and variables (e.g. convective 
rainfall in the PNW region and stratiform precipitation in 
the South region, Fig. 12h, k). Large differences between 
reanalysis products might be expected since the two reanal-
yses parameterize precipitation processes differently, with 
only the NARR assimilating rainfall data. Nevertheless, 
examination of total precipitation and the rainfall types 
may be instructive.

Overall, CanRCM4 under-estimates convective precipi-
tation and over-estimates stratiform precipitation compared 
to CRCM5, ERA-Interim and NARR in the Central and 
South regions (Fig. 12f, g, j, k). This is perhaps not sur-
prising given that in an earlier global model using a phys-
ics package antecedent to that used in CanRCM4, which 
also included the Zhang and McFarlane (1995) convection 
scheme, stratiform precipitation was found to participate 
extensively in deep latent heating in the tropics (Scinocca 
and McFarlane 2004), with the balance between stratiform 
and convective precipitation being sensitive to the tuning of 
the convective scheme. In late summer and autumn the dry-
bias in convective rainfall dominates and results in a nega-
tive total precipitation bias in the Central and South regions. 
Correlations between summer convective precipitation, 
cloud fraction and TXx were used to explore whether dry 
bias and an increase in radiation is associated with the 
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Fig. 11  Probability density function (5 mm bins) plots showing 
the distribution of area-averaged summer (top) and winter (bottom) 
Rx5day by GHCND station observations (grey, solid), ANUSP-
LIN + Livneh (black, solid), HadEx2 (brown, solid), ERA-Interim 

(light blue, dashed), NARR (green, dashed), CRCM5 (blue, dotted) 
and CanRCM4 (red, dotted), CanRCM4-NS (dark red, dotted), Can-
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in the a, e PNW, b, f Mt West, c, g Central and d, h South regions
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warm TXx bias in CanRCM4. CanRCM4 is distinct in that 
it exhibits strong coupling between summer monthly TXx 
and convective precipitation, with statistically significant 
negative correlations between the two in the Desert, Central 
and South regions (Table 7). Additionally, CanRCM4 has 
significant negative correlations between summer monthly 
cloud fraction and TXx that is either not evident (Desert, 
South and East regions) or is dramatically weaker (Central 
region) in other simulations (Table 7). Nevertheless, Can-
RCM4 cloud fractions are comparable to the other simu-
lations (not shown). It should be noted that we have used 
monthly cloud fraction in this analysis and that it is pos-
sible that this is not representative of cloud fractions on the 
hottest days. Future work could explore the relationship 
between cloud fraction on the hottest days and maximum 
temperature extremes, however the correlation between 
monthly cloud fraction and cloud fraction on the hottest 
days in the Central region is positive for all simulations, 
albeit moderate, between 0.4 and 0.5. These results suggest 
that despite the apparent under-simulation of convective 
precipitation, the warm biases in late summer and spring 
are likely not associated with differences in short-wave 

radiation flux at the surface. Another possible explanation 
for the warm bias could be differences in the conversion of 
incoming solar radiation to sensible and latent heat. This 
would be consistent with our understanding of land–atmos-
phere interactions (Seneviratne et al. 2010) as soil moisture 
is strongly coupled to surface air temperature in central 
North America in summer (Seneviratne et al. 2010), with 
decreased soil moisture limiting evapotranspiration and 
making more energy available for sensible heating (Senevi-
ratne et al. 2010). Additional analysis of surface energy 
budgets in future research would be useful to diagnose the 
mechanisms behind this warm bias.

CRCM5 simulates an excess of large-scale precipitation 
of varying magnitudes, compared to both reanalysis prod-
ucts and CanRCM4, in the PNW, PSW, Mt West, NNA, 
Desert and East regions in the cool season (Fig. 12i, j and 
not shown). Compared to the reanalysis products, Can-
RCM4 also over-estimates large-scale rainfall in the same 
regions, but the magnitude is generally less than CRCM5 
and it is combined with a deficit of convective rainfall so a 
wet bias in large-scale rainfall has less influence overall on 
extreme rainfall. This over-estimation of large-scale rainfall 
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Fig. 12  Annual cycle of total (pr: a–d), convective (prc: e–h) and 
large-scale precipitation (prnc: i–l) in the Desert (a, e, i), Central (b, 
f, j), South (c, g, k) and PacificNW (d, h, j) regions for ERA-Interim 

(light blue, solid), NARR (green, solid), CRCM5 (blue, dotted) and 
CanRCM4 (red, dotted), CanRCM4-NS (dark red, dotted), Can-
RCM4-0.22 (orange, dotted) and CanRCM4-NCEP (purple, dotted)
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results in a wet bias in CRCM5 extreme rainfall in the cool 
season (Fig. 10). The PNW region is dominated by large-
scale rainfall throughout the year, with a small contribution 
from convective rainfall, which results in a significant shift 
in the extreme rainfall distribution to wetter values through-
out the year (Figs. 10, 11). This wet bias is consistent with 
previous research (Šeparović et al. 2012).

3.4  Extreme daily rainfall associated with atmospheric 
river events

The previous sections outlined biases in the simulation 
of extreme rainfall and temperature in CanRCM4 and 
CRCM5. The focus for rainfall extremes thus far has been 
on spatially aggregated monthly and annual Rx5day totals. 
Here we concentrate on the simulation of daily rainfall 
associated with winter AR events. Three aspects of AR pre-
cipitation are evaluated. Firstly, we compare the percentage 
of winter precipitation that comes from AR days to exam-
ine the overall influence of AR events relative to each data 
set’s own climatology. Secondly, the latitude of the precipi-
tation maximum on AR days is compared across data sets 
as the location of AR landfall can play an important role in 
determining the impacts of the event through interactions 
with local topography. Finally, the intensity of the precipi-
tation event is evaluated, regardless of the latitude of AR 
landfall in each data set.

Defining AR days with a lower IVWT threshold value 
(i.e. 250 kg/m/s) results in the definition of a larger number 
of AR days compared to the higher threshold (500 kg/m/s, 

Fig. 2c). Consequently, the lower threshold results a larger 
percentage of total winter precipitation being attributed to 
AR days (not shown) and a higher fraction of precipita-
tion to AR events compared to previous research (Dettinger 
et al. 2011). The percentage of winter precipitation from 
AR events (Fig. 13) defined with the high threshold is of 
a more realistic magnitude in the Pacific North West (up 
to 25 %) but is smaller than established estimates for some 
parts of California (up to 10 %). The influence of ARs 
inland in North America has been previously demonstrated 
(Rutz et al. 2013), although most previous research focuses 
on impacts west of the Western Cordillera (Dettinger et al. 
2011). Defining AR days with a higher threshold results in 
the area of influence being confined to Washington, Oregon 
and British Columbia with limited extension into South-
ern California. This shows that the strongest AR events are 
focused on the northwest coast, while weaker events have a 
large, and well known, influence on the south of the domain 
including California (Dettinger et al. 2011). Differences 
between the RCMs, NARR and ERA-Interim are likely 
related to the various horizontal resolutions and representa-
tions of topography, with the influence of the Sierra Nevada 
ranges, the Cascades, the Coast Range and the Rocky 
Mountains evident. A great deal of previous work has out-
lined the important role ARs play in Californian rainfall 
(Dettinger et al. 2011). To further explore the differences in 
west coast precipitation between CanRCM4 and CRCM5, 
the remainder of this article will focus on the strongest AR 
events that influence the northwest coast (Fig. 13), as these 
events also have the strongest forcing on the RCM from the 
lateral boundary conditions.

The percentage of rainfall associated with atmospheric 
river events (Fig. 13) suggests that the RCMs generally 
capture the precipitation associated with AR events well 
compared to ANUSPLIN + Livneh, ERA-Interim and 
NARR. The extent of the influence of AR events is com-
parable to that found in previous work (Dettinger et al. 
2011), with the largest contributions confined to the coast 
in the south of Western North America and the influence 
of ARs penetrating inland further in the north. ANUSP-
LIN + Livneh has a clear separation between the Coastal 
Range and Rocky Mountains in Canada and the Cascade 
and Rocky Mountains in the northern United States. This 
pattern is not well reproduced by any of the simulations. 
ERA-Interim and all CanRCM4 simulations replicate the 
Cascade and Rocky Mountains separation while CRCM5 
replicates the divide between the Canadian ranges. In other 
cases, ERA-Interim, NARR and the RCMs do not simulate 
well the rain-shadow of the western mountain range. This 
may be due to lower topography in the reanalysis products 
and RCMs or biases in the location of AR landfall and ori-
entation. The reanalysis products and RCMs over estimate 
the fraction of winter rainfall from AR days compared to 

Table 7  Correlations between summer TXx, convective precipitation 
and cloud fraction for CanRCM4, CRCM5, NARR and ERA-Interim 
in the Desert, Central, East and South regions

Bold correlations are significant at the 5 % significance level

Region CanRCM4 CRCM5 NARR ERA-Interim

Convective precipitation and TXx

 Desert −0.44 −0.06 0.12 0.11

 Central −0.38 −0.10 −0.23 −0.18

 East −0.17 0.07 0.04 0.02

 South −0.74 0.12 −0.23 −0.02

Convective precipitation and cloud fraction

 Desert 0.90 0.79 0.83 0.87

 Central 0.56 0.50 0.56 0.85

 East 0.57 0.48 0.25 0.59

 South 0.88 0.66 0.56 0.80

Cloud fraction and TXx

 Desert −0.39 0.07 0.08 −0.02

 Central −0.79 −0.44 −0.24 −0.32

 East −0.66 −0.18 −0.11 −0.25

 South −0.67 0.03 −0.05 −0.07
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the observed data set with many more pixels above 15 %. 
However it should be noted that ANUSPLIN + Livneh had 
much lower Rx5day totals in the PNW compared to other 
observationally based data sets. There is generally good 
agreement between the percentages of winter rainfall asso-
ciated with AR events between simulations. CanRCM4 
has the largest percentage of winter rainfall from AR days, 
with up to 25 % of total winter rainfall from ARs over the 
Rocky Mountains. When compared to its own climatol-
ogy, CRCM5 has the smallest wet bias in the fraction of 
winter precipitation that comes from AR days compared to 
ANUSPLIN + Livneh (Fig. 13).

On AR days, the location of the precipitation maximum 
is reasonably consistent between simulations, however 
even small biases in the location of landfall can result dif-
ferent outcomes in such a mountainous region. To assess 
the location of AR landfall we compare the latitude of the 
rainfall maximum on AR days, assuming that the timing of 

AR events is consistent between the real world and ERA-
Interim, and between the driving and downscaled models. 
NARR, ERA-Interim and the spectrally nudged CanRCM4 
simulation agree best with ANUSPLIN + Livneh on the 
latitude of AR landfall, with 76, 70 and 76 % of AR days, 
respectively, making landfall within 200 km of observa-
tions (Table 8). The simulations without spectral nudging 
(CanRCM4-NS and CRCM5) have fewer similarities in the 
location of AR landfall compared to ANUSPLIN + Livneh, 
as CanRCM4-NS and CRCM5 simulate the location of the 
AR landfall within 200 km of observations on only 56 and 
69 % of days, respectively. AR days are calculated in ERA-
Interim and the location of landfall is assessed by compar-
ing the latitude of the rainfall maximum on AR days, so the 
lower agreement between CanRCM4-NCEP and ANUSP-
LIN + Livneh may stem from differences in the timing of 
AR events in NCEP2. Nudging a RCM towards a reanalysis 
product has been shown to improve agreement between the 

(a) ANUSPLIN+Livneh (b) ERA−Interim (c) NARR (d) CRCM5

(e) CanRCM4 (f) CanRCM4−NS (g) CanRCM4−022 (h) CanRCM4−NCEP

0 5 10 15 20 25

Fig. 13  Percentage of cool season rainfall (on RCM grid) that comes 
from atmospheric river days defined with the threshold of 500 kg/m/s 
threshold, for a ANUSPLIN + LIVNEH, b ERA-Interim, c NARR, 

d CRCM5, e CanRCM4, f CanRCM4-NS, g CanRCM4-022 and h 
CanRCM4-NCEP
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limited area and driving model, with the largest impacts of 
nudging evident on the east coast of North America (Lucas-
Picher et al. 2013). Here we show the value of nudging on 
the west coast as comparison between CanRCM4 and Can-
RCM4-NS suggests that the use of spectral nudging results 
in a 20 % increase the number of days where the AR in the 
RCM makes landfall in a similar location to observations.

The impacts of ARs are also influenced by the intensity of 
precipitation. This was evaluated by examining the distribu-
tions of winter precipitation maximums on AR days, regard-
less of the latitude at which they made landfall (Fig. 14). The 
most extreme AR precipitation amounts are more frequent 
in higher resolution data sets (RCMs, NARR) compared to 
ERA-Interim due to less topographic smoothing. ANUSP-
LIN + Livneh also has less extreme AR precipitation, con-
sistent with the drier Rx5day annual cycle in the PNW, and 
so again all model simulations have a wet bias compared to 
ANUSPLIN + Livneh. The intensity of winter AR rainfall 
in both CanRCM4 simulations (with and without spectral 

nudging) is comparable. This suggests that the nudging used 
in the CanRCM4 is able to increase agreement in the loca-
tion of AR landfall without reducing the amplitude of the 
precipitation extreme. The similarities in the intensity of AR 
precipitation in CanRCM4 and CanRCM4-NCEP suggests 
that while the source of boundary conditions influences the 
location of the AR landfall it does not have a large impact 
on precipitation amounts. However, the standout feature is 
the higher probability of rainfall amounts between 75 and 
100 mm/day in CRCM5 compared to all other data sets, 
although the probability of the highest rainfall amounts 
(>100 mm/day) are similar between CanRCM4-022 and 
CRCM5. The larger extreme rainfall amounts on AR days in 
CRCM5 are consistent with the previous analysis.

4  Conclusions

Extreme weather events can have large impacts on society. 
RCMs are an important tool for understanding extremes 
and thus it is essential to assess how well regional climate 
models (e.g. CanRCM4 and CRCM5) simulate the cli-
matology of extreme events. Use of common horizontal 
resolution and lateral boundary conditions removes large 
sources of variability between RCMs and allows us to 
evaluate how differences in the configuration of the RCMs 
influence the simulation of extremes. Generally the spatial 
pattern, annual cycle and distribution of extremes were well 
reproduced by both CanRCM4 and CRCM5. However, sev-
eral spatially coherent biases are present in extremes simu-
lated by both RCMs. The two largest biases are the warm 
bias in maximum temperature extremes simulated by Can-
RCM4 in southern and central North America and the wet 
bias in CRCM5 on the west coast throughout the year and 
in winter over much of the continent. Other biases include 
the cool bias in minimum temperature extremes in CRCM5 
and CanRCM4 over most of North America and on the 
west coast, respectively, and the lower extreme rainfall 
totals in southern North America in CanRCM4.

There is strong coupling between both convective pre-
cipitation and cloud fraction with TXx in regions that have 
large warm biases in TXx by CanRCM4. However, while 
CanRCM4 simulates too little convective rainfall, large-
scale rainfall is over-estimated. The spatial extent of the 
warm bias in TXx by CanRCM4 is similar to the warm 
bias in mean temperature in CanESM2 (Sheffield et al. 
2013). Climate models from the same institution are known 
to often share the same biases (Knutti et al. 2009). In this 
case the shared biases may indicate that the global model 
is having a large influence on the RCM, despite relaxation 
of CanESM2 towards ERA-Interim (Scinocca et al. 2015).

Large-scale rainfall is over-estimated in CRCM5, which 
results in larger extreme rainfall totals in regions and 

Table 8  Percentage of winter ARs that make landfall within 200 km 
of landfall location of ANUSPLIN + Livneh

Percentage of AR landfalls  
that are similar to observed (%)

ERA-Interim 70

NARR 76

CRCM5 69

CanRCM4 76

CanRCM4-NS 56

CanRCM4-022 61

CanRCM4-NCEP 64
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Fig. 14  Probability density functions of daily rainfall from the loca-
tions where each winter atmospheric river cross the west coast of 
North America in ANUSPLIN + Livneh (black), ERA-Interim (light 
blue), NARR (green), CRCM5 (blue), CanRCM4 (red), CanRCM4-
NS (dark red), CanRCM4-022 (orange) and CanRCM4-NCEP (pur-
ple). Atmospheric river days defined with a threshold of 500 kg/m/s
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seasons when large-scale rainfall dominates, such as on the 
west coast and in winter. This rainfall bias may be associ-
ated with the parameterisation of stratiform precipitation. 
The CRCM5 simulation does not use spectral nudging. 
While it is possible that nudging may improve the simula-
tion of rainfall in CRCM5, the CanRCM4 simulations with 
and without nudging are largely similar; suggesting that the 
nesting strategy is not the primary cause of CRCM5’s wet 
bias. Previous research has shown that differences in physi-
cal parameterisation of convective rainfall can have large 
impacts on the simulation of mean and extreme rainfall 
in regions that are dominated by summer rainfall, such as 
southern North America. While it is important to be aware 
of these systematic biases in a model, difficulty with the 
parameterisation of convection in a model is a somewhat 
expected result, consistent with previous studies (e.g. Kim 
et al. 2013b). Conversely, systematic biases in extreme 
rainfall associated with the parameterisation of large-scale 
rainfall are less well known. Higher confidence is generally 
attributed to large-scale processes that can be resolved by a 
model (Seneviratne et al. 2012), and resource managers are 
more likely to base decisions on higher confidence projec-
tions than on projections with higher levels of uncertainty. 
However stratiform precipitation is not a resolved process 
in the RCMs and so it is useful to highlight biases in this 
area.

Atmospheric rivers are well simulated by both RCMs 
compared to ERA-Interim. The percentage of rainfall 
associated with AR days was sensitive to the definition of 
ARs. With a given definition, the RCMs attributed a simi-
lar fraction of winter rainfall to ARs. CRCM5 attributed a 
somewhat lower fraction of winter rainfall from AR days 
compared to CanRCM4, likely due to the over-estimation 
of rainfall on both AR and non-AR winter days. During the 
strongest AR events, the rainfall response is centred over 
Oregon, Washington and British Columbia with limited 
influence on the south coast. The location of AR landfall 
was in a similar location to observations and the driving 
model on most days. The wet bias in CRCM5 was evident 
in the intensity of AR events. Spectral nudging improved 
agreement on landfall latitude between the RCM and the 
driving model with out greatly diminishing the intensity of 
the rainfall extreme.

The extreme indices used here are considered ‘moder-
ate’ extremes as they occur, by definition, once per year. 
The ability of the RCMs to simulate more extreme events, 
with an extreme value theory framework, remains to be 
assessed.

Acknowledgments This work was supported by the Canadian Net-
work for Regional Climate and Weather Processes (CNRCWP) and 
the Pacific Climate Impacts Consortium. CNRCWP is funded by the 
National Science and Engineering Research Council (NSERC). We 
acknowledge the World Climate Research Programme’s Working 

Group on Regional Climate. We also wish to CCCma and Ouranos 
for producing and making available their model output. ECMWF 
ERA-Interim data used in the study were obtained from the ECMWF 
data server. The authors wish to thank David Bronaugh for provi-
sion of the climdex.pcic R-package and technical assistance; Trevor 
Murdock, John Scinocca and Slava Kharin for helpful comments on 
the original manuscript; and Alex Cannon for providing the ANUSP-
LIN + Livneh data set.

Open Access This article is distributed under the terms of the 
Creative Commons Attribution 4.0 International License (http://crea-
tivecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided you give 
appropriate credit to the original author(s) and the source, provide a 
link to the Creative Commons license, and indicate if changes were 
made.

References

Abdella K, McFarlane N (1997) A new second-order turbulence 
closure scheme for the planetary boundary layer. J Atmos Sci 
54:1850–1867. doi:10.1175/1520-0469(1997)054<1850:ANSO
TC>2.0.CO;2

Alexandru A, de Elia R, Laprise R, Separovic L, Biner S (2009) Sen-
sitivity study of regional climate model simulations to large-
scale nudging parameters. Mon Weather Rev 137:1666–1686. 
doi:10.1175/2008MWR2620.1

Arritt RW, Rummukainen M (2011) Challenges in regional-scale cli-
mate modeling. Bull Am Meteorol Soc 92:365–368. doi:10.1175
/2010BAMS2971.1

Barker HW, Cole JNS, Morcrette J-J, Pincus R, Räisänen P, von 
Salzen K, Vaillancourt PA (2008) The Monte Carlo independ-
ent column approximation: an assessment using several global 
atmospheric models. Quarterly Journal of the Royal Meteoro-
logical Society 134:1463–1478. doi:10.1002/qj.303

Bélair S, Mailhot J, Girard C, Vaillancourt P (2005) Boundary layer 
and shallow cumulus clouds in a medium-range forecast of a 
large-scale weather system. Mon Weather Rev 133:1938–1960. 
doi:10.1175/MWR2958.1

Benoit R, Côté J, Mailhot J (1989) Inclusion of a TKE bound-
ary layer parameterization in the Canadian regional 
finite-element model. Mon Weather Rev 117:1726–1750. 
doi:10.1175/1520-0493(1989)117<1726:IOATBL>2.0.CO;2

Bowden JH, Nolte CG, Otte TL (2013) Simulating the impact of 
the large-scale circulation on the 2-m temperature and pre-
cipitation climatology. Clim Dyn 40:1903–1920. doi:10.1007/
s00382-012-1440-y

Bronaugh D (2014) Climdex.pcic: PCIC Implementation of Climdex 
Routines. R package version 1.1-6. http://CRAN.R-project.org/
package=climdex.pcic

Bukovsky MS (2011) Masks for the Bukovsky regionalization of North 
America. Regional Integrated Sciences Collective, Insti-. Regional 
Integrated Sciences Collective, Institute for Mathematics Applied 
to Geosciences, National Center for Atmospheric Research, Boul-
der, CO. http://www.narccap.ucar.edu/contrib/bukovsky/

Bukovsky MS, Karoly D (2007) A brief evaluation of precipitation 
from the North American Regional Reanalysis. J Hydrometeorol 
8:837–846

Bukovsky MS, Karoly DJ (2009) Precipitation simulations using 
WRF as a nested regional climate model. J Appl Meteorol Cli-
matol 48:2152–2159. doi:10.1175/2009jamc2186.1

CDO (2013) Climate Data Operators. Available at: http://www.
mpimet.mpg.de/cdo

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1175/1520-0469(1997)054%3c1850:ANSOTC%3e2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1997)054%3c1850:ANSOTC%3e2.0.CO;2
http://dx.doi.org/10.1175/2008MWR2620.1
http://dx.doi.org/10.1175/2010BAMS2971.1
http://dx.doi.org/10.1175/2010BAMS2971.1
http://dx.doi.org/10.1002/qj.303
http://dx.doi.org/10.1175/MWR2958.1
http://dx.doi.org/10.1175/1520-0493(1989)117%3c1726:IOATBL%3e2.0.CO;2
http://dx.doi.org/10.1007/s00382-012-1440-y
http://dx.doi.org/10.1007/s00382-012-1440-y
http://CRAN.R-project.org/package=climdex.pcic
http://CRAN.R-project.org/package=climdex.pcic
http://www.narccap.ucar.edu/contrib/bukovsky/
http://dx.doi.org/10.1175/2009jamc2186.1
http://www.mpimet.mpg.de/cdo
http://www.mpimet.mpg.de/cdo


3841Evaluation of extreme rainfall and temperature over North America in CanRCM4 and CRCM5

1 3

Cha D-H, Jin C-S, Lee D-K, Kuo Y-H (2011) Impact of intermittent 
spectral nudging on regional climate simulation using weather 
research and forecasting model. J Geophys Res 116:D10103.  
doi:10.1029/2010JD015069

Colin J, Deque M, Radu R, Somot S (2010) Sensitivity study 
of heavy precipitation in limited area model climate simu-
lations: influence of the size of the domain and the use 
of the spectral nudging technique. Tellus A 62:591–604. 
doi:10.1111/j.1600-0870.2010.00467.x

Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi 
S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, 
Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, 
Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hers-
bach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi 
M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, 
Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) 
The ERA-Interim reanalysis: configuration and performance of 
the data assimilation system. Q J R Meteorol Soc 137:553–597. 
doi:10.1002/qj.828

Delage Y (1997) Parameterising sub-grid scale vertical transport in 
atmospheric models under statically stable conditions. Bound-
Layer Meteorol 82:23–48. doi:10.1023/A:1000132524077

Delage Y, Girard C (1992) Stability functions correct at the free con-
vection limit and consistent for both the surface and Ekman lay-
ers. Bound-Layer Meteorol 58:19–31. doi:10.1007/BF00120749

Dettinger MD (2013) Atmospheric rivers as drought busters on the 
U.S. West Coast. J Hydrometeorol 14:1721–1732. doi:10.1175/
JHM-D-13-02.1

Dettinger MD, Ralph FM, Das T, Neiman PJ, Cayan DR (2011) 
Atmospheric rivers, floods and the water resources of California. 
Water 3:445–478. doi:10.3390/w3020445

Diaconescu EP, Gachon P, Scinocca J, Laprise R (2014) Evaluation 
of daily precipitation statistics and monsoon onset/retreat over 
western Sahel in multiple data sets. Clim Dyn. doi:10.1007/
s00382-014-2383-2

Donat MG, Alexander LV, Yang H, Durre I, Vose R, Dunn RJH, Wil-
lett KM, Aguilar E, Brunet M, Caesar J, Hewitson B, Jack C, 
Klein Tank AMG, Kruger AC, Marengo J, Peterson TC, Renom 
M, Oria Rojas C, Rusticucci M, Salinger J, Elrayah AS, Sekele 
SS, Srivastava AK, Trewin B, Villarroel C, Vincent LA, Zhai P, 
Zhang X, Kitching S (2013) Updated analyses of temperature 
and precipitation extreme indices since the beginning of the 
twentieth century: the HadEX2 dataset. J Geophys Res Atmos 
118:2098–2118. doi:10.1002/jgrd.50150

Feser F (2006) Enhanced detectability of added value in limited-
area model results separated into different spatial scales. Mon 
Weather Rev 134:2180–2190. doi:10.1175/MWR3183.1

Field C, Barros V, Stocker T, Qin D, Dokken D, Ebi K, Mastrandrea 
M, Mach K, Plattner G, Allen S, Tignor M, Midgley P (2012) 
Managing the risks of extreme events and disasters to advance 
climate change adaptation. A Special Report of Working Groups 
I and II of the Intergovernmental Panel on Climate Change. 
Cambridge University Press, Cambridge, UK, and New York, 
NY, USA

Giorgi F, Jones C, Asrar G (2009) Addressing climate information 
needs at the regional level: the CORDEX framework. WMO Bull 
58:175–183

Glisan JM, Gutowski WJ, Cassano JJ, Higgins ME (2013) Effects 
of spectral nudging in WRF on arctic temperature and pre-
cipitation simulations. J Clim 26:3985–3999. doi:10.1175/
JCLI-D-12-00318.1

Gutowski WJ, Arritt RW, Kawazoe S, Flory DM, Takle ES, Biner S, 
Caya D, Jones RG, Laprise R, Leung LR, Mearns LO, Mou-
fouma-Okia W, Nunes AMB, Qian Y, Roads JO, Sloan LC, 
Snyder MA (2010) Regional extreme monthly precipitation 

simulated by NARCCAP RCMs. J Hydrometeorol 11:1373–
1379. doi:10.1175/2010jhm1297.1

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very 
high resolution interpolated climate surfaces for global land 
areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276

Kain JS, Fritsch JM (1990) A one-dimensional entrain-
ing/detraining plume model and its application in con-
vective parameterization. J Atmos Sci 47:2784–2802. 
doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2

Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin 
L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, 
Ebisuzaki W, Higgins W, Janowiak J, Mo K, Ropelewski C, 
Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The 
NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 
77:437–471

Kanamitsu M, Ebisuzaki W, Woollen J, Yang S-K, Hnilo JJ, 
Fiorino M, Potter GL (2002) NCEP–DOE AMIP-II reanaly-
sis (R-2). Bull Am Meteorol Soc 83:1631–1643. doi:10.1175/
BAMS-83-11-1631

Khairoutdinov M, Kogan Y (2000) A new cloud phys-
ics parameterization in a large-eddy simulation model of 
marine stratocumulus. Mon Weather Rev 128:229–243. 
doi:10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2

Kharin VV, Zwiers FW, Zhang X, Hegerl GC (2007) Changes in 
temperature and precipitation extremes in the IPCC ensemble 
of global coupled model simulations. J Clim 20:1419–1444. 
doi:10.1175/jcli4066.1

Kharin VV, Zwiers FW, Zhang X, Wehner M (2013) Changes in tem-
perature and precipitation extremes in the CMIP5 ensemble. 
Clim Change 119:345–357. doi:10.1007/s10584-013-0705-8

Kim J, Waliser DE, Neiman PJ, Guan B, Ryoo J-M, Wick GA (2013a) 
Effects of atmospheric river landfalls on the cold season pre-
cipitation in California. Clim Dyn 40:465–474. doi:10.1007/
s00382-012-1322-3

Kim J, Waliser DE, Mattmann CA, Mearns LO, Goodale CE, Hart 
AF, Crichton DJ, McGinnis S, Lee H, Loikith PC, Boustani M 
(2013b) Evaluation of the Surface Climatology over the Conter-
minous United States in the North American Regional Climate 
Change Assessment Program Hindcast Experiment Using a 
Regional Climate Model Evaluation System. J Clim 26:5698–
5715. doi:10.1175/JCLI-D-12-00452.1

Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2009) Challenges 
in combining projections from multiple climate models. J Clim 
23:2739–2758. doi:10.1175/2009JCLI3361.1

Kuo HL (1965) On formation and intensification of tropical cyclones 
through latent heat release by cumulus convection. J Atmos Sci 
22:40–63. doi:10.1175/1520-0469(1965)022<0040:OFAIOT>2.
0.CO;2

Lavers DA, Villarini G (2013) Atmospheric rivers and flooding over 
the Central United States. J Clim 26:7829–7836. doi:10.1175/
JCLI-D-13-00212.1

Leung LR, Qian Y (2009) Atmospheric rivers induced heavy precipi-
tation and flooding in the western U.S. simulated by the WRF 
regional climate model. Geophys Res Lett. doi:10.1029/200
8GL036445

Li J, Barker HW (2005) A radiation algorithm with correlated-k dis-
tribution. Part I: local thermal equilibrium. J Atmos Sci 62:286–
309. doi:10.1175/JAS-3396.1

Livneh B, Rosenberg EA, Lin C, Nijssen B, Mishra V, Andreadis KM, 
Maurer EP, Lettenmaier DP (2013) A long-term hydrologically 
based dataset of land surface fluxes and states for the contermi-
nous United States: update and extensions*. J Clim 26:9384–
9392. doi:10.1175/JCLI-D-12-00508.1

Lohmann U, Roeckner E (1996) Design and performance of a 
new cloud microphysics scheme developed for the ECHAM 

http://dx.doi.org/10.1029/2010JD015069
http://dx.doi.org/10.1111/j.1600-0870.2010.00467.x
http://dx.doi.org/10.1002/qj.828
http://dx.doi.org/10.1023/A:1000132524077
http://dx.doi.org/10.1007/BF00120749
http://dx.doi.org/10.1175/JHM-D-13-02.1
http://dx.doi.org/10.1175/JHM-D-13-02.1
http://dx.doi.org/10.3390/w3020445
http://dx.doi.org/10.1007/s00382-014-2383-2
http://dx.doi.org/10.1007/s00382-014-2383-2
http://dx.doi.org/10.1002/jgrd.50150
http://dx.doi.org/10.1175/MWR3183.1
http://dx.doi.org/10.1175/JCLI-D-12-00318.1
http://dx.doi.org/10.1175/JCLI-D-12-00318.1
http://dx.doi.org/10.1175/2010jhm1297.1
http://dx.doi.org/10.1002/joc.1276
http://dx.doi.org/10.1175/1520-0469(1990)047%3c2784:AODEPM%3e2.0.CO;2
http://dx.doi.org/10.1175/BAMS-83-11-1631
http://dx.doi.org/10.1175/BAMS-83-11-1631
http://dx.doi.org/10.1175/1520-0493(2000)128%3c0229:ANCPPI%3e2.0.CO;2
http://dx.doi.org/10.1175/jcli4066.1
http://dx.doi.org/10.1007/s10584-013-0705-8
http://dx.doi.org/10.1007/s00382-012-1322-3
http://dx.doi.org/10.1007/s00382-012-1322-3
http://dx.doi.org/10.1175/JCLI-D-12-00452.1
http://dx.doi.org/10.1175/2009JCLI3361.1
http://dx.doi.org/10.1175/1520-0469(1965)022%3c0040:OFAIOT%3e2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1965)022%3c0040:OFAIOT%3e2.0.CO;2
http://dx.doi.org/10.1175/JCLI-D-13-00212.1
http://dx.doi.org/10.1175/JCLI-D-13-00212.1
http://dx.doi.org/10.1029/2008GL036445
http://dx.doi.org/10.1029/2008GL036445
http://dx.doi.org/10.1175/JAS-3396.1
http://dx.doi.org/10.1175/JCLI-D-12-00508.1


3842 K. Whan, F. Zwiers

1 3

general circulation model. Clim Dyn 12:557–572. doi:10.1007/
BF00207939

Lucas-Picher P, Somot S, Déqué M, Decharme B, Alias A (2013) 
Evaluation of the regional climate model ALADIN to simulate 
the climate over North America in the CORDEX framework. 
Clim Dyn 41:1117–1137. doi:10.1007/s00382-012-1613-8

Martynov A, Laprise R, Sushama L, Winger K, Šeparović L, Dugas 
B (2013) Reanalysis-driven climate simulation over CORDEX 
North America domain using the Canadian regional climate 
model, version 5: model performance evaluation. Clim Dyn 
41:2973–3005. doi:10.1007/s00382-013-1778-9

McFarlane NA (1987) The effect of orographically excited gravity 
wave drag on the general circulation of the lower stratosphere 
and troposphere. J Atmos Sci 44:1175–1800

McKenney DW, Pedlar JH, Papadopol P, Hutchinson MF (2006) The 
development of 1901–2000 historical monthly climate models 
for Canada and the United States. Agric For Meteorol 138:69–
81. doi:10.1016/j.agrformet.2006.03.012

McKenney DW, Hutchinson MF, Papadopol P, Lawrence K, Pedlar 
J, Campbell K, Milewska E, Hopkinson RF, Price D, Owen T 
(2011) Customized spatial climate models for North America. 
Bull Am Meteorol Soc 92:1611–1622. doi:10.1175/2011B
AMS3132.1

Mearns LO, Gutowski W, Jones R, Leung R, McGinnis S, Nunes A, 
Qian Y (2009) A regional climate change assessment program 
for North America. Trans Am Geophys Union 90(36):311–311

Mearns LO, Arritt R, Biner S, Bukovsky MS, McGinnis S, Sain S, 
Caya D, Correia J, Flory D, Gutowski W, Takle ES, Jones R, 
Leung R, Moufouma-Okia W, McDaniel L, Nunes AMB, Qian 
Y, Roads J, Sloan L, Snyder M (2012) The North American 
regional climate change assessment program: overview of Phase 
I results. Bull Am Meteorol Soc 93:1337–1362. doi:10.1175/
BAMS-D-11-00223.1

Menne MJ, Durre I, Vose RS, Gleason BE, Houston TG (2012) An 
overview of the global historical climatology network-daily 
database. J Atmos Oceanic Technol 29:897–910. doi:10.1175/
jtech-d-11-00103.1

Mesinger F, DiMego G, Kalnay E, Mitchell K, Shafran PC, Ebisuzaki 
W, Jović D, Woollen J, Rogers E, Berbery EH, Ek MB, Fan Y, 
Grumbine R, Higgins W, Li H, Lin Y, Manikin G, Parrish D, Shi 
W (2006) North American regional reanalysis. Bull Am Mete-
orol Soc 87:343–360. doi:10.1175/BAMS-87-3-343

Mo KC, Chelliah M, Carrera ML, Higgins RW, Ebisuzaki W (2005) 
Atmospheric moisture transport over the United States and Mex-
ico as evaluated in the NCEP regional reanalysis. J Hydromete-
orol 6:710–728. doi:10.1175/JHM452.1

Murdock TQ, Sobie SR (2013) Climate extremes in the Canadian 
Columbia Basin: a preliminary assessment. Pacific Climate 
Impacts Consortium Report, University of Victoria, Victoria

Neiman PJ, Ralph FM, Wick GA, Kuo Y-H, Wee T-K, Ma Z, Tay-
lor GH, Dettinger MD (2008a) Diagnosis of an intense atmos-
pheric river impacting the Pacific Northwest: storm summary 
and offshore vertical structure observed with COSMIC satellite 
retrievals. Mon Weather Rev 136:4398–4420. doi:10.1175/2008
MWR2550.1

Neiman PJ, Ralph FM, Wick GA, Lundquist JD, Dettinger MD 
(2008b) Meteorological characteristics and overland precipita-
tion impacts of atmospheric rivers affecting the West Coast of 
North America based on eight years of SSM/I satellite observa-
tions. J Hydrometeorol 9:22–47. doi:10.1175/2007JHM855.1

Newell RE et al (1974) General circulation of the tropical atmosphere 
and interactions with extratropical latitudes, vol 2. MIT Press, 
Cambridge

Pan M, Li H, Wood E (2010) Assessing the skill of satellite-based 
precipitation estimates in hydrologic applications. Water Resour 
Res 46:W09535. doi:10.1029/2009WR008290

Pierce DW, Cayan DR, Das T, Maurer EP, Miller NL, Bao Y, Kan-
amitsu M, Yoshimura K, Snyder MA, Sloan LC, Franco G, 
Tyree M (2013) The key role of heavy precipitation events 
in climate model disagreements of future annual precipita-
tion changes in California. J Clim 26:5879–5896. doi:10.1175/
JCLI-D-12-00766.1

Pincus R, Barker HW, Morcrette J-J (2003) A fast, flexible, approxi-
mate technique for computing radiative transfer in inhomoge-
neous cloud fields. J Geophys Res 108:4376. doi:10.1029/200
2JD003322

Rotstayn LD (1997) A physically based scheme for the treatment 
of stratiform clouds and precipitation in large-scale models. I: 
Description and evaluation of the microphysical processes. Q J R 
Meteorol Soc 123:1227–1282. doi:10.1002/qj.49712354106

Rutz JJ, Steenburgh WJ, Ralph FM (2013) Climatological character-
istics of atmospheric rivers and their inland penetration over the 
Western United States. Mon Weather Rev 142:905–921

Scinocca JF, McFarlane NA (2000) The parametrization of drag 
induced by stratified flow over anisotropic orography. Q J R 
Meteorol Soc 126:2353–2393. doi:10.1002/qj.49712656802

Scinocca JF, McFarlane NA (2004) The variability of mod-
eled tropical precipitation. J Atmos Sci 61:1993–2015. 
doi:10.1175/1520-0469(2004)061<1993:TVOMTP>2.0.CO;2

Scinocca J, Kharin VV, Jiao Y, Qian M, Lazare M, Solheim L, Flato 
G (2015) Coordinated global and regional climate modelling. J 
Clim (submitted)

Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, 
Orlowsky B, Teuling AJ (2010) Investigating soil moisture–cli-
mate interactions in a changing climate: a review. Earth Sci Rev 
99:125–161. doi:10.1016/j.earscirev.2010.02.004

Seneviratne SI, Nicholls N, Easterling D, Goodess CM, Kanae S, Kos-
sin J, Luo J, Marengo J, McInnes K, Rahimi M, Reichstein M, 
Sorteberg A, Vera C, Zhang X (2012) Change in climate extremes 
and their impacts on the natural physical environment, manag-
ing the risks of extreme events and disasters to advance climate 
change adaptation. Cambridge University Press, Cambridge, UK 
and New York, NY, USA, A Special Report of Working Groups I 
and II of the Intergovernmental Panel on Climate Change

Šeparović L, de Elia R, Laprise R (2012) Impact of spectral nudg-
ing and domain size in studies of RCM response to param-
eter modification. Clim Dyn 38:1325–1343. doi:10.1007/
s00382-011-1072-7

Šeparović L, Alexandru A, Laprise R, Martynov A, Sushama L, 
Winger K, Tete K, Valin M (2013) Present climate and climate 
change over North America as simulated by the fifth-generation 
Canadian regional climate model. Clim Dyn 41:3167–3201. 
doi:10.1007/s00382-013-1737-5

Sheffield J, Barrett AP, Colle B, Nelun Fernando D, Fu R, Geil KL, 
Hu Q, Kinter J, Kumar S, Langenbrunner B, Lombardo K, Long 
LN, Maloney E, Mariotti A, Meyerson JE, Mo KC, David Neelin 
J, Nigam S, Pan Z, Ren T, Ruiz-Barradas A, Serra YL, Seth A, 
Thibeault JM, Stroeve JC, Yang Z, Yin L (2013) North Ameri-
can climate in CMIP5 experiments. Part I: evaluation of histori-
cal simulations of continental and regional climatology*. J Clim 
26:9209–9245. doi:10.1175/JCLI-D-12-00592.1

R Development Core Team (2014) R: a language and environment for 
statistical computing. R Foundation for Statistical Computing, 
Vienna. http://www.R-project.org/

Verseghy DL (1991) Class-A Canadian land surface scheme for 
GCMS. I. Soil model. Int J Climatol 11:111–133. doi:10.1002/
joc.3370110202

von Salzen K, McFarlane NA, Lazare M (2005) The role of shallow 
convection in the water and energy cycles of the atmosphere. 
Clim Dyn 25:671–688. doi:10.1007/s00382-005-0051-2

von Salzen K, Scinocca JF, McFarlane NA, Li J, Cole JNS, Plummer 
D, Verseghy D, Reader MC, Ma X, Lazare M, Solheim L (2013) 

http://dx.doi.org/10.1007/BF00207939
http://dx.doi.org/10.1007/BF00207939
http://dx.doi.org/10.1007/s00382-012-1613-8
http://dx.doi.org/10.1007/s00382-013-1778-9
http://dx.doi.org/10.1016/j.agrformet.2006.03.012
http://dx.doi.org/10.1175/2011BAMS3132.1
http://dx.doi.org/10.1175/2011BAMS3132.1
http://dx.doi.org/10.1175/BAMS-D-11-00223.1
http://dx.doi.org/10.1175/BAMS-D-11-00223.1
http://dx.doi.org/10.1175/jtech-d-11-00103.1
http://dx.doi.org/10.1175/jtech-d-11-00103.1
http://dx.doi.org/10.1175/BAMS-87-3-343
http://dx.doi.org/10.1175/JHM452.1
http://dx.doi.org/10.1175/2008MWR2550.1
http://dx.doi.org/10.1175/2008MWR2550.1
http://dx.doi.org/10.1175/2007JHM855.1
http://dx.doi.org/10.1029/2009WR008290
http://dx.doi.org/10.1175/JCLI-D-12-00766.1
http://dx.doi.org/10.1175/JCLI-D-12-00766.1
http://dx.doi.org/10.1029/2002JD003322
http://dx.doi.org/10.1029/2002JD003322
http://dx.doi.org/10.1002/qj.49712354106
http://dx.doi.org/10.1002/qj.49712656802
http://dx.doi.org/10.1175/1520-0469(2004)061%3c1993:TVOMTP%3e2.0.CO;2
http://dx.doi.org/10.1016/j.earscirev.2010.02.004
http://dx.doi.org/10.1007/s00382-011-1072-7
http://dx.doi.org/10.1007/s00382-011-1072-7
http://dx.doi.org/10.1007/s00382-013-1737-5
http://dx.doi.org/10.1175/JCLI-D-12-00592.1
http://www.R-project.org/
http://dx.doi.org/10.1002/joc.3370110202
http://dx.doi.org/10.1002/joc.3370110202
http://dx.doi.org/10.1007/s00382-005-0051-2


3843Evaluation of extreme rainfall and temperature over North America in CanRCM4 and CRCM5

1 3

The Canadian fourth generation atmospheric global climate 
model (CanAM4). Part I: representation of physical processes. 
Atmos Ocean 51:104–125. doi:10.1080/07055900.2012.755610

von Storch Hans, Langenberg Heike, Feser Frauke (2000) 
A spectral nudging technique for dynamical downs-
caling purposes. Mon Weather Rev 128:3664–3673. 
doi:10.1175/1520-0493(2000)128<3664:ASNTFD>2.0.CO;2

Weller GB, Cooley DS, Sain SR (2012) An investigation of the pine-
apple express phenomenon via bivariate extreme value theory. 
Environmetrics 23:420–439. doi:10.1002/env.2143

Weller GB, Cooley D, Sain SR, Bukovsky MS, Mearns LO (2013) 
Two case studies on NARCCAP precipitation extremes. J Geo-
phys Res Atmos 118:10475–10489. doi:10.1002/jgrd.50824

West GL, Steenburgh WJ, Cheng WYY (2007) Spurious Grid-Scale 
Precipitation in the North American Regional Reanalysis. Mon 
Weather Rev 135:2168–2184. doi:10.1175/MWR3375.1

Zadra A, Roch M, Laroche S, Charron M (2003) The subgrid-scale 
orographic blocking parametrization of the GEM model. Atmos 
Ocean 41:155–170. doi:10.3137/ao.410204

Zadra A, Caya D, Cote J, Dugas B, Jones C, Laprise R, Winger K, 
Caron L (2008) The next Canadian regional climate model. Phys 
Can 64:75–83

Zhang GJ, McFarlane NA (1995) Sensitivity of climate simulations 
to the parameterization of cumulus convection in the Canadian 
climate centre general circulation model. Atmos Ocean 33:407–
446. doi:10.1080/07055900.1995.9649539

Zhang X, Alexander L, Hegerl GC, Jones P, Tank AK, Peterson TC, 
Trewin B, Zwiers FW (2011) Indices for monitoring changes 
in extremes based on daily temperature and precipitation data. 
Wiley Interdiscip Rev Clim Change 2:851–870. doi:10.1002/
wcc.147

http://dx.doi.org/10.1080/07055900.2012.755610
http://dx.doi.org/10.1175/1520-0493(2000)128%3c3664:ASNTFD%3e2.0.CO;2
http://dx.doi.org/10.1002/env.2143
http://dx.doi.org/10.1002/jgrd.50824
http://dx.doi.org/10.1175/MWR3375.1
http://dx.doi.org/10.3137/ao.410204
http://dx.doi.org/10.1080/07055900.1995.9649539
http://dx.doi.org/10.1002/wcc.147
http://dx.doi.org/10.1002/wcc.147

	Evaluation of extreme rainfall and temperature over North America in CanRCM4 and CRCM5
	Abstract 
	1 Introduction
	2 Materials and methods
	2.1 Models and data sets
	2.2 Methods

	3 Results and discussion
	3.1 Temperature extremes
	3.1.1 Hottest day (TXx)
	3.1.2 Coolest night (TNn)
	3.1.3 Seasonal distributions of temperature extremes

	3.2 Rainfall extremes
	3.3 Precipitation types and cloud fraction
	3.4 Extreme daily rainfall associated with atmospheric river events

	4 Conclusions
	Acknowledgments 
	References




