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days are likely to significantly increase over major parts 
of Ontario and particularly heavy precipitation days, very 
wet days are very likely to significantly increase in some 
sub-regions in eastern Ontario. However, trends of sea-
sonal indices are not significant.
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Index · Trend · Projection · Poisson regression

1 Introduction

Ontario, the most populated and the second largest prov-
ince of Canada, extends approximately from 42°N to 57°N 
latitude and from 75°W to 95°W longitude. Its vulnerabil-
ity to climate change is demonstrated by the impacts of 
recent severe weather events that caused natural disasters 
(Chiotti and Lavender 2008), for example the tornado in 
2011 and ice storm in 2013. Thus, it becomes increasingly 
important for the provincial and local governments and the 
public to be aware of both current and future changes in 
extreme events as climate is likely to continue to change in 
the decades to come.

Previous studies show that as global climate change con-
tinues, total annual precipitation and the number of days 
with measurable precipitation have generally increased 
over Canada (Zhang et al. 2011). The trend toward increas-
ing precipitation has been accompanied by increases in 
extreme daily precipitation amounts during the growing 
season (Qian et al. 2010). These increases can be attributed 
to climate change (Karl and Knight 1998); Adamowski and 
Bougadis (2003) examined precipitation intensities for vari-
ous intervals and found significant trends in 5 and 10 min 
rainfall intensities; Mladjic et al. (2011) analysed the Cana-
dian regional climate model (CRCM) projected changes 

Abstract As one of the most important extreme weather 
event types, extreme precipitation events have significant 
impacts on human and natural environment. This study 
assesses the projected long term trends in frequency of 
occurrence of extreme precipitation events represented 
by heavy precipitation days, very heavy precipitation 
days, very wet days and extreme wet days over Ontario, 
based on results of 21 CMIP3 GCM runs. To achieve this 
goal, first, all model data are linearly interpolated onto 
682 grid points (0.45° × 0.45°) in Ontario; Next, biases 
in model daily precipitation amount are corrected with a 
local intensity scaling method to make the total wet days 
and total wet day precipitation from each of the GCMs 
are consistent with that from the climate forecast system 
reanalysis data, and then the four indices are estimated 
for each of the 21 GCM runs for 1968–2000, 2046–2065 
and 2081–2100. After that, with the assumption that the 
rate parameter of the Poisson process for the occurrence 
of extreme precipitation events may vary with time as 
climate changes, the Poisson regression model which 
expresses the log rate as a linear function of time is used 
to detect the trend in frequency of extreme events in the 
GCMs simulations; Finally, the trends and their uncer-
tainty are estimated. The result shows that in the twenty-
first century annual heavy precipitation days, very heavy 
precipitation days and very wet days and extreme wet 
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in precipitation extremes, with the results showing an 
increase in 1-day precipitation extremes with a magnitude 
of 5–20 mm for 100-year return period. Many methods have 
been developed for detecting trends in climate data. For 
example, the least squares linear regression and Kendall’s 
rank correlation have been widely used in detecting aver-
aged climate variables (Kendall 1975; Zhang et al. 2000; 
Wang and Swail 2001; Vincent and Mekis 2006; Keim and 
Cruise 1998; Szeto 2008). For analyzing extreme events, 
a classic parametric method is the general extreme value 
(GEV) theory. The most common approach for applying this 
theory in climate extreme value analysis is to estimate the 
extreme quantiles using a GEV distribution based on three 
parameters: location, scale, and shape. However, this the-
ory assumes that time series are stationary; for a changing 
climate, this assumption is clearly invalid (Wigley 1988), 
and thus an adjustment technique would need to be devel-
oped because the nature of climate change is considered 
non-stationary. If only analyzing whether there is a trend 
in the frequency of occurrence of an extreme event, not its 
severity, then the statistical technique of Poisson regression 
can be used (Katz 2010). The Poisson regression model is 
also known as the Generalized Linear Model (GLM) with 
Poisson error structure. Katz (2002) and Solow and Moore 
(2000) successfully used this method to fit trends in the fre-
quency of historical North Atlantic hurricanes. The indices 
we will study in this paper are the counts of extreme events. 
As a widely used method for estimating the parameters in 
count or frequency model, the Poisson regression is a suit-
able method for investigating the trends in the count indices 
from ensembles of GCM output data for the future.

With the focus on the long term trend of heavy pre-
cipitation days (R10mm), very heavy precipitation days 
(R20mm), very wet days (R95p) and extreme wet days 
(R99p) across Ontario in the twenty-first century from 
ensembles of GCMs, the variations of severity of extremes 
or the total amounts of precipitation are not discussed in 
this paper. This study will provide useful findings about the 
relationship between changes in extreme conditions and 
other aspects of the distribution of daily precipitation; some 
statistical analysis will also be carried out on precipitation 
amounts such as wet-days, simple daily intensity index 
(SDII) and maximum one-day precipitation (Rx1D). The 
structure of the paper is as follows: Data is introduced in 
Sect. 2. Methods follow in Sect. 3. Trends simulated by dif-
ferent models are described in Sect. 4. Section 5 will sum-
marize the conclusions of this study.

2  Data

Two types of data were used in this study: future projec-
tions and historical observations.

2.1  Model data: future projections

The simulations of most of the Coupled Model Intercom-
parison Project phase 5 (CMIP5) models were not available 
when we started this study. Therefore, future climate pro-
jections are the outputs from the ensemble of 21 GCM runs 
from the Coupled Model Intercomparison Project Phase 3 
(CMIP3: Meehl et al. 2007) data archive at the Program for 
Climate Model Diagnosis and Intercomparison (PCMDI). 
The GCM results cover 3 time periods, 1968–2000, 2046–
2065 and 2081–2100. The greenhouse gases emission sce-
nario for the future climate is based on the Special Report 
on Emissions Scenarios A2 emission storyline (SRESA2) 
and the 20C3M scenario which was run with greenhouse 
gases increasing as observed through the twentieth century 
(IPCC 2000). Detailed descriptions of these models are 
presented in Table 1.

Currently, CMIP5 simulations are available. The CMIP5 
builds on the CMIP3 in several ways, including a larger 
number of modeling centers and models, the use of gener-
ally moderately higher resolution models, and the inclusion 
of complex and complete representation of Earth system 
processes (Sheffield et al. 2014). However, the multi-model 
ensemble mean performance has not improved substantially 
in CMIP5 relative to CMIP3 for climatological variables, 
except for a slight improvement for near surface air temper-
ature over land (Sheffield et al. 2014). A comparison study 
shows that there is more similarity than difference between 
CMIP3 and CMIP5 ensembles in their simulated seasonal 
cycle of precipitation in semiarid regions. The shift from 

Table 1  List of the CMIP3 models used for analysis in this paper

Model name Country Run Spatial resolution 
(lon × lat)

CCCMA-GCM3.1(T47) Canada 1 3.75° × 3.75°

CCCMA-GCM3.1(T63) 1 2.81° × 2.81°

CNRM-CM 3 France 1 2.81° × 2.81°

CSIRO-Mk3.0 Australia 1 1.88° × 1.88°

CSIRO-Mk-3.5 1 1.88° × 1.88°

GFDL-CM2.0 USA 1 2.50° × 2.00°

GFDL-CM2.1 2 2.50° × 2.00°

GISS-AOM USA 1 4.00° × 3.00°

GISS-EH 3 5.00° × 3.91°

GISS-ER 1 5.00° × 3.91°

IAP-FGOALS-g1.0 China 1 2.81° × 3.00°

INM-CM3.0 Russia 1 5.00° × 4.00°

MIROC3.2(medres) Japan 1 2.81° × 2.81°

MPI-ECHAM5 Germany 1 1.88° × 1.88°

MRI-CGCM2.3.2 Japan 2.81° × 2.81°

NCAR-CCSM3 USA 3 1.41° × 1.41°

NCAR-PCM 1 2.81° × 2.81°



2911Trend in frequency of extreme precipitation events over Ontario from ensembles of multiple GCMs

1 3

CMIP3 to CMIP5 is typically much less than one standard 
deviation of either ensemble. CMIP3 and CMIP5 are also 
consistent in the simulated precipitation trend (Baker and 
Huang 2014). The CMIP5 RCP8.5 (representative concen-
tration pathway 8.5) is close to the CMIP3 SRESA2 used 
in this study (van Vuuren et al. 2011). Therefore, the trend 
analyses from CMIP3 ensemble are still useful.

2.2  Reanalysis data: historical observations

Using homogeneous historical observation data set for 
model calibration and validation is the best choice in sta-
tistical model construction. However, weather stations are 
distributed unevenly in Ontario. Sparse in vast central and 
northern areas, the majority of stations are located in south-
ern Ontario and most of the weather stations have a record 
length less than 20 years (Adamowski and Bougadis 2003). 
The best alternative in the face of incomplete and inconsist-
ent observed data sets is using reanalysis products, because 
reanalysis products represent dynamically-consistent esti-
mates of the state of climate system using the best blend 
of past, current, and perhaps future observations. There are 
some high resolution daily reanalysis data sets that cover 
Ontario, for example the new generation of ECMWF rea-
nalysis climate data (ERA-interim, Dee et al. 2014), NCEP 
North America Regional Reanalysis (NARR 2013) and 
the NCEP climate forecast system reanalysis (CFSR, Saha 
et al. 2010, 2013). An evaluation of these reanalysis data-
sets in representing frequencies of extreme precipitation 
events is necessary before using them for bias correction. 
A simple comparison of the days with daily precipitation 
>10 mm and days with daily precipitation >25 mm, derived 
from the reanalysis datasets and from observations for 
the period 1981–2010 over 30 stations in Ontario (http://
climate.weather.gc.ca/climate_normals/index_e.html), 
shows that among the three datasets, the CFSR dataset bet-
ter estimates frequency of the heavy precipitation events 
in Ontario (Deng et al. 2015). Therefore, in this study we 
use the climate forecast system reanalysis (CFSR) data as 
observations for model calibration and validation.

The CFSR is a third generation reanalysis product, with 
higher temporal (6-h) and spatial resolution (0.313-deg 
x ~ 0.312-deg) completed recently at the National Centers 
for Environmental Prediction (NCEP). It has assimilated 
observations from many data sources and has improved 
the simulation of time–mean precipitation distribution over 
various regions compared to the previous generations of 
reanalyses (Saha et al. 2010; Wang et al. 2011; Saha et al. 
2013). Despite CFSR did not directly assimilate precipita-
tion observations, it assimilated many hydrological quan-
tities from a parallel land surface model forced by the 
NOAA’s Climate Prediction Center (CPC) pentad merged 
analysis of precipitation and the CPC unified daily gauge 

analysis. (Wang et al. 2011). Although the improved data 
used in CFSR are not sufficient to eliminate the bias, the 
magnitude of the bias in CFSR is reduced compared to the 
previous generations of NCEP reanalysis (Higgins et al. 
2010). The daily precipitation of CFSR has been widely 
used for verification of deterministic precipitation forecasts 
and validation of downscaling methods (Stefanova et al. 
2011; Moore et al. 2015; Kishore et al. 2015).

3  Methods

3.1  Bias correction

Ontario’s climate is affected by three major climate impact 
factors: cold and dry polar air from the north which is the 
dominant factor during the winter months; Pacific polar air 
passing over the western prairies; and warm, moist, sub-
tropical air from the Atlantic Ocean and the Gulf of Mexico 
(Baldwin et al. 2011). The effect of these major air flows on 
precipitation depends on latitude, proximity to major water 
bodies (the Great Lakes, Hudson Bay and James Bay), and, 
to a limited extent, terrain relief (flat plains, low-uplands, 
escarpments or cuestas). The limited representation of 
regional orography and poor representation of mesoscale 
processes in GCMs makes it impossible to accurately simu-
late some of the precipitation events, especially the extreme 
precipitation events; consequently, climate downscaling 
and bias correction are necessary before calculating the 
precipitation indices in a refined spatial resolution.

The CMIP3 models can simulate heavy precipitation 
events reasonably well over northern and eastern Canada 
and capture the seasonal cycle of heavy precipitation over 
a majority of North America, but tends overestimate the 
intensity of light precipitation events over much of North 
America (Deangelis et al. 2013). However, since this study 
focuses on extreme precipitation events, we only deal with 
the wet day precipitation and the light precipitation events 
are of less concern. GCM precipitation, in some sense, 
integrates all relevant large-scale predictors and therefore 
is a good predictor for statistical downscaling (Widmann 
et al. 2003). Deviations between the large-scale GCM pre-
cipitation and regional precipitation are due to biases from 
systematic errors in GCMs and their incapability to resolve 
mesoscale dynamics such as deep convection or realistic 
surface orography. On the contrary, the higher resolution 
CFSR data can perform better to reflect the impacts of real 
surface orography or mesoscale processes on precipitation. 
A relationship between GCM and CFSR data in the over-
laid historical period (1979–2000) could be used to reduce 
the error in GCM projections. To simplify the computa-
tions in our analysis, the outputs from GCMs and CFSR 
data completed by the National Centers for Environmental 

http://climate.weather.gc.ca/climate_normals/index_e.html
http://climate.weather.gc.ca/climate_normals/index_e.html


2912 Z. Deng et al.

1 3

Prediction (NCEP) for the reference period (1981–2000) 
are interpolated onto a common 0.45° × 0.45° grid using 
an inverse distance-weighting method (Li et al. 2012; Shen 
et al. 2001). There are total of 682 grid points in Ontario. 
Then, a local intensity scaling (LOCI, Schmidli et al. 2006) 
method is used to reduce errors in the interpolated GCM 
modelled precipitation.

Previous comparisons of downscaling methods show 
the performance of the LOCI is in most cases compara-
ble to the best downscaling models (Schmith 2007; Gao 
et al. 2014). LOCI multiplies the model precipitation with 
the ratio of the observed to modelled intensity of wet day 
precipitation. Researchers (e.g., Waggoner 1989; Watter-
son 2005) have demonstrated that the most preferred dis-
tribution to fit wet-day rainfall amounts is the 2-parameter 
Gamma distribution function. Our experiments showed the 
wet-day precipitation from the CFSR data over Ontario fits 
the 2-parameter Gamma distribution very well. Therefore, 
in this study, the 2-parameter Gamma distribution is used 
to fit wet-day precipitation. The intensity of precipitation is 
represented by the product of the 2 parameters. The goal 
of precipitation bias correction is to make the model data 
and reanalysis data have the same total wet days for the 
common historical period 1979–2000 and same estimated 
expectation (E = α × β), where α and β are respectively 
the shape and scale parameters of the Gamma distribution. 
This method adjusts the precipitation series at each of the 
682 grid points in Ontario by removing the bias in wet-
day frequency and intensity. It is capable of reducing large 
biases in the precipitation frequency distribution, even for 
high quantiles (Schmidli et al. 2006). So, LOCI is a robust 
method to directly correct GCM or RCM outputs for local 
observations (Gao et al. 2014). The key of using LOCI is to 
estimate the threshold of wet-day precipitation Rc and the 
intensity adjustment coefficient r. To achieve these goals, 
firstly, we find the threshold of wet days at each grid point 
for each ensemble member by the following formula based 
on the historical 22 years data (1979–2000):

where Rc is the threshold value of model data which guaran-
tee the total wet days (daily precipitation ≥Rc) of model data 
exactly equals the total wet days (daily precipitation ≥1 mm) 
of CFSR data for the reference period. Using this method, 
we can find the Rc for each GCM run at a grid point.

After determining the threshold of wet-day precipita-
tion, the next step is to adjust the intensity of wet-day pre-
cipitation to make the estimated expectation (Em) of GCM 
data at a grid point equal that of the reanalysis data (Eo), 
i.e. (Em = Eo). Two steps are needed to get the adjustment 
coefficient (r = r1r2). Firstly, we use the following formula 
to adjust the model wet day precipitation data:

(1)Rc(condition: sum(RRcmmm) = sum(R1mmo))

where y(1) and y are the model value after and before cor-
rection respectively, r1 =

Eo

E
(0)
m

, E(0)
m

= α
(0)
m × β

(0)
m  and 

Eo = αo × βo is estimated expectation of wet day precipita-
tion of the model run and the CFSR for the overlap period 
(1979–2000). α(0)m  and β(0)m  are shape and scale parameter of 
model data respectively, αo and βo are the shape and scale 
parameters of CFSR data respectively, and the value 1.0 mm 
is standard threshold value of observed wet day. After using 
Eq. (2), the threshold of wet day of the model data (Rc) is 
replaced with 1.0 mm. Subsequently, the shape and scale 
parameters of the adjusted model data change from α(0)m  and 
β
(0)
m  to α(1)m  and β(1)m . Therefore the result from Eq. (2) should 

be further corrected using the following equation

where r2 =
Eo

E
(1)
m

, and E(1)
m = α

(1)
m × β

(1)
m  is the estimated 

expectation of model wet day precipitation from Eq. (2). 
Finally, the estimated expectation of model data from 
Eq. (3), E(2)

m = α
(2)
m × β

(2)
m , is exactly equals to Eo. With 

this method, we can get Rc and coefficient r = r1r2 at each 
grid point for each ensemble member. Then they are used 
to correct the wet-day daily precipitation amount for the 3 
periods. As an example, Fig. 1 shows the effect of bias cor-
rection on wet day precipitation from CGCM3.1 at 2 grid 
points close to Toronto (79.4 W, 43.67 N) and Pickle Lake 
(90.22 W, 51.45 N). It is clear that the LOCI method is 
capable of correcting the bias in the wet day daily precipi-
tation amount.

3.2  Indices calculation

This study focus on the trend of 2 threshold indices, heavy 
precipitation days (R10mm) and very heavy precipitation 
days (R20mm), and 2 percentile indices: very wet days 
(R95p) and extreme wet days (R99p). The calculations 
of these indices follow the guidelines proposed by Albert 
et al. (2009). Here, the symbols R95p and R99p represent 
count of very wet days and extreme wet days rather than 
total precipitation amount of very wet days and extreme 
wet days used in Albert et al. (2009). After bias correction, 
it is straightforward to estimate the seasonal and annual 
values of the indices R10mm and R20mm for a specific 
year by directly counting the days with daily precipitation 
amount greater than the given thresholds of 10 and 20 mm. 
The R95p and R99p represent days with significant anoma-
lies relative to the local climate defined by the sample of all 
wet days in the base period. The thresholds for the R95p 
and R99p are estimated based on the 22 years CFSR wet 
day daily precipitation data for each of the 682 grid points. 

(2)y(1) = (y− Rc)× r1 + 1.0

(3)y(2) =
(

y(1) − 1.0
)

× r2 + 1.0
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Using the number of days exceeding percentile thresholds 
is more evenly distributed in space and is meaningful in 
every region (Albert et al. 2009). As mentioned in the intro-
duction, 3 general precipitation amounts (R1mm, SDII and 
Rx1D) are also estimated. The definitions of these indices 
are presented in Table 2. These indices are calculated from 
CFSR data for period 1979–2009 and from downscaled 

GCM ensemble data for periods 1968–2000, 2046–2065 
and 2081–2100.

3.3  Trend detection

Trend detection methods vary with the variables accord-
ing to their properties. In this study, we will use the linear 

Fig. 1  The fitted probabilistic density functions of wet-day precipitation from CFSR (black), interpolated CGCM3.1 (red) and the bias-cor-
rected CGCM3.1 (blue) data at Toronto (left 79.4 W, 43.67 N) and Pickle Lake (right 90.22 W, 51.45 N)

Table 2  Definition of indices (Albert et al. 2009)

a R95p and R99p count of very wet and extreme wet days which are different from Albert et al. (2009)

Index Name Definition Description

R1mm Wet days Count of days where RR > 1 mm Let RRij be the daily precipitation amount on day 
i in period j. Count the number of days where 
RRij ≥ 1 mm

SDII Simple daily intensity index Mean precipitation amount on a wet day Let RRij be the daily precipitation amount on wet 
day w (RR ≥ 1 mm) in period j. If W represents 
the number of wet days in j then the simple pre-
cipitation intensity index SDIIj = sum (RRwj)/W

RX1D Maximum one-day precipitation Highest precipitation amount in one-day period highest precipitation amount in one-day period

R10mm Heavy precipitation days Count of days where RR > 10 mm Let RRij be the daily precipitation amount on day 
i in period j. Count the number of days where 
RRij ≥ 10 mm

R20mm Very heavy precipitation days Count of days where RR > 20 mm Let RRij be the daily precipitation amount on day 
i in period j. Count the number of days where 
RRij ≥ 20 mm

R95pa Very wet days Count of days where RR > 95th percentile Let RRwj be the daily precipitation amount 
on a wet day w (RR ≥ 1 mm) in period j and 
let RRwn95 be the 95th percentile of pre-
cipitation on wet days in the base period n 
(1981–2010). Count the number of days where 
RRwj > RRwn95

R99pa Extreme wet days Count of days where RR > 99th percentile Let RRwj be the daily precipitation amount 
on a wet day w (RR ≥ 1 mm) in period j and 
let RRwn99 be the 99th percentile of pre-
cipitation on wet days in the base period n 
(1981–2010). Count the number of days where 
RRwj > RRwn99
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regression method to detect the trend in spatial mean indi-
ces and the Poisson regression to detect the trend in the 
indices at each grid point. Because trends in normally dis-
tributed continuous variables are usually detected with the 
linear regression method and the spatial mean of the indi-
ces are assumed to follow the normal distribution accord-
ing to the central limit theorem, therefore their trends are 
detected using the following formula:

where K is the averaged index, K0 is the intercept and α is 
the regression coefficient, t is time (in year). The F test is 
used to check significance of trends.

On the contrary, the change of the counting number 
could be considered as a counting process which is usu-
ally described by the Poisson distribution. Katz (2002) 
and Solow and Moore (2000) proposed to use the statisti-
cal technique of Poisson regression to examine the trend 
in these count data. Katz (2002) and Solow and Moore 
(2000) used this technique to fit trends in the frequency 
of hurricanes. As counting numbers, the trend of R10mm, 
R20mm, R95p and R99p at a grid points could also 
be estimated with the Poisson regression. The Poisson 
regression method assumes a linear trend in the logarithm 
of the rate parameter of the Poisson distribution follow-
ing the method used in Katz (2002) and Solow and Moore 
(2000):

(4)K = K0 + at

The Poisson distribution assumption is

where N is the counting number, P{N = k} is the probabil-
ity of k events occurring.

The non-stationary assumption is

where �(i) denotes the rate (days) of climate events in the 
ith year, β is the slope parameter of the trend curve. It is 
estimated with maximum likelihood estimation (MLE). A 
positive (negative) β value denotes an increasing (decreas-
ing) trend. For a grid point, if β passes the χ2 test (at a 0.05 
significance level), then we can say there is a significant 
increasing (decreasing) trend in the index at the grid point. 
We will perform this analysis to the index ensemble from 
downscaled GCMs. As examples, Fig. 2 shows the trend 
lines of R95p at the 8 grid points shown in Fig. 1 for the 
period 1979–2100 from CCSM3 model. For comparison, 
the trend lines generated with the simple linear regression 
method are also plotted in the figure. It is clear that the 
trend lines estimated with the two methods are very close at 
each of the locations. All of the trend coefficients estimated 
with Eqs. (4) and (6) pass the significant tests. Although we 
got similar results with these two methods, we will only 
show the results based on the Poisson regression method.

(5)P{N = k} =
e−�

�
k

k!
, � = E[N] = Var[N]

(6)ln [�(i)] = α+ βi, i = 1, 2, . . . , m,

Fig. 2  Comparison of trend 
lines estimated with the Poisson 
regression (solid black line) and 
the linear regression (dashed 
blue line) for very wet days 
(R95p) based on the CCSM4 
model output for the period 
1979–2100
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4  Results

4.1  Trends of spatial averaged indices in the last 3 
decades

Before investigating the model simulation, it is necessary 
to examine the variations of the indices during the last 3 
decades over whole province. At first, the spatial mean of 
an index is calculated by averaging the index values for 
each year over all 682 grid points. Then, trend analysis is 
performed to it using the formula (4). Finally, the F test is 
performed to check whether the trend is significant. Fig-
ure 3 shows the spatial mean values of seasonal and annual 
R1mm, R10mm and R20mm based on CFSR data for the 
past 31 years (1979–2009). MAM (March, April and May), 
JJA (June, July and August), SON (September, October 
and November), DJF (December, January and February) 
and ANN (January–December) represent time periods (i.e., 
spring, summer, autumn, winter and year) for estimating 
the indices. The F test results are indicated by different line 
types and colors. In Fig. 1, linear trends are observed in 
some indices. For example, the increasing trends in ANN 
R10mm, ANN R20mm, and JJA R20mm are significant at 
the 5 % level (solid thick line), and the increasing trends in 
JJA R1mm, JJA R10mm, SON R10mm and SON R20mm 
are significant at the 10 % significance level (dashed thick 
line). However, the trends in other indices cannot pass the 

significant test at either the 5 % or the 10 % level. These 
results reveal the fact that the heavy (R10mm) and very 
heavy precipitation days (R20mm) have significantly 
increased in Ontario during the last 3 decades, despite the 
annual total wet days (R1mm) kept stable. The increases 
mainly occurred in summer and autumn.

4.2  Change of spatial averaged indices in future

For the future periods 2046–2065 (period 2) and 2081–
2100 (period 3), we calculated the spatial mean for each 
ensemble member. Then, based on this ensemble we gen-
erate the boxplots as shown in Fig. 4. The median (50th 
percentile), middle range (blue box, 25–75 %), low-esti-
mate (10th percentile) and high-estimate (90th percen-
tile) of the 5 count indices are plotted. For comparison, 
the mean values for the period 1980–2009 (period 1) are 
plotted as stars in Fig. 4. According to the calibrated lan-
guage for describing quantified uncertainty, if the propor-
tion of ensemble members that show increasing trend 
is ≤10 %, ≤33 %, ≤66 % or >90 %, we say the increase 
trend is very unlikely, unlikely, likely or very likely, respec-
tively (Mastrandrea et al. 2010). Therefore, the 33th per-
centiles and 66th percentiles are also plotted in the figure as 
red ‘+’ and blue ‘+’ respectively. Comparing the medians 
for the 3 periods, it is observed that most of the indices will 
increase in the future. The exceptions are SON R1mm and 

Fig. 3  Variations of spatial 
averaged seasonal and annual 
indices. The dashed thin black, 
blue and red lines represent 
inter-annual variations of wet 
days, heavy precipitation days 
and very heavy precipitation 
days from the CFSR data for the 
last 31 year respectively. The 
solid and dashed thick straight 
lines represent that the linear 
trends pass the F test at the 5 
and 10 % significance levels 
respectively. The green thin 
straight lines indicate the linear 
trends pass neither 5 nor 10 % 
significance test
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SON R10mm which may decrease in 2081–2100 relative 
to the period 2046–2065. The middle range and the 10–90 
percentile range indicate that the uncertainty of the estima-
tion is larger in the end of the century than in the middle 
of the century. It is evident that almost all 10th percentiles 
are smaller than current values implying the possibility of 
decrease of the indices in the future. The subplots of the 
annual indices show that all 33th percentiles are greater 
than the current values, therefore all of the indices are 
likely (>66 %: red crosses are above the horizontal dashed 
black lines) to increase in the future. However, only annual 
percentile indices R95p and R99p are very likely (>90 %) 
to increase for 2081–2100 relative current. It is evident that 
the four extreme indices are likely to increase in MAM, 
JJA and ANN for both of the two future periods and are 
likely to increase in DJF for 2081–2100 relative to current 
situation.

4.3  Frequency and intensity of precipitation

Before discussing extreme climate/weather events, we 
first examine the change of mean frequency and intensity 
of precipitation averaged over the three 20-year periods 
in Ontario. The indices R1mm and SDII are usually used 
to represent frequency and intensity of rain. The average 
values of these indices from CFSR data for 1981–2000 
and from ensemble mean for 2046–2065 and 2081–2100 
are plotted with geographic information system software 

ArcGIS 10.2.2 (http://resources.arcgis.com/en/home/). The 
results are shown in Fig. 5. Smaller values are displayed 
with warm colors and bigger values are displayed with cool 
colors. Comparing changes of the colors at each grid in the 
3 subfigures in the top and middle rows, it is observed that 
the annual R1mm and SDII increase in the 2 future peri-
ods relative to the current period over most grid points in 
Ontario. While the mean situation changes, the extreme sit-
uation also changes with time. The 20-year mean of maxi-
mum one-day precipitation (Rx1D) is also shown in Fig. 5, 
the annual Rx1D will also increase at most grid points. We 
did not find any grid point that shows decrease for the 3 
periods.

4.4  Frequency of extreme precipitation events

The ensemble mean of the 4 precipitation related extreme 
climate indices R10mm, R20mm, R95p and R99p for the 
3 periods are shown in Fig. 6. It is evident that as wet-
days and intensity of precipitation increase, the events of 
extreme precipitation will also increase. Thus, the heavy 
precipitation days (R10mm), very heavy precipitation days 
(R20mm), very wet days (R95p) and extreme wet days 
(R99p) will increase in the future (Fig. 6). Because heavy 
and very heavy precipitation events mainly happen in south 
part of Ontario, the increases in R10mm and R20mm are 
larger in southern Ontario. The increases of percentile indi-
ces R95p and R99p are more uniform in space.

Fig. 4  Boxplot of spatial aver-
aged seasonal and annual indi-
ces from the downscaled ensem-
ble for period 2 (2046–2065) 
and period 3 (2081–2100). The 
star represent the 30-year mean 
value for period 1980–2009), 
the red horizontal line represent 
the median, the box portion 
represent the 25th percentile to 
75th percentile, the whiskers 
represent the 10th percentile 
(lower-estimate) and the 90th 
percentile (high-estimate) and 
the red “+”s mark the positions 
of the 33rd percentile and the 
blue “+”s mark the positions of 
the 66th percentile

http://resources.arcgis.com/en/home/
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4.5  Likelihood of significant trends

Combining data for the 3 periods and using Eq. (6), we 
can estimate the trend coefficient at each model grid for 
each index from an ensemble member. A positive (nega-
tive) coefficient indicates an increasing (decreasing) trend. 
The portion (in %) of the number of models which have 
positive (negative) coefficients out of the 21 models can 
quantify the uncertainty of the trend. The results show that 
over 90 % of the models present positive trend coefficients 
in all of the seasonal and annual indices over Ontario. 
However, the non-zero trend coefficient may be a result 
of various stochastic noises. Thus, the trend coefficients 
that cannot pass the significance test may be meaningless. 
Therefore, further analysis of the portion of coefficients 
that pass the significance test is necessary. The signifi-
cance of the trend coefficient β of the parameter for each 
index at each grid from a model run can be tested by χ2 
significance test.

Based on the significance test of the trends from the 21 
GCM runs for the 3 periods, the percentages of ensemble 

members with significant increasing trend coefficients for 
seasonal and annual indices can be estimated. Figure 7a, c 
show that annual heavy precipitation days (R10mm) and 
very wet days (R95p) are likely (>66 %) to significantly 
increase over almost all of the grid points in Ontario and 
are very likely (>90 %) to significantly increase in the 
northeastern Ontario. Figure 7b, d show that very heavy 
precipitation days (R20mm) and extreme wet days (R99p) 
are likely to significantly increase over a major area except 
for the northwestern region. At some grid points in the cen-
tral area, R20mm are very likely to significantly increase. 
Further checking the portions of seasonal indices of 
increasing trend (not shown), it is evident that in almost all 
seasons the indices are likely to increase, however, at most 
grid points, more than half (>50 %) of the trend coefficients 
cannot pass the significance test. Only in some grid points, 
for example in the central area, the MAM R10mm and DJF 
R10mm are likely to significantly increase. Failure to pass 
the significance test is possibly due to the large inter-annual 
variance in the time series of the seasonal indices which 
may lead to type II error.

Fig. 5  Temporal average of ensemble mean of annual wet days (R1mm, unit: days), simple daily intensity index (SDII) and maximum one-day 
precipitation (Rx1D) for the 3 periods 1981–2000 (left), 2046–2065 (middle) and 2081–2100 (right)
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5  Summary and discussion

In this study, the long term trends in frequency of occur-
rence of extreme precipitation events represented by indi-
ces R10mm, R20mm, R95p and R99p, over Ontario, are 
investigated. The data examined are the results from an 
ensemble of CMIP3 GCMs. For simplicity, all model 
data are linearly interpolated onto a grid with resolution 
of 0.45° × 0.45°. As a reference data, the high resolution 
CFSR reanalysis precipitation data for 1979–2009 is used 

to correct the biases in wet day precipitation from mod-
els for current and future periods. Considering the effects 
of local geographic factors, the local intensity scaling 
(LOCI) method is used to adjust the wet day precipitation. 
The seasonal and annual extreme precipitation indices are 
estimated for the current and future periods. The trends of 
spatial averaged indices are fitted with the linear regression 
model and the trends of the indices at each model grid point 
are fitted with the Poisson regression model. The Poisson 
model assumes the underlying probability distributions 

Fig. 6  Temporal average of ensemble mean of indices (in days) 
heavy precipitation days (R10mm: top row),very heavy precipitation 
days (R20mm: second row), very wet days (R95p, third row) and 

extreme wet days (bottom row) for the three 20-year periods 1981–
2000 (left), 2046–2065 (middle) and 2081–2100 (right)
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of these count indices slowly change as global climate 
changes. The uncertainties which are quantified with likeli-
hood of significant trends in the indices at grid points are 
estimated based on the 21-member ensemble.

The result shows that the spatial mean of the indices sig-
nificantly increased in the last 3 decades and are likely to 
continually increase in this century. Comparing the ensem-
ble means for the 3 periods indicates the frequency and 
intensity of precipitation and maximum one-day precipita-
tion will increase in the future. Spatially, the annual values 
of the 4 extreme precipitation indices are likely to signifi-
cantly increase over major part over Ontario in twenty-first 
century. The annual R10mm and R95p are very likely to 
significantly increase at some points in the east area. The 
increasing trends are consistent with some recent studies 
from the low resolution GCMs under the RCP8.5 (Baker 
and Huang 2014; Kharin et al. 2013; Sillmann et al. 2013; 
Maloney et al. 2014). For example, the magnitude of the 
precipitation extremes over land increases appreciably with 
the multi-model median increasing by about 30 % in the 
RCP8.5 experiments by the year 2100 (Kharin et al. 2013). 
Over Ontario, heavy precipitation days (R10mm) increases 

by about 4–6 days and very wet day precipitation increase 
by about 40–70 % (Sillmann et al. 2013). Precipitation 
increases 0–0.25 mm/day in summer and 0.25–1 mm/day 
in winter for 2080s in RCP8.5 (Maloney et al. 2014).

Since strong warming in Ontario is a robust charac-
teristic of future climate change projections, increases in 
extreme precipitation may follow the warming in temper-
ature according to the Clausius–Clapeyron relationship 
that predicts an increase in moisture availability of about 
6–7 % per °C. (Kharin et al. 2013). The changes in the 
structure of global and regional atmospheric circulation 
caused by the warmer climate may affect the frequency 
of extreme precipitation events as well (Thomas 2009). 
Some studies show the increase in frequency of precipi-
tation events in cold season is associated with increased 
atmospheric moisture, increased moisture convergence, 
and a poleward shift in mid-latitude cyclones activity 
(Christensen et al. 2013; Grise and Polvani 2014). A pos-
sible reason of increase precipitation events over south-
ern Ontario in warm season is the poleward movement of 
tropical cyclones as global warming continues (Jien and 
Gough 2013; Shawn et al. 2009). However, the detailed 

Fig. 7  Spatial distribution of percentages (in %) out of the models with significant increasing trend in the four annual indices. a R10mm, b 
R20mm, c R95p, d R99p
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mechanism for the circulation change impacts on the fre-
quency of extreme precipitation events over Ontario is 
not clear.

This paper focused on four precipitation indices which 
represent frequency of moderate extremes. The conclu-
sions are based on the data from the relatively worse-case 
scenario A2 in AR4. Although the trends in annual indices 
are significant for most ensemble members and are con-
sistent with the recent studies based on AR5 data at global 
scale (Sillmann et al. 2013), the trends are not significant 
in seasonal indices in more than half ensemble members. 
Uncertainties associated with, for example, the representa-
tion of observational precipitation with reanalysis precipi-
tation, the relative small ensemble size and the short length 
of dataset may affect the reliability of the conclusions. The 
CMIP5 data are currently available; we will use the large 
GCM ensemble of AR5 data to update the results in the 
future.
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