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predominance of El Niño may be more prevalent under cli-
mate change. In addition, two different historical time peri-
ods are identified, which resemble pre-industrial and the 
most severe future emissions scenarios. The ability of the 
empirical relations to generalize under these proxy condi-
tions is considered an indicator of their performance under 
future nonstationarity. Case studies over two climatologi-
cally disjoint study regions, specifically India and North-
east United States, reveal robustness of DOE in identifying 
the locations where nonstationarity prevails as well as the 
role of effective predictor selection under nonstationarity.

Keywords  Statistical downscaling · Stationarity · 
Climate change

1  Introduction

The latest generation of climate (or earth system) models 
[General Circulation Models (GCMs), or Earth System 
Models (ESMs)] at global scale, specifically, the ones in the 
Coupled Model Intercomparison Project phase 5 (CMIP5), 
incorporates more detailed physics and generates more 
ensemble runs at higher resolutions than the previous phase 
3 (CMIP3) generation (Knutti and Sedláček 2012; Kumar 
et  al. 2014). However, despite specific improvements in 
large-scale drivers of precipitation (Ryu and Hayhoe 2013), 
CMIP5 models have not resulted in drastic improvements 
over CMIP3 for impact-relevant variables (Knutti and 
Sedláček 2012; Kumar et al. 2014). At regional scales, this 
is exemplified by the lack of improvement in simulations 
of the Indian Summer Monsoon Rainfall (ISMR), as shown 
by Shashikanth et  al. (2013) and Ramesh and Goswami 
(2014). However, as shown in Sperber et al. (2012), certain 
multi-model diagnostics do show improvements in CMIP5, 

Abstract  Statistical downscaling (SD) establishes 
empirical relationships between coarse-resolution climate 
model simulations with higher-resolution climate vari-
ables of interest to stakeholders. These statistical relations 
are estimated based on historical observations at the finer 
resolutions and used for future projections. The implicit 
assumption is that the SD relations, extracted from data 
are stationary or remain unaltered, despite non-stationary 
change in climate. The validity of this assumption relates 
directly to the credibility of SD. Falsifiability of climate 
projections is a challenging proposition. Calibration and 
verification, while necessary for SD, are unlikely to be able 
to reproduce the full range of behavior that could manifest 
at decadal to century scale lead times. We propose a design-
of-experiments (DOE) strategy to assess SD performance 
under nonstationary climate and evaluate the strategy via 
a transfer-function based SD approach. The strategy relies 
on selection of calibration and validation periods such that 
they represent contrasting climatic conditions like hot-ver-
sus-cold and ENSO-versus-non-ENSO years. The under-
lying assumption is that conditions such as warming or 
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while specific models improve on certain dynamical pro-
cesses such as northward propagation and tilted band of 
convection over the Indian monsoon region.

Two downscaling approaches (obtaining climate projec-
tions at high resolution), specifically, (1) dynamical down-
scaling (DD), which involves developing and running high 
resolution regional climate models (RCMs) forced with 
GCM simulated climate variables, and (2) statistical down-
scaling (SD), composed of data driven models, are used to 
add value to GCM simulations in terms of regional climatic 
attributes. While falsification is a challenge in climate pro-
jections in general, particular care is needed when evalu-
ating downscaling approaches. The latter is especially true 
because so called scientific intuitions and educated guesses 
may be misleading. Thus, while much has been made about 
SD relations not holding true under a nonstationary cli-
mate, it is important to distinguish between the stationar-
ity of the statistical relations versus the non-stationarity of 
global temperature anomalies. The basic relations among 
atmospheric variables governed by conservation laws are 
not expected to change because of global warming. How-
ever, if SD relations are calibrated under conditions domi-
nated by stratiform precipitation but regional warming 
leads to an increase in the convective precipitation fraction, 
then the statistical relations leading to downscaled precipi-
tation may indeed change. Conversely, DD processes are 
not necessarily automatically robust to changes in physical 
processes (e.g. changes in convective fraction of precipita-
tion) unless the relevant physical parameters in the RCMs 
can capture the change.

The ability of RCMs to add value over GCMs has been 
debated in the literature (Racherla et al. 2012) and even in 

news articles (Kerr 2013). However, Laprise (2014) has 
argued that the results of Racherla et  al. (2012) may be 
influenced by the presence of internal variability and sam-
pling error. Recent literature on DD includes discussions 
about performance (Pinto et  al. 2014; Xue et  al. 2014) 
and usefulness (Glotter et al. 2014). The SD (Wilby 1994; 
Wilby and Wigley 1997; Wilby et  al. 1998, 1999, 2004; 
Mehrotra and Sharma 2005, 2006; Raje and Mujumdar 
2009; Hewitson and Crane 1992; Ghosh and Mujumdar 
2006; Anandhi et al. 2008; Wang et al. 2009; Ghosh 2010; 
Groppelli et al. 2011; Kannan and Ghosh 2013; Salvi et al. 
2013) involves establishing empirical relations between 
variables that are relatively better projected by GCMs (or 
even RCMs), usually at lower resolutions, with impact-
relevant variables at higher resolutions. Figure  1 shows a 
comparison between mean of GCM simulated (re-gridded 
at observed rainfall resolution) rainfall (Fig. 1b) and mean 
of statistically downscaled rainfall at daily temporal reso-
lution (Fig. 1c) with a reference to mean of observed data 
(Fig. 1a) over 1979–2005. Here, we use the fourth genera-
tion GCM simulations from Canadian Centre for Climate 
Modelling and Analysis (CCCmaCanESM2, CGCM4; 
resolution  ~2.8°). These simulations possess improved 
features as compared to its third generation counterpart in 
terms of (1) improved resolution of spectral representation, 
(2) updated radiative transfer scheme (correlated-k distribu-
tion model (Li 2002; Li and Barker 2002, 2005) and more 
general treatment of radiative transfer in cloudy atmos-
pheres (Pincus et al. 2003; Barker et al. 2008), (3) account-
ing for direct and indirect radiative effects of aerosols, and 
(4) inclusion of prognostic bulk aerosol scheme, single-
moment cloud microphysics scheme, statistical approach 

Fig. 1   Value-Addition by statistical downscaling in capturing 
statistical properties of observed rainfall data (1979–2005). a 
Mean of APHRODITE gridded rainfall data at 0.25° resolution 
(JJAS), b mean of GCM simulated rainfall (Canadian Centre for 

Climate Modeling and Analysis, CCCma-CanESM2), re-gridded 
at 0.25° resolution, and c mean of statistically downscaled rain-
fall at 0.25° resolution using kernel regression based downscaling 
methodology
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for macro-physical properties of layer clouds (Chaboureau 
and Bechtold 2005). SD is performed with kernel regres-
sion (Kannan and Ghosh 2013; Salvi et al. 2013). Gridded 
observed rainfall for India at a 0.25° spatial resolution is 
obtained from APHRODITE (Asian Precipitation Highly 
Resolved Observational Data Integration towards the 
Evaluation of Water Resources project, Japan). Figure  1 
shows that GCM simulations fail to capture the magnitude 
and spatial pattern of mean observed rainfall. Whereas, 
the downscaled rainfall shows absolute similarities in all 
respect with observed mean rainfall. The reasons behind 
the failure of the GCM in simulating spatial variability of 
rainfall are its coarse resolution, which cannot address fine 
resolution factors affecting precipitation process such as 
orography, choice of parameterization schemes, representa-
tion of vegetation etc.

SD approaches can be grouped into three categories: 
transfer functions, weather typing and weather generators. 
Transfer function methods develop projection models relat-
ing the predictors (climate variables at lower resolution) to 
the variables of interest (Hewitson and Crane 1992; Crane 
and Hewitson 1998; Wilby et  al. 2004), while weather 
typing relies on grouping local, meteorological variables 
in relation to different classes of atmospheric circulation. 
Future regional climate scenarios are constructed either by 
resampling from the observed variable distribution, condi-
tional on circulation patterns produced by a GCM or first 
generating synthetic sequences of weather patterns using 
Monte Carlo techniques and then resampling from the gen-
erated data (Hay et al. 1991; Bogardi et al. 1993; Özelkan 
and Duckstein 1996). Weather generators simulate syn-
thetic sequences of weather variables, which are statisti-
cally consistent with the observed characteristics of the 
historical record in time (Richardson 1981; Hughes et  al. 
1993; Hughes and Guttorp 1994a, b; Wilks 1999; Khalili 
and Brissette 2009). The present study uses a state-of-the-
art SD approach (Kannan and Ghosh 2013) that essen-
tially combines weather typing with transfer functions. It 
involves establishing relationship between climate predic-
tors and rainfall state (which is a qualitative representation 
of rainfall occurring in a given region at different grids). 
With the established relationship and future climate predic-
tors, future rainfall states are estimated. Rainfall for future 
is obtained using kernel regression, conditioned on the pro-
jected rainfall states.

Despite of the skills, illustrated by SD models in captur-
ing properties of observed data over historic period, these 
models suffer a major setback in the form of a limitation. 
A common perception is that SD approaches, being empiri-
cally based, are even more sensitive to nonstationarity in 
climate compared to their physically-based counterparts 
such as RCM-based DD. This is because, empirical rela-
tions are developed based on historical observations and 

assumed to be stationary over time. This is usually termed 
as assumption of stationarity. While this is perceived to be 
a strong assumption given expected nonstationarity under 
changing climate, surprisingly little literature is devoted in 
examining this assumption as a hypothesis. Nonstationarity 
is an inbuilt trait, which is embedded in climate systems at 
different spatio-temporal scales (Hertig and Jacobeit 2013). 
Different studies show the existence of non-stationarity in 
the climate system e.g. time variant circulation to weather 
links (Huth 1997) and significance of non-stationarity in 
relationship between circulation pattern and temperature 
(Slonosky et al. 2001). Wilby et al. (1998) proposed three 
underlying factors that can be associated with non-station-
arity in SD models: an incomplete set of predictor varia-
bles, inadequate calibration periods, and situations in which 
the climate system structure(s) changes through time. With 
changing climate, the relationship between predictors and 
the predictand of interest could potentially change. Stud-
ies have proposed embedding potential effects of non-sta-
tionarity within statistical relationships in SD models. This 
has been tried either by imposing some modifications in the 
existing methods or proposing completely new methodolo-
gies. Busuioc et  al. (1999) proposed a technique for veri-
fication of capability of empirical downscaling procedures 
under changing climatic conditions by comparing outputs 
of SD models with their parent GCMs. It is assumed that 
if a GCM shows the skills in simulating regional variable 
such as rainfall reasonably well, then the same GCM may 
reasonably simulate the changes in climatology on account 
of GHG emissions in future. If the changes in climatol-
ogy, simulated by GCM are similar to those simulated by 
downscaling methodology, then it is safe to assume that the 
downscaling model is indirectly capturing the non-station-
arity in statistical relationship. The major limitations in this 
approach are, GCMs are very unlikely to simulate precipita-
tion well, and secondly good simulations of climatology do 
not ensure reliable simulations of changes (Racherla et al. 
2012). Furthermore, the changes in precipitation are guided 
by local factors such as orography (Salvi et al. 2013), the 
choice of convective parameterization scheme (Litta et al. 
2011), and regional land use land cover (Pielke et al. 2007). 
Charles et  al. (1999) applied nonhomogeneous hidden 
Markov model as a downscaling technique to a network of 
30 daily precipitation stations in Australia and found that 
inclusion of dew point temperature at 850 hPa plays crucial 
role in successful performance of downscaling model under 
climate change conditions. Schmith (2008) carried out a 
systematic study on the effect of assumption of stationar-
ity on downscaling and showed that selection of predictors 
plays major role in avoiding non-stationarity. Underwood 
(2009) applied Generalized Additive Models (GAMs), 
which explore the non-linear relationships in the data and 
able to simulate seasonal patterns and long term trends of 
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observed data. GAMs provide ability to identify the type 
of relationship (linear or nonlinear) between covariates and 
response variable. Duan and McIntyre (2012) developed an 
approach for identification of non-stationarity in downscal-
ing models using regression analysis, which was tested for 
50 sites in south-east England over the period ‘1855–2008’. 
The regression coefficients for SD are obtained for each of 
‘30 year moving windows’ running through the above men-
tioned period. The existence of significant trends in regres-
sion coefficients is treated as an indicator for presence of 
non-stationarity. Hertig and Jacobeit (2013) developed an 
approach, which involved application of ‘Generalized Lin-
ear Regression Model’ (GLR) with Poisson distribution 
to establish relationship between different predictors and 
rainfall. The relationship is established over different sets 

of ‘31  years’ period with a moving window approach. A 
bootstrap based validation is used to generate 1000 itera-
tions of each calibration and validation period and biases 
are compared.

Climate conditions in the future, especially at multi-
decadal to century scales, may alter significantly owing 
to changes in radiative forcing. Thus, the relative preva-
lence of convective versus large-scale precipitation gen-
eration may change under a warming environment. An 
SD approach that is capable of adjusting to these changes 
in states and captures physically-consistent relations has 
a better possibility of generalizing to future climate. This 
paper proposes a design-of-experiment based framework 
for examining the ability of SD models to generalize under 
approximate non-stationarity. An implicit assumption, 

Fig. 2   Study regions and flowchart of statistical downscaling method-
ology. a ‘India’ with seven meteorologically homogeneous zones iden-
tified by India Meteorological Department (IMD) (Parthasarathy et al. 

1996), b ‘Northeast United States’, divided into four regions of almost 
equal area, c flowchart, showing kernel regression based multisite sta-
tistical downscaling methodology by Kannan and Ghosh (2013)
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which has been made by previous researchers (DelSole and 
Chang 2003), is that other than “drastic” changes or cli-
mate “surprises” (e.g. through runaway positive feedback), 
which are not usually considered by either models (GCMs 
or RCMs) or SD, climate conditions in the current or future 
will have “signatures” over time and space. For any specific 
region, future climate states and empirical relations may 
be assumed to have signatures in the past climate. Thus, if 
conditions get warmer (colder) or El Niño-s becomes more 
(less) prevalent in the future owing to global warming and 
different forcings such as volcanic eruptions, anthropo-
genic aerosols leading to changes in radiative forcing, the 
climate may begin to resemble those historical situations 
where similar conditions occurred owing to natural vari-
ability. This implicit assumption is at the core of the pro-
posed design of experiments strategy.

For present study, guiding assumption for the strategy 
is that general applicability of empirical relations may be 
examined by carefully delineating the data into a statistical 
model-building or training phase followed by a test phase. 
The delineation will consider contrasting climate condi-
tions at aggregate scales, such as hot versus cold years, 
or El Niño, La Niña, and non-ENSO years. In view of the 
long lead times of interest in climate studies, and the fact 
that climate happens to be a nonlinear dynamical system, 
a rigorous evaluation needs to consider the downscaled 
changes under plausible future scenarios. Here we identify 
two different time periods from observations which have 
resemblance in predictors to those of pre-industrial condi-
tions and RCP 8.5, the most severe among the projected 
greenhouse-gas emissions scenarios. We use the Euclid-
ean distance, between the multi-dimensional predictors of 
historical and PI/RCP 8.5 scenario as a measure of resem-
blance. SD is evaluated based on the premise that an ability 
to simulate and generalize under these differences is likely 
to translate to better ability to generalize under anticipated 
future non-stationarity.

The manuscript is organized as follows. Section 2 pro-
vides complete details about the downscaling methodology, 
study regions, and data used. Section 3 provides the details 
of experiments designed. Section 4 presents the results that 
are obtained by executing these experiments over the study 
regions. Section 5 summarizes the results and provides crit-
ical discussion on them. Section 6 provides the important 
conclusions of the present study and the future scope.

2 � Data and downscaling methodology

Designing of experiments for validation of SD models, 
needs an established downscaling approach, to which the 
experiments may be applied. Here we use a recently devel-
oped non-parametric regression approach for SD (Kannan 

and Ghosh 2013), which has been successfully applied to 
Indian Summer Monsoon Rainfall (Salvi et al. 2013). The 
SD model with the proposed experiments is applied to two 
different regions, India (Fig.  2a) and North Eastern US 
(NEUS) (Fig. 2b). These two regions belong to two differ-
ent climatic zones with different climatology. For India, the 
model is applied to summer monsoon (June, July, August 
and September) rainfall, while for NEUS it is applied to 
summer precipitation (June–August).

2.1 � Data

The SD model develops statistical relationship between 
predictor (large scale or synoptic circulation) and pre-
dictand (rainfall, here). Here, we use reanalysis data for 
predictors and observed gridded rainfall data for the pre-
dictand. Reanalysis data consists of climatic variables, 
expressed in gridded format for the entire globe. In the pre-
sent study, National Centers for Environmental Prediction/
National Center for Atmospheric Research (NCEP/NCAR) 
data are used as predictors. NCEP/NCAR are the research 
organizations that use data assimilation system, which 
includes the NCEP global spectral model and a three-
dimensional analysis scheme to obtain reanalysis data for 
various climatic variables. NCEP/NCAR climatic variables 
are categorized in three types (Kalnay et  al. 1996). Cate-
gory ‘A’ variables are those which are strongly influenced 
by observations e.g. zonal and meridional wind. These are 
highly accurate. Category ‘B’ variables are influenced by 
the model and observations but not up to the extent of cat-
egory ‘A’ level variables e.g. specific humidity. Category 
‘C’ variables are completely determined by the model e.g. 
rainfall. Additional information on types of NCEP/NCAR 
reanalysis variables can be found in Kalnay et al. (1996).

NCEP/NCAR reanalysis data possess positive assets such 
as fixed state-of-the-art assimilation scheme, inclusion of 
more observations, better quality control (Bromwich and Fogt 
2004), better accessibility and spatial coverage across the 
regions of large observational data voids. However, the same 
data suffers drawbacks such as limited skills and reliability 
because of shortage of observations in high southern latitudes, 
presence of artificial trends in the mean sea level pressure 
fields near Antarctica (Hines et  al. 2000), lack of sufficient 
skills in representing atmospheric state for certain regions 
and time (Stickler and Brönnimann 2011), absence of aerosol 
component, overestimation of seasonal precipitation, runoff, 
evaporation, and surface water variations resulting in poor rep-
resentation of hydrologic cycle (Road and Betts 1999; Maurer 
et al. 2001) etc. These limitations and biases are likely to affect 
the results of statistical experiments, designed in the present 
study. However, most of the climate variables (NCEP/NCAR 
reanalysis data), used in the present study for obtaining rainfall 
simulations (refer Table 1 for list of climate variables used in 
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Table 1   Data used in the present study

Section 1: data used for experiment series 1

Source Resolution

Predictors

Surface level specific humidity (huss) NCEP-NCAR reanalysis data Spatial: 2.5°, temporal: daily

Specific humidity (500 hPa) (hus)

Sea level pressure (psl)

Geopotential height (500 hPa) Zg

Temperature (surface) (tas)

Temperature (500 hPa) (ta)

Uwind (near surface) (uas)

Uwind (500 hPa) (ua)

Vwind (near surface) (vas)

Vwind (500 hPa) (va)

Predictand

APHRODITE rainfall data for Asia Asian precipitation highly resolved observational data 
integration towards evaluation project

Spatial: 0.25°, temporal: daily

Monsoon Asia V1101 Lat: 6.875°–37.125°

Lon: 68.125°–97.125°

National Oceanic and Atmospheric Administration  
Climate Prediction Center

http://www.esrl.noaa.gov/psd/data/gridded/data.unified.
html

0.25°

Lat: 37.875°–47.375°

Lon: 279.625°–293.125°

Time slices Years Comments

Training period 1951–1980 Past

Testing period 1981–2005 Recent past

Regions Extent of zone of predictors in terms of latitude and longitude latitude Longitude

Zone of predictors (NE US)

Region 1 35–47.5 275–287.5

Region 2 30–50 277.5–290

Region 3 35–50 280–295

Region 4 37.5–52.5 285–300

Zone of predictors (India)

PI 5–22.5 70–90

WCI 12.5–30 70–87.5

NWI 17.5–35 65–80

CNI 15–32.5 72.5–92.5

NE 20–32.5 85–100

JAK 27.5–40 70–82.5

NEH 25–32.5 90–100

Section 2: data used for experiment series 2

GCM used Details Resolution

CCCmA, CanESM2 Canadian Centre for Climate modelling and Analysis, Second Generation Earth System 
Models

Spatial: ~2.8°, temporal: 
daily

Scenarios considered for experiment Details Time slice considered to check signature

Pre-industrial run Pre-industrial control simulation 2121–2150

RCP8.5 Representative concentration pathways 8.5 2070–2099

http://www.esrl.noaa.gov/psd/data/gridded/data.unified.html
http://www.esrl.noaa.gov/psd/data/gridded/data.unified.html
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the present study) belong to category ‘A’ (Kalnay et al. 1996). 
Also, data availability for longer period is of prime importance 
for execution of experiments, designed in this study. Hence, 
for the present study, we have selected NCEP/NCAR reanaly-
sis daily data as the source of gridded climate variables due to 
its availability for longer period (1948–2014).

Predictors are coarse resolution climate variables, which 
represent synoptic scale circulation pattern over a study 
region, well simulated by climate models and are associ-
ated with precipitation process (Wilby et  al. 2004). Here, 
we consider five surface level climate variables, viz., spe-
cific humidity, mean sea level pressure, temperature, near 
surface zonal (U) wind, near surface meridional (V) wind, 
and five pressure level climate variables (at 500 hPa) spe-
cific humidity, geopotential height, temperature, Uwind, 
and Vwind, obtained from NCEP/NCAR reanalysis data-
set as predictors for both the study regions (Table 1). For 
selection of the spatial extent of the predictors (zone of pre-
dictors), we consider seven meteorological subdivisions of 
India (Fig. 2a), and for each subdivision the spatial extent 
is mentioned in Table  1. Similarly for NEUS, we divide 
the study area into four regions (of almost equal size) 
(Fig. 2b) and the spatial extents of predictors are presented 
in Table 1, for each region. The rationale behind selecting 
this spatial extent is available in Salvi et al. (2013). Selec-
tion of zone of predictor (Salvi et al. 2013) is an important 

step in kernel regression based SD methodology, which 
is used in this study. Zone of predictors is a region which 
completely encompasses a hydro-meteorologically homo-
geneous unit. It is assumed that the rainfall in a particular 
zone [e.g. Western Central India (WCI) zone in Fig. 2a] is 
mainly influenced by the climate variables in the zone of 
predictors. For present study, we have used a correlation 
based methodology for identification of zone of predictors 
for each unit in study regions (Salvi et al. 2013). This meth-
odology involves obtaining two dimensional contour plots 
of correlation between predictor at each grid and spatially 
averaged observed rainfall time series in a particular zone. 
Method of selection of the zone of predictors (Salvi et al. 
2013) for a particular hydro-meteorologically homogene-
ous unit is explained here with an example of WCI zone 
(Fig.  2a). WCI is composed of 1273 grids at 0.25 degree 
resolution and its spatial extent is over latitude 15°–25° 
and longitude 72°–84° approximately. We select a big-
ger region (latitude 5°–40° and longitude 60°–120° here) 
in such a way that WCI is well within this region. All the 
NCEP/NCAR reanalysis data climate variables (at 2.5° 
resolution), which are used in the study as predictors, are 
extracted over this region. Hence, we get a 15 ×  25 grid 
size over latitude 5°–40° and longitude 60°–120° at 2.5° 
resolution for each predictor. Following steps are executed 
to decide zone of predictors.

Table 1   continued

Section 3: predictors used to improve performance of SD model under non-stationary conditions

Predictors Source Resolution

Surface level specific humidity (huss) NCEP-NCAR reanalysis data Spatial: 2.5°, temporal: daily

specific humidity (500 hPa) (hus)

Sea level pressure (psl)

Geopotential height (500 hPa) Zg

Temperature (surface) (tas)

Temperature (500 hPa) (ta)

Uwind (near surface) (uas)

Uwind (500 hPa) (ua)

Vwind (near surface) (vas)

Vwind (250 hPa) (va_250 hPa)

Specific humidity (300 hPa) (hus_300 hPa)

Geopotential height (250 hPa) Zg_250 hPa

Temperature (250 hPa) (ta_250 hPa)

Uwind (250 hPa) (ua_250 hPa)

Vwind (250 hPa) (va_250 hPa)

Specific humidity (850 hPa) (hus_850 hPa)

Geopotential height (850 hPa) Zg_850 hPa

Temperature (850 hPa) (ta_850 hPa)

Uwind (850 hPa) (ua_850 hPa)

Vwind (850 hPa) (va_850 hPa)
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1.	 Data, used to carry out the analysis (1) observed 
rainfall data matrix over WCI zone (dimensions: 
N ×  1273, where N is the sample size and 1273 are 
number of grids in WCI zone), (2) NCEP/NCAR cli-
mate predictor e.g. temperature data matrix (dimen-
sion: N × 15 × 25);

2.	 Obtain spatially averaged rainfall time series ‘Y’ (aver-
age of 1273 rainfall values for each day) for WCI zone 
(Dimensions of spatially averaged rainfall time series 
will be N × 1).

3.	 Compute the correlation coefficient between ‘Y’ and 
temperature time series at each node from temperature 
data matrix. Outcome of this step will be correlation 
matrix with dimensions 15 × 25.

4.	 Plot the matrix in the form of contours.
5.	 Repeat the same procedure with each NCEP/NCAR 

climate predictor, used in the study.
6.	 Visually compare all the contour plots and decide the 

region as ‘zone of predictors’ in such a way that for 
most of the climate predictors, high correlation contour 
regions lie inside the zone of predictors.

Supplementary Figures 1 and 2 (refer Online Resource 
1, SF1 and SF2) show the correlation contour plots for 
one representative zone from each study region. The pre-
dictand, which is the gridded rainfall data, is obtained 
for India, from APHRODITE (Yatagai et  al. 2009). The 
downloaded data is for ‘Monsoon Asia (MA)’ V1101, 
from 60°E to 150°E (longitude) and 15°S to 55°N (lati-
tude) and over a period of 1951–2005. APHROTIDE data 
is a widely used gridded rainfall product (Wang and Gil-
lies 2013; Han and Zhou 2012; Gillies et  al. 2012; Tojo 
et  al. 2011). For NEUS, the gridded rainfall data, pro-
vided by National Oceanic and Atmospheric Administra-
tion (NOAA) Climate Prediction Center (CPC), is used as 
predictand. The data is at 0.25° resolution and it is avail-
able for entire US.

2.2 � Statistical downscaling methodology

Here, we follow the SD model developed by Kannan and 
Ghosh (2013), which is based on Classification and Regres-
sion Tree (CART) and kernel regression. This model is 
reported to simulate well, the climatology, statistics of 
rainfall and cross-correlation between rainfalls at multiple 
stations. The steps involved in developing the predictor-
predictand relationship are Principal Component Analy-
sis, K-means clustering, CART and kernel regression. 
Figure  2c shows the flowchart of the methodology. The 
mathematical operations shown in the Figure are elabo-
rated briefly in the following text. For detailed methodol-
ogy, Kannan and Ghosh (2013), Salvi et al. (2013) can be 
referred.

2.2.1 � K‑means clustering

In the SD model (Kannan and Ghosh 2013); ‘k means clus-
tering’ technique is used to present the spatial pattern of 
rainfall in a region, with a cluster. Each of the meteorologi-
cally homogeneous regions is considered as individual unit 
and k mean clustering is applied over all the grids, located 
in that region. The primary purpose is to categorize the 
rainfall in a single zone (at different grids) on a given day, 
into a state, which represents a specific spatial rainfall pat-
tern. The number of classes/categories is identified based 
on Dunn’s index and Silhoutte index. This operation is 
applied to the gridded rainfall.

2.2.2 � Principal Component Analysis (PCA)

While establishing statistical relationship between predic-
tors and predictand, use of correlated multi-dimensional 
predictors may lead to multicollinearity. In the present 
study, Principal Component Analysis (PCA) is used to 
tackle this problem. It consists of orthogonal transforma-
tions which transforms the predictor matrix into principal 
components such that there is no/less correlation among 
principal components. Based on the percentage of total var-
iability of predictors, explained by principal components, 
they are selected for regression. Here, we consider the prin-
cipal components, which collectively present ~95 % of the 
total variability.

2.2.3 � Classification and regression tree (CART)

In the present study, CART analysis is used to establish 
statistical relationship between principal components 
(obtained by performing PCA on climate variables) and 
rainfall state (obtained by applying k means clustering on 
zonal rainfall matrix). It comes under the category of deci-
sion tree learning technique. The details regarding CART 
analysis are presented in Kannan and Ghosh (2013). The 
developed relationship, when applied to principal com-
ponents from daily predictor field, results into the rainfall 
class of the region for that day.

2.2.4 � Kernel regression

Kernel regression is a non-parametric statistical regression 
technique, which is generally a smoothening filter that sim-
ulates the predictand for a desired predictor data point by 
applying weights to the other points lying in the neighbor-
ing region of the desired one. Generally a weight function 
is deployed to fulfill this task, which assigns heavy weights 
to the nearby data points and very low weights to the points 
which are far away. Here, we use Nadaraya and Watson 
estimator (Nadaraya 1964; Watson 1964) for this purpose. 
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Fig. 3   Generic design of experiments for testing validity of assumption of stationarity in statistical relationship under changing climatic conditions
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The kernel regression is performed on the principal compo-
nents that are obtained from predictors, conditional on the 
CART derived class and rainfall values are obtained at mul-
tiple sites. The cluster/class represents the spatial pattern of 
rainfall in a zone and hence, it is possible to preserve the 
cross correlation across rainfall at multiple sites (Kannan 
and Ghosh 2013).

2.2.5 � Rainfall projections using GCM simulations

The establishment of statistical relationship is achieved 
using NCEP-NCAR reanalysis data as predictors and 
observed rainfall as predictand. When the rainfall needs to 
be simulated for historic period or projected for future, the 
pre-established relationship is applied to GCM simulated 
predictors. GCM simulated predictors cannot be directly 
used due to presence of bias with respect to reanalysis 
data. It is necessary to remove bias from GCM simulations 
before using GCM data. The developed relationship is then 
applied to bias corrected predictors for historical and future 
simulations. In this work, we are not simulating down-
scaled rainfall for future, but focusing on designing the val-
idation experiments with historical downscaled simulations 
and this should be performed before applying the relation-
ship to future.

3 � Designs of experiments

In this present study, we design two set of experiments, 
for validating the assumption of stationarity, in predictor-
predictand relationship, in a SD model. These designs of 
experiments (DOE) are based on the performance of SD 
model, for the period, when the synoptic scale circula-
tion pattern is different from those, which are present in 
calibration/training data. The satisfactory performance 
is expected by a model, when its formulation is robust to 
capture future relationship or the climate change signal is 
weak (future conditions are not significantly different from 
the past training period). This is the basis for the first series 
of experiments. Second rationale behind DOE is based 
on differences between the rainfall projections for years, 
which are similar to the most severe GCM future projec-
tions (RCP8.5) and GCM preindustrial simulations. These 
differences may be considered as the possible signatures 
of climate change on rainfall. Here, in the second series of 
experiments, we evaluate the SD models based on its per-
formances in simulating these differences. Motivation for 
second series of experiments lies in gauging the capability 
of SD models to capture changes in mean rainfall because 
of GHG emissions.

The two rationales discussed, form the basis of design-
ing two different series of experiments viz., (1) Experiment 

Series 1 Training period selection based on predefined cri-
teria, and (2) Experiment Series 2 Comparison of differ-
ences in mean rainfall between the years similar to prein-
dustrial run and future period. Figure 3 shows the pictorial 
representation of design of experiments.

3.1 � Experiment series 1: criteria based training period 
selection

This category consists of experiments, which are designed 
to validate the performance of statistical relationship, estab-
lished for different training conditions. The conventional 
way of identifying training and testing period for a model is 
simply based on chronology i.e. first ‘x’ years are treated as 
training and next ‘y’ years are testing period (Kannan and 
Ghosh 2013; Salvi et  al. 2013). Validation of the statisti-
cal models is important and the established statistical rela-
tionships are validated during a period independent from 
the calibration period. Different validation procedures such 
as split-sampling (Busuioc et  al. 1999), cross validation 
(Murphy 1999), stratified validation (Wilks 1999), statis-
tical model ensembles (Hertig and Jacobeit 2008) etc. are 
proposed in literature. Here, three additional (additional to 
the conventional way of chronological selection of training 
and testing period) ways of identifying training and testing 
period are proposed viz. random selection of training and 
testing period, using cold years for training and hot years 
for testing (and vice versa), and using non El-Niño years 
as training and El-Niño years as testing (and vice versa). 
The criteria for random selection of training period, ensures 
complete mixing of circulation patterns from different cli-
mate conditions and hence the model gets better exposure 
to a wide range of climate variability. This experiment is 
treated as ‘base experiment’ and is referred as ‘TR-RAN-
TE-RAN’ (training and testing days are selected randomly) 
in the present study. The results of all other experiments 
(belonging to series 1) will be compared with the results of 
TR-RAN-TE-RAN to identify the regions which lack sta-
tionarity. The last two criteria are derived from the hypo-
thetical expected climate change signals and reverse of 
climate change signal respectively. The rise in global tem-
perature leads to a warmer future (IPCC 2007). The experi-
ment of training the model with colder years and testing it 
for hot years is a way of evaluating a model under changed 
climatic conditions, where the model is calibrated with his-
toric climate scenario (relatively colder) and validated with 
changed conditions (warmer conditions).

Similarly the possible increase in the frequency of El-
Niño Southern Oscillations (ENSO) under the influence 
of GHG emissions (Timmermann et al. 1999) led to idea 
of third experiment in which training period consists of 
non El-Niño years and validation period consists of El-
Niño years. Recent report by Intergovernmental Panel on 



2001Credibility of statistical downscaling under nonstationary climate

1 3

Climate Change (IPCC 2014) mentions different aspects 
of ENSO phenomenon such as inter-decadal modula-
tions in amplitude and spatial pattern within the instru-
mental record. There are little consensus on whether the 
observed changes in ENSO are due to external forcing 
or natural variability. This questions the outcome of the 
study by Timmermann et  al. (1999), which proposes 
increase in the frequency of ENSO events under GHG 
emissions. Nevertheless, ENSO is the dominant mode of 
inter-annual variability and likely to influence regional 
scale rainfall due to changes in moisture availabil-
ity (IPCC 2014). The premise behind all the ‘series 1’ 
experiments is to test the ability of the model for those 
climatic conditions, which differ from training period 
climatic conditions to a great extent. Hence, even if the 
changes in the frequency of ENSO events under GHG 
emissions is debatable, considering possible influences 
of ENSO on regional scale rainfall and disjoint climatic 
conditions at the time of ENSO and non-ENSO event, 
we include this as part of series 1 experiment. The 
details about each experiment are discussed in following 
sections.

3.1.1 � Base experiment (TR‑RAN‑TE‑RAN)

TR-RAN-TE-RAN represents categorizing the overall time 
slice (1951–2005) into training and testing period at daily 
scale randomly. A uniform random number is generated for 
each day in the time slice. If the generated random num-
ber value is less than or equal to ~0.55, that day will be 
categorized as training period day and if random number is 
greater than ~0.55, the day will be treated as testing period 
day. Threshold value for the random number (~0.55) is 
fixed in such a way that all the days, which are categorized 
under the heading of ‘training period’, together will form 
a time slice of 30 years and the validation period data will 
form a time slice of 25 years. In the experiment TR-RAN-
TE-RAN, the classification of data as training and testing 
period ensures complete mixing of synoptic scale atmos-
pheric circulation patterns.

3.1.2 � Training period selection based on chronological 
order (TR‑CH‑TE‑CH)

Conventionally, in a SD model, first ‘X’ year time slice is 
recognized as training period and the remaining is con-
sidered as testing period. The experiment TR-CH-TE-CH 
represents selection of training period based on chrono-
logical order. For this experiment, first 30  years (1951–
1980) are considered as training period and next 25 years 
(1981–2005) are considered as testing. Here onwards, the 
period of first 30 years will be referred to as ‘Past’ and next 
25 years will be referred as ‘Recent Past’.

3.1.3 � Training period selection based on hot and cold 
years (TR‑C‑TE‑Hand TR‑H‑TE‑C)

This set of experiments involves identifying relatively 
warmer/colder years from the time slice 1951-2005 as 
training set. Its complimentary subset from 1951 to 2005, 
i.e. relatively colder years (in case of warmer years as train-
ing) or warmer year (in case of colder years as training) 
is considered as testing period. General methodology to 
identify relatively warmer/colder years is described below. 
Consider a study region, where temperature data is avail-
able (at any temporal resolution e.g. daily/monthly) for ‘T’ 
years and at ‘N’ number of stations or ‘N’ grids (in case of 
gridded data).

1.	 Obtain spatio-temporal average of temperature data for 
each year. In case of daily data, the data available for 
‘1 year’ will have dimensions 365 × N and in case of 
monthly data, the dimension will be 12 × N.

2.	 Above step will provide a single spatio-temporally 
averaged temperature value for a particular year. 
Repeat this step for each year and generate annual tem-
perature time series (dimensions: No. of years × 1).

3.	 Arrange this time series in ascending order. First X years 
will be relatively colder years as compared to other. 
These years will be considered as training period for 
experiment TR-C-TE-H. The same step can be repeated 
by arranging the time series in descending order. First X 
years will be relatively warmer years and will be consid-
ered as training period for experiment TR-H-TE-C. This 
methodology is followed for obtaining relatively warmer 
and colder years for the two study regions viz. India and 
NEUS. For the present study, relatively warmer/colder 
years over the study regions are not decided based on 
the temperature data for entire year (as discussed in 
the methodology). We rather use temperature data over 
summer months for deciding whether a particular year is 
relatively warmer/colder. Premise behind selecting sum-
mer months for India [March, April, and May (MAM)] 
and NEUS (Jun, July, and Aug) is that, these months 
together constitute relatively high temperature periods 
as compared to the other months of the year and can be 
considered as a realistic criteria for categorizing a year 
as relatively warmer/colder. In addition to this, ‘MAM’ 
months for India are considered as pre-monsoon season. 
Literature suggest that pre monsoon temperature over 
land region affects land sea thermal gradient which is 
a causal factor for monsoon variability (Gautam et  al. 
2009) and hence hydrological cycle (Bernett et al. 2005). 
In case of NEUS, rainfall projections are obtained over 
summer months June, July, and August, hence, it is ideal 
to use the average temperature over these months for 
identifying relatively warmer/colder years.
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For India, relatively warmer and colder years are 
decided based on spatially and temporally averaged pre-
monsoon temperature over the months MAM (source: 
Indian Institute of Tropical Meteorology, Pune, India, web-
site: ftp://www.tropmet.res.in/pub/data/txtn/NEW-TNRE-
GION.TXT and ftp://www.tropmet.res.in/pub/data/txtn/
NEW-TXREGION.TXT). The two links, mentioned above 
provide monthly data for minimum temperature and maxi-
mum temperature for entire India. The detailed calculation 
for obtaining annual averaged time series for pre-mon-
soon temperature is illustrated in Online Resource 2 (refer 
Online Resource 2).

For NEUS, temperature data at monthly temporal scale 
is obtained from ‘Carbon Dioxide Information Analysis 
Center’ (CDIAC), website. CDIAC is the primary climate-
change data and information analysis center of the U.S. 
Department of Energy (DOE). CDIAC is located at DOE’s 
Oak Ridge National Laboratory (ORNL) and includes the 
World Data Center for Atmospheric Trace Gases. Monthly 
station level temperature data for US is available on CDIAC 
website with ORNL domain (link: http://cdiac.ornl.gov/
ftp/ushcn_v2.5_monthly/through_2012/). Monthly tem-
perature data for the months June, July, and August for all 
the stations in NEUS is extracted from the file. The list of 
state-wise station IDs is also available on CDIAC website 
(link: http://cdiac.ornl.gov/ftp/ushcn_daily/ushcn-stations.
txt). All the stations, which are located in the study region 
NEUS are selected for obtaining relatively cold/warmer 
years. The detailed calculation of spatially averaged annual 
time series is shown in Online resource 3 (refer Online 
Resource 3). Missing values in the temperature data (pre-
filled with −9999) are less than ~3 % of the overall data 
and hence, neglected while calculating spatially averaged 
value. Relatively warmer years are referred to as ‘hot’ years 
and relatively colder years are referred to as ‘cold’ years in 
this manuscript. Years, which are categorized as hot/cold 
are different for different study regions (except for some 
years, which are common).

3.1.4 � TR‑nonEN‑TE‑EN and TR‑EN‑TE‑nonEN

ENSO is a leading mode of inter-annual climate variabil-
ity originating in the tropical Pacific Ocean. The Sea Sur-
face Temperature (SST) anomalies in the equatorial Pacific 
Ocean can have remote effects on climate globally (Lan-
genbrunner and Neelin 2013). ENSO phases have been 
linked to Indian summer monsoon. ENSO, the largest 
known climatic forcing of inter-annual monsoon variability, 
shows significant influence on ISMR (Krishna Kumar et al. 
1999). Even though, in recent years this relationship seems 
to be weakening (Krishna Kumar et al. 1999), the effect of 
El-Niño on ISMR cannot be fully denied. With more emis-
sion of greenhouse gases, the frequency of occurrences of 

El Niño may increase (Timmermann et  al. 1999). Hence, 
the third set of complimentary experiments consists of 
training period selection based on the occurrence of ENSO 
in a year. The list of El-Niño and non El-Niño years is 
obtained from Chou et al. (2002). This set consists of a pair 
of experiments which are complimentary to each other viz. 
TR-nonEN-TE-EN and TR-EN-TE-nonEN. TR-EN-TE-
nonEN represents selection of El Niño years from the time 
slice 1951–2005 as training period and TR-nonEN-TE-EN 
represents selection of non-El Niño years from the time 
slice 1951–2005 as training period. Similar to the experi-
ment TR-C-TE-H, TR-nonEN-TE-EN is an experimental 
simulation of hypothetical future climate change signal. 
The list of years that are selected as training period for dif-
ferent experiments is illustrated in Table 2.

Table 2 shows that there are more years (37) pertaining 
to the training period for the experiment TR-nonEN-TE-
EN cases than for the experiment TR-EN-TE-nonEN cases 
(18). Also, there are instances, where an El Niño event is 
immediately followed by a La Niña event and vice versa, 
indicating the El Niño and La Niña years are not widely 
separated. Significant difference in the number of training 
years for both experiments is likely to have an impact on 
the accuracy of the downscaled product. These are the limi-
tations emanating from the design of this experiment.

3.2 � Experiment series 2: validations based on expected 
signature of climate changes

The SD models, showing good skills in capturing historic 
climatology of observed rainfall, may not necessarily show 
the same level of proficiency in simulating changed cli-
mate. Standard evaluation procedures do not consider this 
criterion; though the credibility of future projections by a 
SD model depends on it. Here, we consider this criterion 
in our DOE, with an indirect ‘signature based’ approach 
(Fig. 4). We use two CMIP5 scenarios viz. (1) ‘Pre-indus-
trial run’ which corresponds to ‘no anthropogenic GHG 
emissions’ and (2) RCP8.5 which corresponds to ‘High-
est GHG emissions’. Pre-industrial run is an unforced run 
which serves as the baseline for analysis of historical and 
future runs (Taylor et  al. 2012). RCP8.5 corresponds to 
the strongest radiative forcing, reaching 8.5 Wm−2 at the 
end of 2100 (Taylor et al. 2012). Here, we identify signa-
ture (based on synoptic scale circulation) of ‘pre-industrial 
scenario’ (PI) and future ‘RCP8.5 scenario’ predictors in 
recent past (1981–2005) time period. For individual year, 
from the recent past (1981–2005), the Euclidean distance 
is computed for centroid of predictor field between that 
year and the selected scenario (PI or RCP8.5). Years having 
predictor field close to these two different scenarios, based 
on Euclidean distance, form two different subsets, each of 
15 years. The subset, close to ‘average climatic conditions 

ftp://www.tropmet.res.in/pub/data/txtn/NEW-TNREGION.TXT
ftp://www.tropmet.res.in/pub/data/txtn/NEW-TNREGION.TXT
ftp://www.tropmet.res.in/pub/data/txtn/NEW-TXREGION.TXT
ftp://www.tropmet.res.in/pub/data/txtn/NEW-TXREGION.TXT
http://cdiac.ornl.gov/ftp/ushcn_v2.5_monthly/through_2012/
http://cdiac.ornl.gov/ftp/ushcn_v2.5_monthly/through_2012/
http://cdiac.ornl.gov/ftp/ushcn_daily/ushcn-stations.txt
http://cdiac.ornl.gov/ftp/ushcn_daily/ushcn-stations.txt
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pre-industrial (ACC PI)’ is named as ‘ACC-PI signatures’ 
and the other subset, close to ‘average climatic conditions 
RCP8.5 (2070–2099) (ACC RCP85)’, is named as ‘ACC-
RCP85 signatures’. The difference in mean observed rain-
fall for ‘ACC-PI signatures’ and ‘ACC-RCP85 signatures’ 
represents the possible signature of GHG emissions to 
rainfall. Similar difference is computed for the projected 
rainfall and results are compared. The criteria of evalua-
tion, here is the skill of downscaling model in simulating 

this difference. Higher skill of a model in simulating this 
difference indicates higher credibility in projections. Here 
we use Canadian (CanESM) GCM for the PI and RCP8.5 
circulation patterns.

An important implicit assumption behind the approach 
is that the years, relatively closer to average climatic con-
ditions of a scenario e.g. RCP8.5, have more signatures of 
RCP8.5, compared to other years. For measuring the close-
ness, we have adopted Euclidean distance, and this can be 

Table 2   Different time slices used to calibrate the model for experiment series 1

TR-RAN-TE-RAN TR-C-TE-H TR-H-T-C TR-C-TE-H TR-H-T-C TR-nonEN TE-EN TR-EN-TE-nonEN

India NEUS

1951 1953 1982 1992 2005 1951 1957

1952 2002 1965 1982 1955 1952 1958

1953 2004 1971 2000 1973 1953 1965

1954 1999 1983 1958 1995 1954 1966

1955 1958 1990 1965 1952 1955 1968

1956 1973 1957 1985 1999 1956 1969

1957 1954 1997 1972 1988 1959 1972

1958 1985 1967 1962 1959 1960 1973

1959 1969 1963 1986 2002 1961 1982

1960 1980 1951 2004 1991 1962 1983

1961 1956 1968 1964 1983 1963 1986

1962 1964 1987 1956 1994 1964 1987

1963 1959 1976 1954 1993 1967 1991

1964 1984 1979 1963 1975 1970 1992

1965 1996 1993 1960 1987 1971 1994

1966 1961 1992 1979 2001 1974 1995

1967 1974 1995 1951 1966 1975 1997

1968 1994 1986 1997 1953 1976 1998

1969 2003 1989 1977 1984 1977

1970 1988 1960 1974 1980 1978

1971 2001 1978 1971 1990 1979

1972 1998 1981 1976 2003 1980

1973 1970 1962 1978 1970 1981

1974 1952 1977 1968 1967 1984

1975 1975 1955 1996 1981 1985

1976 2000 1972 1961 1998 1988

1977 1966 1991 1957 1969 1989

1978 2005 2005 1989 1989 1990

1979 1991 1966 1969 1957 1993

1980 1972 1952 1998 1961 1996

1999

2000

2001

2002

2003

2004

2005
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improved further with better statistical methods to iden-
tify analogues (e.g. Local dynamical analogs, Li and Ding 
2011).

The capability of the downscaling model to capture 
the expected difference in mean rainfall due to GHG 
emissions is tested with the experiments SB-AP-PI (with 

Fig. 4   Flowchart of signature based approach designed for investigating the performance of statistical downscaling methodology under chang-
ing climatic conditions (experiment series 2)
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‘ACC-PI signatures’) and SB-AP-RCP85 (with ‘ACC-
RCP85 signatures’). The signature based approach, 
developed to achieve this, involves obtaining average cli-
matic conditions for pre-industrial scenario and RCP8.5. 
The average climatic conditions are obtained with those 
variables, which show significant climate change from 
historical period to RCP8.5. In order to identify the pre-
dictors showing significant climate change, probability 
density functions (PDFs) of the predictors are obtained 
over historical period and RCP8.5 and compared using 

two sample Kolmogorov–Smirnov test (two sample 
K–S test) in order to identify whether they belong to 
same probability distribution. Null hypothesis states that 
the data in historic period time series and RCP8.5 time 
series belong to the same distribution (no significant cli-
mate change). The predictors for which the null hypoth-
esis is rejected at 5  % significance level are considered 
as the predictors undergoing significant climate change. 
The stepwise description of this procedure is as follows 
(which is the same for India and NEUS).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Specific Humidity at 500 hPa (kg/kg) Specific Humidity at surface (kg/kg) Geopotential Height at 500 hPa (m)

Mean Sea Level Pressure (N/m2) Air Temperature at 500 hPa (°K) Air Temperature at surface (°K)

Uwind at 500 hPa (m/s) Uwind at surface (m/s) Vwind at 500 hPa (m/s)

Vwind at surface  (m/s)

Historic Period (1981-2005)

RCP 8.5 (2071-2100)

Y Axis shows PDF values for all 
plots

Fig. 5   Probability density function plots for comparison of predic-
tors, specific humidity at 500 hPa (a), surface level specific humid-
ity (b), Geopotential height at 500 hPa (c), mean sea level pressure 
(d), air temperature at 500 hPa (e), surface level air temperature (f), 

zonal (U) wind at 500  hPa (g), surface level zonal (U) wind (h), 
meridional (V) wind at 500  hPa (i), and surface level meridional 
(V) wind (j), simulated for ‘Historical’ and ‘RCP8.5’ scenarios over 
India
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1.	 Select an area around the study region (completely 
encompassing the study region). For present study, fol-
lowing two areas are selected.

India: latitude 5 N–40 N, longitude 60E–120E; NEUS: 
latitude 25 N–60 N, longitude 270E–310E.

2.	 Obtain GCM simulated data for predictors over these 
areas (for both scenarios historic and RCP8.5).

3.	 Remove systematic error from GCM simulated data 
using bias correction methodology at each grid. In 

this study, quantile based mapping methodology by 
Li et al. (2010) is used for removing bias from GCM 
simulations.

4.	 Obtain spatially averaged time series using bias cor-
rected GCM simulations over historic period and future 
(RCP8.5). After this step, each predictor will have two 
spatially averaged time series for historic scenario and 
RCP8.5 scenario.

5.	 Fit a probability distribution to both the data and obtain 
PDF. In the present study, non-parametric kernel prob-
ability density function is used.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Specific Humidity at 500 hPa (kg/kg) Specific Humidity at surface (kg/kg) Geopotential Height at 500 hPa (m)

Mean Sea Level Pressure (N/m2) Air Temperature at 500 hPa (°K) Air Temperature at surface (°K)

Uwind at 500 hPa (m/s) Uwind at surface (m/s) Vwind at 500 hPa (m/s)

Vwind at surface  (m/s)

Historic Period (1981-2005)

RCP 8.5 (2071-2100)

Y Axis shows PDF values for all 
plots

Fig. 6   Probability density function plots for comparison of predic-
tors, specific humidity at 500 hPa (a), surface level specific humidity 
(b), Geopotential height at 500 hPa (c), mean sea level pressure (d), 
air temperature at 500 hPa (e), surface level air temperature (f), zonal 

(U) wind at 500 hPa (g), surface level zonal (U) wind (h), meridional 
(V) wind at 500  hPa (i), and surface level meridional (V) wind (j), 
simulated for ‘Historical’ and ‘RCP8.5’ scenarios over NEUS
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6.	 Apply two sample K–S test and identify whether the 
predictor undergoes a change from historic runs to 
RCP8.5, at 5 % significance level.

Figures 5 (for India) and 6 (for NEUS) show compari-
son of PDFs between different predictors that are simu-
lated over historic period (1981–2005) and future (RCP8.5, 
2071–2100). PDF comparison plots for predictors such as 
specific humidity at 500  hPa (Figs.  5a, 6a), surface level 
specific humidity (Figs.  5b, 6b), geopotential height at 
500 hPa (Figs. 5c, 6c), air temperature at 500 hPa (Figs. 5e, 
6e), and surface level air temperature (Figs.  5f, 6f) show 
visually significant shift, whereas the PDF comparison for 

the predictors such as mean sea level pressure (Figs.  5d, 
6d), U wind at 500 hPa (Figs. 5g, 6g), surface level U wind 
(Figs.  5h, 6h), V wind at 500  hPa (Figs.  5i, 6i), surface 
level V wind (Figs. 5j, 6j) show overlapping nature. How-
ever, application of two sample K–S test for the predictors 
over India and NEUS revealed that all ten predictors show 
significant climate change at 5 % significance level.

Consolidated information about different experiments 
that are designed to test assumption of stationarity is tabu-
lated in Table 3.

Along with the experiments, designed in the present 
study, we also apply two methods developed by Duan 
and McIntyre (2012) and Hertig and Jacobeit (2013) for 

Table 3   Experiment identification (IDs) with their details

Experiment ID Details

TR-CH-TE-CH Training period selection in chronological order (first X years as training period, next Y years as testing period)
Predictors: NCEP/NCAR reanalysis data
Predictand: APHRODITE rainfall data (0.25° resolution)
Training period: 1951–1980
Testing period: 1981–2005

TR-RAN-TE-RAN Training period selection based on random number generation (ensuring complete mixing of past and recent past data)
Predictors: NCEP/NCAR reanalysis data
Predictand: APHRODITE rainfall data (0.25° resolution)
Training/testing period: decided based on generation of uniform random number between 0, 1
Training period: 0 < random number < 0.5430 for India and 0.5515 for US
Testing period: random number > 0.5430 for India and 0.5515 for US

TR-C-TE-H Cold years as training period
Predictors: NCEP/NCAR reanalysis data
Predictand: APHRODITE rainfall data (0.25° resolution)
Training period: relatively cooler years
Testing period: remaining years from the set (1951–2005)

TR-nonEN-TE-EN Non Enso years as training period (Non- El Nino years)
Predictors: NCEP/NCAR reanalysis data
Predictand: APHRODITE rainfall data (0.25° resolution)
Training period: non-EL-NINO years
Testing period: remaining years from the set (1951–2005)

TR-H-TE-C Hot years as training period
Predictors: NCEP/NCAR reanalysis data
Predictand: APHRODITE rainfall data (0.25° resolution)
Training period: relatively warm years
pre-monsoon temperature for March, April and May
Testing period: remaining years from the set (1951–2005)

TR-EN-TE-nonEN BE-El: Non Enso years as Training period (Non- El Nino years)
Predictors: NCEP/NCAR reanalysis data
Predictand: APHRODITE rainfall data (0.25° resolution)
Training period: non-EL-NINO years
Testing period: remaining years from the set (1951–2005)

SB-AP-PI,
SB-AP-RCP8.5

SB-AP-PI: signature based approach, years close to pre-industrial (PI) run period for Non-overlapping predictors
SB-AP-RCP85: signature based approach, years close to RCP8.5 period for Non-overlapping predictors
Predictors: NCEP/NCAR reanalysis data
Predictand: APHRODITE rainfall data (0.25° resolution)
Training period: 1951–1980 PI run period: 2121–2150
Testing period: 1981–2005 RCP8.5: 2070–2099
Details: the years from the testing period (15 out of 25 years), for observed and simulated rainfall, are found out which are 

close to the centroid of PI run predictors (simulated by GCM) based on Euclidean distance. Similar exercise is carried 
out with the centroid of RCP8.5 (2070–2099) predictors. The spatial pattern of difference in mean, obtained for observed 
and simulated data are compared to check whether the methodology is capturing the changes in the scenarios.
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demonstration purpose. In both the methods, training/cali-
bration of the model is performed for multiple overlapping 
time slices, obtained by applying a moving window to the 
analysis period. Significant trends in the regression coeffi-
cients associated with the predictors (Duan and McIntyre 
2012) or significant differences in error metrics (Hertig and 
Jacobeit 2013); obtained by applying the model to multiple 
time slices; indicate violation of assumption of stationarity.

4 � Results

The experiments, detailed in the previous sections, are exe-
cuted over the study regions. The approach by Duan and 
McIntyre (2012) involves regression based SD model with 
30 year moving window time slices e.g. 1951–1980, 1952–
1981…, where Box–Cox transformed rainfall data at each 
grid is used as predictand. Statistically significant changes 
in regression coefficient values with time indicate non-sta-
tionarity. Supplementary figure  3 (refer Online Resource 
1, SF3) shows the results after applying the methodology, 
developed by (2012) to the Indian landmass. It is observed 
that the assumption of stationarity is violated over different 
regions such as West Central India (WCI), the northern part 
of India, the Western Ghats, south east coastal region, some 
part of Gujarat and Jammu and Kashmir (JAK). Tempera-
ture, V wind and geopotential height (all at 500  hPa) are 

the predictors for which the assumption of stationarity gets 
violated over a relatively larger region as compared to other 
predictors.

Similarly, we also apply the methodology devel-
oped by Hertig and Jacobeit (2013) to Indian landmass, 
with RMSE as the performance metric. The prem-
ise behind demonstration of these methodologies is 
to provide glimpse of the recent literature on some of 
the ways in which the violation of assumption of sta-
tionarity is assessed and not the comparison. Hence, 
we have not demonstrated the application of bootstrap 
approach while implementing the methodology, devel-
oped by Hertig and Jacobait (2013). Rainfall simula-
tions are obtained with different calibration periods 
e.g. 1951–1981, 1952–1982… with 31  year moving 
window and RMSE for different simulations are com-
pared. The RMSE patterns look similar for all the 30 
windows obtained from the analysis period (refer 
Online Resource 1, Supplementary Figure  4) except 
for the northern India viz. JAK and the western part 
of Rajasthan. These are the regions, where stationarity 
assumption is getting violated. The spatial pattern of 
RMSE for other regions is similar, indicating persis-
tence of stationarity.

The results obtained by executing statistical experiments 
(designed in the present study), are discussed in the follow-
ing subsections.

Fig. 7   Comparison between outcomes of experiments TR-CH-TE-
CHand base experiment (TR-RAN-TE-RAN) over India and NEUS, 
in terms of magnitude and spatial distribution of RMSE. For India, 
a RMSE of experiment TR-RAN-TE-RAN, b RMSE of experiment 
TR-CH-TE-CH, c grid-wise absolute percentage difference between 
(a) and (b) with (a) as reference, d Comparison between RMSE 

of TR-RAN-TE-RAN and TR-CH-TE-CH, represented as PDFs. 
For NEUS, e RMSE of experiment TR-RAN-TE-RAN, f RMSE of 
experiment TR-CH-TE-CH, g grid-wise absolute percentage differ-
ence between (e) and (f) with (e) as reference, h comparison between 
RMSE of TR-RAN-TE-RAN and TR-CH-TE-CH, represented as 
PDFs
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4.1 � Experiments TR‑RAN‑TE‑RAN 
and TR‑CH‑TE‑CH

Figure  7 shows the comparison of two experiments TR-
RAN-TE-RAN and TR-CH-TE-CH in terms of root mean 
square error (RMSE) over India and NEUS. The RMSE 
for the experiment TR-RAN-TE-RAN for India (Fig.  7a) 
shows higher magnitude over the windward side of the 
Western Ghats region, Central Northeast India (CNI), 
north-east Indian region and the Himalayan foothills. It 
should be noted that, these are the regions receiving higher 

rainfall as compared to other parts of India. The RMSE 
for the experiment TR-CH-TE-CH (Fig. 7b) shows similar 
spatial pattern as that of TR-RAN-TE-RAN with slightly 
elevated magnitude. Absolute percent difference in RMSE 
(Fig. 7c) points out the locations such as coastal regions on 
West, East, and South East side, northern India and JAK 
region, where the RMSE for the experiments TR-RAN-TE-
RAN and TR-CH-TE-CH differ with comparatively larger 
magnitude. These regions indicate lack of stationarity for 
the given set of experiments over India. The differences in 
RMSE magnitudes (Fig. 7d) are also presented in terms of 

Fig. 8   Comparison between outcomes of ‘Hypothetical climate 
change scenario’ experiments (TR-C-TE-H, and TR-nonEN-TE-EN) 
and base experiment (TR-RAN-TE-RAN) over India and NEUS, 
in terms of magnitude and spatial distribution of RMSE. For India, 
a RMSE of experiment TR-RAN-TE-RAN, b RMSE of experiment 
TR-C-TE-H, c grid-wise absolute percentage difference between 
(a) and (b) with (a) as reference, d comparison between RMSE of 
TR-RAN-TE-RAN and TR-C-TE-H, represented as PDFs, e RMSE 
of experiment TR-nonEN-TE-EN, f grid-wise absolute percentage 
difference between (a) and (e) with (a) as reference, g comparison 

between RMSE of TR-RAN-TE-RAN and TR-nonEN-TE-EN, rep-
resented as PDFs. For NEUS, h RMSE of experiment TR-RAN-
TE-RAN, i RMSE of experiment TR-C-TE-H, j grid-wise absolute 
percentage difference between (h) and (i) with (h) as reference, k 
comparison between RMSE of TR-RAN-TE-RAN and TR-C-TE-H, 
represented as PDFs, l RMSE of experiment TR-nonEN-TE-EN, m 
grid-wise absolute percentage difference between (h) and (l) with (h) 
as reference, n comparison between RMSE of TR-RAN-TE-RAN 
and TR-nonEN-TE-EN, represented as PDFs
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their PDFs and the PDF of TR-CH-TE-CH shows a shift 
with respect to that of TR-RAN-TE-RAN. For NEUS, the 
RMSE for experiment TR-RAN-TE-RAN (Fig.  7e) and 
experiment TR-CH-TE-CH (Fig. 7f) do not show similarity 
in magnitude and spatial pattern, except over the southern 
coastal part. This is evident from the absolute percentage 
differences in RMSE plot (Fig. 7g, h), showing comparison 
of PDFs. Figure 7g indicates that the absolute percentage 
difference is <10 % for almost entire study region, except 
for some of the locations in western and southern side. As 
compared to India, stationarity is observed to prevail in 
NEUS over most of the regions for the set of experiments, 
executed here.

4.2 � Experiments TR‑RAN‑TE‑RAN, TR‑C‑TE‑H, 
and TR‑nonEN‑TE‑EN

(1) Training with cold years and testing for hot years (TR-
C-TE-H) and (2) training with non-El-Niño years and test-
ing for El-Niño years (TR-nonEN-TE-EN) are the experi-
ments, where diametrically opposite climatic conditions 
are considered for testing the validity of assumption of sta-
tionarity. The RMSE of the experiments TR-C-TE-H and 
TR-nonEN-TE-EN are compared with RMSE of TR-RAN-
TE-RAN for India and NEUS and illustrated in Fig.  8. 
The RMSE for TR-RAN-TE-RAN (Fig. 8a) is observed to 
be less in magnitude, as compared to that of TR-C-TE-H 
(Fig.  8b) and TR-nonEN-TE-EN (Fig.  8e), mainly in the 
Western Ghats and Central India; however for both the 
cases, the spatial pattern remains similar. Absolute percent-
age difference in RMSE for TR-C-TE-H (Fig.  8c) shows 
certain regions of higher magnitudes, mainly in the north-
ern part of India, central and the west coast of India, JAK, 
and the southeast coast. This indicates that the assumption 
of stationarity in predictor-predictand relationship is get-
ting violated, in majority of the regions, in warming envi-
ronment. Absolute percentage difference in RMSE between 
TR-nonEN-TE-EN and TR-RAN-TE-RAN (Fig. 8f) shows 
high magnitude locations in the northern part, northeast 
region, central India, and mainly in the west coast. These 
findings are also observed in the form of shifts, when 
PDFs for TR-C-TE-H (Fig.  8d) and for TR-nonEN-TE-
EN (Fig.  8g) are compared with TR-RAN-TE-RAN. The 
outcomes of the same experiments, executed over NEUS, 
are displayed in Fig.  8h–n. The southern and the western 
parts of NEUS show violation of the assumption of station-
arity for these experiments. The RMSE for TR-RAN-TE-
RAN (Fig. 8h) and TR-C-TE-h (Fig. 8i) show higher dif-
ferences in the southern part. The same finding is revealed 
in absolute percent difference plot (Fig.  8j), which shows 
higher magnitude of differences and Fig.  8k, showing 
shifts in PDFs. On the other hand, the RMSE for TR-RAN-
TE-RAN (Fig.  8h) and TR-nonEN-TE-EN (Fig.  8l) show 

similarities in spatial pattern and magnitude. The findings 
are consistent with those, shown by absolute percent differ-
ence plot (Fig. 8m, n), showing comparison of PDFs. Rela-
tive comparison of results over two study regions shows 
that the assumption of stationarity seems to hold good in 
NEUS as compared to India for the experiments TR-C-
TE-H and TR-nonEN-TE-EN, that are derived based on 
hypothetical expected climate change. For India, absolute 
percentage differences are in higher magnitudes at different 
locations, spreading across coastal regions, central India, 
and northeast region. For NEUS, the southern part seems to 
be affected with the problem of non-stationarity for experi-
ment TR-C-TE-H.

4.3 � Experiments TR‑RAN‑TE‑RAN, TR‑H‑TE‑C, 
and TR‑EN‑TE‑nonEN

The experiments (1) Training with hot years and test-
ing for cold years (TR-H-TE-C) and (2) training with 
El-Niño years and testing for nonEl-Niño years (TR-EN-
TE-nonEN) are hypothetical scenarios posing reverse cli-
mate change. The RMSE of the experiments TR-H-TE-C 
and TR-EN-TE-nonEN are compared with RMSE of TR-
RAN-TE-RAN for India and NEUS (refer Online Resource 
1, Supplementary Figure  5). Comparison of RMSE over 
India revealed that high differences exist in absolute per-
centage RMSE over the northern India, the central India, 
South east coast, upper part of the Western Ghats, Jammu 
and Kashmir region, and northeast region indicating lack of 
stationarity. For NEUS, regions 1 and 4 show violation in 
the assumption of stationarity.

4.4 � Possible reasons behind non‑stationarity

Here, we attempt to identify the possible reasons behind 
non-stationarity as revealed from series 1 experiments. 
Figure 9 brings out the results of pilot analysis, providing 
a hint towards one of the “possible” drivers behind viola-
tion of assumption of stationarity. The regions in India and 
NEUS, showing lack of stationarity for experiment TR-C-
TE-H (Fig. 9(a) and (d)) and TR-nonEN-TE-EN (Fig. 9(b) 
and (e)), can be identified as the locations with high mag-
nitude of absolute percentage different in RMSE (darker 
shades of gray). Preliminary analysis, based on visual 
inspection revealed that these (darker shades of gray) loca-
tions are high population dwelling areas in both the study 
regions. Considering reasonable chances in favor of the 
proposition that high population locations are likely to be 
urbanized, an analysis is carried out by identifying such 
high population locations and urbanized areas in India and 
NEUS. Figures (9c) and (9f) illustrate the high population 
locations (as black circles) and the positions of urbanized 
regions (as shaded regions), superimposed over each other. 
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The population data and the data for urbanized regions 
are obtained from http://www.naturalearthdata.com/
downloads/50m-cultural-vectors/ (Junk et  al. 2014; Lin 
et al. 2014, Jenkinsa et al. 2015) and http://www.diva-gis.
org/gdata (Wisz et al. 2008; Jimenez-Valverde et al. 2008; 
Masello et al. 2015) collectively. It is clearly visible from 
the Fig.  9c, f that most of the high population locations 
are urbanized. Also, it is clear from Fig.  9 that the loca-
tions, where assumption of stationarity fails to hold good 
(gray shades) and locations of high population urbanized 
areas show fair match. Possible reasons behind this match 
can be explained as follows. Urban areas are observed to 
have different climatology (Kishtawal et  al. 2010; Mishra 
and Lettenmaier 2011; Shastri et al. 2015). The downscal-
ing model, which is deployed in the present study, does 
not incorporate the effect of urbanization and hence it is 
not able to capture the changes in the rainfall patterns that 
are because of local level modifications. This may be one 
of reasons behind the violation of stationarity assumption. 
However, this is a possible hypothesis, which may be tested 
with follow on model based research activities.

4.5 � Experiments SB‑AP‑PI and SB‑AP‑RCP85

These are the second series of experiments, where the exist-
ence of stationarity in the system is checked based on the 
capability of the model to simulate changes in mean rain-
fall under the dominance of GHG emissions. It is important 
to note that the two set of years, which are close to prein-
dustrial scenario and to RCP8.5, show some overlap, with 
7 years for India and 9 years for NEUS. This is one of the 
shortcomings of this approach, which can be improved with 
longer validation period and improved analogue identifica-
tion technique. Figure 10 shows the results for these experi-
ments. Figure 10a is the mean of observed rainfall for ACC-
PI signatures years and Fig.  10b is the mean of observed 
rainfall for ACC-RCP85 signatures years. Figure 10c is the 
difference between two central tendencies, which illustrates 
changes in mean observed rainfall, expected due to GHG 
emissions. Figure 10d–f are exact counterparts of Fig. 10a–
c, obtained for simulated rainfall. Again, similarities in spa-
tial pattern and magnitude are visible for Fig. 10d, e. Fig-
ure 10f shows different spatial patterns of changes in mean 

Fig. 9   Possible influence of urbanization over violation in assump-
tion of stationarity. For India, a grid-wise absolute percentage differ-
ence between RMSE of experiments TR-RAN-TE-RAN and TR-C-
TE-H, b grid-wise absolute percentage difference between RMSE of 
experiments TR-RAN-TE-RAN and TR-nonEN-TE-EN (both show-
ing shaded regions where assumption of stationarity is violated), c 
location of high population cities (black dots) and urbanized areas 

(shades regions). For NEUS, d grid-wise absolute percentage differ-
ence between RMSE of experiments TR-RAN-TE-RAN and TR-C-
TE-H, e grid-wise absolute percentage difference between RMSE of 
experiments TR-RAN-TE-RAN and TR-nonEN-TE-EN (both show-
ing shaded regions where assumption of stationarity is violated) 
f location of high population cities (red dots) and urbanized areas 
(shades regions)

http://www.naturalearthdata.com/downloads/50m-cultural-vectors/
http://www.naturalearthdata.com/downloads/50m-cultural-vectors/
http://www.diva-gis.org/gdata
http://www.diva-gis.org/gdata
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as compared to Fig. 10c over majority of locations in the 
central India, the northeast India, and in the Western Ghats; 
however, over some of the locations in north, western, and 
Peninsular India, the spatial patterns show a good match. 
These are the only regions where model is able to cap-
ture the changes in mean rainfall due to strongest radiative 

forcing. Similar plots for NEUS (Fig. 10g–l) show that, SD 
model fails to simulate the expected changes in majority of 
the areas except northern part of NEUS (region 4).

In order to have more confidence in analysis, experi-
ments SB-AP-PI and SB-AP-RCP85 are carried out using 
another GCM MIROC-ESM (resolution ~2.8°). This 
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analysis is carried out only for India. The results, obtained 
using this GCM are illustrated in Supplementary Figure 6 
(refer Online Resource 1, SF6). Comparison between PDFs 
of climate variables simulated by MIROC-ESM for PI and 
RCP8.5 shows statistically significant changes. SD model 
is not able to capture changes in mean rainfall over the 
Western Ghats, the central India, and the northeast India.

To understand the reasons behind such failure in the 
regions of India and NEUS, we plot the partial correla-
tion between predictor and predictand for both data sub-
sets ACC-PI and ACC-RCP85. Partial correlation involves 
calculating the correlation between two variables, holding 
constant the external influences of third. In a regression 
model, the regression coefficients are obtained using the 
partial correlation values between predictor and predictand. 
Transfer function based SD model, being a regression 
model, relies on partial correlation. If the partial correlation 
coefficients between a specific predictor and predictand are 
different for two time periods with different climatic condi-
tion, the predictor-predictand relationship will also be dif-
ferent. In such cases the regression equation developed for 
the first period will not be valid for the second, which is 
the reason behind the violation of assumption of stationar-
ity. Hence, partial correlation coefficient plots are obtained 
between observed rainfall and the set of predictors for 
years showing signatures of (1) PI scenario and (2) RCP8.5 
scenario. For India, this analysis is carried out for two 
zones viz. WCI and CNI, whereas for NEUS, this analysis 
is carried out for region 1, and region 4. The partial correla-
tion coefficients are obtained for all ten predictors (listed 
in Table 1). Figure 11 illustrates the results of this analysis 
carried over WCI and CNI zone of India. Partial correlation 

for each predictor is illustrated in a pair of plots e.g. Fig-
ure 11a1, a2 correspond to the partial correlation between 
principal component of specific humidity at 500 hPa with 
observed rainfall (for WCI region) for years showing sig-
natures of PI scenario (Fig. 11a1) and that of RCP8.5 sce-
nario (Fig. 11a2). Out of the ten pairs of plots obtained for 
WCI zone, the difference in spatial pattern of the two corre-
sponding plots are prominent for specific humidity [surface 
(Fig.  11b1, b2) and pressure level (Fig.  11a1, a2)], mean 
sea level pressure (Fig.  11c1, c2) and subtle for tempera-
ture [surface (Fig. 11e1, e2) and pressure level (Fig. 11d1, 
d2)] and geopotential height (Fig. 11j1, j2). For wind vari-
ables (surface and pressure levels, Fig. 11f1–i1, f2–i2) the 
patterns match well. Exactly similar behavior is visible for 
partial correlation plots, obtained for CNI zone. The differ-
ence in spatial pattern of the two corresponding plots are 
prominent for specific humidity [surface (Fig.  11l1, l2) 
and pressure level (Fig.  11k1, k2)], mean sea level pres-
sure (Fig.  11m1, m2) and subtle for temperature [surface 
(Fig.  11o1, o2) and pressure level (Fig.  11n1, n2)] and 
geopotential height (Fig. 11t1, t2). For wind variables (sur-
face and pressure levels, Fig. 11p1–s1, p2–s2) the patterns 
match well.

Similar analysis is carried out for two regions in NEUS 
that is illustrated in Fig. 12. For region 1, mean sea level 
pressure (Fig.  12c1, c2), air temperature at 500  hPa 
(Fig.  12d1, d2), and geopotential height (Fig.  12j1, j2) 
show dissimilarities. However, for region 4, the same pre-
dictors are accompanied by surface level specific humidity 
(Fig. 12l1, l2) and surface air temperature (Fig. 12o1, o2). 
In both the figures (Fig. 12l1, l2), the predictors, showing 
difference in spatial pattern of partial correlation plots are 
responsible for bringing down performance of SD model in 
capturing changes in mean rainfall.

4.6 � Improvement in SD model under nonstationary 
conditions

Both set of experiments viz. series 1 and series 2, which are 
executed over two study regions India and NEUS revealed 
(1) different locations in the study regions where assump-
tion of stationarity is getting violated (outcome of series 
1 experiments) and (2) inability of downscaling model to 
capture the changes in mean rainfall on account of GHG 
emissions (outcome of series 2 experiment). As discussed 
before, violation of assumption of stationarity may be 
because of the changes, occurring at a large scale or pos-
sible interventions by some local factors. Identifying the 
exact root cause of such non-stationarity and incorporat-
ing its solution in SD model might help to overcome the 
limitation of data driven models. However, it is a nontrivial 
task and through analysis would be necessary to pinpoint 
the exact reason behind non-stationarity, which may vary 

Fig. 10   Results of experiment series 2: Signature based approach 
SB-AP-PI and SB-AP-RCP85. For India, a mean of observed rainfall, 
obtained for the years from recent past (1981–2005) that showed sig-
natures of Pre-industrial (PI) climatic conditions, b mean of observed 
rainfall, obtained for the years from recent past (1981–2005) that 
showed signatures of RCP8.5 climatic conditions, c changes in 
mean of observed rainfall because of GHG emissions [difference 
between (b) and (a)], d mean of projected rainfall, obtained for the 
years from recent past (1981–2005) that showed signatures of PI cli-
matic conditions, e mean of projected rainfall, obtained for the years 
from recent past (1981–2005) that showed signatures of RCP8.5 
climatic conditions, f changes in mean of projected rainfall because 
of GHG emissions [difference between (e) and (d)]. For NEUS, g 
mean of observed rainfall, obtained for the years from recent past 
(1981–2005) that showed signatures of PI climatic conditions, h 
mean of observed rainfall, obtained for the years from recent past 
(1981–2005) that showed signatures of RCP8.5 climatic conditions, i 
changes in mean of observed rainfall because of GHG emissions [dif-
ference between (h) and (g)], j mean of projected rainfall, obtained 
for the years from recent past (1981–2005) that showed signatures 
of PI climatic conditions, k mean of projected rainfall, obtained for 
the years from recent past (1981–2005) that showed signatures of 
RCP8.5 climatic conditions, l changes in mean of projected rainfall 
because of GHG emissions [difference between (k) and (j)]

◂
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from region to region. Partial correlation analysis (Fig. 11) 
brings out an interesting fact that the ability of SD model 
to capture changes in mean rainfall gets sabotaged because 
of inclusion of certain predictors. Hence, there is a possi-
bility that SD model might performs better under nonsta-
tionary conditions by inclusion of relevant predictors. This 
finding is consistent with the proposition by Charles et al. 
(1999) and Wilby et al. (2004), which say that the assump-
tion of stationarity may be robust if the choice of the pre-
dictor is judicious. Different predictor selection criteria 
such as partial correlation analysis, step-wise regression 
etc. already advocated in literature (Charles et  al. 1999; 
Wilby et al. 2003). For the present study, we refer to dif-
ferent indices that have been defined to measure and to pre-
dict the yearly variations and future developments of the 
monsoon strength. Different indices, such as precipitation 
based indices (Parthasarathy et  al. 1992; Goswami et  al. 
1999), vertical wind shear based indices (Webster and Yang 
1992; Chen et al. 2007; Goswami et al. 1999; Dobler and 
Ahrens 2011) and longwave radiation based indices (as a 
measure of convection) (Wang and Fan 1999) are discussed 
in literature. Even though, there is no single best index in 
estimating ISMR strength (Wang and Fan 1999; Goswami 
2000; Wang 2000), here, we consider meridional and zonal 
wind shear indices (Dobler and Ahrens 2011) and include 
meridional and zonal winds at 850 and 250  hPa as addi-
tional predictors. Along with these wind variables, we use 
other climate variables such as air temperature, geopoten-
tial height, and specific humidity at the mentioned pres-
sure levels (As specific humidity at 250  hPa is not avail-
able with NCEP/NCAR data, we used specific humidity at 
300 hPa). In reality, the atmospheric levels 850 hPa (lower) 
and 200 hPa (upper) are standard levels for analyzing the 
strength and direction of the large-scale circulation impor-
tant for the Indian summer monsoon. However, instead of 
200 hPa, we use data at 250 hPa because GCM simulations 
are commonly available at this pressure level. The list of 
the predictors that are used for the analysis is mentioned 
in Table  1 (Sect.  3). Using these predictors, the designed 
experiments are executed for India and Fig. 13 shows con-
solidated results of series 1 and series 2 experiments.

For series 1 experiments, spatial distribution of 
RMSE for TR-RAN-TE-RAN (Fig.  13X) is compared 
with the RSME for TR-C-TE-H (Fig. 13a), TR-nonEN-
TE-EN (Fig.  13c), TR-CH-TE-CH (Fig.  13e), TR-H-
TE-C (Fig.  13g), and TR-EN-TE-nonEN (Fig.  13i). 
The corresponding absolute percentage differences in 
RMSE are illustrated in Fig.  13b, d, f, h, j. Comparing 
all the plots, showing absolute percentage differences 
together, with the previously obtained plots brings out 
two important findings. First, there is a reduction in spa-
tial extent where absolute percentage difference shows 
high magnitude, indicating assumption of stationarity is 

valid for a larger extent in study region. Secondly, we 
find that all the experiments show consistent locations, 
where the assumption of stationarity does not hold good. 
All the plots show violation in the assumption of sta-
tionarity near the southern west coast, a small region 
near the east coast, and in the central India, unlike the 
previous version of results (obtained without including 
predictors at 850 and 250  hPa), which showed differ-
ent regions, where violation of assumption of stationar-
ity is encountered. The results, obtained for experiment 
series 2 (Fig. 13k–p) show the capability of SD model to 
simulate changes in mean rainfall because of GHG emis-
sions. Figure  13m shows the changes in mean rainfall 
for observed data and Fig.  13p shows changes in mean 
rainfall for downscaled data. These demonstrate a good 
match in spatial pattern as compared to their counter-
parts in previous run (Fig.  10c, f). The performance of 
SD model is improved by incorporating relevant climate 
predictors. We further try to analyze these improvements 
with the help of partial correlation plots. These plots 
are obtained for two zone viz. WCI and CNI zones in 
exactly the same manner as discussed before. Supple-
mentary Figures 8 and 9 (refer Online Resource 1, SF8 
and SF9) show the partial correlation for WCI and CNI 
zones respectively. For WCI, geopotential height (at all 
pressure levels) and air temperature at 500  hPa show 
difference in spatial pattern of partial correlation coef-
ficients, whereas for CNI, surface level specific humidity 
shows difference in spatial pattern of partial correlation 
coefficients. The partial correlation plots for remain-
ing predictors (other than those mentioned above) show 
similar magnitudes and spatial patterns. In comparison 
with the partial correlation plots as shown in Fig.  11, 
we encounter better matching of spatial pattern of par-
tial correlation plots for different predictors, resulting in 
improved results.

Fig. 11   Partial correlation analysis over WCI and CNI regions in 
India. Comparison between (1) partial correlation, obtained with 
observed rainfall and different predictors for years (from recent 
past, 1981–2005) showing signatures of PI run [specific humid-
ity at 500  hPa (a1), surface level specific humidity (b1), mean sea 
level pressure (c1), air temperature at 500 hPa (d1), surface level air 
temperature (e1), zonal ‘U’ wind at 500 hPa (f1), surface level zonal 
wind (g1), meridional ‘V’ wind at 500 hPa (h1), surface level merid-
ional wind (i1), geopotential height at 500  hPa (j1)] and (2) partial 
correlation, obtained with observed rainfall and different predictors 
for years showing signatures of RCP8.5 [specific humidity at 500 hPa 
(a2), surface level specific humidity (b2), mean sea level pressure 
(c2), air temperature at 500  hPa (d2), surface level air temperature 
(e2), zonal ‘U’ wind at 500 hPa (f2), surface level zonal wind (g2), 
meridional ‘V’ wind at 500 hPa (h2), surface level meridional wind 
(i2), geopotential height at 500 hPa (j2)] over WCI is illustrated. Sim-
ilar analysis carried out over CNI (k1–t1 and k2–t2 are exact coun-
terparts of a1–j1 and a2–j2 respectively, obtained for CNI)
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5 � Summary and discussion

SD methodologies show good skills in capturing different 
statistical properties of evidentiary target data over historic 
period simulations. However, the violation of assumption 
of stationarity under changing climatic conditions may 
reduce the credibility of the model to produce realistic 
future projections. The present study is undertaken with 
the rationale of developing statistical experiments to (1) 
identify the regions where the assumption of stationarity 
gets violated and (2) to judge the ability of SD model to 
perform under changing climatic conditions. First series of 
experiments is based on different criteria of selecting train-
ing period such as (1) statistical based (random, chrono-
logical), (2) hypothetical climate change based (cold years 
as training, nonEl-Niño years as training), and (3) reverse 
climate change (hot year as training, El-Niño years as train-
ing). The second series of experiment involves, validat-
ing the credibility of the downscaling model to perform 
under changing climatic conditions, by comparing the 
effect of GHG emissions on observed and simulated mean 
rainfall. This is realized by identifying two sets of years 
(from recent past), which show very close resemblance to 
the average climatic conditions of preindustrial run and 
extreme GHG emission run (RCP8.5). The difference in the 
mean rainfall between the two sets will show the effects of 
GHG emission on mean rainfall.

Experiments are performed over two study regions with 
completely different climatic conditions, specifically, India, 
and North Eastern United States, with precipitation as the 
variable of interest and reanalysis data as the predictors. 
Over India, challenges in SD owing a possible lack of sta-
tionarity, is primarily observed over the north, in the West-
ern Ghats, and long the southeast and east coasts. Over 
Northeast US, the corresponding regions are the southern 
and western parts. The regions, where non-stationarity 
results in degradation of performance are found to be high 
population locations. However, this observation is based on 
the visual inspection and such hypothesis must be validated 
with follow on research activities including model runs 
with urban canopy coupling. The second series of experi-
ments shows that the model fails to capture the possible 
changes in mean rainfall, due to GHG emissions, mainly 
in WCI, the Western Ghats, some part of PI, Gujarat indi-
cating lack of stationarity over these regions. Some of the 
regions such as Rajasthan, CNI show that the model is able 
to capture the changes in mean rainfall. The same experi-
ment, carried out for NEUS, shows lack of stationarity in 
all regions except region 1. Partial correlation analysis is 
carried out over two regions (WCI and CNI for India and 
regions 1 and 4 for NEUS) in each study area. It is observed 
that, for India, all the predictors (except wind variables) 
showing different pattern of partial correlation for the time 

periods having synoptic circulation patterns similar to PI 
and RCP 8.5. For NEUS, temperature at 500 hPa, surface 
level specific humidity, mean sea level pressure, and geo-
potential height at 500  hPa are the only predictors show-
ing different spatial pattern of partial correlation. Selection 
of appropriate predictors might help in reducing the non-
stationarity in relationship, however, the selected predictors 
for SD, in that case should carry the climate change signal. 
Taking this into considerations, all the experiments (series 
1 and series 2) are executed over India including pressure 
level predictors at 850 and 250  hPa. The results showed 
improvements in terms of reduction in spatial extent of 
regions with nonstationarity and elevated capability of SD 
model to capture changes in mean rainfall because of GHG 
emissions.

The results, obtained with methodologies that are pro-
posed in the present manuscript can be improved by taking 
care of some of the limitations.

1.	 The experiments, discussed in the manuscript are exe-
cuted using only one downscaling methodology (devel-
oped by Kannan and Ghosh (2013)). It is necessary to 
check how other downscaling methodologies perform 
in this context. As the basis behind every data driven 
downscaling technique is the same (model is calibrated 
over past data), it is unlikely that other methods such 
as weather generators or weather typing would show 
exceptional skills as compared to the methodology 
used in the present manuscript. However, it will be 
interesting to see if other methods show capability to 
generalize under changing climatic conditions.

2.	 Selection of predictors is a very important step for the 
reliable performance of downscaling model. In the 
present study, even though, the predictors are selected 
based on the criteria mentioned in the literature (Wilby 
et  al. 2004; Kannan and Ghosh 2013), some extra 

Fig. 12   Partial correlation analysis over region1 and region4 in 
NEUS. Comparison between (1) partial correlation, obtained with 
observed rainfall and different predictors for years (from recent 
past, 1981–2005) showing signatures of PI run [specific humid-
ity at 500  hPa (a1), surface level specific humidity (b1), mean sea 
level pressure (c1), air temperature at 500 hPa (d1), surface level air 
temperature (e1), zonal ‘U’ wind at 500 hPa (f1), surface level zonal 
wind (g1), meridional ‘V’ wind at 500 hPa (h1), surface level merid-
ional wind (i1), geopotential height at 500  hPa (j1)] and (2) partial 
correlation, obtained with observed rainfall and different predictors 
for years showing signatures of RCP8.5 [specific humidity at 500 hPa 
(a2), surface level specific humidity (b2), mean sea level pressure 
(c2), air temperature at 500  hPa (d2), surface level air temperature 
(e2), zonal ‘U’ wind at 500 hPa (f2), surface level zonal wind (g2), 
meridional ‘V’ wind at 500 hPa (h2), surface level meridional wind 
(i2), geopotential height at 500 hPa (j2)] over region 1 are illustrated. 
Similar analysis carried out over region 4 (k1–t1 and k2–t2 are exact 
counterparts of a1–j1 and a2–j2 respectively, obtained for region 4
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analysis may be performed for the same. The analy-
sis based on partial correlation, presented in the cur-
rent manuscript maybe useful, in this regard. Both the 

partial correlation plots obtained for India and NEUS, 
show that the temperature at 500  hPa is one of the 
variable showing difference in the spatial pattern. It 
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is quite possible that inclusion of this predictor might 
bring down the performance of downscaling methodol-
ogy under the influence of GHG emissions.

3.	 Present study is carried out with NCEP/NCAR reanal-
ysis data as the source of gridded climate variables. 
However, there are other reanalysis products such 
as the European Centre for Medium-Range Weather 
Forecasts (ECMWF) reanalysis data (ERA40) 
(Uppala et  al. 2005), NCEP–DOE Atmospheric 
Model Intercomparison Project (AMIP-II) reanalysis 
(Kanamitsu et  al. 2002), and Japanese 25-year ReA-
nalysis (JRA-25) (Onogi et al. 2007) from the Japan 
Meteorological Agency etc. which are at finer spatial 

resolution as compared to NCEP/NCAR data. Appli-
cation of different reanalysis products (which are at 
different spatial resolution) are likely to produce dif-
ferent results, leading to uncertainty (Kannan et  al. 
2014). At the same time, limitations of NCEP/NCAR 
reanalysis data in terms of, sensitivity to the short-
age of observations in high southern latitudes, pres-
ence of artificial trends in the mean sea level pressure 
fields near Antarctica, not being able to adequately 
represent the atmospheric state for certain regions and 
time, limited skills in representation of hydrologic 
cycle etc. should be taken into consideration before 
its usage.

Fig. 13   Improvement in competence of SD model under nonsta-
tionary conditions on account of inclusion of pressure level predic-
tors. Experiment series 1 panel shows comparison between RMSE 
for Base experiment (TR-RAN-TE-RAN) (X) with RMSE of other 
experiments (TR-C-TE-H, TR-nonEN-TE-EN, TR-CH-TE-CH, 
TR-H-TE-C, TR-EN-TE-nonEN) on the basis of (1) spatial distribu-
tion, illustrated in (a, c, e, g, i) and (2) difference in magnitude (rep-
resented as absolute percentage difference), illustrated in (b, d, f, h, 
j) respectively. Experiment series 2 panel shows results of signature 
based approach. k mean of observed rainfall, obtained for the years 
from recent past (1981–2005) that showed signatures of Pre-indus-

trial (PI) climatic conditions, l mean of observed rainfall, obtained 
for the years from recent past (1981–2005) that showed signatures 
of RCP8.5 climatic conditions, m changes in mean of observed rain-
fall because of GHG emissions [difference between (l) and (k)], n 
mean of projected rainfall, obtained for the years from recent past 
(1981–2005) that showed signatures of PI climatic conditions, o 
mean of projected rainfall, obtained for the years from recent past 
(1981–2005) that showed signatures of RCP8.5 climatic conditions, p 
changes in mean of projected rainfall because of GHG emissions [dif-
ference between (o) and (n)]
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4.	 In order to obtain signatures of average climatic con-
ditions for scenarios PI and RCP8.5 in the recent past 
years (1981–2005), Euclidean distance approach is 
used. Deployment of better approach may help to pro-
duce more realistic results.

6 � Conclusion

This is the first study to the best of our knowledge which 
attempts to systematically evaluate a SD approach under 
plausible nonstationarities expected due to climate change. 
The DOE in the present study is guided by two impor-
tant principles. First principle is that the ability of SD 
approaches to generalize under climate nonstationarity 
depends on the extent to which the extracted relationships 
are physically meaningful, or at least, consistent with both 
current and future expected climatology. Thus, a test of 
generalization in climate, and especially in the context of 
downscaling, needs to include but go beyond the stand-
ard metrics (e.g. Akaike or Bayesian information criteria) 
or optimization approaches (e.g. ridge regression, LASSO 
or the Elastic Net) which at some level attempt to bal-
ance error or skill metrics with complexity of the statisti-
cal model. The second principle is that even under global 
warming scenarios, historical signatures can be found for 
climatologies expected in the future at a given location or 
region. While a general assumption is that the signatures 
may need to be discovered in both space and time, the 
present study makes a further assumption that these can 
be found just in time. While the latter assumption may be 
relaxed in subsequent studies, the physical implications of 
these assumptions is just that at any given region or loca-
tion, natural variability in the observed past may have led 
to situations that were similar to what may be expected 
in the future. Given that regional or local climate changes 
significantly and can never really be considered station-
ary, this assumption may not be too strong. From a statis-
tical perspective, the approaches are conceptually similar 
to nearest neighbor approaches, where the neighborhoods 
in this case are defined based on the similarity of the his-
torically signatures (climatologies) to expected future con-
ditions. Anticipatory assessment of future performance, 
when the radiative forcing differs from current condition, 
is based on extraction of historical signatures. Based on the 
premise laid out here, a partial falsification of the SD-based 
projections may be possible, and the situations where SD 
approaches do not work well can be examined in depth. 
The present study attempt to accomplish this, and based 
on two distinct case studies in the NEUS and India with 
precipitation as the variable of interest, different possible 
reasons for violations of assumption of stationarity emerge 
out. Outcomes of statistical experiments, belonging to 

‘series 1’ category (designed to identify regions where sta-
tionarity fails) hint towards a possible association between 
regions, where assumption of stationarity is violated and 
locations of dense populations. Hypothetically, it can be 
argued that the local changes such as land use land cover 
change (barren land to urban) are possible outcomes of 
increase in population density to cater their basic needs. In 
case of established predictor-predictand relationship, if pre-
dictand (rainfall) is highly sensitive to such local changes 
as compared to predictor, rapid changes in local drivers 
will influence predictand and the old established relation-
ship might fail to capture these changes. However, such 
arguments might prove to be a mirage unless supported 
by thorough hypothetical testing in details. As far as pre-
sent study is concerned, we limit our scope to put forth the 
hypothesis that possible implications of high population 
density have some role to play in disturbing stationary rela-
tionship. Secondly, the outcome of ‘series 2’ experiments 
(signature based approach) shows that the capability of SD 
model to capture changes in mean rainfall under high radia-
tive forcing scenarios can be improved by inclusion of cor-
rect predictors. This is evident from the partial correlation 
plots pointing out to different combinations of predictors 
such as specific humidity, temperature, mean sea level pres-
sure, geopotential height for different regions. Brining out 
a scientific explanation behind why these predictors bring 
down performance of SD is a nontrivial task. This may lead 
to a potent research problem worth undertaking, however, 
out of scope for present study. Future studies may need 
to examine the sensitivities when historical signatures are 
considered in both space and time.

Any scientific endeavor or assertion needs to be ulti-
mately subjected to falsifiability, but this is especially 
hard in climate change where the community is inter-
ested in long lead time projections of a system that is 
ultimately nonlinear and dynamical. Climate simulations, 
whether from GCMs or RCMs used for DD, and SD, are 
often evaluated by examining historical skills and past 
and future multimodel agreement as well as consistency 
with known physical processes or established data asso-
ciations. A contribution of the present work is the devel-
opment of a design of experiments strategy where the 
falsification may be accomplished for the kind of non-
stationarity expected under both natural climate vari-
ability and change at local to regional scales. Follow-on 
studies may be able to take this further by relaxing cer-
tain implicit assumptions by considering, for example, 
more disparate case studies based on natural climate var-
iability (e.g. in addition to El Niño versus non El Niño 
years), or more signatures by including spatial climate 
signatures in addition to temporal (historical) ones. The 
design of experiments strategy for evaluation under non-
stationary climate is not restricted to SD approaches alone 
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and may be valid for dynamic downscaling and GCMs. 
Current evaluation of GCMs includes examination of his-
torical skills, multimodel agreement, and adherence to 
known physical processes. An adaptation of the design of 
experiments proposed here may examine anticipated per-
formance at local to regional scales under non-stationar-
ity conditions expected owing to global climate change. 
In the context of downscaling, there is a performance 
trade-off between SD and DD, since SD relations are 
purely statistical and hence subject to larger biases under 
changed climate conditions, while DD parameterizations, 
despite being physically motivated, are more complex and 
hence subject to higher variability. In fact, the distinctions 
between statistical versus parameterized physics may 
get blurred when the parameterizations get further away 
from fundamental physics, and statistical methods may 
have advantages over parameterized physics in situations 
where the parameters of the latter cannot be estimated 
from observed data. Nevertheless, SD provides a com-
putationally affordable means of achieving high resolu-
tion locally for several applications that would otherwise 
be out of reach for most research groups (Laprise 2008). 
Current strategy for modeling anticipated climate changes 
resulting from human activities consists in making long, 
multi-decadal simulations, with multiple realizations of 
a model in an ensemble mode and, when possible, with 
many models (Laprise 2014). Recently, the World Climate 
Research Program sponsored the Coordinated Regional 
Climate Downscaling Experiment project (CORDEX) 
(Jones et al. 2011), recommended RCM simulations span-
ning the period 1950–2100. The purpose of long and 
ensemble simulations is to maximize the signal-to-noise 
ratio, since the “noise” in individual simulations tends to 
cancel one another in an ensemble (Laprise 2014). Work-
ing Group I have extended coverage of future climate 
change compared to earlier reports by assessing near-term 
projections and predictability as well as long-term projec-
tions and irreversibility (Stocker et  al. 2013). However, 
the current study focuses on evaluation of SD, since there 
is a perception that SD performance is somehow more 
sensitive to climate non-stationarity simply because they 
are statistical in nature. Our results appear to suggest that 
the ability of SD to generalize may be subject to the same 
constraints that GCMs or RCMs may be subject, specifi-
cally, processes at local and regional scales such as land 
use or urbanization changes that are less well understood 
in terms of climate impacts. Further studies may need 
to conduct similar or extended versions of, hypotheses-
driven design of experiments to test the performance of 
not just SD, but DD and even GCMs, under nonstation-
ary climate. One word of caution is that a fail-safe test for 
complete non-stationarity is by definition, impossible to 
design. However, this manuscript takes a step towards an 

evaluation strategy that considers the kind of non-station-
arity expected in local and regional climatologies under 
global climate change scenarios.
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