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growth over Eurasia, in comparison to the conditions that 
occur in a negative NAO phase.
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1  Introduction

Vegetation plays a key role in climate change due to its 
influence on potential feedback mechanisms, such as 
albedo, evapotranspiration, roughness and surface pro-
cesses. In turn, changes in climate strongly influence 
vegetation greenness, through variations in air or soil 
temperature, precipitation, radiation, atmospheric circula-
tions and other meteorological variables. Recently, cor-
relations between vegetation and changes in climate have 
attracted wide attention by scientists (Betts et al. 1997; Dai 
and Zeng 1997; Hoffmann and Jackson 2000; Jiang et  al. 
2011; Rodriguez-Iturbe et al. 1999; Yuan et al. 2011; Zeng 
et  al. 2000). Gao et  al. (2007) pointed out that the land 
use change influenced the circulation and surface energy 
budget by altering the surface roughness, leaf-area-index 
(LAI) and albedo.

Global mean surface air temperature has increased since 
the late nineteenth century; each of the past three dec-
ades has been warmer than all the previous decades, and 
the 2001–2010 decade was the warmest since instrumen-
tal records began. The global combined land and ocean 
temperature data shows an increase of about 0.89 °C over 
the period 1901–2012 (IPCC 2013). As a result of global 
warming during this period, the active growing season has 
become longer, with a much earlier spring and later autumn 
than before, leading to an increase of photosynthetic activ-
ity by vegetation (Bogaert et al. 2002; Zhou et al. 2001).

Abstract  In the present study, the linkages between the 
late wintertime (January–February–March; JFM) North 
Atlantic Oscillation (NAO) and springtime (April–May–
June; AMJ) vegetation growth over Eurasia is investigated. 
Here, the proxy of vegetation growth is represented by nor-
malized difference vegetation index (NDVI) gridded data, 
obtained from the advanced very high resolution radiome-
ter. Over the period 1982–2006, the NAO (JFM) correlated 
well with the NDVI (AMJ) over Eurasia, wherein a posi-
tive NAO tended to increase the NDVI (AMJ) over Eurasia 
and vice versa. The results show that a positive phase of 
the late wintertime NAO leads to an increase in surface air 
temperature, soil temperature and rainfall in most parts of 
Eurasia in winter. These changes tend to produce weaker 
and thinner snow cover in spring compared to that that 
forms in a negative NAO phase. Corresponding to this, the 
albedo decreases and the surface air temperature increases 
over Eurasia in spring, which contributes an earlier snow-
melt. Subsequently, the land surface over Eurasia becomes 
warmer and wetter earlier, as the snow melts. These con-
ditions can then facilitate higher than average vegetation 
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The changes described have been detected in satellite 
data (Tucker et al. 2001; Zhou et al. 2001). Considering the 
synoptic coverage and repeated temporal sampling that sat-
ellites offer, the potential to use remotely sensed data for 
monitoring vegetation dynamics at regional to global scales 
is huge (Myneni et  al. 1997). To quantify the spatial and 
temporal variations in vegetation growth and activity, the 
normalized difference vegetation index (NDVI) (Tucker 
1979) is calculated from near-infrared and red visible 
reflectance in satellite images; the NDVI is used as an indi-
cator of vegetation greenness (Myneni et al. 1997) and has 
been widely developed to monitor vegetation phenology 
(Cleland et al. 2007; Jia et al. 2006, 2009).

Vegetation activity is strongly influenced by the local 
weather variables, so researchers have identified the local 
meteorological variables associated with the NDVI, such 
as air temperature, precipitation and evapotranspiration (Di 
et  al. 1994; Kawabata et  al. 2001; Nemani and Running 
1989; Wang et al. 2003). However, large-scale climate sys-
tems also play essential roles in how the NDVI changes in 
response to global change (Gong and Shi 2003). For exam-
ple, some studies have found possible connections between 
the regional NDVI and the Southern Oscillation (SO) over 
lower latitudes (Kogan 2000; Myneni et al. 1996). Over the 
mid- to high-latitudes other climate systems, such as the 
North Atlantic Oscillation (NAO), Arctic Oscillation (AO) 
or the Pacific/North American (PNA) pattern, might exert 
greater influence on the NDVI. Therefore, while tradition-
ally research has focused on the effects of local weather 
variables on the regional NDVI, the linkage between it and 
large-scale climate systems has become a hot topic (Any-
amba and Eastman 1996; Cho et  al. 2014; Gong and Shi 
2003).

The NAO is a dominant winter climate pattern over the 
Atlantic Ocean and Europe; it refers to a large-scale seesaw 
of atmospheric mass between the subtropical high (cen-
tered on the Azores) and the polar low (centered on Ice-
land) (Hurrell et al. 2003). The NAO is known to influence 
the climate variability over the wintertime Northern Hemi-
sphere (Rodwell et al. 1999; Watanabe and Nitta 1999) and 
even spring-summertime atmospheric circulations (Hahn 
and Shukla 1976; Ogi et al. 2003; Qian and Saunders 2003; 
Sun and Wang 2012; Sun et al. 2008; Tian and Fan 2012). 
For example, Ogi et al. (2003) showed that when the win-
tertime NAO is in a positive phase, the summertime sur-
face air temperatures over circumpolar regions in northern 
Eurasia and subarctic North America become warmer and 
the geopotential height is higher than when NAO is in a 
negative phase. They also suggested that the wintertime 
NAO is memorized in the snow, sea ice and ocean surface 
in the circumpolar regions and that these anomalies sub-
sequently influence the summertime atmospheric circula-
tion in the extratropics. Similar conclusions to these can be 

seen in other studies (Bamzai and Shukla 1999; Qian and 
Saunders 2003). The seasonally lagged signal of the win-
ter NAO in the north Pacific is also investigated by Zhao 
and Moore (2006). They showed the spring sea-level pres-
sures and surface temperatures in the region are positively 
correlated with the characteristics of the NAO during the 
preceding winter. They identified two distinct mecha-
nisms responsible for this lagged signal: sea-surface tem-
perature anomalies in the North Pacific and Eurasian snow 
anomalies. Zhou (2013) studied the relationship between 
the winter (December–February) NAO and the precipita-
tion over southern China in the following spring (March–
May). Results showed that the wave train propagated the 
NAO signal eastward to East Asia and affected local upper-
tropospheric atmospheric circulation. Zhou and Cui (2014) 
also investigated the relationship between the NAO and the 
tropical cyclone frequency over the western North Pacific 
in summer.

Studies on the relationship between the winter NAO and 
the regional NDVI have become of interest to scientists. 
Non-simultaneous correlations between the NAO and vari-
ations in vegetation growth over the northern hemisphere 
and Asia have been shown (Gong and Shi 2003; Wang and 
You 2004; Zhou et  al. 2013). Gong and Shi (2003) used 
the multivariate regression analysis technique to esti-
mate quantitatively the connection between nine climate 
indices and NDVI values. Wang and You (2004) focused 
on the impact of NAO on the productivity of vegetation 
in Asia at various time lags without explaining what the 
underlying mechanism for the non-simultaneous corre-
lations. Zhou et  al. (2013) investigated the relationship 
between springtime NAO and the year-to-year increment 
of summer maize and rice yield in Northeast China. They 
revealed the key factor for this non-simultaneous relation-
ship might be sea surface temperature (SST) anomalies in 
the North Atlantic induced by springtime NAO. Addition-
ally, Vicente-Serrano and Heredia-Laclaustra (2004) dem-
onstrated significant spatial differences in the NDVI devel-
oped between 1982 and 2000 on the Iberian Peninsula; 
these were characterized by a positive trend of the NDVI 
in the north of the Iberian Peninsula, and both stable and 
negative trends of the NDVI in the southern areas. This 
spatial pattern of the NDVI was identified to be signifi-
cantly related to the NAO, because the latter could impact 
the former by greatly influencing the precipitation distribu-
tion even the atmospheric pattern on the Iberian Peninsula 
(Vicente-Serrano and Heredia-Laclaustra 2004). Li et  al. 
(2012) showed that the regions where the NAO and NDVI 
correlate well are mainly concentrated in the mid- and 
high-latitude areas of the northern hemisphere (around the 
60°N belt) and the African zone (around the 15°N belt), as 
well as the vast regions of the southern hemisphere around 
the 10°S–30°S belt.
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There are a few studies that have focused on the statisti-
cal relationships between the NAO and the NDVI (Gouveia 
et  al. 2008; Maignan et  al. 2008); however, this research 
has mainly concentrated on Europe, North America and 
North Africa and there has been little research focused on 
Eurasia (Martínez-Jauregui et  al. 2009; Vicente-Serrano 
and Heredia-Laclaustra 2004; Wang 2003; Wang et  al. 
2003). Therefore, in the present study, we primarily focus 
on the linkage between variability in the springtime NDVI 
over Eurasia (30°E–150°E, 45°N–70°N) and the winter 
NAO, to investigate how the late wintertime NAO affects 
the following springtime NDVI activity in the region. Stud-
ies into the physical mechanisms that lead to the remote 
linkage between the NAO and the NDVI remain limited, 
so the present study also aims to provide probable physical 
mechanisms for the non-simultaneous relationship.

This paper is divided into five sections. The data and 
methods employed in this work are first described in 
Sect.  2. The analysis of spatio-temporal variability of 
the vegetation over Eurasia and the lagged relationship 
between the late wintertime NAO and springtime NDVI are 
presented in Sect. 3. The physical mechanisms responsible 
for the non-simultaneous NAO–NDVI relationship are dis-
cussed in Sect.  4 and a summary and discussion are pro-
vided in Sect. 5.

2 � Data and methods

2.1 � Vegetation data

Temporal variations in vegetation photosynthetic activity 
were investigated using the monthly NDVI dataset (Tucker 
1979). The dataset was compiled at an 8 km spatial resolu-
tion from the AVHRR on board the National Oceanic and 
Atmospheric Administration (NOAA) series of meteoro-
logical satellites, by the Global Inventory Monitoring and 
Modeling Studies (GIMMS) research group (Tucker et al. 
2005). The data were originally processed as 15 day com-
posites for the period from 1982 to 2006 (n = 25) to further 
minimize the effects of clouds on the vegetation signal (Dai 
et al. 2010). The GIMMS–NDVI dataset was calibrated and 
corrected for view geometry, volcanic aerosols and other 
effects that are not related to vegetation change.

The NDVI is calculated from these individual measure-
ments as follows:

where VIS and NIR stand for the spectral reflectance meas-
urements acquired in the visible (red) and near-infrared 
regions, respectively (see http://earthobservatory.nasa.gov/
Features/MeasuringVegetation/measuring_vegetation_2.

NDVI =
(NIR− VIS)

(NIR+ VIS)
,

php). The NDVI itself varies between −1.0 and +1.0, 
wherein an area containing a dense vegetation canopy 
is denoted by positive values and clouds and snow fields 
result in negative values. Therefore, for the present analy-
sis we select pixels with an NDVI value of more than 0.1, 
to represent density of vegetation, and those pixels with a 
mean NDVI <0.1 are excluded (Li et al. 2012). In this way, 
we improve the credibility of the NDVI data and also make 
the analysis of the correlation between the vegetation and 
atmospheric circulation more clear.

It is noted that the NDVI in mid- to high-latitude con-
tinents over Eurasia has a sharp increase from April to 
June, which is consistent with previous results that show 
the NDVI exhibits greater trends in spring than in other 
growing seasons (Gong and Shi 2003; Suzuki et al. 2000; 
Zhou et  al. 2001). Therefore, we defined springtime 
as April–June, and late wintertime refers to January–
March. Our target region of NDVI is limited to the mid- 
to high-latitude continents over Eurasia (30°E–150°E, 
45°N–70°N).

2.2 � Climate data

The National Centers for Environmental Prediction and 
the National Center for Atmospheric Research (NCEP/
NCAR) reanalysis dataset (Kalnay et  al. 1996), and the 
European Centre for Medium Range Weather Forecasts 
Interim reanalysis dataset (Dee et al. 2011), for the period 
from 1982 to 2006 (the same time span of the NDVI 
data) are employed in this study; the data utilized include 
monthly mean sea level pressure, u–v wind vector, 2  m 
air temperature, soil temperature, sensible heat flux and 
snow albedo. The Global Precipitation Climatology Pro-
ject monthly precipitation dataset from the Climate Pre-
diction Center (CPC) at a 2.5° ×  2.5° resolution is also 
used. The snow cover data are extracted from the NOAA 
weekly snow cover extent (SCE) dataset, maintained 
at Rutgers University (http://climate.rutgers.edu/snow-
cover/). The satellite-based data provide weekly SCE data 
for the land masses of Eurasia, North America and the 
northern hemisphere as a whole (Déry and Brown 2007). 
The monthly NAO index was obtained from the public 
NOAA-CPC database (see http://www.cpc.ncep.noaa.gov/
products/precip/CWlink/pna/nao.shtml). The NAO con-
sists of a north–south dipole of anomalies, with one center 
located over Greenland and the other center, of opposite 
sign, spanning the central latitudes of the North Atlantic, 
between 35°N and 40°N. The NAO index is defined as the 
SLP difference between Stykkisholmur, Iceland and Ponta 
Delgada, Azores by Hurrell (1995) from 1982 to 2006. 
In the present study, the late wintertime NAO index is 
defined as the seasonal mean value for January, February, 
and March (JFM).

http://earthobservatory.nasa.gov/Features/MeasuringVegetation/measuring_vegetation_2.php
http://earthobservatory.nasa.gov/Features/MeasuringVegetation/measuring_vegetation_2.php
http://earthobservatory.nasa.gov/Features/MeasuringVegetation/measuring_vegetation_2.php
http://climate.rutgers.edu/snowcover/
http://climate.rutgers.edu/snowcover/
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml
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2.3 � Methods

To analyze the spatio-temporal variability of the vegeta-
tion over Eurasia, an empirical orthogonal function (EOF) 
analysis of the NDVI is conducted. EOF is a good tool to 
extract a compact or simplified, but optimal, representa-
tion of spatio-temporal data. The statistical significance is 
determined by Student’s t tests under the assumption that 
the sample data are independent. All analyses are carried 
out using de-trended data.

In order to illustrate the effect of the late wintertime NAO 
on springtime vegetation activity, atmospheric circulation 
and climate factors that are related to the NDVI and NAO, 
are investigated using correlation and composite difference 
analysis methods. Based on the criterion that the normalized 
EUNDVI (AMJ) is larger than 0.5 or less than −0.5 SD, the 
high-value EUNDVI years (1988, 1990, 1991, 1997, 2000, 
2002) and low-value NDVI years (1983, 1987, 1998, 2003, 
2004, 2006) are tagged. Based on the criterion that the NAO 
index is larger than 0.5 or less than −0.5 SD of NAO, the 
positive-phase NAO years (1989, 1990, 1992, 1993, 1995, 
1997, 2000, 2002) and negative-phase NAO years (1985, 
1987, 1996, 2001, 2004, 2005, 2006) are tagged.

3 � Linkage between springtime NDVI over Eurasia 
and late wintertime NAO

3.1 � Spatio‑temporal evolution of the NDVI anomaly 
patterns

Vegetation growth activities can be divided into a growing 
season (April–October) and non-growing season (Novem-
ber–March), with the minimum NDVI value occurring in 
February and maximum in July (Fig. 1). The largest month-
to-month increment of the NDVI occurs in April–May–
June (AMJ); over this period there is a dramatic increase 
in the NDVI of 0.43 (between March and June), which 
accounts for 87.8 % of the total increase seen in the NDVI 
(0.49; between February and July). This indicates that the 
vegetation activity during AMJ is most vigorous, respond-
ing to the seasonal change from winter to spring. We 
also calculated the autocorrelations of NDVI in 3 months 
(April–June) (Table 1). The correlation between April and 
June NDVI is at the 0.1 significance level, others are all at 
the 0.01 significance level, as estimated from a standard 
Student’s t test. Hence, AMJ is defined as the springtime 
period of the NDVI in this study, which is consistent with 
previous studies (Cho et al. 2014).

The first EOF pattern obtained for the period 1982–2006 
(Fig. 2), accounts for more than 25 % of the total variance 
in the springtime NDVI and explains the major distribution 
of vegetation over Eurasia. In the first EOF pattern, posi-
tive values are present over most parts of Eurasia, indicat-
ing that the change in the springtime NDVI is almost the 
same across Eurasia. There are significant variations in 
the springtime NDVI within the area north of 50°N and 
between 80°E and 135°E; this implies that the vegetation 
varies more significantly in this high latitude region.

The time-coefficients of the first EOF pattern, which 
represent the temporal characteristics in vegetation phe-
nology and depict the various vegetation growing peri-
ods, show both an interannual and interdecadal variability. 
Negative NDVI values occur during 1983–1987 and mostly 
positive values occur between 1988 and 2002. The normal-
ized NDVI values are less than −1.0 SD in 1983, 1987, 
2004, 2006 and greater than +1.0 SD in 1990 and 1997, 
respectively.

Assuming that the variability in NDVI is constant, the 
area-average NDVI (AMJ) index over Eurasia was calcu-
lated (30°E–150°E, 45°N–70°N). The correlation coef-
ficients between the time series of the first EOF pattern 
of the NDVI (AMJ) and the area-average NDVI (AMJ) 
over Eurasia are 0.99 (raw data) and 0.98 (with the linear 
trend removed); both correlations are significant (α 0.01). 
Therefore, the time-coefficient of the first EOF pattern of 
NDVI (AMJ) over Eurasia (EUNDVI) is used to present 

Fig. 1   Monthly area-average NDVI values over Eurasia (45°N–70°N, 
30°E–150°E) between 1982 and 2006

Table 1   The autocorrelations of NDVI in 3  months (April–June) 
between 1982 and 2006

* Significant correlation at 90 % level, and ** 99 % level, estimated 
by a local Student’s t test

April May June

April 1.00 0.55** 0.35*

May 0.55** 1.00 0.84**

June 0.35* 0.84** 1.00
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the primary vegetation phenology during springtime over 
Eurasia.

3.2 � Correlation between the NAO (JFM) and the NDVI 
(AMJ)

The correlation coefficients between the late wintertime 
NAO (JFM) and the NDVI (AMJ) are positive across 
most parts of Eurasia (Fig. 3). That is, when the late win-
tertime NAO is in a positive phase, the vegetation activity 
over most parts of Eurasia in the coming spring tends to 
be stronger. The statistically significant correlation coeffi-
cients dominate the 45°N–55°N belt, extending from west-
ern Europe to Siberia and reaching the Lake Baikal region.

The time series of the detrended NAO (JFM) and the 
EUNDVI (AMJ), during 1982–2006 (Fig.  4), show that 
the variation of the NDVI (AMJ) over Eurasia is generally 
consistent with the variation of the late wintertime NAO 
(JFM), except in some years, including 1983, 1989, 1993, 
2001 and 2005. The correlation coefficients between the 
two series are 0.50 (containing the linear trend) and 0.56 

(de-trended); both are significant (α 0.01), as estimated 
from a standard Student’s t test. This demonstrates that the 
late wintertime NAO is an important factor that influences 
the spring vegetation activity in Eurasia, as it can be used to 

Fig. 2   The first EOF pattern 
obtained from the springtime 
NDVI (AMJ) over Eurasia 
(45°N–70°N, 30°E–150°E). a 
The spatial distribution and b its 
time-coefficient

Fig. 3   The correlation coef-
ficient between the spring NDVI 
(AMJ) and the previous winter 
NAO (JFM), over Eurasia. The 
dotted regions are the statisti-
cal confidence levels at 95 %, 
estimated by a local Student’s 
t test

Fig. 4   Changes in the EUNDVI (AMJ) (black squares) and the NAO 
(JFM) index (red dots) over time



992 J. Li et al.

1 3

explain 31.4 % of the variance that occurs in the greenness 
index in the subsequent spring, over the mid- and high-lati-
tude region of Eurasia (Figs. 3, 4).

4 � The responsible physical mechanisms  
for the non‑simultaneous relationship

4.1 � The climate factors related to NDVI (AMJ)

Several relevant springtime (AMJ) climate factors are 
identified through the investigation of climatic differences 
between the high-value and low-value EUNDVI (AMJ) 
years including 2 m air temperature, soil temperature and 
precipitation (Fig. 5). A positive EUNDVI (AMJ) is closely 
related to a significant increase in both 2 m air temperature 

(Fig. 5a) and soil-temperature (Fig. 5b). A positive EUN-
DVI (AMJ) also corresponds to higher than normal rain-
fall in two areas north of 60°N, and in an area between 
30°E–60°E and 40°N–50°N, along with lower than average 
rainfall south of 60°N (Fig. 5c).

The data show that the NDVI is, statistically, more 
closely linked with surface temperature than precipita-
tion, in agreement with previous findings (Ichii et  al. 
2002; Kawabata et  al. 2001; Los et  al. 2001; Schultz and 
Halpert 1993). Schultz and Halpert (1993) found that the 
onset of precipitation generally appears to act as the stim-
ulus for vegetation in regions where the magnitude of the 
annual temperature cycle is small, and vice versa. Los et al. 
(2001) observed a very strong connection between anoma-
lies in the NDVI and land surface air temperature, existing 
in 3.4 years (NAO) signals in Europe, but showed weaker 

Fig. 5   Spring (AMJ) dif-
ferences in temperature and 
precipitation between the high- 
and low-value NDVI (AMJ) 
years. a Air temperature at 2 m 
(K), b soil temperature (K), c 
precipitation (mm/day). Dotted 
areas show significant changes 
at the 95 % level, estimated by a 
local Student’s t test
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associations with precipitation, indicating that moisture 
generally does not limit vegetation growth in the region. 
Some evidence also indicated that the vegetation anomaly 
in the northern mid- and high-latitudes is predominantly 
a response to warmer surface temperatures (Myneni et al. 
1997; Tucker et al. 2001; Zhang et al. 2004). It is clear that 
temperature is a dominant climate factor that influences the 
NDVI variability over Eurasia, with increased temperatures 
corresponding to a higher NDVI.

The next question then, is what is the relationship 
between the late wintertime NAO (JFM) and the climate 
factors that influence the spring NDVI in Eurasia? The 
composite differences in springtime (AMJ) climate factors 
that influence the NDVI and the positive- and negative-
phase NAO (JFM) years indicate that a positive NAO tends 
to increase the springtime Eurasian air temperature and soil 
temperature, and also increases rainfall at both high lati-
tudes and in southern Europe (Fig. 8). Clearly, the climate 
patterns in Fig.  8 resemble those seen in Fig.  5, showing 
the positive correlation coefficient between the NAO (JFM) 
and the NDVI (AMJ), in terms of the climate factors.

4.2 � The physical mechanisms responsible for the link 
between the NAO (JFM) and the NDVI (AMJ)

The NAO bipolar mode of circulation consists of the 
exchange of air between the subtropical Azores high and 
the polar Icelandic low. The result in the previous sec-
tion shows that the late wintertime NAO has a significant 
impact on the spring NDVI. Since the atmosphere itself 
does not have long memory (it is <1 month) and the win-
ter NAO does not have a significant auto-correlation after 
March (Ogi et  al. 2003), something else with a longer 
memory should link the winter to spring (even summer), 
pattern that occurs.

Firstly, an analysis of the variations in the previous 
atmospheric circulation field, associated with the win-
tertime NAO (JFM). Since the anomalies, relative to the 
positive- and negative-phase NAO years, tend to have an 
opposite distribution, the composite difference is discussed 
hereafter. The composite differences of 850, 500 and 
200 hPa horizontal winds (JFM) between the positive- and 
negative-phase NAO (JFM) years show various anomalies 
(Fig. 6a–c). During the positive phase of the winter NAO, 
there are barotropic circulation anomalies over the North 
Atlantic and into Eurasia, with cyclonic circulation anom-
alies over the northern part and anticyclonic circulation 
anomalies over the southern part. The form of an anoma-
lous high over Lake Baikal (85°E–150°E, 35°N–60°N) is 
closely related to Rossby wave activity. Arrows superim-
posed in Fig. 6d are the wave activity flux at the 200 hPa 
level, formulated by Takaya and Nakamura (Takaya and 
Nakamura 1997, 2001). The arrows clearly show that the 

Rossby wave propagates south-eastward from Novaya 
Zemlya to the regions around Lake Baikal (85°E–150°E, 
35°N–60°N), which leads to the anomalous high over Lake 
Baikal. This anomalous high increases solar radiation and 
contributes to warming over Lake Baikal.

Corresponding to the barotropic circulation anomalies 
(Fig.  6a–c), anomalous westerlies prevail over Eurasia, 
around 40°N–60°N, bringing warm moist air from north 
of the Atlantic to most of Eurasia, which leads to warming 
over Eurasia (Fig.  7a, b) (Qian and Saunders 2003; Rod-
well et  al. 1999). Precipitation over the northern part of 
Eurasia (50°N–70°N) increases (Fig. 7c), due to the warm 
moist air being transported by the prevailing westerlies and 
increased vertical motion induced by the cyclonic circula-
tion anomalies (Fig.  6a–c). In contrast, the precipitation 
decreases over the southern part of Eurasia (40°N–50°N; 
Fig. 7c) due to the anticyclonic circulation anomalies that 
dominate there (Fig.  6a–c). These changes, especially the 
warming of the 2 m air temperature (Fig. 7a) and soil tem-
perature (Fig. 7b), could produce the negative anomalies of 
snow cover (Fig. 9a), which represent weaker and thinner 
snow cover. As a result of the decreasing snow over Eura-
sia, the snow albedo accordingly decreases (Fig.  9b) and 
the land surface would store more shortwave radiation and 
temperature.

After a positive winter NAO, in the following spring 
(AMJ), as the thin snow melts fast, the land releases more 
heat (accumulated from the previous winter). Therefore, the 
soil temperature (AMJ) increases (Fig. 8a), along with an 
increase in the sensible heat flux (AMJ) (Fig. 8b) over most 
parts of Eurasia. Accordingly, the air temperature (AMJ) 
(Fig. 8c) increases and precipitation (AMJ) also increases 
over most parts of Eurasia (Fig. 8d); the latter occurs dra-
matically so in the areas encompassed by 50°E–60°E and 
40°N–60°N, and 80°E–130°E and 65°N–75°N. However, 
there is also a negative anomaly rainfall belt at 60°N, 
extending from west to east across Eurasia. The most sig-
nificant negative anomaly center of precipitation lies to the 
west of Lake Baikal, in the Sayan Mountains, which sug-
gests a strong influence of the complex topography there. 
Ultimately, these conditions facilitate the earlier arrival of 
springtime; warm and moist surfaces over Eurasia in spring 
after a positive NAO phase (JFM) favor higher than average 
vegetation growth in comparison to conditions that follow a 
negative NAO phase.

According to the analysis above, we hypothesized that 
snow cover might be responsible for the linkage between 
the winter NAO and the spring NDVI. Between high- and 
low-value NDVI (AMJ) years, snow cover has significant 
negative anomalies over the mid- and high-latitudes of 
Eurasia (around 50°N–70°N) in winter (JFM) and spring 
(AMJ), respectively (Fig.  9c, d; where the area is blank, 
denotes the snow cover is 100  % and is the same as in 
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Fig. 9a, b). The physical features of snow, including high 
albedo, low thermal conductivity, strongly influence the 
boundary-layer climate (Bednorz 2004). Snow is related to 
the change in air temperature, precipitation and soil mois-
ture, therefore it is also, indirectly, an important factor for 
vegetation growth. Furthermore, Ogi et  al. (2003) noted 
that even once melted, snowmelt continues to affect the 
heating through soil moisture. Thus, early warm conditions 
in spring over Eurasia can be caused by warm temperatures 
and low snowfall during the previous winter (Ogi et  al. 
2003). Snow cover also affects local atmospheric heat-
ing, by snow-albedo feedback during the melting season. 

Specifically, the thinner and weaker snow cover devel-
oped during a positive-phase late wintertime NAO year 
can decrease the albedo and increase temperature. Conse-
quently, warm and moist surfaces over Eurasia can contrib-
ute to the vegetation growth.

On the contrary, in negative-phase NAO years, there 
are anomalies of larger Eurasian snow cover in late winter, 
which produce a delayed increase in spring surface air tem-
perature and thus contribute to a lower NDVI over Eurasia 
(Bamzai and Shukla 1999; Hahn and Shukla 1976). The 
local impact of snow cover on atmospheric temperatures 
has been discussed in previous studies, which suggest that 

Fig. 6   Wind (JFM) differences 
between positive- and negative-
phase NAO (JFM) years. a At 
850 hPa, b at 500 hPa, and c at 
200 hPa. d Winter (JFM) dif-
ferences in geopotential height 
(contours) and wave activity 
flux (arrows) between positive- 
and negative-phase NAO (JFM) 
years at 200 hPa. Shading areas 
show significant changes at the 
95 % level, estimated by a local 
Student’s t test
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positive feedback between snow cover and solar radiation 
occurs, due to the increased albedo, the absorption of latent 
heat by snow melting and sublimation, and the low ther-
mal conductivity of the snowpack (Kim et al. 2013). These 
local cooling effects, in turn, strongly influence subse-
quent spring climates over Eurasia. Therefore, the delayed 
temperature increase in spring also delays the growth and 
development of the plants.

5 � Conclusions

In the present study, we have focused on the significant 
lagged influence of the late wintertime NAO (JFM) on the 

subsequent springtime NDVI (AMJ) over Eurasia and its 
possible physical mechanisms.

We examined the correlation between the springtime 
EUNDVI (AMJ) and the winter NAO (JFM) index, and 
identified that their close relationship might enable the 
NAO index to serve as a predictor for subsequent spring 
NDVI values over the mid- and high-latitudes of Eura-
sia. Some 31.4  % of the spring vegetation variance is 
explained by the previous winter’s NAO variations, while 
the correlation coefficients between the springtime EUN-
DVI (AMJ) and the late wintertime NAO (JFM) index are 
0.50 (containing the linear trend), and 0.56 (de-trended), 
both of which are significant (α 0.01), as estimated from 
a standard Student’s t test. Positive values of the winter 

Fig. 7   Winter (JFM) dif-
ferences in temperature and 
precipitation between positive- 
and negative-phase NAO (JFM) 
years. a Air temperature at 2 m 
(K), b soil temperature (K), c 
precipitation (mm/day). Dotted 
areas are the same as Fig. 5
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NAO contribute to high vegetation activity in the following 
spring, and vice versa.

The possible physical mechanisms for the non-simul-
taneous relationship between the winter NAO and the 

spring NDVI are inter-related (Fig. 10). A positive phase 
of the wintertime NAO is associated with an increase in 
air and soil temperature and more precipitation anoma-
lies throughout most of Eurasia, due to enhanced westerly 

Fig. 8   Spring (AMJ) dif-
ferences in meteorological 
variables between positive- and 
negative-phase NAO (JFM) 
years. a Soil temperature (K), b 
sensible heat flux (W/m2), c 2 m 
air temperature (K), d precipita-
tion (mm/day). Dotted areas are 
the same as Fig. 5
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winds, which correspond to barotropic cyclonic circulation 
anomalies over the northern part of Eurasia and anticy-
clonic circulation anomalies over the southern part of Eur-
asia. A positive phase of the winter NAO (JFM) also gen-
erates the Rossby wave, which propagates south-eastward 
from Novaya Zemlya to the regions around Lake Baikal 
(85°E–150°E, 35°N–60°N), and leads to an anomalous 
high over Lake Baikal. The anomalous high over Lake 

Baikal in turn leads to an increase in solar radiation also 
contributes to warming. All the described changes produce 
negative anomalies of snow cover, which then decreases 
the albedo and increases temperature further. Warming 
and moistening of the air occurs over Eurasia and leads to 
faster snow melt during subsequent spring. Together, these 
conditions favor vegetation growth at higher than aver-
age rates to produce green vegetation cover conditions. 

Fig. 9   Differences in winter 
(JFM) snow cover and snow 
albedo between positive- and 
negative-phase NAO (JFM) 
years. a Snow cover (%), b 
snow albedo. Differences in 
different season of snow cover 
between the high- and low-
value NDVI (AMJ) years. c In 
JFM, d in AMJ. Dotted areas 
show significant change at 95 % 
level, estimated by a local Stu-
dent’s t test. Persistent coverage 
of snow (i.e. coverage is 100 %) 
is denoted by blank areas
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A negative phase of the late wintertime NAO leads to the 
opposite effect.

This study demonstrates that one of the likely climatic 
factors that effectively memorizes the winter NAO and 
links it to the subsequent spring climate, might be snow 
cover, which can strongly influence the boundary-layer cli-
mate, owing to its physical features. However, it is likely 
that there is more than one important climatic factor that 
does this; SST and sea-ice are two other probable candi-
dates that warrant further research.

It has been long recognized that fluctuations in SST 
and the strength of the NAO in the North Atlantic are 
related (Bjerknes 1964). Stronger eastward flow generally 
increases evaporation, thereby cooling SST; on the other 
hand, SST anomalies, including those in middle latitudes, 
have been thought to be partly responsible for changes 
in atmospheric circulation over the North Atlantic and 
Europe in winter or spring (Rodwell et al. 1999). Czaja and 
Frankignoul (1999) found a NAO-like signal in early win-
ter is associated with SST anomalies east of Newfoundland 
and in the eastern subtropical North Atlantic during the 
preceding summer. Rodwell and Folland (2002) also ana-
lyzed that significant links exist between wintertime NAO 
and SST anomalies in the preceding spring, summer, and 
autumn. Recently, Zhou (2013) revealed that springtime 

NAO can induce sea surface temperature anomalies (SSTA) 
in the North Atlantic, which display a tripole pattern. The 
spring Atlantic SSTA pattern that could persists to summer, 
can trigger a high-level tropospheric Rossby wave response 
in the Eurasia continent, resulting in atmospheric circula-
tion anomalies over the Siberia-Mongolia region.

Meanwhile, sea ice may be another important link 
between the late wintertime NAO and spring NDVI. Some 
studies have showed the relationship between NAO and sea 
ice, which further affected the climate conditions (Kwok 
2000; Seierstad and Bader 2009). For example, Hu et  al. 
(2002) found that winter sea ice is thinner in high-NAO 
index years than in low-NAO index years in the Eurasian 
coastal region. They indicated that the thinner wintertime 
ice combined with strengthened southerlies in spring pro-
motes an earlier break-up of the ice pack in the Eurasian 
coastal region, resulting in significant sea ice export. The 
higher ice efflux, in turn, further reduces the ice compact-
ness, thus more solar radiation is absorbed by the oceans 
which enhances the melting process. Chapman and Walsh 
(1993) indicated that the arctic sea-ice variations over the 
past several decades are compatible with the correspond-
ing air temperatures, which show a distinct warming that 
is strongest over northern land areas (northwestern North 
America, northern Asia) during the winter and spring.

Fig. 10   A schematic diagram 
of possible physical process that 
lead to the non-simultaneous 
linkage between the NAO 
(JFM) and the NDVI (AMJ) 
over Eurasia
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Therefore, the SST and sea ice anomalies may be both 
other bridges between late wintertime NAO and spring 
NDVI over Eurasia during 1982–2006, and the physical 
mechanisms need further research.
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