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1 Introduction

As the most prominent and predictable mode in the cou-
pled ocean–atmosphere system, El Niño-Southern Oscil-
lation (ENSO) significantly influences human society and 
ecosystems (McPhaden et al. 2006). While great progress 
has been made in ENSO predictions with statistical mod-
els (e.g., Penland and Magorian 1993) and dynamic models 
(e.g., Cane et al. 1986; Chen et al. 2004; Jin et al. 2008), 
ENSO predictability is constrained by model errors, initial 
errors and stochastic “noise” (e.g., Moore and Kleeman 
1999) of the atmosphere.

Studies have revealed that model errors generally play 
a more important role in climate prediction than initial 
condition errors (e.g., Stainforth et al. 2005). While sta-
tistical bias correction is widely used to improve ENSO 
forecasts (e.g., Chen et al. 2000, 2004), dynamical meth-
ods are also pursued to improve understanding of ENSO 
mechanisms and reduce model errors as well as enhance 
forecast skills. Among three model error sources—
dynamical core misfitting, physical scheme approxima-
tion and model parameter errors (Zhang et al. 2012), the 
model parameters can be optimized with observational 
information. Based on data assimilation theory (e.g., 
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Jazwinski 1970), parameter optimization (also called 
parameter estimation in the literature, hereafter denote 
as PO) can be realized by a state vector augmentation 
technique (e.g., Banks 1992a, b), which includes model 
parameters into control variables of data assimilation. 
The augmentation technique can be implemented by 
most of data assimilation methods. Three branches of 
PO methods exist: (1) ensemble Kalman filter (EnKF; 
Evensen 1994, 2007) based (e.g., Anderson 2001), (2) 
adjoint based (e.g., Zhu and Navon 1999) and (3) parti-
cle filter based (e.g., Vossepoel and Van Leeuwen 2007). 
Presently, PO has been widely applied in ocean models 
(e.g., Peng et al. 2013), atmosphere models (e.g., Laine 
et al. 2012) and ocean–atmosphere coupled models (e.g., 
Annan et al. 2004; Kondrashov et al. 2008; Liu et al. 
2014). For ENSO prediction, some efforts have been 
made to explore the impact of model parameters on the 
modeling and predictability of ENSO. Zebiak and Cane 
(1987) demonstrated the strong sensitivity of ENSO 
simulations to model parameters. Yu et al. (2012) used 
a conditional nonlinear optimal perturbation method to 
evaluate the impact of model parameter errors on ENSO 
predictability. Our studies attempt to explore how to 
apply PO to improve ENSO predictions. As the first step, 
we set experiments in a relatively-idealized scenario: 
erroneous model parameters are the only source of model 
errors.

Due to the strongly ocean–atmosphere coupling 
nature of ENSO, its prediction initialization shall be car-
ried out by coupled data assimilation (CDA; Zhang et al. 
2007; Chen and Cane 2008; Sugiura et al. 2008) that 
assimilates both oceanic and atmospheric observations 
into the coupled model. Recently, CDA has been widely 
applied in ENSO dynamical models, including interme-
diate coupled models (e.g., Chen et al. 1995; Lee et al. 
2000; Karspeck et al. 2006; Karspeck and Anderson 
2007) and general circulation models (e.g., Keenlyside 
et al. 2005). In this study, we implement ensemble cou-
pled data assimilation (ECDA, Zhang et al. 2005, 2007) 
into an intermediate ENSO model (Zebiak and Cane 
1987). Data assimilation experiments are conducted 
within a biased twin experiment framework. The degree 
by which the assimilation and prediction with or without 
PO recover the “truth” is a measure of the impact of PO 
on ENSO predictions.

The remainder of this paper is arranged as follows: 
Sect. 2 briefly introduces the Zebiak-Cane ENSO model 
used and the EnKF-based PO algorithm. Section 3 con-
figures the biased twin experiment. Impacts of PO on the 
ENSO analysis and prediction are examined in Sects. 4 
and 5, respectively. At last, summary and discussions are 
given in Sect. 6.

2  Methodology

2.1  The Zebiak‑Cane ENSO model

Due to its intermediate complexity and application in 
ENSO simulation and prediction, the Zebiak-Cane (here-
after as ZC) ENSO model is selected to study the impact 
of PO on ENSO analysis and predictions. The ZC model 
used here was released in December 2013, and inherits the 
features of old versions including Holocene radiative per-
turbations (Mann et al. 2005) to the SST anomaly equation. 
The components of the ZC model are briefly described as 
follows.

The atmospheric dynamics are roughly governed by a 
steady state and linear shallow-water equations (Gill 1980), 
which are forced by a heating anomaly parameterized by 
SST anomaly and the moisture convergence parameterized 
in terms of surface wind convergence. The atmosphere cov-
ers the region of 0°–354.375°E and 79°S–79°N, with a grid 
spacing of 5.625° (longitude) × 2° (latitude). The ocean 
includes dynamics and thermodynamics. The oceanic 
dynamics are simulated by a reduced-gravity model, which 
is forced by the wind stress anomaly from the atmospheric 
model. The range of the meridional current anomaly (zonal 
current anomaly and upper ocean depth anomaly) spans 
over the domain of 125°E–281°E and 28.75°S–28.75°N 
(124°E–280°E and 28.5°S–29°N) with a grid spacing of 2° 
(longitude) × 0.5° (latitude). The oceanic thermodynamics 
are modeled by a three-dimensional nonlinear equation of 
SST anomaly, covering the domain of 101.25°E–286.875°E 
and 29°S–29°N with the same grid spacing as the atmos-
phere. The valid SST domain is 129.375°E–275.625°E and 
19°S–19°N where four marginal points correspond to (6, 6)
th, (32, 6)th, (32, 25)th and (6, 25)th SST anomaly grids. 
Time step is 10 days. Note that the radiative forcing in the 
SST anomaly equation is not activated in this study.

Among all parameters of the ZC model, we focus on 
the following twelve: 4 atmospheric parameters, 2 ocean 
dynamical parameters and 6 SST anomaly parameters. 
The first four columns of Table 1 list the notations, physi-
cal meanings, units and default values, respectively. More 
details of the ZC model can be found in Zebiak and Cane 
(1987).

2.2  EAKF‑based parameter optimization

We select the EAKF to perform state-parameter estimation, 
which is briefly introduced here. Detailed descriptions of 
implementation of the ECDA with the ZC model are illus-
trated in Sect. 3.

Similar to other sequential filtering methods, when the 
observational errors are assumed to be uncorrelated, the 



713A study of the impact of parameter optimization on ENSO predictability with an intermediate…

1 3

EAKF can sequentially assimilate observations. While the 
sequential implementation provides much computational 
convenience for data assimilation, the EAKF maintains 
the nonlinearity of background flows as much as possible 
(Anderson 2003; Zhang and Anderson 2003).

For a single observation, denoted as y, the EAKF con-
sists of the following two steps. The first step computes the 
observational increment as

where ȳp represents the prior ensemble means of y; r and 
σ
p
y  denote the standard deviation of observational error and 

the prior (model-estimated) standard deviation of y. The ith 
prior ensemble of y, ypi , is usually obtained through apply-
ing a linear interpolation to the prior ensemble of state vari-
ables. The second step projects the observational increment 
onto related model variables using the following linear 
regression formula,

where Δxi is the contribution of y to the model variable x 
for the ith ensemble member. Cov(x, y) denotes the error 
covariance between the prior ensemble of x and the model-
estimated ensemble of y.

The EAKF can naturally implement multivariate incre-
ments through applying crossing or coupling error covari-
ances (e.g., Han et al. 2013) in Eq. (2). Cross correlations 
can also be applied to conduct PO through a state vector 
augmentation technique (e.g., Anderson 2001; Hansen 
and Penland 2007), which includes model parameters 
into control variables of data assimilation. To estimate 
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geographic-dependent parameters, we adopt the same 
method as Wu et al. (2012), which is simply introduced 
here.

At each analysis step of data assimilation, after the 
observational increment is computed by Eq. (1), it is also 
linearly mapped to the increment of spatial-related parame-
ter β1 as follows

where cov(β, y) denotes the error covariance between 
the prior ensemble of β and the model-estimated ensem-
ble of y. The quality of PO realized by an EnKF mainly 
depends on the accuracy of the error covariance between 
the parameter and observation. To effectively enhance the 
quality of the above ensemble-evaluated error covariance, 
Zhang et al. (2012) presented a coupled data assimilation 
scheme with enhancive parameter correction (DAEPC), 
which activates PO after the state estimation reaches a 
“quasi-equilibrium” such that the uncertainty of model 
states is sufficiently constrained by observations. The PO 
in this study also employs the idea of DAEPC. Addition-
ally, we assume that the parameters are invariant between 
two adjacent analysis steps (e.g., Zupanski and Zupanski 
2006).

3  Setup of a biased twin experiment

As the first step to study the impact of PO on the ENSO 
predictability, we design a biased twin experiment to exam-
ine the validity of PO.

1 β is a generalized notation of (θ, T1, T2, S1, S2, γ) in this study.

(3)�βi =
cov(β, y)
(
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p
y

)2
�yi,

Table 1  List of valid range 
(percentage) of 12 adjustable 
parameters in the Z–C model

Physical meaning Unit Values Valid range (%)

α Coefficient for the heating anomaly parameterization m2s−3 °C 3.09 × 10−2 5

κ Coefficient for the heating anomaly associated with the 
low level convergence

m2s−2 1.652 × 104 5

λ Decay time scale of the atmospheric thermal field day 0.738 2

Cd Wind drag coefficient – 2.74 × 10−2 1

r Decay time scale of the ocean properties month 30 5

η Decay time scale of ocean current shear day 2 5

T1 Parameters for subsurface temperature parameterization °C 28 5

T2 −40 5

S1 m 80 5

S2 33 3

θ Decay time scale of SST anomaly day 125 4

γ Factor for the vertical SST anomaly advection due to 
mean velocity

– 0.75 4
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3.1  Model error

We assume that the model error arises from erroneously-set 
parameter values. The model with the standard values (see 
the 4th column of Table 1) of model parameters serves as 
the “truth” model in the twin experiment. To design a rea-
sonable assimilation model, we first seek the upper and 
lower bounds of each parameter within which the model 
can maintain the basic properties of ENSO (e.g., 2–7 years 
oscillation, irregulation and asymmetry). The last column 
in Table 1 displays the bounds (in percentage of the default 
value) for each parameter. For example, 5 % bound of 
parameter α means the valid range of this parameter is 
[3.09 × 10−2 × 0.95, 3.09 × 10−2 × 1.05]. Note that the 
upper and lower values of most parameters are asymmetric 
with the default values. For simplicity, we set a symmetric 
bound for each parameter. All parameters are multiplied by 
one plus the respective bounds (in percentage) serving as 
the parameter configuration of the assimilation/prediction 
model. To check whether the combined biased parameters 
can also keep the fundamental nature of real ENSOs, we 
analyze the time series (0–50 model years) of 5-month run-
ning mean of NINO3.4 index (SST anomaly averaged over 
5°S–5°N, 170°W–120°W) generated by the assimilation 
model and the truth model (Fig. 1a).2 Obviously, both the 
truth and assimilation models reflect the main features of 
real ENSOs, and the amplitude of NINO3.4 index is close 
to the observed value.

To examine the significant periods of the ENSO simu-
lated by the assimilation model, we compute the power 
spectrum of 5-month running mean of NINO3.4 index 
in the first 100 model years produced by the assimilation 
model. Figure 1b depicts the power spectra (thick) and 
95 % confidence upper limits (thin) of the NINO3.4 index 
for the truth (solid) and the assimilation (dashed) mod-
els. Both models maintain 3–5 years significant periods 
while the assimilation model decreases the most signifi-
cant period of ENSO from 4.2 years generated by the truth 
model to 3.9 years.

3.2  Observing system

To partly reflect the situation in the real world (only SST 
observations are available in the long time period), we 
assume that only SST anomaly is observed at the same 
gridpoints as Kaplan SST datasets (27.5°S–27.5°N, 
122.5°E–92.5°W, with 5° resolutions in both longitude 
and latitude; Kaplan et al. 1998). Starting from the model 
states at the end of 100 model years, the truth model is 

2 Please refer to Sects. 3.4 and 3.5 for the details of the integration of 
the truth and assimilation models.

further integrated for another 200 years. On the 1st day 
of each month, the true SST anomaly is linearly interpo-
lated from the model grids to the observation positions and 
then perturbed with a Gaussian white noise, which simu-
lates the observational error. Note that the Gaussian noise 
is imposed on SST anomaly rather than SST. The mean and 
variance of observational error are zero and 0.1 °C. Thus, 
the observing system in this study is the same as that in 
Karspeck and Anderson (2007) except that the final “obser-
vation” values may differ from each other.

3.3  Selection of parameters to be estimated

Before conducting PO, we should determine which param-
eter or parameters should be estimated. Since only observa-
tions of SST anomaly are available, the parameters to be 
optimized should be closely related to SST anomaly. For 
the model state, observations are only allowed to influence 
the SST anomaly itself. Six parameters including θ, T1, T2, 
S1, S2 and γ are directly related to SST anomaly.

To answer the question at the beginning of this sec-
tion, we performed the following nine experiments: first 
is ensemble control run without data assimilation (denote 
as CTL); second is state estimation (denote as SE) that 

Fig. 1  a Time series of 5-month running mean NINO3.4 indices 
in the “truth” model (solid) and assimilation model (dashed) start-
ing from the same initial condition; b power spectrums of 5-month 
running mean NINO3.4 indices in the first 100 model years for the 
“truth” (solid) and assimilation (dashed) models with 95 % confi-
dence level
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uses observations of SST anomaly to adjust SST anomaly; 
third to eighth are single parameter optimizations (denote 
as SPO) that use observations of SST anomaly to respec-
tively estimate the geographic-dependent θ, T1, T2, S1, S2 
and γ based on SE; last is the multiple parameter optimi-
zation (denote as PO) that simultaneously estimates six 
geographic-dependent parameters based on SE. Note that 
SPO and PO include both state estimation and parameter 
optimization.

Figure 2 gives time averaged ensemble mean root-mean-
square errors (RMSEs) of prior SST anomaly (Fig. 2a), 
zonal current anomaly in the mixed layer (Fig. 2b), mix 
layer depth (Fig. 2c) and zonal wind anomaly (Fig. 2d) for 
SE (first bar in each panel), SPOs for θ, T1, T2, b1, b2 and γ 
(second to seventh bars in each panel), as well as PO (last 
bar in each panel). Note that for each variable, RMSEs of 
eight data assimilation experiments have been normalized 
by those (i.e., 0.87 °C, 24.81 cm s−1, 22.12 m and 1.0 m s−1 
for SST anomaly, zonal current anomaly, mix layer depth 
and zonal wind anomaly) obtained by CTL. Here, the time 
averaged RMSE of ensemble mean is calculated by

where S represents the number of analysis steps; s indexes 
the analysis step; X is the model state to be evaluated; i1 (j1) 
and i2 (j2) are the first and last zonal (meridional) indices 
of valid X. Ensemble mean of X is represented by X̄. The 
superscripts “prior” and “tru” denote the prior (i.e., forecast 
background) and the truth values, respectively.

According to Fig. 2, simultaneously estimating six 
parameters can achieve best analysis of model states. In 
addition, because the univariate adjustment is implemented, 
the improvement of SST anomaly by SE relative to CTL is 
larger than those of other variables (comparing the first bars 
in four panels of Fig. 2). Thus, in the rest part of this study, 
we use the EAKF to optimize six SST anomaly parameters.

3.4  Sensitivity study

Same as Wu et al. (2012), ensemble spread of model state 
is used to represent the sensitivity and the ensemble size 
is set to 20. To get the biased initial conditions of sensitiv-
ity study, the assimilation model is integrated forward up 
to 100 model years from the zero initial condition. During 

Fig. 2  Time averaged root-mean-square errors (RMSEs) of the 
ensemble mean of prior SST anomaly (a), zonal current anomaly (b), 
mix layer depth (c) and zonal wind anomaly (d) in 3 schemes—SE 
(state estimation), SPO (single parameter optimization) for θ, T1, 
T2, S1, S2 and γ, and PO (multiple parameter optimization). SE uses 
observations of SST anomaly to adjust SST anomaly. SPO optimizes 

the single geographic-dependent parameter with the observations of 
SST anomaly based on SE. PO instantaneously optimizes six geo-
graphic-dependent parameters with the observations of SST anomaly 
based on SE. Note that for each variable, the shown RMSE is a nor-
malized version by corresponding RMSE of the ensemble control run 
without observation constraint
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first 120 model days, the assimilation model is forced by a 
constant zonal wind stress. Afterwards, the artificial wind 
stress is shut down and the model is freely run for 100 
model years to get the biased fields.

For each SST anomaly parameter β, all initial ensem-
ble members of model states are set to the above biased 
fields. Then, the biased value of β is perturbed by a Gauss-
ian noise with zero mean and the standard deviation equal 
to one percent of the biased value to form the ensemble 
members of β. Other 11 empirical parameters keep their 
biased values. Then the assimilation model is freely run for 
another 5 model years to perturb the model states by the 
uncertainty of the parameter. For model variable X, its sen-
sitivity with respect to the parameter β is assessed by:

where (i, j) indexes model grid and t denotes model integra-
tion time. N is ensemble size and the over bar indicates the 
ensemble mean.

Since only observations of SST anomaly are avail-
able for the estimation of parameters, we only show the 

(5)sens
X,β
i,j,t =

√

√

√

√

1

N − 1

N
∑

n=1

(

Xi,j,t,n − X̄i,j,t

)2
,

sensitivities of SST anomaly. Figure 3a plots time series 
(1st day of each month) of spatial averaged sensitivities of 
SST anomaly for θ.(black), T1 (blue), T2 (red), S1 (dashed), 
S2 (pink) and γ (green). Here the sensitivity has been nor-
malized by the climatological standard deviation of SST 
anomaly at each SST grid. θ (i.e., the damping timescale of 
SST anomaly) is the most sensitive parameter. In addition, 
since geographic-dependent parameters are expected to be 
estimated, it’s also necessary to examine the spatial distri-
butions (Fig. 3b) of sensitivities. Here the spatial sensitiv-
ity is the time average of Eq. (5). Due to the nearly same 
results of other 5 SST anomaly parameters, we only show 
the result of θ. The most sensitive areas situate at middle 
and eastern equatorial Pacific.

3.5  Assimilation experiments

To get the true initial conditions of assimilation experi-
ments, the truth model is integrated forward up to 100 
model years from the zero initial condition. The wind stress 
that forces the truth model is the same as that forces the 
assimilation model.

The initial 20 ensembles of model states are gener-
ated using the same method as in Karspeck and Anderson 
(2007). That says 20 ensemble members of model states 
are selected every 5 model years apart from the simulation 
results of the assimilation model between January 1st in 5th 
year and January 1st in 100th year. For the parameters to 
be estimated, their initial ensembles are the same as those 
in Sect. 3.4. For the parameters not to be estimated, their 
initial ensemble members use the same biased values in 
Sect. 3.1. Note that results of PO may be sensitive to the 
standard deviation of the initial parameter ensembles. How-
ever, introduction of parameter inflation scheme will trans-
fer the aforementioned sensitivity from the standard devia-
tion to the parameter inflation factor, which is described as 
follows.

3.5.1  Inflation

The use of a finite number of ensembles can lead to an 
underestimation of the background error variance. Subse-
quently, the role of observations is weakened and ensem-
ble of model state may converge to a value departing from 
observation (known as filter divergence). Variance infla-
tion is an approach to effectively address this issue. For 
SE, there are many sophisticated methods, like the static 
additive method (e.g., Whitaker et al. 2008; Houtekamer 
et al. 2009), the static multiplicative method (e.g., Ander-
son and Anderson 1999), and adaptive schemes (e.g., 
Anderson 2008; Miyoshi 2011). Due to the homogene-
ous distribution of the observing system in this study, we 
use the static multiplicative method in this study. That is 
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the ensemble perturbation of SST anomaly is artificially 
amplified by a constant (i.e., inflation factor) that is larger 
than 1 before SE and PO are implemented at each analysis 
step. Substantive trials suggest a 1.03 value of the infla-
tion factor.

For PO, artificial variance inflation is the only mean of 
imparting spread to the parameter ensemble since there is 
no dynamical error growth in the parameters. The typical 
inflation algorithm (e.g., Wu et al. 2013; Zhang et al. 2012; 
Wu et al. 2012; Aksoy et al. 2006) in PO inflates the ensem-
ble spread of parameter to a fixed value when the spread is 
less than the fixed value, which is formulated as

Here, βi,j and β̃i,j represent the prior and the inflated ensem-
ble of the parameter β locating at (i, j)th model grid, σt 
and σ0 denote the prior spreads of βi,j at time t and the ini-
tial time, α0 is the parameter inflation factor. To facilitate 
the examination of the sensitivities of SST anomaly with 
respect to six SST anomaly parameters, we adopt the same 
value of α0 for these parameters. Note that α0 here can take 
values less than 1.0, although it is usually greater than 1.0. 
For a α0 that is greater than 0 and less than 1.0, parameter 
ensemble will be compressed to one having an ensemble 
spread being α0σ0 when the ensemble spread σt at current 
analysis step is less than α0σ0.

Here we examine the dependence of PO on the param-
eter inflation factor α0 with a serial values (including 0.0, 
0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 5.0, 6.0, 7.0, 8.0, 9.0 and 10.0) 
to determine an optimal value. The time-averaged ensem-
ble mean RMSE of prior SST anomaly defined in Eq. (6) 
is used to assess the dependence (Fig. 4). On the one hand, 
overly small inflation factors (like values less than 0.5) 
cause large errors of SST anomaly; on the other hand, 

(6)β̃i,j = β̄i,j +max

(

1,
α0σ0

σt

)

(

βi,j − β̄i,j

)

.

overly large inflation factors (like values larger than 6) lead 
unstable quality of SST anomaly. Therefore, a mid-range of 
2.0 is used in PO experiments in this study.

Additionally, to prevent the occurrence of extreme esti-
mated values, the estimated parameters are bounded by 
0.95 and 1.05 of their truth values.

3.5.2  Localization

Due to the sampling error, spurious correlations sampled 
by a finite ensemble often exist between model states 
and remote observations in EnKF. Covariance locali-
zation eases this issue. So far, many kinds of localiza-
tion models, like static (e.g., Hamill et al. 2001), adap-
tive (e.g., Anderson 2007; Bishop and Hodyss 2007) and 
compensatory (e.g., Wu et al. 2014) approaches, have 
been developed. In this study, we use a widely used static 
localization function (GC function; Gaspari and Cohn 
1999) in the state estimation. Karspeck and Anderson 
(2007) applied this localization scheme to the ensemble 
data assimilation and found that application of isotropic 
localization in the ZC model could introduce noisy waves 
that could not be damped. To partly ease this issue and 
reflect the variation of oceanic Rossby deformation radius 
with respect to the latitude, the halfwidth of the GC func-
tion is set to 1000 km × cos(lat), where lat represents the 
observed latitude. For PO, the same localization algorithm 
as SE is used.

3.5.3  Experiments

With the above initial conditions for the assimilation model, 
the observing system, as well as the state and parameter 
adjustment scheme, three experiments are conducted to 
evaluate the performance of two assimilation algorithms. 
First is an ensemble control run without observational con-
straint (i.e., CTL in Sect. 3.3); Second is SE; Last is PO. 
Three experiments use the same ensemble initial conditions 
and two data assimilation algorithms use the same obser-
vations. According to the description of the observing sys-
tem, observations on the 1st day of each month are assimi-
lated into the assimilation model. That is the assimilation 
frequency is once a month. Note that PO simultaneously 
implements SE and parameter optimization. The total data 
assimilation period is 200 model years. The model time 
of the initial condition is reset to zero here. Following the 
approach of DAEPC (Zhang et al. 2012), PO is activated 
after five years of SE to insure a “quasi-equilibrium” state 
in SE. Discarding the assimilation results of the first 100 
model years, results of the last 100 model years are used to 
perform error analysis and statistics.

There are another two points should be clarified 
here. One is that although the stochastic forcing (such as 

Fig. 4  Dependence of parameter optimization on the parameter 
inflation factor. Y-axis represents the time averaged ensemble mean 
RMSE (unit: °C) of prior SST anomaly
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synoptic-scale atmospheric processes, westerly wind bursts 
and the Madden-Julian oscillation) of the atmosphere also 
influences ENSO predictability (e.g., Karspeck et al. 2006; 
Cheng et al. 2010), here we mainly focus on the model 
error. Thus, no stochastic atmospheric forcing (wind) is 
imposed in ENSO prediction in this study. The other is that 
bias correction of SST anomaly is not performed, which 
may benefit PO (Cheng et al. 2010).

4  Impact of PO on ENSO analysis

Based on the results of sensitivity study in Sect. 3.4, we 
investigate the impact of PO on analysis results of ENSO. 
It should be noted that due to the overly large RMSEs, 
results of CTL are not shown.

4.1  Model states

If the model parameters are reasonably estimated, the 
model error will be reduced and model states will be cor-
respondingly improved. We first investigate the overall 
impacts of PO on the analysis of three key variables (i.e., 
SST anomaly, zonal wind stress anomaly and thermocline 
depth anomaly), and then analyze the impact of PO on the 
analysis of El Niño (warm) and La Niña (cold) events.

Figure 5 shows the time series of RMSEs of prior (back-
ground/predicted) SST anomaly (Fig. 5a), zonal wind stress 
anomaly (Fig. 5b) and thermocline depth anomaly (Fig. 5c) 
for SE (black) and PO (blue). Note that in order to clearly 
understand the performances of data assimilation experi-
ments, only results of first 100 model years are displayed, 
and RMSE here equals the RMSEs in Eq. (4). From Fig. 5a, 
SST anomaly produced by PO is better than that generated 
by SE for most analysis steps except few cases. Although 
only SST anomaly is observed and the univariate adjust-
ment is implemented, the improved SST anomaly produced 
by PO can improve other model variables.

Similar to Fig. 5, Fig. 6 displays the spatial distributions 
of RMSEs of prior SST anomaly (Fig. 6a, b), zonal wind 
stress anomaly (Fig. 6c, d) and thermocline depth anomaly 
(Fig. 6e, f) for SE (Fig. 6a, c, e) and PO (Fig. 6b, d, f). 
Here, the RMSE for (i, j)th SST anomaly grid is computed 
by

where S represents the number of analysis steps; s indexes 
the analysis step. Compared to SE, PO can markedly 
improve SST anomaly in middle and eastern equatorial 
Pacific and subsequently further reduce the errors in other 
model variables. Combining with the results of sensitivity 

(7)RMSEi,j =

√

√

√

√

1

S

S
∑

s=1

(

X̄
prior
i,j,s − X tru

i,j,s

)2
,

study demonstrates that PO can greatly ameliorate model 
states at high sensitive places.

To assess the impact of PO on the analysis of ENSO, we 
plot time series (100–200 model years) of absolute errors 
(i.e., the absolute value of the difference between prior 
value and truth) of prior ensemble mean NINO3.4 index 
for SE and PO (Fig. 7). Generally, PO can achieve bet-
ter NINO3.4 indices than SE for most analysis steps with 
some exceptions. Compared to the truth evolution (Fig. 7a, 
c) of NINO3.4 index, PO outperforms SE for most rela-
tively warm and cold events while failure cases (i.e., PO is 
not significantly better than SE) usually occur during quiet 
periods (i.e., neutral events).

To confirm above conclusions, we first define a strong 
El Niño (La Niña) as a warm (cold) even when NINO3.4 
index is greater (less) than 1 °C (−1 °C) (Chen et al. 
2004). Then the composite strong El Niño and La Niña are 
computed with the posterior (analysis) results of SE and 
PO between January 1st in 101 model years and Decem-
ber 1st in 199 model years with 1 month interval. Fig-
ure 8b, c shows the absolute errors of the analysis com-
posite El Niños produced by SE and PO while the truth of 

Fig. 5  Time series of RMSEs of prior SST anomaly (a, unit: °C), 
zonal wind stress anomaly (b, unit: dyn cm−2) and thermocline depth 
anomaly (c, unit: m) for state estimation (black) and parameter opti-
mization (blue)
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composite El Niño is also plotted in Fig. 8a. Compared to 
SE, PO can improve SST anomaly in central and eastern 
equatorial Pacific during strong El Niño episodes. For La 
Niña event (Fig. 9b, c), the same conclusion can be drawn. 
Then the longitude-time diagram for the relative errors of 
SST anomaly, zonal wind stress anomaly and thermocline 
depth anomaly is plotted to further demonstrate the above 
points. Here, the relative errors along the equator between 
PO and SE are computed as follows. For each analysis step 
and each SST anomaly longitude, the analysis ensemble 
means between 5°S and 5°N of the three variables pro-
duced by PO and SE are first averaged and then subtracted 
from the true counterpart to gain their respective absolute 
errors. Lastly, the relative error along the equator is calcu-
lated as:

where i indexes the zonal grid of SST anomaly and the 
over bar indicates the meridional arithmetical mean of the 
analysis ensemble mean of X for PO and SE or the truth of 
X between 5°S and 5°N. X stands for the aforementioned 
three variables. A negative (positive) relative error means 
PO is better (worse) than SE. Figure 10d–f shows an inter-
val (180–190 model years) of the longitude-time diagram 
while the truth of X is also plotted in Fig. 10a–c. For the 

(8)errorrelativei =

∣
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X
PO
i − X

tru
i
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−

∣
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X
SE
i − X

tru
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∣,

strong year-182 La Niña and the strong year-184 El Niño, 
PO is better than SE. That is the negative values of the 
relative errors in Fig. 10d–f happen at extreme values in 
Fig. 10a–c during these periods. During neutral events, PO 
has no significant superiority over SE. It should be men-
tioned that PO is better than SE for most (rather than all) 
strong events. For example, during the strong year-180 
El Niño, PO is a little worse than SE. Note that although 
results in an interval are shown here, the same conclusion 
can be drawn from the total assimilation period.

4.2  Estimated parameters

Given the improvement of model states caused by PO, 
one may be interested in the variations of the estimated 
parameters.

We first check the spatial distributions of estimated 
parameters. The analysis ensemble means of the SST 
anomaly parameters between 100 and 200 model years are 
averaged and then used to compute the standard deviations 
in time of these parameters at each SST anomaly grid point. 
Due to similar results of other 5 parameters, only results 
of θ are shown here (Fig. 11). We can see that most varia-
tions and variabilities of θ occur in the central and eastern 
Pacific, where is the most sensitive place of SST anomaly 
(Fig. 3b).
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Fig. 6  Spatial distributions of RMSEs of prior SST anomaly (a, b, unit: °C), zonal wind stress anomaly (c, d, unit: dyn cm−2) and thermocline 
depth anomaly (e, f, unit: m) for state estimation (a, c, e) and parameter optimization (b, d, f)
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Then, we examine the time series of RMSEs of the 
analysis ensemble means of θ (Fig. 12a), T1 (Fig. 12b), T2 
(Fig. 12c), S1 (Fig. 12d), S2 (Fig. 12e), and γ (Fig. 12f). 
Here the RMSE is defined as

where i and j index the valid SST anomaly grids. It is 
worth mentioning that due to the existence of other model 
errors (i.e., the biases of other parameters except six SST 
anomaly parameters), PO attempts to make up for the total 
model error through optimizing the SST anomaly param-
eters. Thus, the estimated parameters may not strictly con-
verge to their truth values. From Fig. 12, during the assimi-
lation period of 100–200 model years, the RMSEs of all six 
parameters are smaller than their initial error. The most sta-
ble (unstable) parameter is T2 (S2).

(9)RMSEt =

√

√

√

√

1

540

32
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i=6

25
∑

j=6

(

β̄i,j,t − β tru
)2
,

5  Impact of PO on ENSO prediction

Following the analysis of the last section, three aspects are 
discussed in this section to investigate the impact of PO on 
ENSO prediction. First, an overall assessment of the pre-
dictability of ENSO is presented; then, the role of model 
parameters on the prediction skill of ENSO is compared 
to that of initial conditions; last, the impact of PO on the 
seasonal forecast skill of ENSO is explored. All the eval-
uations are based on the results of the following forecast 
experiments. Starting from the analysis fields of SE and PO 
between 1st January in 101 model years and 1st Decem-
ber in 199 model years with 1 month interval, the ZC 
ENSO model is integrated to 5 model years. Thus, there are 
99 × 12 = 1188 forecast experiments. Note that for PO, 
the optimized parameters with geographical distribution at 
the last time step of the analysis are used to perform ENSO 
predictions.

Fig. 7  Time series (100–200 
model years) of absolute error 
(b, d) (unit: °C) of prior ensem-
ble mean of NINO3.4 index 
for state estimation (black) and 
parameter optimization (blue). 
Note that results are evenly 
partitioned into 2 parts and time 
series of “true” NINO3.4 index 
(red curves in a and c) are also 
plotted as a reference
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Fig. 9  The same as Fig. 8 but 
for composite La Niña. The 
criterion of La Niña here is a 
NINO3.4 index less than −1 °C
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5.1  Predictability of ENSO

The anomaly correlation coefficient (ACC) and RMSE of 
the predicted ensemble mean of NINO3.4 index relative to 
the truth are used to evaluate the overall predictability of 
ENSO. The formulas of these two quantities here for the 
sth lead time and mth start month are

and

where R represents the number of forecast experiments 
(here is 99) and r indexes the forecast case. The superscript 
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“f” represents the forecasted quantity. X
f
 (Xtru) denotes the 

forecasted (true) ensemble mean of NINO3.4 index with 
the same seasonal cycle removed. Here the climatology is 
computed by the truth model in this study while it should 
be calculated by the observations in practice. X

f
 (X

tru
) rep-

resents the mean of X
f
 (Xtru).

Figure 13a–d shows the variations of ACC (Fig. 13a, c) 
and RMSE (Fig. 13b, d) of predicted ensemble mean of 
NINO3.4 index with respect to lead time (in months) and 
start month for SE and PO, respectively. If an ad hoc 0.6 
value of ACC is used to define the valid lead time, PO can 
extend the valid lead of ENSO from about 30 (24) model 

Fig. 12  Time series of the RMSEs of the analysis ensemble means of θ (a), T1 (b), T2 (c), S1 (d), S2 (e), and γ (f)

Fig. 13  Variation of ACCs (a, 
c, e) and RMSEs (b, d, f) of 
predicted ensemble mean of 
NINO3.4 indices with respect to 
lead time (in months) and start 
month for state estimation (a, 
b), parameter optimization (c, 
d) and the forecast experiment 
with the original guess biased 
parameters from state estima-
tion and the state initial condi-
tions from parameter optimiza-
tion (e, f). The solid curves in a, 
c and e (b, d and f) are 0.6-ACC 
(1.0-RMSE) contours. Note 
that RMSEs here have been 
normalized by the climatologi-
cal standard deviation (i.e., 1.0) 
of NINO3.4 indices produced 
by the “truth” model
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months of SE to about 36 (32) model months for summer 
and autumn (spring and winter). That says PO can extend 
the valid lead time up to 20 % (33 %) for summer and 
autumn (spring and winter). In contrast, the predicted error 
of the amplitude of ENSO produced by SE is systemati-
cally reduced by PO for all seasons. In addition, according 
to the results of RMSE, spring predictability barrier (SPB) 
exists in both experiments. However, the intensity of SPB 
for PO is weaker than that SE. Note that the existence of 
SPB in PO limits the improvement of interannual predict-
ability of ENSO phase for boreal winter and spring.

It should be noted that due to the idealized model errors 
and the exclusion of the atmosphere stochastic forcing and 
the radiative forcing, the predictability of ENSO here is 
much stronger than the real world. Even so, we still can get 
some insights from the quantitative analysis of the advan-
tage of PO over SE. If we roughly average the ACCs and 
RMSEs for first 4 model years lead time and all 12 start 
months, PO can enhance (reduce) ACC from 0.66 (0.80) of 
SE to 0.76 (0.64). Combining results of ACC and RMSE, 
the predictability of ENSO is enhanced by about 18 %.

5.2  Roles of parameters and initial conditions

Since the reduction of model errors also refines the quality 
of initial condition, the improvement of the predictability 
of ENSO may attribute to the refinement of initial condition 
and the correction of SST anomaly parameters. It’s impor-
tant to figure out which factor plays the dominant role. 
Although many studies (e.g., Zhu and Navon 1999; Stain-
forth et al. 2005) have investigated this issue in weather 
forecast and/or climate prediction community and found 
that model parameters are more important to the prediction 
skill than the initial conditions, it’s also a good chance here 
to confirm this conclusion or find other possibilities in the 
context of ENSO prediction.

To answer the above question, an additional forecast 
experiment is conducted as follows. Starting from the 
same 1188 state initial conditions as PO, the extra experi-
ment uses the original guess biased parameters from SE to 
perform ENSO forecasting. Figure 13e, f displays results 
of the extra experiment. Comparison between SE and the 
extra experiment indicates that improvements of phase and 
amplitude of ENSO induced by the refinement of initial 
conditions confine to very short lead time. Thus, the long-
term prediction skill of ENSO is mainly affected by model 
errors rather than initial conditions, which is consistent 
with previous results.

5.3  Seasonal forecast skill of ENSO

Comparison between Fig. 13a, b and c, d justifies that PO 
can markedly improve the seasonal forecast skill of ENSO. 

Taking 6-month lead as an example, we compare the per-
formances of PO and SE as follows.

Similar to Fig. 7, Fig. 14 shows the time series (1st day 
in each model month) of ensemble mean NINO3.4 index 
(Fig. 14a, c) and its absolute error (Fig. 14b, d) in 6-month 
lead for SE (black) and PO (blue) while the truth (red) is 
also plotted as a reference. PO can improve the forecast 
skill of intensities of most warm and cold events relative to 
SE. To justify this verdict, we also plot the absolute errors 
of composite strong El Niño (Fig. 8d, e) and strong La 
Niña (Fig. 9d, e) in 6-month lead as those of the analysis 
results. Comparison between Fig. 8b and d indicates that 
SE may increase the noise in eastern equatorial Pacific, 
and propagate it westwards to central equatorial Pacific in 
seasonal forecast timescale. It’s evident that the large fore-
cast errors of SST anomaly produced by SE mostly hap-
pen at the sensitive areas (Fig. 3b) of SST anomaly. Since 
SE doesn’t correct the SST anomaly parameters, the loss 
of predictability of ENSO caused by the uncertainties of 
parameters may concentrate on the sensitive places. How-
ever, PO can keep almost the same accuracy of SST anom-
aly in 6-month lead as that in analysis results (comparing 
Fig. 8c with e). For the composite strong La Niña, SE can 
observably amplify the errors of SST anomaly in 6-month 
lead in western and eastern Pacific compared to its analysis 
results (Fig. 9b). It’s interesting that there is an area in cen-
tral equatorial Pacific where the seasonal forecast skill of 
La Niña is not weakened by SE. Generally, SE rapidly loses 
the forecast skill of ENSO at the sensitive places in the sea-
sonal timescale. For PO, compared to the analysis results, 
it mainly losses the seasonal forecast skill of La Niña in 
the western equatorial Pacific. In sum, the seasonal forecast 
skill of strong El Niños and La Niñas produced by PO is 
better than that generated by SE. Additionally, the improve-
ment of the seasonal forecast skill of El Niño produced by 
PO is larger than that of La Niña. This can be explained by 
the fact that both the happening frequency and amplitude of 
El Niño are larger than that of La Niña.

6  Summary and discussions

As a part of model errors that confines ENSO predict-
ability, the erroneously-set model parameters can be opti-
mized by observations. As the first step to study the impact 
of parameter optimization on ENSO prediction skills, an 
intermediate (Zebiak-Cane) ENSO model is used to set 
up a biased twin experiment with an ensemble Kalman 
filter (EAKF, Anderson 2001, 2003). Six out of 12 SST 
anomaly parameters are optimized. Results show that 
parameter optimization improves ENSO predictability—
enhancing the seasonal-interannual forecast skill by about 
18 %, extending the valid lead time up to 20 % (33 %) for 
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summer and autumn (winter and spring) and ameliorating 
spring predictability barrier apparently. In addition, cross 
experiments show that optimized parameters help more in 
enhancing the prediction skill of ENSO at long lead times 
than improved initial conditions.

It is worth mentioning that we place a limit of 5 % error 
to the estimated parameter, which is very restrictive due to 
the hypothetically unknown truth. In reality, these param-
eters could be factors of two or more. To examine whether 
parameter optimization is valid or not in these cases, we 
perform an extreme experiment that does not impose any 
bounds on the estimated parameters. Results show that the 
unconstrained parameter optimization is a little better than 
the constrained parameter optimization in this study (not 
shown). However, without any constraint, the estimated 
parameter may take a value that has no physical meaning. 
Thus, a certain bound is usually imposed on the estimated 
parameter in reality.

Although results of parameter optimization here are 
promising, there are many challenges before it can be 
applied to the real ENSO prediction. First, the more com-
plicated model errors in the real world may degrade the 
performance of parameter optimization. With the configu-
ration of the model error in the biased twin experiment, 
both the state estimation and parameter optimization per-
form very well, which causes the marginal improvement 
from parameter optimization over state estimation. Sec-
ond, real long-term observations of SST anomaly (such as 
Kaplan SST product) and other atmospheric and oceanic 
observations should be assimilated to the prediction model 
to improve state estimation and parameter optimization. 
Third, impacts of the atmosphere stochastic forcing and the 
radiative forcing on ENSO prediction shall be considered 
in the follow-up studies. Last, the comparison of the effects 
of parameter optimization and statistical bias correction 
shall also be investigated in the future. Probably, an optimal 

Fig. 14  The same as Fig. 7 but 
for 6-month lead forecast results
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combination of these two approaches can significantly 
improve ENSO predictions.
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