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Furthermore, the interannual variation of summer pre-
cipitation is attributable to the variation of heavy rainfall 
frequency over the HRV. The heavy rainfall frequency, in 
turn, is influenced by sea surface temperature anomalies 
(SSTAs) over the north Indian Ocean, equatorial western 
Pacific, and the tropical Atlantic. The tropical SSTAs mod-
ulate the HRV heavy rainfall events by influencing atmos-
pheric circulation favorable for the onset and maintenance 
of heavy rainfall events. Occurring 5 months prior to the 
summer season, these tropical SSTAs provide potential 
sources of prediction skill for heavy rainfall events over the 
HRV. Using these preceding SSTA signals, we show that 
the support vector machine algorithm can predict HRV 
heavy rainfall satisfactorily. The improved prediction skill 
has important implication for the nation’s disaster early 
warning system.

Keywords Heavy rainfall events · Seasonal climate 
prediction · Bayesian inference on precipitation · Huaihe 
River Valley · Normal mixture model · Support vector 
machine

1 Introduction

The Huaihe River Valley (HRV) is a key agricultural area 
in China to sustain food supplies to whole nation, where 
summertime flooding events are a primary breaker of local 
agriculture (Li et al. 2011). Historical records showed that 
devastating flooding events over this region are tightly 
associated with heavy rainfall events. For example, in the 
late June and early July of 2003, consecutive heavy rain-
fall events brought about 450 mm precipitation into the 
HRV, causing severe flooding, loss of life and billions of 
dollars in agricultural and economic damage (Zhang and 
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You 2014). Thus, accurately predicting HRV heavy rainfall 
events is of vital importance to reduce the economic loss 
caused by flooding and downpours.

However, previous studies on rainfall prediction focused 
primarily on the seasonal mean precipitation, which might 
not be readily adaptable to heavy rainfall events. Specifi-
cally, the statistical behavior of heavy rainfall events are 
determined by the tail of probability distributions (Katz and 
Brown 1992), which is substantially different from that of 
the mean (Gumble 1954; Wilson and Toumi 2005). Further-
more, it has been noticed that heavy rainfall events respond 
differently to climate variability and climate change com-
pared to the seasonal mean precipitation (Chen et al. 2012; 
Chou et al. 2012; Qian et al. 2007; Wu and Fu 2013). Con-
sequently, the factors responsible for seasonal mean precip-
itation over the HRV, including the sea surface temperature 
anomaly (SSTA) patterns (Chang et al. 2000; Huang and 
Sun 1992; Yang and Lau 2004), springtime soil moisture 
content (Meng et al. 2014; Zhang and Zuo 2011), and Arc-
tic sea ice extent (Li and Leung 2013; Vihma 2014), might 
not be used in the same way as for the prediction of heavy 
rainfall events.

In order to improve seasonal prediction of heavy rain-
fall events, the prediction models should be updated and 
the climate predictors suitable for the HRV heavy rainfall 
events should be identified. On top of that, a reliable sta-
tistical inference on the HRV heavy rainfall events and a 
better understanding of the related physical processes are 
needed.

This study advances climate prediction of HRV heavy 
rainfall by applying a novel statistical framework. Unlike 
traditional statistical prediction models, the framework 
does not require predefinition of distribution kernels, and 
thus largely reduces the biases in rainfall statistical mod-
els due to their subjective selection of distribution kernels 
(Li and Li 2013). By objectively identifying heavy rain-
fall events, the framework can better model the statistical 
behavior of heavy rainfall, and thus help to improve the 
understanding of related physical mechanisms. The prob-
ability behavior of heavy rainfall events are then linked to 
preceding SSTA pattern to identify the potential climate 
predictors. Two statistical prediction models, one linear 
model and the other machine learning algorithm, are con-
structed to assess the predictability of the HRV heavy rain-
fall events using the identified SSTA predictors.

The rest of the paper is organized as following. In 
Sect. 2, data, analysis methods, and the statistical frame-
work are described. The Bayesian inference on the HRV 
summertime heavy rainfall events is presented in Sect. 3. 
The SSTA predictors of the HRV heavy rainfall are identi-
fied based on exploratory data analysis in Sect. 4. Further-
more, the atmospheric circulation is analyzed to create the 
physical linkage between preceding SSTA and summertime 

HRV heavy rainfall events. In Sect. 5, two statistical pre-
diction models, multiple linear regression model and sup-
port vector machine (SVM) algorithm, are constructed to 
test the predictability of the HRV heavy rainfall events 
using the SSTA predictors identified in Sect. 4. Concluding 
remarks are presented in the last section.

2  Data and methods

2.1  Data

The data used in this study includes gridded daily precipita-
tion data archived by China Meteorological Administration 
(CMA) (Xie et al. 2007). The temporal period analyzed in 
this study is 1961–2012 in order to avoid the potential inac-
curate of statistical inference due to the sparse data cover-
age prior to 1960s. The HRV covers a geographical domain 
of 30.5°N–36.5°N; 110.5°E–121.5°E (Hong and Liu 2012), 
which is delineated by the box in Fig. 1. Daily precipita-
tion within this domain is averaged in order to capture 
the regional-scale features of rainfall from the climate 
perspective.

Summer season is defined as June–July–August (JJA), 
when precipitation over the HRV peaks (Fig. 1). The pre-
cipitation during these three months also displays the 
strongest interannual variation, indicating the importance 
of JJA precipitation to climate variability in this region 
(Fig. 1). Furthermore, summer precipitation in the HRV is 
critical to local agriculture and economy, making warm-
season rainfall a central problem of climate prediction for 
this region.

Atmospheric circulation fields, i.e. wind patterns, were 
adopted from the National Center of Environment Predic-
tion/National Center of Atmospheric Research (NCEP/

Fig. 1  Climatology (1961–2012) of monthly mean precipitation 
(gray bars, mm day−1) over the HRV; the error bars denote one 
standard deviation of interannual variation of precipitation in each 
month. The inner plot shows the 1961–2012 climatology of summer 
(JJA) precipitation in Eastern China. The black box denotes the HRV 
region
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NCAR) reanalysis (Kalnay et al. 1996) during 1961–2012. 
In this study, both daily and JJA mean circulation were 
analyzed. In order to explore the potential predictability of 
rainfall, both synchronized and preceding sea surface tem-
perature anomalies (SSTA) were examined. The SST data 
is from the National Oceanic and Atmospheric Administra-
tion (NOAA) Extended Reconstructed SST [ERSST Ver-
sion 3 (Smith et al. 2008)].

2.2  Rainfall probability framework: finite Normal 
mixture model

To describe the probability distribution of summer rain-
fall over the HRV, a rainfall framework based on a three-
cluster Normal mixture model was implemented (Li and Li 
2013). The advantages of the Normal mixture model lie in 
its flexibility of distribution shapes, because any smoothed 
distribution can be approximated by the combination of a 
finite number of Normals. Thus, it overcomes the limitation 
of traditional statistical models that requires the subjective 
selection of predefined distribution kernels and cannot be 
easily adapted to different climate zones. For example, the 
Log-Normal distribution tends to better model the rainfall 
in the subtropical regions, while the Gamma distribution 
fits tropical precipitation better (Cho et al. 2004). Such a 
subjective selection of distribution models can introduce 
bias to the statistical inference on the HRV heavy rainfall 
events. The flexibility of Normal mixture model in distribu-
tion shape is especially important for HRV summer rain-
fall, because daily rainfall displays multi-modal feature that 
cannot be captured by traditional models with uni-modal 
distribution kernels.

When constructing finite Normal mixture models, 
choosing the optimal number of clusters is difficult and 
sometimes controversial (McLachlan and Peel 2000; Mel-
nykov and Maitra 2010; Richardson and Green 1997). Gen-
erally, adding more clusters to the mixture model could bet-
ter approximate the true distribution of rainfall. However, 
an unlimited increase in clusters also increases the risk of 
over-fitting (Lin et al. 2007), blurs the physical meanings 
of each cluster, and hampers the interpretation of mecha-
nisms that control the rainfall probability distribution. In 
this study, a three-cluster Normal mixture was constructed. 
The three clusters reflect the probability behavior of differ-
ent summer rainfall categories over the HRV, i.e. the light, 
moderate, and heavy rainfall according to the American 
Meteorological Society (AMS) Glossary of Meteorology 
(2009).

The three-cluster finite Normal mixture model takes the 
mathematical form:
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where π is the weight of rainfall clusters (i.e. the frequency 
of each rainfall types). It is noteworthy that 

∑3
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, and thus πh is mutually dependent. µ is the cluster mean, 
and φ is the precision of Normal distributions. h ∈ {1, 2, 3} 
is the cluster index.

To obtain the distribution parameters (π, µ, and φ) in the 
mixture model, Bayesian statistical inference was imple-
mented. The priors about π, µ, and φ are as follows:

In Eq. (3), κ is the degree of freedom, and the 
Gamma(φh|αh,βh ) was parameterized to have mean 
αh/βh and variance αh/β2

h . The parameters in the prior 
distributions (Eqs. 2–3) were assigned according to the 
AMS definitions of light (0–6 mm day−1), moderate 
(6–18 mm day−1), and heavy rainfall (>18 mm day−1) 
(AMS Glossary of Meteorology 2009). However, 
we kept the prior distributions weakly informa-
tive to incorporate more data information into the 
posterior distribution: (a1, a2, a3) = (0.5, 0.35, 0.15), 
µ0h = (1.0, 8.0, 20.0), κh = (1, 1, 1), αh = (1.0, 1.0, 0.4), 
and βh = (1.0, 1.0, 1.0).

Since the priors (Eqs. 2–3) and the likelihood model 
(Eq. 1) are semi-conjugate, the full conditional posterior 
distributions can be derived analytically (Gelfand 2000). 
The Gibbs sampler for posterior computation using Markov 
Chain Monte Carlo (MCMC) algorithm is as follows:
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In this study, the MCMC algorithm (Eqs. 4–6) is applied 
to daily rainfall in each summer during the 1961–2012. 
Since heavy rainfall intensity is stronger than moderate 
rainfall and light rainfall, this physical constraint is placed 
upon µh (µ1 < µ2 < µ3) to deal with the label switching 
issues (Stephens 2000). The MCMC algorithm is run 1000 
times and the first 200 burn-in samples were discarded, and 
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the remaining 800 post burn-in samples were used in the 
analysis.

The goodness-of-fit of the constructed three-cluster 
Normal mixture model was compared with the widely 
used distribution models, including the Gamma, Expo-
nential, Weibull, and Log-Normal (Table 1). The quantile-
based square error of the five distribution models was 
calculated to assess the “goodness-of-fit” of each model. 
The smaller square error indicates a better approximation 
of models to observed rainfall distribution. According to 
Table 1, the Normal mixture model shows the smallest 
square error, suggesting its better performance than the 
other four traditional rainfall models. Thus, the applica-
tion of the Normal mixture model can improve the statis-
tical inference and diagnostic analysis of regional hydro-
climate over the HRV.

3  Bayesian inference on summer precipitation 
over the HRV

From the posterior distributions (Eqs. 4–6), the parameters 
in the Normal mixture model (Eq. 1) can be sampled. In 
this study, the interannual variation of the distribution 
parameters µh and πh are of primary interest, where µh 
reflects the intensity of light, moderate, and heavy rainfall 
and πh describes their frequency.

3.1  Bayesian inference

Figure 2 shows the year-to-year fluctuations of µh and 
πh over the HRV region during the period of 1961–2012. 
The 52-year climatology is about 1.09 mm day−1 for 
light rainfall, 5.45 mm day−1 for moderate rainfall, and 
16.23 mm day−1 for heavy rainfall, respectively (Fig. 2a). 
Compared to the AMS criteria of the three rainfall types, 
the µh derived from the posterior distribution is lower 
for moderate and heavy rainfall, indicating that the crite-
ria used to define rainfall categories should be adjusted at 

different regions. Constrains placed on µh are needed in 
the algorithm so that there is no overlap of the sampled µh 
between rainfall clusters in the MCMC algorithm (Fig. 2a). 
Besides rainfall intensity, the frequency of each rainfall 
category (πh) can also be derived from the framework. The 
climatology of light rainfall frequency is 49 %, moderate 
rainfall frequency is 38 %, and heavy rainfall frequency is 
13 %, respectively (Fig. 2b).

Table 1  Comparison of distribution models used to describe the probability behaviors of summer precipitation over the HRV

Distribution model Kernel function Parameters Average square error

Gamma f (x) ∝ x
α−1

e
−βx; x ∈ (0,+∞) α > 0: shape parameter

β > 0: rate parameter
35.85

Log-Normal
f (x) ∝ x

−1
e
− 1

2

(

ln (x)−µ
σ

)2

; x ∈ (0,+∞)
µ ∈ R : shape parameter
σ > 0: scale parameter

55.43

Weibull
f (x) ∝ x

k−1
e
−( x

� )
k

; x ∈ [0,+∞) k > 0: shape parameter
� > 0: scale parameter

37.53

Exponential f (x) ∝ �e
−�x; x ∈ [0,+∞) � > 0: rate parameter 66.99

Normal mixture (Sect. 2.2) f (x) ∝
∑3

h=1 πhφhe
− 1

2
φ2
h
(x−µh)

2
πh > 0;

∑3
h=1 πh = 1: cluster weight

µh: cluster mean
φh > 0: cluster precision

30.64

(a)

(b)

Fig. 2  Bayesian inference on the interannual variation of the a inten-
sity (mm day−1) and b) frequency of light (red curves); moderate 
(black curves); and heavy (blue curves) rainfall events. Shading rep-
resents the 95 % credible interval as derived from the post burn-in 
Markov Chain Monte-Carlo samples
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The sampling uncertainty of µh and πh from the MCMC 
algorithm is also calculated. The uncertainty range is 
derived as the 95 % credible interval1 based on post burn-in 
MCMC samples (Hoff 2009). Comparatively, the inference 
shows the highest confidence of light rainfall intensity 
among all three clusters, due to relatively larger sample 
size (κ̂) and smaller sample standard deviation (φ−1

1 ) in this 
cluster. In contrast, the heavy rainfall cluster has the least 
rainfall samples, and the cluster mean µ3 usually shows 
largest uncertainty compared to µ1 and µ2 (Fig. 2a). How-
ever, compared to other regions such as the Southeastern 
United States (Li and Li 2013), sampling uncertainty over 
the HRV is within the magnitude of interannual variation of 
heavy rainfall intensity in the period of 1961–2012, i.e. the 
inference on the HRV heavy rainfall events is of considera-
bly higher confidence.

It is noteworthy that Bayesian inference on Normal mix-
ture model does not require the sample sets to be strictly 
independent and identical distributed (i.i.d.) (Hoff 2009). 
In other words, the inference on posterior distribution is 
not impacted by the autocorrelation of rainfall samples. 

1 Credible interval in Bayesian statistics is equivalent to confidence 
interval in Frequentist statistics.

We run the model using de-autocorrelated samples and the 
inference on the distribution parameters is almost identi-
cal (Appendix 1). The results suggest that the model can 
be applied to climate variables, including precipitation and 
temperature, which usually have high autocorrelation. In 
the following study, the inference using the original sample 
set is adopted for better temporal consistency.

3.2  Contribution of heavy rainfall to HRV regional 
hydroclimate

According to the Normal mixture model, the sample mean 
(i.e. seasonal mean) of rainfall equals to the weighted aver-
age of the three rainfall clusters: Ȳ |π ,µ,φ =

∑3
h=1 πhµh. 

Utilizing such a relationship, the contribution of each rain-
fall cluster to summertime hydroclimate over the HRV can 
be assessed.

Figure 3a shows the relationship between πhµh and sea-
sonal mean precipitation (Ȳ). Climatologically, the HRV 
receives 432 mm precipitation in JJA, with approximately 
50 mm from light rainfall, 190 mm from moderate rainfall, 
and 192 mm from heavy rainfall (Fig. 3a). The contribu-
tions of moderate and heavy rainfalls to total seasonal pre-
cipitation amount are almost equivalent. However, the vari-
ance of seasonal mean precipitation is primarily explained 

Fig. 3  a Contribution of light 
(red dots), moderate (gray 
dots), and heavy (blue dots) 
rainfall clusters to summer 
season cumulative precipitation 
over the HRV (mm); and the 
relationship between summer 
precipitation (unit: mm day−1) 
and b heavy rainfall intensity 
(blue dots; unit: mm day−1) and 
c heavy rainfall frequency (blue 
dots). The straight lines are the 
best least square fitting lines

(a)

(b) (c)
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by the heavy rainfall at interannual scales. Specifically, the 
R2 between heavy rainfall and seasonal mean precipita-
tion reaches 0.58 for the 1961–2012 period, indicating that 
about 60 % of the JJA mean precipitation variance can be 
explained by the heavy rainfall events (Fig. 3a). In contrast, 
the light and moderate rainfalls together explain only 21 % 
of the seasonal rainfall variance (Fig. 3a). The results indi-
cate that heavy rainfall events can significantly modulate 
seasonal scale hydroclimate over the HRV, exerting persis-
tent climatic impact on regional water resources.

The contributions of heavy rainfall events to summer 
season precipitation are mainly through the interannual var-
iation of rainfall frequency (π3) rather than heavy rainfall 
intensity (µ3). Specifically, the correlation between heavy 
rainfall intensity (µ3) and seasonal mean precipitation (Ȳ)  
is 0.17, statistically insignificant (Fig. 3b). In contrast, 
the frequency of heavy rainfall is highly correlated with 
seasonal mean precipitation, with correlation coefficient 
approaching 0.60 (p < 0.001). Thus, in order to achieve a 
better seasonal prediction of HRV summer precipitation, 
improvements in the understanding of factors and processes 
responsible for HRV heavy rainfall frequency is a key.

4  Wintertime SSTA related to HRV heavy rainfall 
events in the summer

Previous studies have suggested that global climate modes 
could influence the rainfall events by changing the large-
scale background circulation where synoptic-scale systems 
develop (Higgins et al. 2007; Ropelewski and Halpert 1987; 
Ting and Wang 1997). In the East China, summer rainfall 

events are associated with the East Asia summer monsoon 
(EASM) (Ding 1992; Lau 1992; Matsumoto 1988), and are 
further linked to the well-defined climate modes, includ-
ing the El Nino–Southern Oscillation (ENSO) (Wang et al. 
2003; Wu and Wang 2002), the Pacific Decadal Oscilla-
tion (PDO) (Lei et al. 2011), and the Indian Ocean Dipole 
(IOD) (Yang et al. 2010), as well as anthropogenic forcing 
(Wang et al. 2013).

The linkage between the HRV heavy rainfall frequency 
and climate factors is explored by regressing SSTA upon 
the sampled heavy rainfall frequency. Establishing such 
linkages could provide insights for seasonal prediction of 
HRV heavy rainfall events as well as summertime hydrocli-
mate over the HRV.

4.1  Association of tropical SSTA to heavy rainfall 
events over the HRV

Figure 4 shows the precedent and synchronized SSTA 
regressed upon the frequency of the heavy rainfall events. 
Generally, the increased frequency of HRV heavy rain-
fall events is associated with warmer SSTA over the north 
Indian Ocean, the equatorial western Pacific, and the tropi-
cal Atlantic Ocean (Fig. 4). Specifically, the warm SSTAs 
over the three tropical oceans occur in the preceding win-
ter (January–February–March, JFM), 5 months before the 
summer (JJA, Fig. 4a). In the north Indian Ocean and the 
equatorial western Pacific, SSTAs persist throughout sum-
mer (Fig. 4b–f), indicating that the SSTAs might influence 
HRV heavy rainfall events by providing persistent oceanic 
forcing on the overlying atmosphere and thus impacting the 
summertime circulation pattern over the HRV.

Fig. 4  Sea surface temperature 
anomalies (SSTA; shaded) 
regresses upon the interannual 
variation of heavy rainfall fre-
quency over the HRV: a JFM, b 
FMA, c MAM, d AMJ, e MJJ, 
and f JJA. The regression coef-
ficients significant are α = 0.05 
level are stippled

(a) (b)

(c) (d)

(f)(e)
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Compared to the SSTAs over the Indian Ocean and the 
equatorial western Pacific, the tropical Atlantic SSTA is 
less persistent. In JFM, the warm SSTAs span the entire 
tropical Atlantic and the Intra-Americas Seas (Fig. 4a). In 
the following months, the areas with significant SSTAs 
gradually shrink and the SSTAs in the southern portion 
of the tropical oceans completely decay in JJA months 
(Fig. 4d–f). In the north Tropical Atlantic, although statis-
tically significant, the SSTAs become weaker in summer 
months (Fig. 4f). The gradually decaying feature of SSTAs 
in the tropical Atlantic may be related to the negative feed-
back between tropical oceans and the seasonal evolution 
of atmospheric circulation, including North Atlantic Oscil-
lation (Huang and Shukla 2005). Thus, tropical Atlantic 
SSTA might influence summertime atmospheric circulation 
through the air–sea interaction over the Atlantic and mod-
ulate heavy rainfall events over the HRV (Sun and Wang 
2012).

In conclusion, the analysis of HRV heavy rainfall fre-
quency and global SSTA identified a significant relation-
ship between summertime HRV heavy rainfall events and 
wintertime tropical SSTAs. It is noteworthy that the above-
mentioned relationship should not be interpreted as a coin-
cidence between the SST warming trend and the wetting 
trend over the HRV. Regression analysis using detrended 
SSTA records shows similar results, except minor changes 
in the regression coefficients (not shown). These tropical 
SSTAs occur 5 months prior to summer season, providing 
potential sources of predictability for the HRV heavy rain-
fall frequency.

4.2  Contribution of tropical SSTA to the typical 
circulation pattern associated with HRV heavy 
rainfall

The analysis of HRV heavy rainfall and global SSTA 
identifies a positive relationship between tropical SSTAs 
and the HRV heavy rainfall frequency. Usually, the SSTA 
influences heavy rainfall events by changing the large-
scale atmospheric circulation that provides background 
conditions for the development of rain-bearing systems. 
Thus, exploring the contribution of tropical SSTAs to the 

large-scale circulation patterns favorable for the HRV 
heavy rainfall events can improve the mechanistic under-
standing of the relationship between tropical SSTAs and 
the HRV heavy rainfall events.

The typical circulation pattern associated with the HRV 
heavy rainfall is analyzed based on the posterior predictive. 
Specifically, using the post burn-in parameter sets (i.e. the 
800 MCMC samples), the probability of individual rainfall 
events falling into different rainfall clusters can be quanti-
fied (Eq. 4). By comparing the calculated probability, we 
can objectively categorize each rainfall event and iden-
tify all heavy rainfall events during 1961–2012. Thus, the 
atmospheric circulation patterns associated with the heavy 
rainfall events can be obtained accordingly.

Figure 5 shows the circulation maps at 850, 500, and 
200 hPa composite upon the objectively identified heavy 
rainfall events. Climatology of the circulation has been 
removed from each composite map. According to Fig. 5, 
heavy rainfall events are associated with abnormally strong 
southerly wind over Eastern China at the 850 hPa level 
(Fig. 5a). The significantly intensified southerly wind indi-
cates a strong East Asia summer monsoon, which favors 
the onset of heavy rainfall events by increasing the mois-
ture supplies from the South China Sea (SCS) (Zhou and 
Yu 2005) and along the western edge of western Pacific 
subtropical high (Zhang 2001).

At 500 hPa, an anomalous anticyclone occurs with its 
center located off the eastern coast (Fig. 5b). The anticy-
clone is associated with an intensification and southwest-
ward movement of the northwestern Pacific subtropical 
high. Accompanying this anticyclone, a cyclone is gener-
ated inland, presenting a meridionally oriented circulation 
pattern (Fig. 5b). Such a circulation pattern is consistent 
with previous studies (Bao 2008).

This meridionally oriented circulation is also observed 
in the upper troposphere (200 hPa), although the upper 
tropospheric circulation pattern becomes less significant 
and shifts northward by about 5 degrees (Fig. 5c). The 
northward tilt of the circulation pattern in the vertical direc-
tion indicates an anomalously strong EASM, favoring the 
northward migration of monsoon rain-belt to the HRV 
region.

(c)(b)(a)

Fig. 5  Typical atmospheric circulation (vectors, m s−1) patterns 
(represented as wind anomalies) composite upon heavy rainfall 
events as identified using posterior predictives (Eqs. 4–6): a 850 hPa,  

b 500 hPa, and c 200 hPa. The bold red vectors represent wind anom-
aly significant at 95 % confidence interval
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These typical circulation patterns tend to become more 
frequent when the tropical oceans are warmer, according to 
the composite analysis of JJA circulation upon the JFM 
SSTAs over the north Indian Ocean, the equatorial western 
Pacific, and the tropical Atlantic2 (Fig. 6). The warm years 
are defined as when the SSTAs exceed 0.5 standard devia-
tion (STD); while cold years are when SSTAs are below 
−0.5 STD. Here, 0.5 STD instead of 1 STD criterion is 
used in order to increase the size of the composite samples.

According to the composite analysis, SSTAs over the 
tropical oceans collectively contribute to the atmospheric 
circulation patterns favorable for the HRV heavy rainfall 
events (Figs. 5, 6). Specifically, warmer tropical oceans 
intensify northward moisture transport into the Eastern 
China, which enhances moisture supplies from the SCS 
and along the western ridge of the western Pacific subtropi-
cal high (Zhang 2001; Zhou and Yu 2005). The anoma-
lous moisture flux converges in the HRV, facilitating the 
heavy rainfall events there (Fig. 6a). The intensification of 
northward moisture flux is associated with an increase in 
850 hPa southerly wind (Fig. 6b), a key circulation feature 
to sustain HRV heavy rainfall events (Fig. 5a). Further-
more, the southerly wind can enhance the upward motion 
as indicated by Sverdrup vorticity balance 

(

βv ∝ −f ∂ω
∂z

)

 
along the subtropics (Liu et al. 2004, 2007).

2 The North Indian Ocean SSTA index is calculated as the area-aver-
aged SSTA over the 20°S–25°N, 30°E–120°E. The equatorial western 
Pacific SSTA is defined as the averaged SSTA over the 30°S–10°N, 
140°E–175°E, where only the grid points with climatological SST 
higher than 300 K were included in the calculation. Tropical Atlantic 
SSTA is averaged over the 10°S–25°N, 80°W–5°W.

Intensification of the southerly wind along with the 
anomalous easterly wind over the SCS (Fig. 6b) might 
result from the Gill-type response of atmospheric circu-
lation to the warming over the north Indian Ocean (Gill 
1980). The warming of the north Indian Ocean generates 
equatorial Kelvin waves, which enhance tropical easterlies 
and induces southerly wind to the east of the SSTA center 
(Gill 1980; Kosaka et al. 2013). Such a circulation pat-
tern as shown in Fig. 6b is consistent with the numerical 
simulation of tropical Indian Ocean’s impact on the HRV 
summer precipitation (Hong and Liu 2012). Furthermore, 
the warming over the equatorial western Pacific can rein-
force the southerly wind through a meridionally oriented 
tropical–extratropical teleconnection pattern. The warm-
ing over the equatorial western Pacific induces a cyclone 
over the local SSTA center and an anticyclone off the east-
ern coast of China (Huang and Sun 1992; Ji et al. 2014; 
Kosaka and Nakamura 2010). The anticyclone can enhance 
the southerly wind over the East China, favoring the HRV 
heavy rainfall events. In addition, the tropical Atlantic also 
contribute to the above mentioned atmospheric circulation, 
likely through the wave propagation (Zuo et al. 2013).

In the 500 hPa, the warming over the tropical oceans is 
accompanied by the intensification of the Northwest Pacific 
subtropical high and the westward extension of its western 
ridge (Fig. 6c), consistent with previous studies (Li et al. 
2012; Zhou et al. 2009). The extension of the western ridge 
is a typical feature of the intensified EASM (Chang et al. 
2000), which provides a favorable circulation pattern for 
the HRV heavy rainfall events (Fig. 5b). In the upper trop-
osphere (200 hPa), the circulation composite on tropical 
SSTAs also resembles the typical patterns during the HRV 
heavy rainfall events (Fig. 5c, d).

(a)

(b) (c) (d)

Fig. 6  Differences field of JJA moisture flux (vector, unit: 
kg m−1 s−1) and moisture flux divergence (shaded, unit: mm day−1) 
between warm and cold tropical SSTAs (a); b–d different fileds 
in 850 hPa, 500 hPa, and 200 hPa wind (blue vectors; unit: m s−1), 

respectively. The years with JFM SSTA over all three regions above 
0.5 (below −0.5) standard deviation are selected to denote the warm 
(cold) events
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Overall, the above analysis suggests that a collective 
impact of tropical SSTAs on HRV heavy rainfall events, 
which is likely through the oceanic influence on large-
scale circulation. Warmer tropical oceans can enhance the 
southerly wind and supply excessive moisture to the HRV, 
favorable for the generation and maintenance of heavy 
rainfall events.

5  Predictability of HRV heavy rainfall frequency

The analysis of HRV heavy rainfall, atmospheric circula-
tion, and SSTA patterns demonstrates a significant relation-
ship between heavy rainfall frequency and tropical SSTA in 
proceeding months (Fig. 4a–e). The tropical SSTAs occur 
five months before the HRV rainy season (Fig. 4f), provid-
ing potential sources of predictability for heavy rainfall 
events over this region.

Using these tropical SSTAs as predictors, statistical pre-
diction models are constructed to predict HRV heavy rain-
fall events. In this study, multiple linear regression model 
and support vector machine (SVM) algorithm are applied 
to assess whether the selection of prediction models con-
tribute to the prediction skill of HRV heavy rainfall.

The multiple linear regression aims to model the rela-
tionship between two or more predictors and one response 
variable by fitting a linear equation to observed data (Chris-
tensen 2011). In this study, the regression model is formu-
lated as:

where y is the observed heavy rainfall frequency over the 
HRV; x1, x2 and x3 denote the SSTAs over the north Indian 
Ocean, equatorial western Pacific, and the tropical Atlantic, 
respectively; and ε is the residual of the prediction model. 
β0, β1, β2 and β3 are derived so that the least-square errors 
between observation and prediction model is minimized.

Consistent with the exploratory data analysis, multi-
ple linear regression using tropical SSTAs shows certain 
skill in predicting heavy rainfall frequency over the HRV 
(Fig. 7). The R2 between prediction and observation is 
0.20, significant at α = 0.01 level. However, the model 
(Eq. 7) underestimates the heavy rainfall frequency at the 
distribution tails (Fig. 7). Thus, it is likely that nonlinearity 
between predictors and response variable should be consid-
ered in order to achieve a better prediction skill (Fig. 7).

The potential nonlinearity between predictors and 
response variable is considered by constructing SVM 
regression model (Burges 1998). The SVM algorithm uses 
nonlinear kernel function and is formulated as:

(7)y = β0 + β1x1 + β2x2 + β3x3 + ε,

(8)ŷ = f (x1, x2, x3) = wTΦ(x1, x2, x3)+ b,

where (x1, x2, x3) is the predictor vector (i.e. tropical 
SSTAs) and ŷ is the SVM model output (i.e. HRV heavy 
rainfall frequency). The Φ(x1, x2, x3) is the nonlinear ker-
nel functions, and the wT is the support vector denoting the 
norm of the nonlinear hyperpanel defined by Φ(x1, x2, x3).  
In this study, we apply a least square SVM, meaning that 
the wT and b in Eq. (8) are formulated to minimize the cost 
function (see details in Appendix 2).

Taking into account the nonlinear relationship between 
predictors and responses, the SVM regression substan-
tially improves the prediction of heavy rainfall frequency 
over the HRV. The R2 reaches 0.47, indicating that the 
SVM increases the explained variance in comparison with 
the multiple linear regression model (Fig. 7). More impor-
tantly, the regression slope better approaches the y = x line 
than the linear model (Fig. 7). The results support our pos-
tulation and suggest that nonlinearity should be considered 
when constructing prediction models for HRV heavy rain-
fall using preceding tropical SSTA.

The probable sources of the nonlinearity might come 
from the nonlinear relationship between atmospheric mois-
ture content and air temperature (Chou et al. 2009; Held 
and Soden 2006), as well as the potential positive feedback 
between heavy precipitation and vertical motion (Chou 
et al. 2012). These nonlinear processes are missing in linear 
models, but can be captured by the SVM algorithm built 
on nonlinear kernel functions. However, it is noteworthy 
that the explicit expression of SVM regression is virtually 
impossible to obtain, making it inapplicable to identify the 
mechanisms responsible for the nonlinearity. To achieve the 

Fig. 7  Heavy rainfall frequency over the HRV as predicted by mul-
tiple linear regression model (blue dots) and support vector machine 
(SVM) algorithm (gray dots). The straight lines are the best least 
squares fitting lines between observations and prediction models
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mechanistic understanding, numerical simulations should 
be implemented, which is beyond the scope of this study.

6  Conclusions

Summertime heavy rainfall events over the HRV in China 
are vitally important to the regional and national agricul-
ture, economy and social development. However, accu-
rately predicting HRV heavy rainfall remains challenging 
due to its complicated statistical behavior and the poorly 
understood physical processes governing heavy rainfall.

This study advances the understanding of and improves 
prediction skill of HRV heavy rainfall events by applying 
a novel rainfall framework built on a three-cluster Normal 
mixture model (Li and Li 2013). The three clusters reflect 
the probability behavior of light, moderate and heavy 
rainfall. Bayesian inference and the Gibbs sampler using 
Markov Chain Monte Carlo algorithm are applied to sam-
ple the distribution parameters of the model. Compared to 
traditionally used distribution models, the new framework 
improves the statistical inference on the HRV summer 
rainfall.

The analysis shows that heavy rainfall cluster contrib-
utes the largest amount of variance (58 %) to summer pre-
cipitation over the HRV, almost three times higher than 
that of light and moderate rainfall clusters. Furthermore, 
the contribution of heavy rainfall is manifested by the 
interannual variation of heavy rainfall frequency, whereas 
the variability of heavy rainfall intensity is secondary.

The HRV heavy rainfall frequency is most influenced by 
SSTA patterns over the north Indian Ocean, equatorial west-
ern Pacific, and the tropical Atlantic that collectively modu-
late summertime atmospheric circulation. When the tropical 
oceans are warmer than normal, abnormally stronger south-
erly wind supplies more moisture to the HRV, which favors 
the onset and maintenance of heavy rainfall events over the 
HRV.

The SSTA signals occur five months prior to the sum-
mer season, providing potential sources of prediction skill 
for heavy rainfall frequency over the HRV. Two statistical 
prediction models are thus constructed and tested: multi-
ple linear regression model and the SVM algorithm. Both 
prediction models show considerable accuracy in predict-
ing the frequency of HRV heavy rainfall events. Compara-
tively, the SVM algorithm further improves the predictions 
due to its capability to capture the nonlinear relationship 
between SSTA and rainfall over the HRV. Thus, our study 
suggests that the application of the new rainfall framework 
and the SVM algorithm has the potential to improve sea-
sonal prediction of heavy rainfall frequency over the HRV 
region. The results obtained in this study have important 
implication to improve the nation’s disaster early warning 

system, which can help reduce economic and agriculture 
losses caused by heavy rainfall and related natural hazards.
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Appendix 1: Influence of data autocorrelation 
on Bayesian inference of Normal mixture model

Climate variables at daily scale usually contain cer-
tain autocorrelation, which violates the requirements by 
many statistical models. However, autocorrelation does 
not impact Bayesian inference of Normal mixture model, 
because it does not require statistical samples to be strictly 
independent and identically distributed (i.i.d.) (Hoff 2009).

Figure 8a shows the autocorrelation of HRV daily rain-
fall. According to the 52-year sample sets, the autocorrela-
tion with 1-day lag is statistically significant (ρ = 0.4 for 
52-year average, significant at 0.01 level), indicating that 
the rainfall events is highly dependent on those 1 day prior 
(Fig. 8a).

To eliminate the impact of data autocorrelation on 
Bayesian inference, we ran the framework (Eqs. 1–6) by 
using two subsets of de-autocorrelated data samples. In 
each subset, the rainfall data are sampled sequentially at 
2-day interval, when autocorrelation becomes insignificant 
(Fig. 8a). The comparison between the inference on the de-
autocorrelated sample sets and the original sample sets is 
shown in Fig. 8b, c. For the three rainfall clusters, neither 
cluster intensity nor cluster weight (frequency) is sensitive 
to the sample autocorrelation. The distribution parameters 
derived from the two sample sets are aligned tightly to the 
line of y = x, indicating the inference generates identical 
results using the two different sample sets (Fig. 8b, c).

In conclusion, the Bayesian inference on Normal mix-
ture model does not require the sample to be strictly i.i.d., 
making it easy to apply to climate variables, including 
precipitation and temperature, which usually have high 
autocorrelation.

Appendix 2: SVM algorithm

In this study, we apply a least square SVM, meaning that 
the wT and b in Eq. (8) are formulated to minimize the cost 
function:

(9)ψL(w, ε) = C
∑n

i=1
ε2i +

1

2
�w�2
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In the cost function, ε2i =
(

yi − ŷi
)2 is the quadratic loss 

term. C is a positive real constant reflecting the toler-
ance rate of prediction errors. The larger the value of C, 
the lower tolerance for prediction errors, and thus higher 
punishment added in the cost function. The primal SVM 
problem becomes an optimization problem to obtain 

min
w∈Rn,b∈R

C
∑n

i=1 ε
2
i +

1
2
�w�2. The solutions to the optimi-

zation problem can be obtained using the Lagrangian:

where αi are Lagrangian multipliers. The optimal solutions 
must satisfy the conditions [also known as Karush–Kuhn–
Tucker (KKT) conditions]:

By solving the above set of linear equations, the SVM 
regression model can be obtained:

L(w, b, �ε, �α) =
1

2
wTw+ C

∑n

i=1
ε2i −

∑n

i=1
αi
{

ŷi + εi − yi
}2

,

(10)



















∂L
∂w

= w−
�n

i=1 αiΦ(�xi) = 0
∂L
∂b

=
�n

i=1 αi = 0
∂L
∂εi

= αi − Cεi = 0
∂L
∂αi

= ŷi + εi − yi = 0

(11)
f (�x) =

∑

i,j

α∗K
(

xi, xj
)

+ b∗,

where α∗ and b∗ are the solutions to Eq. (10); and 
K(xi, xj) = φ(xi)

Tφ(xj).
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