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case with prescribed crop growth underestimated irrigation 
water use and effects on temperature and overestimated soil 
evaporation relative to the case with dynamic crop growth in 
moderately irrigated regions. We conclude that studies exam-
ining irrigation effects on weather and climate using coupled 
climate–land surface models should include dynamic crop 
growth and realistic irrigation schemes to better capture land 
surface effects in agricultural regions.

Keywords  WRF · CLM · Dynamic crop growth · 
Irrigation · Climate · Surface energy flux

1  Introduction

The response of agricultural systems to a changing climate 
has attracted considerable attention due to increased potential 
for global food crises (Adams et al. 1990; Lawlor and Mitch-
ell 1991; Long et al. 2006; Mendelsohn et al. 1994; Rosenz-
weig and Parry 1994). Crop models, including both process-
based and statistical models, are widely used to simulate 
climate impacts on crop growth and production. For exam-
ple, a warming of 2–4 °C could increase crop development 
rates, which would shorten the growing season and alter crop 
phenology calendars (Butterfield and Morison 1992; Peiris 
et  al. 1995); elevated atmospheric CO2 concentrations can 
increase crop yield (Brown and Rosenberg 1999; Easterling 
et al. 1992; Mearns et al. 1992); and yields of wheat, maize, 
and barley are declining with increased temperature glob-
ally (Lobell and Field 2007; Lobell et  al. 2008). Although 
agronomic models have increased our understanding of 
crop responses to climate change, they have not typically 
accounted for interactions between climate and crop growth.

Crop growth and climate are highly coupled. Opti-
mum soil temperature and moisture yield the maximum 
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seed germination rate for a given crop (Covell et al. 1986; 
Wagenvoort and Bierhuizen 1977). Growing degree days 
(sum of daily temperature degrees above a baseline) based 
on the air temperature can be used to predict the phenologi-
cal phase and physiological activity of crops (Bonhomme 
2000). Furthermore, crop productivity is reduced by many 
forms of environmental stress, such as high temperature, 
drought, low atmospheric humidity (Lobell et  al. 2014), 
and air pollution (Pessarakli 1999). At the same time, 
cropland plays a very important biogeophysical role in a 
changing climate (Feddema et al. 2005; Foley et al. 2005; 
Pitman et  al. 1999). Crops alter the small-scale bound-
ary layer structure (Adegoke et  al. 2007), such as surface 
wind and boundary layer height, with increasing canopy 
height during the growth processes. Converting forest to 
cropland generates a higher surface albedo that alters the 
energy budget (Bonan 2008; Oleson et al. 2004). Cropland 
also alters water cycles. Both field observations and mod-
eling have shown that conversion of forest to rainfed crop-
land can reduce evaportranspiration and precipitation at a 
regional scale (Sampaio et al. 2007).

Cropland management, such as irrigation, has been found 
to affect climate through changes in water and energy budg-
ets (Adegoke et  al. 2003; Cook et  al. 2011; Harding and 
Snyder 2012b; Jin and Miller 2011; Ozdogan and Salvucci 
2004; Sorooshian et al. 2011). Irrigation’s impacts on energy 
budgets are complex. The extra water applied to the soil 
enhances evapotranspiration, thereby reducing surface tem-
perature through evaporative cooling (Kueppers et al. 2007; 
Lobell et al. 2009; Sacks et al. 2009). The surface cooling 
reduces emission of surface long wave radiation, while 
water vapor in the upper air can absorb and release more 
long wave radiation to the surface (Boucher et  al. 2004; 
Kueppers and Snyder 2012). Irrigation can also increase net 
solar radiation at the surface due to the decreased albedo 
of the wet soil (Otterman 1977). Irrigation increases local 
and regional precipitation in regions where the atmosphere 
and soil moisture are highly coupled. For example in the US 
Great Plains, irrigation enhances convection by increasing 
convective available potential energy (CAPE) and intro-
duces additional precipitable water, therefore increasing 
precipitation (DeAngelis et  al. 2010; Harding and Snyder 
2012a). Although irrigation effects are most significant in 
irrigated land, irrigation also affects the surrounding region 
through changes in atmospheric circulation. For example, 
irrigation affects the Asian summer monsoon by reducing 
the differential heating between land and sea (Saeed et  al. 
2009), and irrigation in California’s Central Valley strength-
ens the southwestern US water cycle (Lo and Famiglietti 
2013). A key issue is that numerical models used to explore 
these mechanisms have prescribed crop leaf area values that 
do not respond to environmental changes or inter-annual 
variations in weather and climate. This prescribed approach 

could result in significant errors in estimating evapotran-
spiration from croplands, because crop leaf area and physi-
ological activity are known to dynamically respond to cli-
mate variation (Fang et al. 2001; Porter and Semenov 2005). 
In addition, such an approach cannot be used to predict the 
effects of future climate on crop processes.

In the past 15  years, several studies have coupled a 
dynamic crop growth model with a climate model to explore 
the importance to two-way feedbacks between crop growth 
and climate. For example, Lu et al. (2001) coupled the daily 
time step version of the CENTURY model into the Regional 
Atmospheric Modeling System (RAMS) and found seasonal 
vegetation phenology strongly influences climate patterns 
over the central US. Tsvetsinskaya et al. (2001) introduced 
growth functions into the Biosphere–Atmosphere Trans-
fer Scheme (BATS) and coupled it into the Atmospheric 
Research Regional Climate Model (RegCM2) and found 
up to a 45 % change in surface energy fluxes in response 
to dynamic leaf area index (LAI). Osborne et  al. (2007) 
coupled a General Large Area Model for annual crops into 
a global climate model (HadAM3) and found growing sea-
son temperature variability was increased by up to 40  % 
with the inclusion of dynamic crops (Osborne et al. 2009). 
Levis et al. (2012) incorporated an agriculture version of the 
Community Land Model (CLM) into the Community Earth 
System Model (CESM) and found dynamic crop growth 
not only improves biogeophysical simulations (e.g., surface 
energy fluxes), but also improves biogeochemistry simula-
tions (e.g., net ecosystem exchange).

These studies revealed that dynamic crop growth 
strongly influences regional climate patterns by altering 
land surface energy fluxes. However, except for Levis et al. 
(2012), none of these studies validated the surface energy 
fluxes against observations before and after incorporating 
the dynamic crop growth model. The role of crop growth 
in regional climate systems has not been quantitatively 
investigated. Furthermore, the extent to which dynamic 
crop growth alters irrigation effects on climate is not well 
known. Only Xu et  al. (2005) and Liang et  al. (2012) 
took irrigation into account in their studies, but they were 
focused mainly on how irrigation affects cotton yields and 
the irrigation effects on climate after adding a dynamic 
crop scheme have not been discussed. In addition, as a 
widely used regional climate model, the Weather Research 
and Forecasting Model (WRF) does not include a dynamic 
crop growth model, and is therefore limited in its capabil-
ity for studying the interactions between climate and crop 
growth. To fill these gaps, we incorporated a crop growth 
model and an irrigation scheme into WRF. The objectives 
of this study were: (1) to evaluate a newly coupled regional 
climate-cropland model’s performance in simulating crop 
growth and surface climate using multiple observational 
datasets, and (2) to investigate the extent to which dynamic 
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crop growth alters irrigation effects on climate relative to a 
case with prescribed crop growth.

2 � Methods

2.1 � Regional climate model

For this study, we coupled the Community Land Model 
version 4 (CLM4) to WRF3.3 with a focus on improving 
crop process simulations within regional climate systems. 
CLM4 includes new treatments of soil column-groundwa-
ter interactions, soil evaporation, aerodynamic parameters 
for sparse/dense canopies, vertical burial of vegetation by 
snow, snow cover fraction and aging, black carbon and dust 
deposition, and vertical distribution of solar energy (Law-
rence et  al. 2012; Oleson et  al. 2010). Simulations with 
CLM have been shown to improve daily temperature and 
precipitation when compared with those with the Noah 
land surface model in an earlier version of WRF (WRF3.0-
CLM3.5) (Jin et  al. 2010; Lu and Kueppers 2012; Subin 
et al. 2011). However, we also found that CLM prescribed 
crop LAI in the Midwest was low compared to observa-
tions, potentially contributing to a large warm bias (Lu and 
Kueppers 2012). Further, in both Noah and CLM3.5, for 
natural vegetation and crops, plant parameters, such as leaf 
and stem area indices are fixed for each month of the year 
and do not have year-to-year variations. This limits appli-
cations of WRF3.0-CLM3.5 for studying two-way interac-
tions between crops and climate.

To better simulate interactions between the atmosphere 
and cropland, we further developed a version of the coupled 
model (WRF3.3-CLM4crop) that simulates dynamic crop 
growth following work by Levis et al. (2012). The details 
of the crop growth parameterizations in the WRF3.3-CLM-
4crop are described in “Appendix” and are briefly sum-
marized here. The crop growth module calculates the LAI, 
stem area index, canopy height, and carbon and nitrogen in 

leaf, stem, grain, and root at each time step based on envi-
ronmental conditions. The LAI, stem area index, and can-
opy height are used in hydrology and radiation modules to 
calculate the energy and water state variables that are trans-
ferred into the atmospheric modules. LAI and plant carbon 
allocation differ according to phenological stage (plant-
ing, leaf emergence, grain filling, and harvest). Transitions 
between phenological stages are controlled by growing 
degree days (with a base of 8 °C for C3 crops and 10 °C for 
C4 crops). We used C3 and C4 crop types to represent the 
potential growth of major crops (e.g., C3 crops: wheat, soy-
bean, and C4 crops: corn, sorghum). C3 and C4 crops dif-
fer in their photosynthesis pathways. C3 photosynthesis is 
more efficient than C4 under cool, moist, and normal light 
conditions, but C4 photosynthesis is more efficient than C3 
under high light intensity and high temperatures. In CLM-
4crop, C3 (Collatz et al. 1991; Farquhar et al. 1980) and C4 
(Collatz et al. 1992) photosynthesis are represented by dif-
ferent parameterizations for stomatal resistance and photo-
synthesis, and also have different phenological thresholds.

2.2 � Irrigation scheme

We developed a precision agriculture-type irrigation 
scheme, where the amount and timing of irrigation simu-
lates efficient irrigation practices. Irrigation water is 
applied as a function of root water stress (βt), leaf tempera-
ture (Tveg), and LAI. The root water stress is monitored by 
βt, which varies from near zero (dry soil) to one (wet soil). 
Leaf temperature also is used, not only to more realistically 
simulate irrigation processes (Howell et al. 1984; Wanjura 
et al. 1992), but to maintain optimum plant growth as well, 
because high leaf temperature can inhibit plant photosyn-
thesis (Wise et  al. 2004). Irrigation starts after leaf emer-
gence (LAI >0.1  m2  m−2), and occurs when either plant 
water is low (βt < 0.99) or leaf temperature is >35 °C. In 
irrigated cropland areas (Fig.  1a), we applied irrigation 
water to the top of the crop plants to represent sprinkler 

Fig. 1   Modeled domain 
showing a percent of cropland 
equipped for irrigation (%) 
within each grid cell (Sie-
bert et al. 2005), and b mean 
2004–2006 irrigation water 
applied (million gallons per 
day) simulated in WRF3.3-
CLM4crop. The four AmeriFlux 
observational sites are indicated 
in a, Ne3 has the same locationl 
as Ne1

(a) (b)
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irrigation, a widely used irrigation method in the US (50 % 
of land equipped for irrigation in 2005 reported in http://
water.usgs.gov/edu/wuir.html). The irrigated cropland area 
was derived from the 0.05° global irrigation map (Siebert 
et al. 2005), as updated in 2006 (http://www.geo.uni-frank-
furt.de/ipg/ag/dl/forschung/Global_Irrigation_Map/index.
html). The irrigation scheme dynamically determines when 
and where to apply irrigation water at a consistent rate of 
0.0002 mm s−1. We tested several different irrigation rates 
within the range of current irrigation systems (4–20 gallons 
per min per acre) and selected the rate (0.0002  mm  s−1) 
that yielded reasonable cumulative annual irrigation water 
use compared to USGS surveys. The simulated annual irri-
gation water use (Fig. 1b) is within 14 % of US water usage 
estimated by USGS for 2005 (Kenny et  al. 2005). The 
range in annual simulated irrigation water use from 2004 to 
2006 was 113–149 billion gallons per day (143 for 2005); 
the USGS survey estimates 128 billion gallons per day in 
2005 (http://ga.water.usgs.gov/edu/wuir.html).

2.3 � Experimental design

We set up two 10-year (2002–2011) simulations using 
WRF3.3-CLM4crop to evaluate crop growth (LAI and 
growing season length). One is the control simulation with-
out irrigation (hereafter referred to as CROP), and the other 
includes irrigation (hereafter referred to as CROPIRR) 
to quantify irrigation effects on climate with dynamic 
crop growth. In addition, we set up two additional 5-year 
(2002–2006) standard simulations with (hereafter referred 
to as STDIRR) and without irrigation (hereafter referred to 
as STD) using the prescribed LAI version of the coupled 
model (WRF3.3-CLM4) to quantify a baseline for irriga-
tion effects on climate. We compared CROPIRR-CROP 
and STDIRR-STD differences to understand the extent 
to which irrigation effects are altered by dynamic crop 
growth. Based on several 1-year test simulations evaluat-
ing model performance, the physical modules used in all 
simulations include the MYNN boundary layer scheme 
(Nakanishi and Niino 2006), the CAM longwave/shortwave 
radiation scheme (Collins et al. 2004), the new Grell cumu-
lus scheme (Grell and Devenyi 2002), and the Thompson 
microphysics scheme (Thompson et al. 2004). The simula-
tions focused on the contiguous United States (US) with 25 
vertical layers and a 50 km horizontal resolution. We inter-
polated (using the inverse distance weighting method) 0.5° 
CLM surface input data (including plant functional types, 
plant function type percent, LAI, and stem area index) 
into the model domain. We regridded National Centers for 
Environmental Prediction/Department of Energy Reanaly-
sis II global data to our domain as lateral boundary con-
ditions (Kanamitsu et al. 2002). For analysis, we removed 
eight grid cells from the full perimeter of the domain 

as a buffer, which diminished the original domain from 
109 × 129 to 93 × 113 grid cells. The first 2 years of the 
simulations were discarded as spin-up; for LAI validation 
we used 2004–2011 output and other validation focused on 
2004–2006.

2.4 � Validation data

We validated the simulated LAI, sensible heat flux (H), and 
latent heat flux (LE) at five AmeriFlux sites (ARM, Ne1, 
Ne3, Bo1, Ro3) in the US Midwest (shown in Fig.  1a). 
Except for ARM, which has a semiarid steppe climate, all 
other sites have humid continental climates. These five sites 
all are agricultural but have different crop types and till-
age practices. ARM has a periodic rotation among winter 
wheat, corn, and soybean; Ne1 has continuous corn; Bo1, 
Ro3, and Ne3 have annual rotations between corn and soy-
bean. Among the five sites, only Ne3 is an irrigated crop 
site, which is located 1.6 km away from Ne1.

We obtained 9-years (2002–2010) of LAI data (Fischer 
2005) at ARM, which was measured with a light wand 
(Licor LAI-2000) during the active growing season (Marc 
Fischer, personal correspondence). We downloaded LAI 
measurements at three other sites (Bo1, Ne1, Ne3) from 
ftp://cdiac.ornl.gov/pub/ameriflux/data/Level2/AllSites/
biological_data/. The simulated LAI (for crop PFTs only), 
H, and LE were extracted at the grid cell nearest to each 
site from the CROP simulations for non-irrigated sites 
(ARM, Bo1, Ne1 Ro3) and from the CROPIRR simulation 
for the Mead irrigated site (Ne3). We compared monthly 
variation in LAI and interannual variation in annual peak 
LAI. For the monthly LAI comparison, the simulated LAI 
is the 10-year (2002–2011) averaged monthly LAI, while 
the observed LAI is averaged over different numbers of 
years depending on availability of observations. We did not 
compare interannual variation in peak LAI at Bo1 because 
observations were only available for 5  years, 1997–2001. 
For H and LE, we compared the 3 year (2004–2006) aver-
aged monthly model output to gap-filled level 2 AmeriFlux 
sites observations. Among the six levels of data provided 
by AmeriFlux, Level 2 is the standardized data that have 
been reviewed for consistent units, naming conventions, 
reporting intervals, and formats (http://ameriflux.lbl.gov/
data/aboutdata/).

We used in situ soil moisture data from the interna-
tional soil moisture network (http://ismn.geo.tuwien.ac.at/). 
Over the validation period of 2004–2006, the soil moisture 
measurements were available from Soil Climate Analysis 
Network (SCAN), Snow Telemetry (SNOTEL), Atmos-
pheric Radiation Measurement (AtmRM), and AmeriFlux 
networks. Different networks measured the soil moisture 
at different depths, which cannot be directly compared to 
the ten soil depths in WRF3.3-CLM4crop. Therefore, we 

http://water.usgs.gov/edu/wuir.html
http://water.usgs.gov/edu/wuir.html
http://www.geo.uni-frankfurt.de/ipg/ag/dl/forschung/Global_Irrigation_Map/index.html
http://www.geo.uni-frankfurt.de/ipg/ag/dl/forschung/Global_Irrigation_Map/index.html
http://www.geo.uni-frankfurt.de/ipg/ag/dl/forschung/Global_Irrigation_Map/index.html
http://ga.water.usgs.gov/edu/wuir.html
ftp://cdiac.ornl.gov/pub/ameriflux/data/Level2/AllSites/biological_data/
ftp://cdiac.ornl.gov/pub/ameriflux/data/Level2/AllSites/biological_data/
http://ameriflux.lbl.gov/data/aboutdata/
http://ameriflux.lbl.gov/data/aboutdata/
http://ismn.geo.tuwien.ac.at/
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compared the soil water (mm) in the upper soil (0–50 cm) 
instead of directly comparing the soil water content 
(m3  m−3) at each soil layer. After a data quality control 
procedure (missing values <10 %), we selected 18 SCAN 
sites, 47 SNOTEL sites, ten AtmRM sites, and nine Ameri-
Flux sites.

We validated the 3-year (2004–2006) daily mean tem-
perature (an average of minimum and maximum tempera-
tures), dew point temperature, and precipitation using the 
Parameter-elevation Regressions on Independent Slopes 
Model (PRISM) 4 km product (Daly et al. 1997; Di Luzio 
et  al. 2008). We interpolated the PRISM values to the 
model domain for comparison with model output.

3 � Results

3.1 � Model evaluation

3.1.1 � Crop growth

Compared to the site observations, the dynamic crop 
growth model overestimated monthly LAI in most months 

and sites (58  % higher in average), displayed a longer 
growing season, but simulated the pattern of LAI increasing 
with irrigation (Fig.  2). The prescribed and MODIS LAI 
(Zhu et  al. 2012) are smaller than the site-level observed 
LAI during summer by 52 and 38 % on average for the four 
sites, and showed no difference between the Mead irrigated 
(Ne3) and rainfed (Ne1) sites. Even though the dynamic 
crop growth model overestimated the LAI magnitude at 
Mead irrigated and Mead rainfed, it simulated a similar 
increase in LAI due to irrigation as in the site-level obser-
vations (29.8 % higher modeled vs. 29 % higher observed).

Although the dynamic crop simulation (CROP) over-
estimated peak LAI in some years, it captured the 
inter-annual variation in peak LAI better than the simu-
lation with prescribed LAI (Fig.  3), which has no inter-
annual variation. Furthermore, dynamic crop with irri-
gation (CROPIRR) simulated the reduced interannual 
variability in peak LAI at the Mead irrigated relative to 
the Mead rainfed site. The standard deviation of peak LAI 
was 1.09 m2 m−2 smaller in the model and 0.09 m2 m−2 
smaller in the observations in the Mead irrigated relative 
to the Mead rainfed site. The tenfold higher reduction in 
simulated standard deviation at the Mead irrigated site is 

Fig. 2   Simulated monthly LAI 
compared to observations at 
four AmeriFlux sites. Modeled 
and MODIS LAI are averaged 
for 2002–2011, and observed 
LAI is averaged for 2002–2010 
for ARM SGP main site, 2002–
2007 for Mead irrigated and 
rainfed sites, and 1997–2001 for 
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due to overestimated interannual variation in peak LAI at 
the Mead rainfed site, which is likely due to an overesti-
mate of interannual variation in precipitation by 26.6 %. 
This greater variation in precipitation resulted in a large 
variation in plant-available water and therefore higher 
peak LAI in some years (Fig. 3c).

The dynamic crop growth model simulated an earlier 
planting date for most C3 crops and some C4 crops than 
observed soybean and maize planting dates available from 
USDA crop calendar surveys summarized in Sacks et  al. 
(2010). Simulated planting dates were within the observed 
planting date range for 34 % of C3 and 62 % of C4 crop-
land. For the C3 cropland, the model simulated too-early 
planting by 5–6  days in the remaining 66  % of C3 crop 
area. For the C4 cropland, the model simulated too-early 
planting by 6–10 days in 38 % of the C4 crop area, mostly 
in the Midwest and East. Only 1.1  % of the simulated 
C4 cropland had later than observed planting dates, by 
7–13 days in Montana and Wyoming.

3.1.2 � Surface climate and energy fluxes

The CROPIRR simulation overestimated the annual aver-
age mean daily temperature (Tmean; Fig. 4a) in the Mid-
west by up to +3.5  °C. The largest monthly warm bias 
(+7  °C) was in July and the smallest (+0.5  °C) was in 
March. These warm biases were larger—by an additional 
+1.4 °C in JJA average—without irrigation in CROP (the 
July bias increased by up to +3.3 °C). The warm bias in 
CROPIRR was reduced by 2–5 °C from the previous ver-
sion of the coupled model (Lu and Kueppers 2012). Dew 
point temperature (Td) was underestimated in most regions 
(Fig.  4b), indicating low humidity in the model simu-
lations even with irrigation. For 18  % of the continental 
US, this underestimation was strongly correlated (r > 0.8) 
to the low precipitation bias. Precipitation (ppt; Fig.  4c) 
was underestimated in the Midwest and Eastern US and 
overestimated in the Western US by up to 2  mm  day−1. 
Where the model simulated excessive precipitation in the 
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Western US, there was a cold bias, and the low Td was due 
to underestimated air temperature since Td never exceeds 
air temperature.

Adding a crop growth model and irrigation improved 
domain average Tmin the most relative to other varia-
bles listed in Table 1 (RMSE was reduced by 18 % for 
Tmin, 16 % for Tmean, 6 % for Td, 4 % for Tmax, 2 % 
for ppt from STD to CROPIRR). However, the Tmin 
RMSE was still higher in irrigated than non-irrigated 
grid cells (Table  1). In general, the improvements tend 
to be greater over irrigated land. The RMSE of Tmax is 
always greater than the RMSE of Tmin no matter which 
simulation or subset grid cells, and it only is slightly 
improved by adding crop growth and irrigation for 
non-irrigated (1.7  %) and irrigated land (3.7  %). Simi-
lar to Tmax, Td and precipitation are not substantially 
improved in CROPIRR.

The coupled model generally over-predicted 0–50  cm 
soil water by 20 mm in the Western US and under-predicted 
soil water in the Midwest by 49  mm and Eastern US by 
20 mm when compared to site level observations (Fig. 5a). 
CROPIRR showed the best simulation of soil water among 
all four simulations. Adding the dynamic crop model did 
not improve the soil moisture simulation everywhere; 
at some sites, the low soil moisture bias was exacerbated 

because higher LAI in the dynamic crop model increased 
evapotranspiration over that in the prescribed crop (not 
shown). However, adding irrigation largely improved 
the soil moisture simulation in irrigated grid cells. At the 
Mead irrigated site, the simulation including both irriga-
tion and dynamic crop growth (CROPIRR) best matched 
the observed soil moisture levels over the growing season 
(Fig. 5b).

Incorporating only dynamic crop growth into the 
model does not substantially improve simulated surface 
energy fluxes, but the addition of irrigation does. Both 
STD and CROP simulated much higher sensible heat flux 
(H) than observations at all four Ameriflux sites (Fig. 6) 
and did not capture the double peak pattern at Bondville 
(Bo1) and Mead Irrigated (Ne3). There was only slight 
improvement in simulated H at Rosemount G19 (Ro3) 
and Ne1 sites. CROP simulated higher latent heat flux 
(LE) than STD, but still produced a peak in LE that was 
1 month earlier than observed at Bo1 and 2 months ear-
lier at Ro3. With the addition of irrigation, biases in H 
and LE at the Mead irrigated site were reduced most in 
CROPIRR. The double peak pattern of H and the peak 
month of LE were well simulated by CROPIRR, but were 
not captured in STDIRR, which lacks a dynamic crop 
growth model.

Table 1   Spatially averaged root mean square error (RMSE) for max-
imum temperature (Tmax), minimum temperature (Tmin), mean tem-
perature (Tmean), dew point temperature (Td), and precipitation (ppt) 

between PRISM and the four simulations (STD, STDIRR, CROP, and 
CROPIRR) in 2004–2006

a  There is no irrigation in STD and CROP. The averaged value over the irrigated cropland (Fig. 1a) is shown here for comparison

All domain Non-irrigated cropland Irrigated cropland

STD STDIRR CROP CROPIRR STD STDIRR CROP CROPIRR STDa STDIRR CROPa CROPIRR

Tmax (°C) 3.51 3.29 3.47 3.42 3.57 3.24 3.49 3.51 3.5 3.21 3.54 3.37

Tmin (°C) 2.82 2.68 2.53 2.47 2.43 2.27 2.01 1.97 3.27 3.06 2.83 2.67

Tmean (°C) 2.71 2.51 2.48 2.41 2.62 2.35 2.29 2.25 3.09 2.81 2.76 2.57

Td (°C) 2.7 2.76 2.71 2.69 2.35 2.42 2.28 2.37 2.78 2.74 2.78 2.61

ppt (mm/day) 1.25 1.22 1.22 1.22 1.32 1.27 1.28 1.29 1.29 1.25 1.27 1.27

Fig. 5   Comparison of 
simulated and observed soil 
moisture. a Soil water (0–0.5 m) 
difference between CROP and 
observed and b soil moisture 
comparison at the Mead irri-
gated site
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3.2 � The role of dynamic crop growth in climate effects 
of irrigation

We compared the differences between the simulated sur-
face variables for the period of 2004–2006 to quantify how 
dynamic crop growth influences irrigation effects on sur-
face energy fluxes and temperature. Dynamic crop growth 

requires more irrigation water during the growing sea-
son than prescribed crop growth (Fig.  7a). From April to 
September, the irrigation water applied in the CROPIRR 
simulation is almost twice than in STDIRR. In winter, the 
simulation with prescribed crop had higher irrigation water 
use (0.05 mm day−1) because the dynamic crop module in 
CROP does not simulate winter crops or cover crops and 
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Fig. 6   Comparisons of 2004–2006 monthly mean sensible heat flux (a) and latent heat flux (b) between model simulations and observations at 
four AmeriFlux sites
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does not apply irrigation water from November to February. 
When comparing the two simulations with dynamic crop 
growth (CROPIRR vs. CROP), LAI was 29.8 % greater with 
irrigation, while LAI did not change with irrigation under 
prescribed LAI (STDIRR vs. STD) (Fig. 7b). This increase 
in LAI due to irrigation is comparable to observations (29 % 
higher LAI at Mead irrigated than Mead rainfed, Fig. 2c, d).

Dynamic crop growth plus irrigation improved the sim-
ulated partitioning of surface energy fluxes. In CLM, the 
latent heat flux was partitioned into soil evaporation, wet 
leaf evaporation, and dry leaf transpiration. Because the 
LAI does not change with the prescribed crop, a large frac-
tion of the water applied to the soil column evaporated 
from the soil. In STDIRR, 50 % of the total evapotranspira-
tion was soil evaporation and 35 % was leaf transpiration 
(Fig. 8). In the simulation with dynamic crop growth, the 
increase in LE with irrigation is mainly due to increased 
leaf transpiration resulting from the larger leaf area; soil 
evaporation is only a small portion of LE.

The averaged JJA differences (irrigation run–non irrigation 
run) in climate variables with irrigation have a similar pattern 

but a different magnitude in the prescribed and dynamic 
crop growth cases as the cell-fraction of irrigated cropland 
increased (Fig. 9). Irrigation increased LE and reduced H, but 
these effects are 34.6 % greater for ΔH and 24.6 % greater 
for ΔLE with dynamic crop in moderately irrigated regions 
(20–50 % irrigated). Irrigation increased net radiation simi-
larly in STDIRR and CROPIRR, except when irrigation area 
was >60  %, when the increase in net radiation is 41.9  % 
smaller with dynamic compared to prescribed crops. Irriga-
tion reduced 2-m air temperature (due to less sensible heat 
flux) more strongly in CROPIRR than in STDIRR when grid 
cell percentage irrigated was >15 %.

4 � Discussion and conclusions

4.1 � Model evaluation

By coupling CLM4Crop into WRF (version 3.3), we 
have taken the first step toward extending the capabil-
ity of WRF to simulate the two-way interactions between 
crop growth and climate. As one of the most widely used 
regional climate models, it is important that WRF have a 
comprehensive land surface model option. Jin et al. (2010) 
first coupled the CLM (version 3) into WRF (version 2) 
and then Subin et  al. (2011) updated the coupled model 
(WRF3.0-CLM3.5). We further updated the coupled model 
to WRF3.3-CLM4 and incorporated a dynamic crop growth 
scheme to better reflect seasonal changes in LAI, and added 
an irrigation scheme to capture large effects of increased 
soil moisture on surface energy and water fluxes.

Our surface energy flux evaluation suggested that 
improvements to dynamic crop growth are not sufficient 
to better simulate energy fluxes; improvements to other 
physical processes (such as precipitation) are equally 
important. We expected the larger and more dynamic 
LAI simulated in CROP to improve simulation of sur-
face energy fluxes where the prescribed LAI was small 

Fig. 7   Monthly variation in 
domain averaged a irrigation 
water (mm/day) and b leaf area 
index (m2/m2) in prescribed 
crop and dynamic crop simula-
tions
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compared to observations. However, site-level compari-
sons to three non-irrigated AmeriFlux sites in the Mid-
west suggest that we did not realize the expected improve-
ments. The reason may be that although the LAI is larger 
in CROP, the low precipitation bias persists, resulting in 
the low soil moisture, which limited evapotranspiration 
regardless of the LAI. This is accompanied by an under-
estimated cloud cover and overestimated downward solar 
radiation and net radiation (not shown), biases persist-
ing from the previously coupled version (Lu and Kuep-
pers 2012). As a consequence, gross energy fluxes (e.g., 
latent heat flux, sensible heat flux) and the Bowen ratio 
have RMSEs in CROP comparable to those in STD at 
ARM and Bo1. However, when irrigation was applied at 
the Ne1 site, surface energy flux partitioning was sub-
stantially improved. Therefore, we suspect that in regions 
with a dry bias, if the precipitation simulation could be 
improved, the simulated surface energy fluxes and flux 
partitioning will also be improved.

Even though the warm bias in 2-m air temperature was 
reduced relative to the previous version of the coupled 
model, there is still unresolved warm bias in the Mid-
west. In the previous version (WRF3.0-CLM3.5), there 
was a very large warm bias of up to 10 °C in the Midwest 
(Lu and Kueppers 2012). This warm bias was reduced by 
2–3 °C by updating the land surface model, as well as by 
using the MYNN boundary layer scheme in STD. It was 
further reduced by 1–2  °C when adding dynamic crop 
growth model and irrigation processes. To diagnose the 
source of the warm bias, we conducted nine 1-year (2004) 
offline CLM simulations at the ARM site. The original 
offline test was driven by the 6  h output from the CROP 
simulation. Then in the remaining eight simulations, we 
replaced one of the eight forcing variables (air temperature, 
pressure, water mixing ratio, u wind, v wind, precipitation, 
downward solar radiation, downward longwave radiation) 
with the site observations. We found that only when using 
observed air temperatures was the warm bias eliminated, 

Fig. 9   2004–2006 JJA aver-
aged difference along different 
grid cell irrigated cropland 
percentage of a latent heat 
flux (W m−2), b sensible heat 
flux (W m−2), c net radiation 
(W m−2), d 2 m air temperature 
(°C), e soil moisture (m3 m−3), 
and f Bowen ratio reduction (%) 
in prescribed crop and dynamic 
crop simulations. The error bar 
shows the standard error among 
9 months
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even though the forcing data still have biases in other driv-
ing variables, such as large downward radiation and low 
precipitation (Fig. 10a). Replacing these other driving vari-
ables did not reduce the warm bias, but did improve surface 
energy fluxes. For example, replacing model precipitation 
with site precipitation in the forcing data increased the LE 
and reduced H, and using the site downward solar radia-
tion largely reduced H (not shown). These offline simula-
tions indicated that the unresolved warm bias in the cou-
pled model came from the warm bias in the lowest level 
atmosphere temperature (24–30 m above the land with spa-
tial variations) that cannot be removed by improvements to 
the land surface model.

The summer dry bias in the central US is mainly due to 
poor simulation of the Great Plain Low Level Jet (GPLLJ), 
which is defined by the 925 mb meridional wind averaged 
across 25°N–35°N and 100°W–95°W (Weaver et al. 2009). 
The GPLLJ plays an important role in summertime precipi-
tation and moisture transport over the Central US (Higgins 
et al. 1997). In NARR and NCEPR2 reanalyses, the sum-
mer GPLLJ ranges from 4 to 7 m s−1 and the Central US 
precipitation ranges from 3 to 5 mm day−1. The GPLLJ in 
our best simulation (CROPIRR) is only around 2  m  s−1, 

and the summer precipitation is about 1–2 mm day−1. From 
spring to summer, the GPLLJ in NARR and NCEPR2 
gradually increased and reached a peak in June, while in 
our model, the GPLLJ increased from January to March 
and then decreased. The underlying mechanism of why 
the model cannot realistically simulate the strength of the 
meridional wind from April to August is beyond the scope 
of this paper. For the Southeast US, the dry bias is due to 
the incorrect simulation of the western ridge of the North 
Atlantic subtropical high. Li et  al. (2014) found a similar 
dry bias in summer precipitation to be because the western 
ridge of the North Atlantic subtropical high in WRF simu-
lations shifts 7° northwestward compared to the reanalysis 
ensemble. In our simulations, we found a similar north-
westward shift of the western ridge.

The warm and dry bias in WRF-CLM affected crop 
growth by advancing the grain fill phenology phase, 
increasing leaf carbon allocation coefficients, and reducing 
net primary production (NPP). As described in the above 
offline tests, keeping other forcing variables the same, we 
found that crop growth in the offline simulation driven by 
the modeled temperature (with warm bias) has an earlier 
grain fill by 33 days for C3 crop and by about 25 days for 

Fig. 10   Monthly variation of 
2-m air temperature for the 
eight 1-year offline simulations 
and site observation
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C4 crop as compared to the offline simulation driven by 
the observed temperature (without warm bias). The warm 
bias also increased the leaf carbon allocation coefficient 
by 5.7  % for C3 crop and 3.8  % for C4 crop (Fig.  10b). 
The warm and dry conditions limit the maximum rate of 
carboxylation (Vcmax) and therefore reduced plant photo-
synthesis. NPP was reduced by 33 and 4 % for C3 and 16 
and 13 % for C4 (Fig.  10c) with warm bias and dry bias 
respectively. A similar offline test at Ne1 sites showed sim-
ilar decline of NPP due to warm bias (69 % lower for C3 
and 59 % lower for C4 at Ne1). This result indicates that 
C3 and C4 crop growth are both sensitive to atmospheric 
model biases. We expect improvements in crop growth sim-
ulation with reduced warm and dry bias, especially for the 
C3 crop because C3 photosynthesis is more limited in dry 
and warm conditions.

The overestimated LAI in WRF3.3-CLM4crop is not 
due to the warm and dry biases, which would reduce NPP 
as described above. We found that the offline simulations 
have a smaller LAI than the coupled simulation (CROP). 
The mean LAI bias at ARM in 2004 is +0.06  m2/m2 for 
the offline simulations but increased to +0.7 m2/m2 for the 
coupled simulations (Fig. 10d). Differences in atmospheric 
forcing between the offline and coupled models may have 
contributed. For example, photosynthetically active radia-
tion was calculated as a constant rate of the total downward 
solar radiation in the offline simulations, but the coupled 
model used a dynamic calculation in the radiation scheme. 
Nevertheless, the overestimate of LAI in both offline and 
coupled models indicates that the crop models still need 
improvements, which in turn requires high temporal resolu-
tion observations such as crop phenology, crop NPP, across 
leaf carbon at a broader range of sites.

Comparing to CESM1 (Levis et  al. 2012), WRF3.3-
CLM4crop has similar biases in crop growth even with 
the modified carbon allocation parameters. Both models 
overestimated the LAI and growing season length. CESM1 
simulated a higher LAI for soybean (C3 crop) than for 
maize (C4 crop) and our model displayed similar results. 
Mean C3 LAI was greater than C4 LAI by 0.19 but with 
clear spatial variation (higher C3 LAI in the northern US 
and higher C4 LAI in the southern US). Excluding the soil 
carbon and nitrogen calculations from WRF3.3-CLM4crop 
limits its capability for studying biogeochemical interac-
tions between cropland and climate. Levis et  al. (2012) 
found that adding dynamic crop growth resulted in stronger 
improvements in the simulations of biogeochemical vari-
ables (such as NEE) versus biogeophysical variables (such 
as H and LE). Our current version of the model can be only 
used to study biogeophysical interactions between climate 
and cropland. Furthermore, the root distribution parameters 
(Zeng 2001) were not updated as crops developed through 

the growing season in either model. In future versions, a 
root growth submodel is needed to better capture the rela-
tionship between crop growth and root water uptake.

Irrigation increased latent heat flux (LE), comparably 
to that generated by other similar models with precision 
irrigation schemes run over the US. Irrigation produced an 
increase in JJA LE of 21.4 W m−2 under prescribed crop 
and 30.8 W  m−2 with dynamic crops over irrigated land. 
Harding and Snyder (2012b) simulated an increase in JJA 
LE of 21  W  m−2 using the standard WRF, Sacks et  al. 
(2009) simulated an increase in JJA LE 20–30  W  m−2 
using CCSM, and Cook et al. (2011) simulated an annual 
increase in LE by 16–20 W m−2 using GISS ModelE. Pre-
vious work using simpler irrigation schemes applied in arid 
and semi-arid regions produced much greater increases 
in LE. For example, Kueppers et  al. (2007) simulated 
a 152  W  m−2 (20  years JJA average) increase in LE in 
California, and De Ridder and Gallee (1998) simulated a 
75 W m−2 (at midday) increase in LE in southern Israel. In 
observations, LE is 16.5 W m−2 higher on average in JJA 
at Mead irrigated sites compared to that at Mead rainfed 
sites; we would expect there to be site-to-site variation in 
this value.

4.2 � The role of dynamic crop growth in climatic effects 
of irrigation

Our results suggest that the dynamic crop growth model 
is important for evaluation of irrigation effects on climate. 
Without dynamic crop growth, models could underestimate 
the irrigation effects on climate in moderately (20–50  % 
irrigated cropland) irrigated regions (Fig. 9). This is due to 
the amount of irrigation water applied. On average, simu-
lations with dynamic crop growth required more irrigation 
water (Fig. 7a) and therefore resulted in greater increases in 
soil moisture and LE, and greater decreases in H, T2, and 
Bowen ratio in moderately irrigated cropland. In addition, 
the dynamic crop growth simulation had a more reason-
able simulation of latent heat flux components, with higher 
latent heat flux resulting from increased leaf evapotranspi-
ration, not increased soil evaporation as occurred with pre-
scribed LAI. Such increased soil evaporation is not reason-
able because observations have shown that soil evaporation 
is about 30 % of evapotranspiration for irrigated cropland 
(Lascano et al. 1987).

Our simulation used a precision irrigation practice 
and the amount of annual irrigation water over the entire 
domain was validated with a USGS irrigation survey. How-
ever, the amount of water added to each state differed sub-
stantially from the USGS irrigation survey (Fig. 11). This 
is due to model biases in soil moisture. For example, too 
much irrigation water was added to Texas and Nebraska 
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in the model because the dry bias in this region resulted 
in insufficient soil water to support crop growth, while 
less irrigation water was applied in western states, such as 
California, Idaho, and Colorado due to the wet biases in 
these states. Therefore, ensemble simulations with multi-
ple regional climate models and irrigation schemes may be 
required to average over model biases and accurately quan-
tify the effects of irrigation on surface climate.

4.3 � Conclusions

In summary, this work evaluated the performance of a cou-
pled crop-climate model (WRF3.3-CLM4crop) in the sim-
ulations of crop growth and surface climate. We found that 
the coupled model overestimated crop LAI and growing 
season length but displayed a reasonable interannual vari-
ability. Adding both the dynamic crop model and the irriga-
tion scheme improved model simulation of temperature and 
precipitation within and beyond agricultural regions. Add-
ing irrigation reduced the dry bias in irrigated cropland and 
greatly improved the energy flux simulation at the Mead 
irrigated site, while the improvement was limited in other 
regions by the model’s dry bias. A dynamic crop growth 
model is important for evaluation of crop management 
effects on climate. Excluding dynamic crop growth under-
estimated irrigation water demands and climate effects of 
irrigation in moderately irrigated regions.
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Appendix: Dynamic crop module 
in WRF3.3‑CLM4crop

We incorporated the dynamic crop growth module from 
CLM4CNCrop into the coupled regional model WRF3.3-
CLM4. The dynamic crop growth module is based on 
AgroIBIS (Kucharik 2003) and described in detail in Levis 
et al. (2012).

Modifications

We made several modifications to the dynamic crop 
module to better fit into the coupled regional model 
framework. First, we fixed the soil carbon and nitrogen 
state variables. In the original CLM4CNCrop model, 
crop growth is linked to the carbon and nitrogen model, 
which updates multiple soil and plant carbon and nitro-
gen variables at each time step based on crop phenology 
and environmental changes. It requires a long spin-up 
time (over 1000s of years) to enable the soil carbon and 
nitrogen to reach current steady states. For a high-reso-
lution regional climate model, such long spin-up simula-
tions are difficult with current computing resources. Fur-
ther, even though soil carbon and nitrogen are simulated 
in CLM4CNCrop, these values would not be routinely 
coupled to atmospheric carbon and nitrogen in a regional 
model. Because our regional scale focus is on biogeo-
physical, not biogeochemical feedbacks, between land 
and atmosphere, we assumed that for crops, the soil car-
bon and nitrogen could be maintained at optimum levels 
year–year.

Second, at this stage, we consider WRF3.3-CLM4crop 
able to simulate C3 and C4 crops, not specific crop types. 
The current version of CLM4CNCrop simulates three 
crops (summer cereal, soybean, corn). The growth of these 
crops is strongly dependent on photosynthetic pathway. We 
assume that at a regional scale, it is inappropriate to expect 
the model to simulate specific crops across the domain with 
validation only at one or several grid cells where observa-
tions are available. Therefore, we used C3 and C4 crop 
types to represent the potential growth of major crops (e.g., 
C3 crops: wheat, soybean, and C4 crops: corn, sorghum). 
The next phase of our work will aim to gather more obser-
vations and validate growth parameters for more specific 
crop types.

Third, we made changes to crop phenology and carbon 
allocation to better suit the regional coupled model frame-
work and applications. In the planting phase, we changed 
the 20-year running mean growing degree days into 5-year 
running mean growing degree days to better match our sim-
ulation period. In the harvest phase, we assumed harvest 

Fig. 11   State level irriga-
tion percentages for model 
(CROPIRR) and USGS in 
2005. The total amount applied 
is 143 million gallons per day 
in CROPIRR, and 128 million 
gallons per day according to the 
USGS survey
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occurs when the crop reaches 1.5 times the GDD required 
for maturity rather than occurring as soon as the crop 
reaches maturity as in CLM4CNCrop, since some crops 
such as corn (Nielsen 2011) are left in the field after matu-
rity to dry. We also modified the carbon allocation to better 
reflect environmental stress on crop growth as described in 
section A3 of the appendix.

Phenology

Planting

The thresholds for planting, and thus initiation of the crop 
development cycle, are defined as:

where T2m is the instantaneous 2-m air temperature (°C), 
Tp is a crop-specific planting temperature (7 °C for C3 crop 
and 10 °C for C4 crop), GDD8 is the 5-year running aver-
aged growing degree days (base 8 °C) from March to Sep-
tember, and GDDmin is the minimum growing degree day 
requirement (50 degree days for both C3 and C4 crops). 
C3 crop must meet the planting temperature requirement 
between March 1st and May 14th, and C4 crop between 
May 1st and June 14th.

At planting, some initial values are assigned, including 
leaf area index (0.1 m2/m2), stem area index (0.01 m2/m2), 
leaf carbon (3 gC/m2), stem carbon (3 gC/m2), and fine root 
carbon (4.5  gC/m2). The growing degree days value nec-
essary for the crop to reach vegetative and physiological 
maturity, GDDmat, is updated:

where GDD8 and GDD10 are the 5-year running averaged 
growing degree days from March to September.

Leaf emergence

Leaves emerge when the growing degree days for soil 
temperature (0.05 m depth soil, third layer of CLM) since 
planting (GDDTsoil , base 0 and 8  °C for C3 and C4 crop) 
reaches 3  % of GDDmat. At this phase, available carbon 
is allocated to leaf, live stem, and fine root according to 
constant allocation coefficients. Leaf area index gener-
ally increases and reaches a maximum value, which is 
prescribed as 6 m2 m−2 for C3 and 5 m2 m−2 for C4 crop. 
Also, the stem area index is updated as stem carbon gain or 
loss.

T2m > Tp

GDD8 > GDDmin

GDD
c3crop
mat = 0.85GDD8

GDD
c4crop
mat = 0.85GDD10

GDD8 = GDD8 + T2m − 8, 0 ≤ T2m − 8◦ ≤ 30◦ days

GDD10 = GDD10 + T2m − 10, 0 ≤ T2m − 10◦ ≤ 30◦ days

Grain fill

Grain begins to fill when the growing degree days since 
planting (GDDplant) reaches 70 % for C3 and 65 % for C4 
crop of GDDmat. The leaf area index and stem area index 
decline and transfer some amount (defined in A3) of leaf 
and live stem carbon to grain.

Harvest

We assumed harvest occurs when the crop reaches 
1.5 times the GDD required for maturity (GDDplant  > 
1.5GDDmat) rather than as soon as the crop reaches maturity 
as defined in CLM4CNCrop, because crops, such as corn 
were left in the field after maturity to dry (Nielsen 2011).

CN allocation

Initial leaf carbon and nitrogen is assigned at planting. 
We adjusted the value from 1gC/m2 in CLM4CNCrop to 
3 gC/m2 because the small initial leaf carbon generated a 
too small leaf carbon, resulting in low LAI compared to 
observations and too little gross primary production (GPP) 
for carbon allocation. The initial leaf nitrogen was calcu-
lated using leaf C:N ratio from Levis et al. (2012). C and 
N allocation starts with leaf emergence and ends with har-
vest. Carbon allocation is based on allocation coefficients 
and the nitrogen is assigned based on the tissue (leaf, stem, 
root, and grain) C:N ratio.

Leaf emergence to grain fill

The allocation coefficients to each C pool are defined as:

βp is a plant functional type dependent variable that indi-
cates the root water stress and varies from near zero (dry 
soil) to one (wet soil). We used βp to better inform carbon 
allocation between root and shoot. When the soil is dry 
(small βp), more carbon is allocated to the root (Ericsson 
et al. 1996) to a maximum of 0.7. The rest of the available 
carbon is allocated to leaf and live stem in equal amounts.

Grain fill to harvest

During the grain filling period, fine root carbon allocation 
is still controlled by βp, while the maximum C allocation to 
fine root is changed to 0.2. 80 % of the remaining carbon is 
allocated to grain and the other 20 % to tissues that are not 

agrain = 0

afroot = 0.7(1− βp)

aleaf = 0.5(1− afroot)

alivestem = 0.5(1− afroot)
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explicitly simulated in the model, such as corn silk, flow-
ers, etc. We assume the leaf and live stem carbon decline in 
this stage, and some portion of the carbon is transferred to 
grain

where tran is the transfer coefficient of leaf and live stem 
carbon to grain carbon, ctimestep is an adjusted coefficient 
for each timestep, GDDplant is the soil growing degree days 
since planting (base 8  °C for C3 crop and 10  °C for C4 
crop), and GDDp is the 5-year running averaged soil grow-
ing degree days from April to September (base 8 °C for C3 
crop and 10 °C for C4 crop).

References

Adams RM et  al (1990) Global climate change and United-States 
agriculture. Nature 345:219–224

Adegoke JO, Pielke RA, Eastman J, Mahmood R, Hubbard KG (2003) 
Impact of irrigation on midsummer surface fluxes and tempera-
ture under dry synoptic conditions: a regional atmospheric model 
study of the US high plains. Mon Weather Rev 131:556–564

Adegoke JO, Pielke R, Carleton AM (2007) Observational and mod-
eling studies of the impacts of agriculture-related land use change 
on planetary boundary layer processes in the central US. Agric 
For Meteorol 142:203–215

Bonan GB (2008) Forests and climate change: forcings, feedbacks, 
and the climate benefits of forests. Science 320:1444–1449

Bonhomme R (2000) Bases and limits to using ‘degree day’ units. Eur 
J Agron 13:1–10

Boucher O, Myhre G, Myhre A (2004) Direct human influence of 
irrigation on atmospheric water vapour and climate. Clim Dyn 
22:597–603

Brown RA, Rosenberg NJ (1999) Climate change impacts on the 
potential productivity of corn and winter wheat in their primary 
United States growing regions. Clim Chang 41:73–107

Butterfield RE, Morison JIL (1992) Modeling the impact of climatic 
warming on winter cereal development. Agric For Meteorol 
62:241–261

Collatz GJ, Ball JT, Grivet C, Berry JA (1991) Physiological and 
environmental-regulation of stomatal conductance, photosynthe-
sis and transpiration—a model that includes a laminar boundary-
layer. Agric For Meteorol 54:107–136

Collatz GJ, Ribas-Carbo M, Berry JA (1992) Coupled photosynthesis-
stomatal conductance model for leaves of C4 Plants. Aust J Plant 
Physiol 19:519–538

Collins W et al (2004) Description of the NCAR Community Atmos-
phere Model (CAM 3.0) NCAR/TN-464+STR. National Center 
for Atmospheric Research, Boulder, Colorado, 226 pp

Cook BI, Puma MJ, Krakauer NY (2011) Irrigation induced surface 
cooling in the context of modern and increased greenhouse gas 
forcing. Clim Dyn 37:1587–1600

afroot = 0.2(1− βp)

agrain = 0.8(1− afroot)

aleaf = 0

alivestem = 0

tran = ctimestep

(

tan
GDDplant

GDDp

)

Covell S, Ellis RH, Roberts EH, Summerfield RJ (1986) The influ-
ence of temperature on seed-germination rate in grain legumes. 
1. A comparison of chickpea, lentil, soybean and cowpea at con-
stant temperatures. J Exp Bot 37:705–715

Daly C, Taylor G, Gibson W (1997) The PRISM approach to mapping 
precipitation and temperature. In: 10th conference on applied cli-
matology, pp 10–12

De Ridder K, Gallee H (1998) Land surface-induced regional climate 
change in southern Israel. J Appl Meteorol 37:1470–1485

DeAngelis A, Dominguez F, Fan Y, Robock A, Kustu MD, Robinson 
D (2010) Evidence of enhanced precipitation due to irrigation 
over the great plains of the United States. J Geophys Res Atmos 
115:D15115. doi:10.1029/2010JD013892

Di Luzio M, Johnson GL, Daly C, Eischeid JK, Arnold JG (2008) 
Constructing retrospective gridded daily precipitation and tem-
perature datasets for the conterminous United States. J Appl 
Meteorol Clim 47:475–497

Easterling WE, Rosenberg NJ, Mckenney MS, Jones CA, Dyke PT, 
Williams JR (1992) Preparing the erosion productivity impact 
calculator (EPIC) model to simulate crop response to cli-
mate change and the direct effects of CO2. Agric For Meteorol 
59:17–34

Ericsson T, Rytter L, Vapaavuori E (1996) Physiology of carbon allo-
cation in trees. Biomass Bioenergy 11:115–127

Fang JY, Piao SL, Tang ZY, Peng CH, Wei J (2001) Interannual 
variability in net primary production and precipitation. Science 
293:U1–U2

Farquhar GD, Caemmerer SV, Berry JA (1980) A biochemical-model 
of photosynthetic CO2 assimilation in leaves of C-3 species. 
Planta 149:78–90

Feddema JJ, Oleson KW, Bonan GB, Mearns LO, Buja LE, Meehl 
GA, Washington WM (2005) The importance of land-cover 
change in simulating future climates. Science 310:1674–1678

Fischer ML (2005) Carbon dioxide flux measurement systems. Hand-
book ARM TR-048, Atmospheric Radiation Measurement Cli-
mate Research Facility, U.S. Department of Energy

Foley JA et  al (2005) Global consequences of land use. Science 
309:570–574

Grell GA, Devenyi D (2002) A generalized approach to param-
eterizing convection combining ensemble and data assimilation 
techniques. Geophys Res Lett 29(14):1693. doi:10.1029/200
2GL015311

Harding KJ, Snyder PK (2012a) Modeling the atmospheric response 
to irrigation in the great plains. Part II: the precipitation of irri-
gated water and changes in precipitation recycling. J Hydromete-
orol 13:1687–1703

Harding KJ, Snyder PK (2012b) Modeling the atmospheric response 
to irrigation in the great plains. Part I: general impacts on pre-
cipitation and the energy budget. J Hydrometeorol 13:1667–1686

Higgins RW, Yao Y, Yarosh ES, Janowiak JE, Mo KC (1997) Influ-
ence of the Great Plains low-level jet on summertime precipita-
tion and moisture transport over the central United States. J Clim 
10:481–507

Howell TA, Hatfield JL, Yamada H, Davis KR (1984) Evaluation 
of cotton canopy temperature to detect crop water-stress. Trans 
ASAE 27:84–88

Jin JM, Miller NL (2011) Regional simulations to quantify land use 
change and irrigation impacts on hydroclimate in the California 
Central Valley. Theor Appl Climatol 104:429–442

Jin JM, Miller NL, Schlegel N (2010) Sensitivity study of four land 
surface schemes in the WRF model. Adv Meteorol 2010:167436. 
doi:10.1155/2010/167436

Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino 
M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull 
Am Meteorol Soc 83:1631–1643

http://dx.doi.org/10.1029/2010JD013892
http://dx.doi.org/10.1029/2002GL015311
http://dx.doi.org/10.1029/2002GL015311
http://dx.doi.org/10.1155/2010/167436


3362 Y. Lu et al.

1 3

Kenny JF, Barber NL, Hutson SS, Linsey KS, Lovelace JK, Maupin 
MA (2005) Estimated use of water in the United States in 2005. 
U.S. Geological Survey Circular 1344, p 52

Kucharik CJ (2003) Evaluation of a process-based agro-ecosystem 
model (Agro-IBIS) across the US corn belt: simulations of the 
interannual variability in maize yield. Earth Interact 7:1–33

Kueppers LM, Snyder MA (2012) Influence of irrigated agriculture 
on diurnal surface energy and water fluxes, surface climate, and 
atmospheric circulation in California. Clim Dyn 38:1017–1029

Kueppers LM, Snyder MA, Sloan LC (2007) Irrigation cooling effect: 
Regional climate forcing by land-use change. Geophys Res Lett 
34:L03703. doi:10.1029/2006gl028679

Lascano RJ, Vanbavel CHM, Hatfield JL, Upchurch DR (1987) 
Energy and water-balance of a sparse crop—simulated and meas-
ured soil and crop evaporation. Soil Sci Soc Am J 51:1113–1121

Lawlor DW, Mitchell RAC (1991) The Effects of increasing CO2 on 
crop photosynthesis and productivity—a review of field studies. 
Plant Cell Environ 14:807–818

Lawrence DM et al (2012) The CCSM4 land simulation, 1850–2005: 
assessment of surface climate and new capabilities. J Clim 
25:2240–2260

Levis S, Bonan GB, Kluzek E, Thornton PE, Jones A, Sacks WJ, 
Kucharik CJ (2012) Interactive Crop management in the Commu-
nity Earth System Model (CESM1): seasonal influences on land-
atmosphere fluxes. J Clim 25:4839–4859

Li L, Li W, Jin J (2014) Contribution of the North Atlantic subtropical 
high to regional climate model (RCM) skill in simulating south-
eastern United States summer precipitation. Clim Dyn 1–15. 
doi:10.1007/s00382-014-2352-9

Liang XZ, Xu M, Gao W, Reddy KR, Kunkel K, Schmoldt DL, Samel 
AN (2012) A Distributed cotton growth model developed from 
GOSSYM and its parameter determination. Agron J 104:661–674

Lo MH, Famiglietti JS (2013) Irrigation in California’s Central Valley 
strengthens the southwestern US water cycle. Geophys Res Lett 
40:301–306

Lobell DB, Field CB (2007) Global scale climate—crop yield rela-
tionships and the impacts of recent warming. Environ Res Lett 
2:014002. doi:10.1088/1748-9326/2/1/014002

Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Nay-
lor RL (2008) Prioritizing climate change adaptation needs for 
food security in 2030. Science 319:607–610

Lobell D, Bala G, Mirin A, Phillips T, Maxwell R, Rotman D (2009) 
Regional differences in the influence of irrigation on climate. J 
Clim 22:2248–2255

Lobell DB, Roberts MJ, Schlenker W, Braun N, Little BB, Rejesus RM, 
Hammer GL (2014) Greater sensitivity to drought accompanies 
maize yield increase in the US Midwest. Science 344:516–519

Long SP, Ainsworth EA, Leakey ADB, Nosberger J, Ort DR (2006) 
Food for thought: lower-than-expected crop yield stimulation 
with rising CO2 concentrations. Science 312:1918–1921

Lu YQ, Kueppers LM (2012) Surface energy partitioning over four 
dominant vegetation types across the United States in a cou-
pled regional climate model (Weather Research and Forecasting 
Model 3-Community Land Model 3.5). J Geophys Res Atmos 
117:D06111. doi:10.1029/2011jd016991

Lu LX, Pielke RA, Liston GE, Parton WJ, Ojima D, Hartman M 
(2001) Implementation of a two-way interactive atmospheric and 
ecological model and its application to the central United States. 
J Clim 14:900–919

Mearns LO, Rosenzweig C, Goldberg R (1992) Effect of changes in 
interannual climatic variability on CERES-wheat yields—sensi-
tivity and 2× CO2 general-circulation model studies. Agr Forest 
Meteorol 62:159–189

Mendelsohn R, Nordhaus WD, Shaw D (1994) The impact of global 
warming on agriculture—a Ricardian analysis. Am Econ Rev 
84:753–771

Nakanishi M, Niino H (2006) An improved Mellor–Yamada 
level-3 model: its numerical stability and application to a 
regional prediction of advection fog. Bound Layer Meteorol 
119:397–407

Nielsen RL (2011) Field drydown of mature corn grain. Purdue Uni-
versity, West Lafayette, IN

Oleson KW, Bonan GB, Levis S, Vertenstein M (2004) Effects of land 
use change on North American climate: impact of surface data-
sets and model biogeophysics. Clim Dyn 23:117–132

Oleson KW et al (2010) Technical description of version 4.0 of the Com-
munity Land Model (CLM). ISSN electronic edition 2153–2400, 
National Center for Atmospheric Research, Boulder, Colorado

Osborne TM, Lawrence DM, Challinor AJ, Slingo JM, Wheeler TR 
(2007) Development and assessment of a coupled crop-climate 
model. Glob Chang Biol 13:169–183

Osborne T, Slingo J, Lawrence D, Wheeler T (2009) Examining the 
interaction of growing crops with local climate using a coupled 
crop-climate model. J Clim 22:1393–1411

Otterman J (1977) Anthropogenic impact on albedo of earth. Clim 
Chang 1:137–155

Ozdogan M, Salvucci GD (2004) Irrigation-induced changes in poten-
tial evapotranspiration in southeastern Turkey: test and applica-
tion of Bouchet’s complementary hypothesis. Water Resour Res 
40:W04301. doi:10.1029/2003wr002822

Peiris TSG, Thattil RO, Mahindapala R (1995) An analysis of the 
effect of climate and weather on coconut (Cocos nucifera). Exp 
Agric 31:451–460

Pessarakli M (1999) Handbook of plant and crop stress. Marcel Dek-
ker, New York

Pitman A, Pielke R, Avissar R, Claussen M, Gash J, Dolman H (1999) 
The role of the land surface in weather and climate: does the land 
surface matter? Int Geosph Biosph Program News Lett 39:4–11

Porter JR, Semenov MA (2005) Crop responses to climatic variation. 
Philos Trans R Soc B 360:2021–2035

Rosenzweig C, Parry ML (1994) Potential impact of climate-change 
on world food-supply. Nature 367:133–138

Sacks WJ, Cook BI, Buenning N, Levis S, Helkowski JH (2009) 
Effects of global irrigation on the near-surface climate. Clim Dyn 
33:159–175

Sacks WJ, Deryng D, Foley JA, Ramankutty N (2010) Crop plant-
ing dates: an analysis of global patterns. Glob Ecol Biogeogr 
19:607–620

Saeed F, Hagemann S, Jacob D (2009) Impact of irrigation on the 
South Asian summer monsoon. Geophys Res Lett 36:L20711.  
doi:10.1029/2009gl040625

Sampaio G, Nobre C, Costa MH, Satyamurty P, Soares BS, Cardoso 
M (2007) Regional climate change over eastern Amazonia caused 
by pasture and soybean cropland expansion. Geophys Res Lett 
34:L17709. doi:10.1029/2007gl030612

Siebert S, Doll P, Hoogeveen J, Faures JM, Frenken K, Feick S (2005) 
Development and validation of the global map of irrigation areas. 
Hydrol Earth Syst Sci 9:535–547

Sorooshian S, Li JL, Hsu KL, Gao XG (2011) How significant is the 
impact of irrigation on the local hydroclimate in California’s 
Central Valley? Comparison of model results with ground and 
remote-sensing data. J Geophys Res Atmos 116. doi:10.1029/20
10jd014775

Subin ZM, Riley WJ, Jin J, Christianson DS, Torn MS, Kueppers 
LM (2011) Ecosystem feedbacks to climate change in Califor-
nia: development, testing, and analysis using a coupled regional 
atmosphere and land surface model (WRF3-CLM3.5). Earth 
Interact 15. doi:10.1175/2010ei331.1

Thompson G, Rasmussen RM, Manning K (2004) Explicit forecasts 
of winter precipitation using an improved bulk microphysics 
scheme. Part I: description and sensitivity analysis. Mon Weather 
Rev 132:519–542

http://dx.doi.org/10.1029/2006gl028679
http://dx.doi.org/10.1007/s00382-014-2352-9
http://dx.doi.org/10.1088/1748-9326/2/1/014002
http://dx.doi.org/10.1029/2011jd016991
http://dx.doi.org/10.1029/2003wr002822
http://dx.doi.org/10.1029/2009gl040625
http://dx.doi.org/10.1029/2007gl030612
http://dx.doi.org/10.1029/2010jd014775
http://dx.doi.org/10.1029/2010jd014775
http://dx.doi.org/10.1175/2010ei331.1


3363Crop growth and irrigation

1 3

Tsvetsinskaya EA, Mearns LO, Easterling WE (2001) Investigat-
ing the effect of seasonal plant growth and development in 
three-dimensional atmospheric simulations. Part II: atmospheric 
response to crop growth and development. J Clim 14:711–729

Wagenvoort WA, Bierhuizen JF (1977) Some aspects of seed-germi-
nation in vegetables. 2. Effect of temperature-fluctuation, depth 
of sowing, seed size and cultivar, on heat sum and minimum tem-
perature for germination. Sci Hortic 6:259–270

Wanjura DF, Upchurch DR, Mahan JR (1992) Automated irriga-
tion based on threshold canopy temperature. Trans ASAE 
35:1411–1417

Weaver SJ, Schubert S, Wang H (2009) Warm season variations in 
the low-level circulation and precipitation over the central United 
States in observations, AMIP simulations, and idealized SST 
experiments. J Clim 22:5401–5420

Wise RR, Olson AJ, Schrader SM, Sharkey TD (2004) Electron 
transport is the functional limitation of photosynthesis in field-
grown Pima cotton plants at high temperature. Plant Cell Environ 
27:717–724

Xu M, Liang X-Z, Gao W, Reddy KR, Slusser J, Kunkel K 
(2005) Preliminary results of the coupled CWRF–GOS-
SYM system. Remote Sens Model Ecosyst Sustain II 5884. 
doi:10.1117/12.621017

Zeng XB (2001) Global vegetation root distribution for land mode-
ling. J Hydrometeorol 2:525–530

Zhu Z et al (2012) Global data sets of vegetation LAI3g and FPAR3g 
derived from GIMMS NDVI3g for the period 1981 to 2011. 
Remote Sens 4. doi:10.3390/rs40x000x

http://dx.doi.org/10.1117/12.621017
http://dx.doi.org/10.3390/rs40x000x

	Crop growth and irrigation interact to influence surface fluxes in a regional climate-cropland model (WRF3.3-CLM4crop)
	Abstract 
	1 Introduction
	2 Methods
	2.1 Regional climate model
	2.2 Irrigation scheme
	2.3 Experimental design
	2.4 Validation data

	3 Results
	3.1 Model evaluation
	3.1.1 Crop growth
	3.1.2 Surface climate and energy fluxes

	3.2 The role of dynamic crop growth in climate effects of irrigation

	4 Discussion and conclusions
	4.1 Model evaluation
	4.2 The role of dynamic crop growth in climatic effects of irrigation
	4.3 Conclusions

	Acknowledgments 
	References




