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tropical warming is much larger in the early stage of the 
simulations than in the late stage, due to delayed warming 
in the eastern parts of the subtropical oceans. Given the 
importance of EIS in regulating tropical low-cloud cover, 
this suggests that the tropical low-cloud feedback may also 
be nonlinear.
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1  Introduction

The lowest few kilometers of the tropical marine atmos-
phere are frequently capped by an inversion layer, charac-
terized by a large temperature and/or moisture jump. Under 
this inversion lie several types of boundary layer clouds 
(Klein and Hartmann 1993; Betts 1997; Moeng and Stevens 
1999; Stevens 2005; Wood 2012). Through their effect on 
net incoming shortwave radiation, these clouds play a criti-
cal role in regulating the global energy budget (Hartmann 
et  al. 1992; Chen et  al. 2000). Changes in these clouds 
associated with simulated anthropogenic climate change 
likewise have a large effect on the shortwave component of 
the anthropogenic perturbation to the global energy budget 
(Slingo 1990; Bony and Dufresne 2005; Stephens 2005; 
Soden and Held 2006; Williams et  al. 2006; Wyant et  al. 
2006; Webb et al. 2012; Zelinka et al. 2012). These changes 
remain the major source of uncertainty surrounding climate 
sensitivity (Webb et al. 2012; Vial et al. 2013).

A key factor controlling the amount of low clouds in 
the observed climate is the strength of the inversion. A 
stronger inversion suppresses the mixing of boundary layer 
air with warmer and drier air in the free-troposphere, lead-
ing to a shallower, moister and cloudier boundary layer. In 

Abstract  We examine the tropical inversion strength, 
measured by the estimated inversion strength (EIS), and 
its response to climate change in 18 models associated 
with phase 5 of the coupled model intercomparison project 
(CMIP5). While CMIP5 models generally capture the geo-
graphic distribution of observed EIS, they systematically 
underestimate it off the west coasts of continents, due to 
a warm bias in sea surface temperature. The negative EIS 
bias may contribute to the low bias in tropical low-cloud 
cover in the same models. Idealized perturbation experi-
ments reveal that anthropogenic forcing leads directly to 
EIS increases, independent of “temperature-mediated” 
EIS increases associated with long-term oceanic warming. 
This fast EIS response to anthropogenic forcing is strongly 
impacted by nearly instantaneous continental warming. 
The temperature-mediated EIS change has contributions 
from both uniform and non-uniform oceanic warming. 
The substantial EIS increases in uniform oceanic warm-
ing simulations are due to warming with height exceeding 
the moist adiabatic lapse rate in tropical warm pools. EIS 
also increases in fully-coupled ocean–atmosphere simula-
tions where CO2 concentration is instantaneously quadru-
pled, due to both fast and temperature-mediated changes. 
The temperature-mediated EIS change varies with tropical 
warming in a nonlinear fashion: The EIS change per degree 
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the absence of detailed balloon soundings over large space 
and time scales, the inversion has been traditionally meas-
ured by the difference in potential temperature between 
700  hPa and the surface (termed the lower-troposphere 
stability, LTS), but more recently the estimated inver-
sion strength (EIS, Wood and Bretherton 2006). There is 
ample observational evidence for a link between inver-
sion strength and low-cloud cover (LCC). Seasonal and 
interannual LCC variations in many low cloud regions are 
strongly associated with variations in this quantity (Slingo 
1980; Klein and Hartmann 1993; Wood and Bretherton 
2006; Zhang et  al. 2009; Sun et  al. 2011; Kubar et  al. 
2012; Qu et al. 2014).

Given the importance of the tropical inversion to LCC, 
it is natural to ask whether climate models participating 
in phase 5 of the coupled model intercomparison project 
(CMIP5) can simulate it faithfully. Many fully coupled 
ocean–atmosphere model simulations exhibit a warm bias 
in sea surface temperature (SST) at the west coasts of sub-
tropical continents (Zheng et  al. 2011; Xu et  al. 2013). 
Assuming no similar warm bias occurs in the free tropo-
sphere, this bias would translate into a negative bias in the 
inversion strength. This negative bias, where present, would 
lead to a similar bias in LCC in coupled simulations. In this 
study, we assess the realism of the tropical inversion simu-
lated in 18 CMIP5 models (see Table 1) against reanalysis.

It is also of great interest to investigate the response of 
inversion strength to anthropogenic forcing. Several recent 
studies suggested that EIS would increase in a warming 
climate (Caldwell et al. 2012; Watanabe et al. 2012; Webb 
et  al. 2012; Ogura et  al. 2013; Qu et  al. 2014). Qu et  al. 
(2014) attributed this increase to the fact that the air above 
the boundary layer warms more than would be predicted 
by a local moist adiabat. Furthermore, Webb et al. (2012) 
showed that a simulated EIS increase can be broken down 
into two components—one associated with a fast response 
(FR) to anthropogenic forcing, and the other a slow warm-
ing (i.e., the temperature-mediated component).

In this study, we further our understanding of future 
EIS change by exploiting a variety of climate perturbation 
experiments in the CMIP5 archive. Specifically, we address 
four questions as folllows. First, how large is the fast EIS 
change simulated by CMIP5 models? We compute the fast 
EIS change based on CO2 quadrupling simulations done 
with atmospheric general circulation models (AGCMs). 
Note that Webb et al. (2012) used slab-ocean models par-
ticipating in phase 3 of the coupled model intercompari-
son project (CMIP3), which may or may not give different 
results for simulated fast EIS change.

Second, what drives the temperature-mediated EIS change? 
Qu et  al. (2014) attributed it in part to nonuniform oceanic 
warming (NOW), i.e., the fact that warming in tropical warm 

Table 1   Eighteen CMIP5 models used in this study

1st column: Names of the models. 2nd–7th columns: The availability of different simulations. A number of simulations (identified by the aster-
isk) do not provide surface relative humidity data. They are not used in the calculations in Appendix 3

Model Hist/RCP8.5 amip amip4xCO2/amip4K/  
amipFuture/sstClim/  
sstClim4xCO2

aquaControl/ 
aqua4xCO2/  
aqua4K

LGM piControl/ 
abrupt4xCO2

BCC-CSM1.1 X X∗ X∗ X

CCSM4 X X X X X X

CSIRO-Mk3.6 X X X

CanESM2 X X X X

FGOALS-s2 X∗ X X

GFDL-CM3 X X X

GFDL-ESM2G X X

GFDL-ESM2M X X

GISS-E2-R X X X

HadGEM2-CC X

HadGEM2-ES X X X X X

IPSL-CM5A-LR X X X X X∗ X

MIROC-ESM X X X

MIROC-ESM-CHEM X

MIROC5 X X X X X

MPI-ESM-LR X∗ X∗ X∗ X∗ X∗

MRI-CGCM3 X X X X X X

NorESM1-M X X X
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pools is greater than warming in low cloud regions (Qu et al. 
2014). The underlying argument for this is the following: Free 
tropospheric tropical temperatures are largely set by SST in 
the warm pools. So if the warm pool SST increases by more 
than the SST in the low-cloud regions, then the free tropo-
spheric temperature warming in the subsidence regions will 
exceed that predicted by a local moist adiabat and hence there 
will be an EIS increase in the low cloud regions. However, it 
is unclear what fraction of simulated EIS change is attribut-
able to NOW, as opposed to a generally warming climate, or 
whether uniform oceanic warming (UOW) does not drive any 
EIS change, as hypothesized by Wood and Bretherton (2006). 
To assess these issues, we first examine the impact of UOW 
on EIS using AGCM experiments with imposed uniform SST 
warming of 4K, and then, we quantify the impact of NOW 
on EIS using AGCM experiments with imposed SST warm-
ing pattern. If UOW does not contribute to any EIS change, 
then we conclude that the temperature-mediated EIS change 
is induced by NOW alone. Otherwise, both UOW and NOW 
contribute to the temperature-mediated EIS change.

Third, does warming over tropical land play a significant 
role in driving EIS change in the tropical ocean? Qu et al. 
(2014) hypothesized that the rapid warming over land could 
enhance free-tropospheric warming over ocean through 
tropical circulation, contributing to a EIS increase. We 
address this question by comparing EIS change in AGCM 
simulations with an aqua planet configuration to those seen 
in AGCM simulations with a realistic land configuration. 
Since many experiments with CO2 quadrupling or uniform 
SST warming were done with both configurations, we can 
assess the role of the continental warming in both the fast 
and UOW-driven EIS changes.

Finally, how do individual components of EIS change 
(FR, UOW and NOW) manifest themselves in fully-cou-
pled ocean–atmosphere simulations? We first examine the 
EIS change in two types of warming experiments done with 
coupled models (abrupt4xCO2 and RCP8.5). To investigate 
whether changes in the tropical inversion are symmetric 
with respect to the sign of climate change, we also examine 
the EIS change in coupled model simulations for the Last 
Glacial Maximum (LGM), a period substantially cooler 
than present day. Lastly, we quantify the respective contri-
butions of FR, UOW and NOW to the various EIS changes.

The study is presented as follows: Data and methodol-
ogy are described in Sect. 2. In this section, we also pro-
vide a brief derivation of EIS as in Wood and Bretherton 
(2006) and re-introduce the simple expression for EIS 
change derived in Qu et  al. (2014). We assess simulated 
present-day tropical inversion against reanalysis in Sect. 3. 
EIS changes in various idealized AGCM simulations are 
examined in Sect.  4, and EIS changes in coupled model 
simulations are examined in Sect. 5. A summary and dis-
cussion are found in Sect. 6.

2 � Data and methodology

2.1 � Data

Present-day (1979–2008) tropical inversion simulated by 
18 coupled models and 13 AGCMs (Table  1) are exam-
ined. In the coupled model simulations, historical forc-
ing was imposed in the 20th-century, which end in 2005, 
while the Representative Concentration Pathway (RCP) 
8.5 was imposed from 2006 onward (Taylor et  al. 2012). 
Note that to compute the present-day EIS, we utilize both 
historical and RCP8.5 simulations. In the AGCM simula-
tions (amip), observed CO2 concentration and SST were 
imposed. Because there are no detailed balloon soundings 
over the large space of the tropical ocean and because satel-
lite observation is subject to large sampling bias (Yue et al. 
2011), we use reanalysis to assess the realism of the tropi-
cal inversion in models. To explore the uncertainty in rea-
nalysis, we use three different reanalysis data sets—ERA-
Interim (Dee et  al. 2011), NCAR/NCEP (Kalnay et  al. 
1996) and MERRA (Rienecker et al. 2011).

To investigate the response of the tropical inversion to 
anthropogenic forcing, we examine a variety of climate 
perturbation experiments done with either AGCMs or cou-
pled models (see Table 1). The configurations of the sim-
ulations are briefly described in Table 2 (see Taylor et  al. 
2012 for detail). While this study is concerned with the 
tropical inversion in general, additional attention is given 
to five subtropical oceanic regions dominated by stratocu-
mulus clouds, defined by black boxes in Fig. 1. These five 
regions have been studied extensively (Klein and Hartmann 
1993; Wood and Bretherton 2006; Zhang et al. 2009; Cald-
well et al. 2012, referred hereafter to as the KH domains). 
Results in this study are based on annually averaged data. 
For reference, all acronyms used in this paper are listed in 
Table 3.

2.2 � Defining EIS

EIS is defined as in Wood and Bretherton (2006):

where LTS is the lower-tropospheric stability, Γ 850
m  is the 

moist-adiabatic potential temperature gradient (Γm) at 
850 hPa, which is a function of the in-situ temperature, z700 
is the height of the 700 hPa surface, and LCL is the lifting 
condensation level. Consistent with Wood and Bretherton 
(2006), we approximate the 850 hPa temperature by averag-
ing 700 hPa and surface temperatures. While Γm is actually 
a function of temperature and pressure, the single value used 
in Eq. (1) is applied to all heights between the LCL and z700. 
(See Wood and Bretherton (2006) for a detailed derivation 
of EIS.) Due to this assumption, EIS is actually a slightly 

(1)EIS = LTS − Γ 850

m · (z700 − LCL)
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biased measure of the inversion strength (see Appendix 1). 
However, we find that this bias is systematic and occurs 
in both current and future climates. Therefore, it has little 
effect on our estimated EIS change. Surface relative humid-
ity (RHs) is used in the LCL calculations. As in Wood and 
Bretherton (2006), it is fixed at 80 % in all EIS calculations 
except where the effect of simulated RHs change on esti-
mated EIS change is quantified in Appendix 3.

Based on Eq.  (1) and using typical values for temper-
ature, sea level pressure and RHs (see Qu et  al. 2014 for 
detail), we can express a given EIS change (∆EIS) as a lin-
ear combination of temperature changes at 700 hPa (∆T700) 
and at the surface (∆Ts):

(2)∆EIS ≈ ∆T700 − 1.2∆Ts

According to this simple expression, ∆EIS equals zero 
where ∆T700/∆Ts ≈ 1.2. As expected from the definition 
of EIS, this condition is met if the vertical profile of tropo-
spheric warming follows the moist adiabat from the sur-
face, given surface warming. (See Appendix 1 for a dem-
onstration of this point.) Therefore, we can interpret ∆EIS 
as the portion of ∆T700 that exceeds the moist adiabat. Qu 
et al. (2014) demonstrated that using Eq. (2) instead of (1) 
introduces very little error. In this paper, we use it as a tool 
to understand the sign and magnitude of ∆EIS, as well as 
its spatial distribution.

2.3 � Computing various EIS changes

The EIS change due to FR (∆EIS(FR)) is computed based 
on CO2 quadrupling simulations (amip4xCO2) done 
with 8 AGCMs and their corresponding control simula-
tions (amip). These AGCMs are the atmospheric compo-
nents of 8 fully coupled atmosphere-ocean models in the 
CMIP5 archive listed in Table 1. For convenience, we refer 
to them by their corresponding coupled models. To facili-
tate comparison, these AGCMs are also used to compute 
EIS changes in other perturbed AGCM simulations, and 
their corresponding coupled models are used to compute 
EIS changes in coupled model simulations. The fast EIS 
response is quantified by the difference in EIS climatolo-
gies between amip and amip4xCO2 simulations. To assess 
the sensitivity of ∆EIS(FR) to mean SST, we also quantify 
∆EIS(FR) based on 8 sstClim4xCO2 simulations and their 
corresponding control simulations (sstClim). These simu-
lations differ from their respective amip and amip4xCO2 
simuations in the imposed SST values (see Table  2). We 
find that within each AGCM, ∆EIS(FR) based on the 

Table 2   A brief description of the simulations used in this study

Simulation Description

amip AGCM simulations with observed CO2 concentration and SST (1979–2008)

amip4xCO2 AGCM simulations with observed SST (1979–2008) and a CO2 concentration four times the observed level (1979–2008)

amip4K AGCM simulations with observed CO2 concentration (1979–2008) and observed SST (1979–2008) plus a uniform 4K warming

amipFuture AGCM simulations with observed CO2 concentration (1979–2008) and observed SST (1979–2008) plus a prescribed SST 
anomaly pattern

sstClim AGCM simulations with the pre-industrial SST and CO2 concentration

sstClim4xCO2 AGCM simulations with the pre-industrial SST and a CO2 concentration four times the pre-industrial level

aquaControl Aqua planet AGCM simulations with prescribed SST and observed CO2 concentration (1979–2008)

aqua4xCO2 Aqua planet AGCM simulations with prescribed SST and a CO2 concentration four times the observed CO2 level (1979–2008)

aqua4K Aqua planet AGCM simulations with observed CO2 concentration (1979–2008) and prescribed SST plus a uniform 4K warming

historical Coupled ocean–atmosphere simulations with historical forcing imposed (1850–2005)

RCP8.5 Coupled ocean–atmosphere simulations with the Representative concentration pathway (RCP) 8.5 imposed (2006–2099)

piControl Coupled ocean–atmosphere simulations with preindustrial forcing imposed

abrupt4xCO2 Coupled ocean–atmosphere simulations where CO2 concentration is instantaneously quadrupled from the preindustrial level

LGM Coupled ocean–atmosphere simulations with the Last Glacial Maximum conditions for ice sheets and CO2 concentration

Table 3   A list of acronyms used in this paper

LTS Lower-troposphere stability

EIS Estimated inversion strength

LCC Low cloud cover

CMIP Coupled model intercomparison project

SST Sea surface temperature

FR Fast response

AGCM Atmospheric general circulation model

NOW Nonuniform oceanic warming

UOW Uniform oceanic warming

RHs Surface relative humidity

LGM Last glacial maximum

RCP Representative concentration pathway

LCL Lifting condensation level

KH Klein and Hartmann

GHG Greenhouse gas
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sstClim and sstClim4xCO2 simulations differs little from 
∆EIS(FR) based on the amip and amip4xCO2 simulations 
(not shown). Therefore, ∆EIS(FR) is not sensitive to the 
mean climate on which the CO2 forcing is imposed. Lastly, 
we compute the fast EIS response in six AGCM simulations 
with an aqua planet configuration based on their respective 
aquaControl and aqua4xCO2 simulations (see Tables 1, 2). 
Comparison of the fast EIS response between AGCM simu-
lations with an aqua planet configuration and those with a 
realistic land configuration allows us to assess the impact 
of the anthropogenically-forced continental warming on the 
fast EIS change in the tropical ocean.

The EIS change due to UOW (∆EIS(UOW)) is com-
puted based on 8 uniform oceanic warming simulations 
(amip4K) and their corresponding amip simulations (see 
Tables  1, 2). The impact of UOW on EIS is quantified 
by the difference in EIS climatologies between amip and 
amip4K simulations. Similar procedures are also used to 
quantify ∆EIS(UOW) in six aqua planet AGCMs based on 
their respective aquaControl and aqua4K simulations (see 
Tables 1, 2). Comparison of ∆EIS(UOW) between the aqua 
planet AGCM simulations and those with a realistic land 
configuration allows us to assess the impact of the anthro-
pogenically-forced continental warming on ∆EIS(UOW).

The EIS change due to NOW (∆EIS(NOW)) is com-
puted based on 8 amipFuture simulations and their corre-
sponding amip simulations (see Tables 1, 2). In the amip-
Future simulations, AGCMs are forced by observed SST 
plus a prescribed SST anomaly pattern. The prescribed pat-
tern was derived from a composite of SST change patterns 
simulated in several CMIP3 models at time of CO2 quad-
rupling (Taylor et al. 2012). It was imposed in every amip-
Future simulation. We diagnose ∆EIS(NOW) in two steps. 
First, we compute the EIS change between the amip and 
amipFuture simulations. Since the amipFuture simulations 
also include the impact of uniform oceanic warming, we 
then remove ∆EIS(UOW) from the resulting EIS change. 
Because warming in the tropical ocean differs little in the 
amip4K (4 K) and amipFuture simulations (∼4.4 K), there 
is no need to rescale ∆EIS(UOW) beforehand.

We examine the evolution of the EIS change (∆EIS

(abrupt4xCO2)) in 8 abrupt4xCO2 simulations relative to 
their corresponding control simulations (piControl). Both 
types of simulations are done with coupled models (see 
Table 2). We construct the time series of annual-mean EIS 
change at each location for the duration (150  years) of 
abrupt4xCO2 simulations. It turns out that in most models, 
the tropical EIS change is a nonlinear function of warming 
(see Sect. 5). To understand this behavior, we examine two 
time periods in the simulations—the first and last 30 years. 
We quantify the average EIS change in these two periods, 
as well as its temperature-mediated component.

The EIS change in the 21st-century (∆EIS(RCP8.5)) is 
quantified by the difference in EIS climatologies between 
present-day (1979–2008) and future (2070–2099). These 
climatologies are taken from historical and RCP8.5 simu-
lations done with 8 coupled models (Tables 1, 2). It turns 
out that ∆EIS(RCP8.5) bears great resemblance to the 
EIS change in the first 30  years of abrupt4xCO2 simula-
tions. For this reason, we only touch upon ∆EIS(RCP8.5) 
in this paper. The EIS change in four LGM simulations 
(∆EIS(LGM)) is quantified by the difference in the EIS 
climatologies between present-day and LGM. The present-
day EIS climatology is taken from historical and RCP8.5 
simulations done with the four coupled models with avail-
able LGM simulations.

2.4 � Decomposing EIS changes in the coupled model 
simulations

To better understand the EIS change in abrupt4xCO2 simu-
lations, we decompose it into four components as follows

where ∆EIS is the EIS change in the first or last 30 years 
of abrupt4xCO2 simulations. The first three terms on the 
right side of Eq.  (3) represent the components of ∆EIS

(abrupt4xCO2) driven by FR, UOW and NOW, respec-
tively. They are computed by rescaling ∆EIS(FR), 
∆EIS(UOW) and ∆EIS(NOW) with three coefficients, α, β 
and γ.

The value of α is set to 1. This is a reasonable approxima-
tion because the effective radiative forcing in abrupt4xCO2 
simulations differs only slightly from the effective radia-
tive forcing in their corresponding amip4xCO2 simula-
tions (Andrews et  al. 2012). See Myhre et  al. (2013) for 
a definition of effective radiative forcing, and recall that 
∆EIS(FR) is computed based on amip4xCO2 simulations. 
The β and γ are computed for each abrupt4xCO2 simula-
tion as tropical SST change for that simulation divided by 
4 K (see Table 4). This takes care of the fact that idealized 
(amip4K and amipFuture) simulations all had approxi-
mately 4 K of warming, but abrupt4xCO2 simulations dif-
fer in their warming strength. Recall that ∆EIS(UOW) and 
∆EIS(NOW) are computed based on amip4K and amipFu-
ture simulations, respectively. Here, we compute the NOW 
term in Eq. (3) by rescaling ∆EIS(NOW) because the pat-
terns of tropical SST change in these simulations are very 
similar to the pattern of tropical SST change imposed on 
the amipFuture simulations. The typical spatial correlation 
is 0.7 between the tropical SST change in the first or last 
30 years of abrupt4xCO2 simulation and the tropical SST 
change in the corresponding amipFuture simulations.

(3)
∆EIS = α ·∆EIS(FR)+ β ·∆EIS(UOW)

+ γ ·∆EIS(NOW)+∆EIS(Res)
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Alternatively, one can quantify the three scaling factors 
empirically. This can be done by exploiting spatial vari-
ability in ∆EIS(abrupt4xCO2). It turns out that ∆EIS(FR),  
∆EIS(UOW) and ∆EIS(NOW) all exhibit different spatial 
patterns (see Sect. 4). So, to tease out the respective contri-
butions of FR, UOW and NOW to ∆EIS(abrupt4xCO2), we 
regress ∆EIS(abrupt4xCO2) onto ∆EIS(FR), ∆EIS(UOW) 
and ∆EIS(NOW) within each model. (For each EIS change 
pattern, EIS changes at all grid points within the tropical 
ocean are concatenated before the regression analysis.) The 
three scaling factors assume the respective values of the 
three regression coefficients. We find that on an ensemble-
mean basis, the empirical estimates of the scaling factors 
are very close to the respective estimates based on effec-
tive radiative forcing and tropical warming (see Table  4). 
This suggests that the EIS change in abrupt4xCO2 simu-
lations can to a very good approximation be viewed as a 
linear supposition of the EIS change from the effects of 
FR, UOW and NOW. A noticeable difference between the 
two approaches is that for the last 30 years, the empirical 
estimate of β is somewhat less than the β estimate based 
on tropical warming. We note that there may be inher-
ent uncertainties associated with the empirical estimates 
of the scaling factors. Particularly, because the tropical 
SST change patterns in abrupt4xCO2 simulations are not 
exactly the same as the SST change pattern imposed on 
amipFuture simulations, the terms of FR, UOW and NOW 
in the regression model may be aliased by the EIS change 
due to NOW that cannot be rescaled with ∆EIS(NOW).

The residual term, ∆EIS(Res) is calculated as the value 
that makes the equality in (3) true. It may be driven by 
the EIS change due to NOW that cannot be rescaled with 
∆EIS(NOW). Again, this portion of EIS change takes place 
because the tropical SST change patterns in abrupt4xCO2 

simulations are not exactly the same as the SST change pat-
tern imposed on amipFuture simulations.

It is not straightforward to decompose ∆EIS(RCP8.5) 
using Eq.  (3) because the radiative forcing in the 21st-
century stems from not only an increase in CO2, but also 
increases in other greenhouse gases, as well as changes 
in aerosol concentration and land use. However, if assum-
ing that the effects of other greenhouse gases on EIS can 
be scaled with the effect of CO2, and that the effects of 
changes in aerosol concentration and land use are small, we 
can still obtain values of α, β and γ for RCP8.5 simulations. 
Averaged over eight RCP8.5 simulations, α is close to 0.8, 
and both β and γ are close to 0.6. These values are com-
parable to the corresponding values for the first 30  years 
of abrupt4xCO2 simulations (see Table 4). This similarity 
may be attributed to two facts: The effective greenhouse 
gas (GHG) forcing in the 21st-century of RCP8.5 simula-
tions is only slightly less than that in amip4xCO2 simula-
tions (Myhre et  al. 2013), and the magnitude of tropical 
warming is comparable in the 21st-century of RCP8.5 sim-
ulations and the first 30 years of abrupt4xCO2 simulations 
(the ensemble-mean tropical SST change is close to 2.5 K 
in both cases).

The EIS change in LGM simulations is not decom-
posed using Eq. (3) for two reasons. First, more than half 
of the radiative forcing in LGM is driven by changes in the 
Northern Hemisphere ice sheets, vegetation cover and aer-
osols (Jansen et al. 2007). It is unclear how EIS responds 
to these forcings. Second, it is not feasible to quantify the 
EIS change due to NOW in LGM simulations by rescaling 
∆EIS(NOW). The patterns of tropical SST change in these 
simulations do not correspond well to the pattern of tropi-
cal SST change imposed on amipFuture simulations: The 
typical spatial correlation between the tropical SST change 
in LGM simulation and the tropical SST change in the cor-
responding amipFuture simulation is −0.26.

3 � Present‑day tropical inversion

We first examine the present-day inversion based on ERA-
Interim reanalysis (1979–2008). The geographic distribu-
tion of present-day EIS is shown in Fig.  1a. Not surpris-
ingly, large positive EIS values are found in the subtropical 
oceanic regions off the west coasts of continents. These 
regions are typically associated with equatorward currents, 
coastal upwelling and stratocumulus decks. These phenom-
ena altogether maintain a relatively cool ocean and hence 
a very stable atmospheric boundary layer. Overall, about 
40 % of the tropical ocean is occupied by positive EIS val-
ues (Table 5). The mean strength of the inversion, defined 
as average EIS over regions with positive EIS, is about 2 K 
(Table  5). In comparison, EIS is much higher in the KH 

Table 4   The three scaling factors in decomposing EIS changes in 
eight abrupt4xCO2 simulations

First row: The ensemble-mean and cross-model standard deviation of 
α, β and γ, based on effective radiative forcing and tropical oceanic 
warming in the first 30 years of eight abrupt4xCO2 simulations. Sec-
ond row: As in the first row, but for the values of α, β and γ, obtained 
empirically. Third row: As in the first row, but for the last 30 years. 
Fourth row: As in the second row, but for the last 30  years. The 
ensemble-mean and cross-model standard deviation of the correlation 
between ∆EIS(abrupt4xCO2) and the sum of the first three terms on 
the right side of Eq. (3) are also shown
1   and 2 indicate the theoetical and empirical methods to decompose 
EIS changes

α β γ r

First 30 years1 1 0.64 (±0.10) 0.64 (±0.10) 0.73 (±0.15)

First 30 years2 1.10 (±0.51) 0.60 (±0.15) 0.63 (±0.17) 0.75 (±0.12)

Last 30 years1 1 0.96 (±0.18) 0.96 (±0.18) 0.74 (±0.11)

Last 30 years2 1.01 (±0.59) 0.72 (±0.20) 0.89 (±0.25) 0.76 (±0.09)
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domains (represented by black boxes in Fig. 1), averaging 
up to 5 K (Table 5). To assess the uncertainty in reanlysis, 
we also examine two other reanalysis data sets, NCAR/
NCEP and MERRA over the same period (1979–2008). 
The geographic distribution of present-day EIS based on 
the two data sets (not shown) is very similar to Fig. 1a. Dis-
crepancy in both inversion coverage and strength is gener-
ally less than 20 % among different data sets (Table 5).

The geographic distribution of ensemble-mean present-
day EIS in 18 coupled model simulations is shown in Fig. 1b. 
Coupled models as an ensemble capture the geographic 
distribution of EIS in reanalysis reasonably well. Neverthe-
less, simulated EIS is negatively biased near the west coasts 
of continents. Averaged over the KH domains and the 18 

(a)

(b)

(c)

Fig. 1   Geographic distribution of present-day EIS (1979–2008) in 
both reanalysis and simulations. a The ERA-Interim reanalysis. b The 
ensemble-mean of 18 coupled model simulations. c The ensemble-
mean of 13 amip simulations. The thick curve in each diagram repre-

sents the zero contour line. The main low cloud regions off the coasts 
of Peru, Namibia, Australia, California and Canary are represented by 
five black boxes and referred to as the KH domains throughout the 
paper

Table 5   Areal coverage of the present-day (1979–2008) tropical 
inversion (A), the mean inversion strength (EIS), and the average EIS 
over the KH domains (EISkh) in reanalysis and simulations

1st column: Values based on ERA-Interim. 2nd column: Values based 
on NCAR/NCEP. 3rd column: Values based on MERRA. 4th column: 
The ensemble-mean of 18 coupled model simulations. 5th column: 
The ensemble-mean of 13 amip simulations. The cross-model stand-
ard deviation of all quantities in columns 4–5 are shown in parenthe-
ses. Unit for EIS is K

ERA-
Interim

NCAR/
NCEP

MERRA Coupled  
model

amip

A 0.42 0.37 0.29 0.31 (±0.11) 0.28 (±0.10)

EIS 2.23 1.86 2.35 1.89 (±0.33) 2.50 (±0.22)

EISkh 5.02 4.37 4.29 3.18 (±1.20) 4.48 (±0.64)
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models, EIS is only about 3 K (which is 1 K lower than the 
lower bound of the EIS range suggested by reanalysis, see 
Table 5; Fig. 2a). This negative bias is systematic and occurs 
in 16 out of the 18 models (Fig. 2a). To identify the sources of 
the bias, we compare simulated Ts and T700 with the respec-
tive quantities in reanalysis. Simulated Ts is greater than the 
upper bound of the Ts range suggested by reanalysis in 13 out 
of 18 coupled simulations (Fig. 2b), while simulated T700 lies 
within the T700 range suggested by reanalysis in most coupled 
model simulations (Fig. 2c). Therefore, the negative EIS bias 
in the coupled model simulations is primarily attributable to 
the warm bias in Ts. This warm bias is commonly seen at the 
west coasts of subtropical continents in fully coupled atmos-
phere-ocean simulations (Zheng et al. 2011; Xu et al. 2013).

To investigate the EIS bias further, we examine 13 amip 
simulations, AGCM simulations forced by observed SST 
(see Sect. 2 for detail). We expect Ts, and subsequently EIS 
to be less biased in these simulations. Figure 1c shows the 
geographic distribution of ensemble-mean present-day EIS 
in amip simulations. Consistent with our expectation, EIS 
off the west coasts of continents is considerably larger in 
amip simulations than coupled model simulations (compar-
ing Fig. 1b, c). Averaged over the KH domains and the 13 
amip simulations, EIS is close to 4.5 K (Table 5). This is 
about 1  K greater than the ensemble-mean EIS in the 18 
coupled model simulations, and is in better agreement with 
the EIS in reanalysis (Fig. 2a). The EIS bias is reduced in 
most individual amip simulations as well (Fig.  2a). This 
reduction is mostly attributable to the fact that Ts is better 
simulated in amip simulations than in coupled model simu-
lations (Fig. 2b). As for T700, there are no significant differ-
ences between the two types of simulations (Fig. 2c). It is 
worth noting that given the importance of EIS in regulating 

LCC, the negative EIS bias may contribute to the low LCC 
bias in coupled model simulations (Klein et al. 2013). Con-
sistent with this conjecture, the regionally-averaged LCC in 
the KH domains is greater in 9 of the 13 amip simulations 
than their respective coupled model simulations (the mean 
difference in the 9 models is 4.7 %, not shown).

Averaged over all coupled model simulations, the areal 
coverage of the inversion is 0.31, which is slightly greater 
than the lower bound of the range suggested by reanalysis 
(see Table 5). Surprisingly, the areal coverage of the inver-
sion is even lower in amip simulations than in coupled 
model simulations.

4 � EIS change in AGCM simulations

4.1 � ∆EIS(FR)

Figure 3a shows the geographic distribution of ensemble-
mean ∆EIS(FR) in the eight AGCMs with necessary data 
available. The ensemble-mean ∆EIS(FR) is positive eve-
rywhere, but generally less than 0.4 K. In the subtropical 
Atlantic ocean, however, it can reach up to 0.6 K. Averaged 
over the eight models, ∆EIS(FR) increases the areal cover-
age of inversion by about 0.04, the mean inversion strength 
by 0.36 K and the average inversion strength over the KH 
domains by 0.44  K (Table  6). Our estimate of ∆EIS(FR) 
due to CO2 quadrupling is consistent with the estimate in 
Webb et al. (2012)—a EIS increase of 0.1–0.2 K for CO2 
doubling.

Since SST does not change by construction in the fast 
response case (Fig.  3b), the positive values of ∆EIS(FR) 
are exclusively attributable to the positive values of 

(a) (b) (c)

Fig. 2   Various present-day quantities averaged over the KH domains. a EIS. b Ts. c T700. The error bars represent the range of each quantity in 
reanalysis (Re), the open circles the individual coupled model (CM) or amip simulations and the cross signs the ensemble-means
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∆T700(FR) (Fig.  3c). An increase in GHG concentra-
tion with fixed SST could lead to increases of T700 over 
the ocean through two processes. First, the GHG increase 
reduces lower tropospheric cooling by trapping more 

longwave radiation, in situ. Second, the GHG increase 
induces rapid warming over land. Through tropical cir-
culation, this warming could have a remote impact on 
tropospheric temperature over the ocean, as suggested by 
the somewhat larger warming at T700 over oceanic regions 
adjacent to land areas.

To assess the relative importance of these two processes, 
we examine EIS in 6 aquaControl/aqua4xCO2 simulations 
(see Appendix 2). Averaged over the six simulations, the 
EIS increase due to CO2 quadrupling is about 0.13 K and 
largely independent of latitude (Fig. 12). This EIS increase 
accounts for only 1/3 the ensemble-mean EIS increase in 
amip4xCO2 simulations (0.36 K). Assuming the difference 
in the EIS increase between aqua4xCO2 and amip4xCO2 
simulations is all attributable to the GHG-induced con-
tinental warming, this suggests that about 2/3 of the EIS 

(a)

(b)

(c)

Fig. 3   Geographic distribution of the ensemble-mean fast EIS 
change and its two components in eight AGCMs. a ∆EIS(FR). b 
1.2∆Ts(FR). c ∆T700(FR). In each diagram, the portion of grid points 

within the tropical ocean where the sign of the quantity agrees in at 
least 7 models is shown at the upper-right corner

Table 6   The ensemble-mean changes in the areal coverage of inver-
sion (∆A), the mean inversion strength (∆EIS), and the average EIS 
over the KH domains (∆EISkh) due to FR, UOW and NOW in eight 
AGCMs

The cross-model standard deviations of various changes are shown in 
parentheses

FR UOW NOW

∆A 0.04 (±0.01) 0.07 (±0.03) 0.02 (±0.02)

∆EIS 0.36 (±0.09) 0.54 (±0.25) 0.39 (±0.25)

∆EISkh 0.44 (±0.14) 0.61 (±0.28) 0.38 (±0.28)
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increase in amip4xCO2 simulations (Fig.  3b) may have 
been induced by the continental warming.

4.2 � ∆EIS(UOW)

Figure 4a shows the geographic distribution of ensemble-
mean ∆EIS(UOW) in the eight AGCMs. The ensemble-
mean ∆EIS(UOW) is positive throughout the tropical 
ocean, with elevated values off the west coasts of conti-
nents and in the eastern equatorial Pacific. The positive 
sign of the ensemble-mean ∆EIS(UOW) is attributable to 
the fact that the ensemble-mean ∆T700(UOW) (Fig. 4c) is 
larger than the ensemble-mean 1.2∆Ts(UOW) (Fig.  4b). 
Averaged over the eight models, ∆EIS(UOW) increases 

the areal coverage of inversion by 0.07, the mean inversion 
strength by 0.54 K and the average inversion strength over 
the KH domains by 0.61 K (Table 6).

The EIS change in the six aqua4K simulations is quanti-
fied (see Fig. 12c in Appendix 2). Averaged over the tropi-
cal ocean and the six simulations, EIS increases by 0.5 K. 
This is close to the ensemble-mean EIS change in amip4K 
simulations (Table  6). Our expectation was that the lapse 
rate in deep convective regions would remain close to the 
moist adiabat, in which case EIS should not change from 
amip to amip4K (or aquaControl to aqua4K) simula-
tions. Yet, EIS increases by about 0.5  K in the tropics in 
both amip4K and aqua4K simulations. Note that this also 
implies continental warming plays a secondary role in driv-
ing the EIS increase in amip4K simulations. To understand 

(a)

(b)

(c)

Fig. 4   Geographic distribution of the ensemble-mean EIS change 
due to uniform oceanic warming and its two components in eight 
AGCMs. a ∆EIS(UOM). b 1.2∆Ts(UOM). c ∆T700(UOM). In each 

diagram, the portion of grid points within the tropical ocean where 
the sign of the quantity agrees in at least 7 models is shown at the 
upper-right corner
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which vertical levels deviate most from the moist adiabat, 
we examine the vertical profile of potential temperature 
change averaged over the 10S-10N latitude band in the six 
aqua4K simulations (see Fig. 13 in Appendix 2). While the 
simulated change in potential temperature generally fol-
lows the moist adiabat from the surface to 850  hPa, it is 
robustly more positive than the moist adiabat between 850 
and 600 hPa. This warming aloft greater than the moist adi-
abat is what drives the EIS increase in the aqua4K simu-
lations. The deviation from the moist adiabat between 850 
and 600  hPa may be attributed in part to the increase in 
humidity throughout the troposphere associated with warm-
ing. The humidity increase may reduce lower tropospheric 

cooling relative to upper tropospheric cooling by trapping 
more long wave radiation, in situ and thus induce a small 
warming relative to the moist adiabat in T700.

4.3 � ∆EIS(NOW)

The geographic distribution of ensemble-mean 
∆EIS(NOW) in the eight AGCMs is shown in Fig. 5a. The 
ensemble-mean ∆EIS(NOW) exhibits more spatial varia-
tions than the ensemble-mean ∆EIS(FR) and ∆EIS(UOW).  
It is positive in much of the subtropical ocean (especially 
the southeast Pacific), and negative in the eastern equatorial 
Pacific. The positive values of ∆EIS(NOW) are primarily 

(a)

(b)

(c)

Fig. 5   Geographic distribution of the ensemble-mean EIS change 
due to nonuniform oceanic warming and its two components in eight 
AGCMs. a ∆EIS(NOM). b 1.2∆Ts(NOM). c ∆T700(NOM). Note 
that to get ∆EIS(NOM), ∆Ts(NOM) and ∆T700(NOM), we removed 
∆EIS(UOM), ∆Ts(UOW) and ∆T700(UOW) from the overall EIS, 

Ts and T700 changes in amipFuture simulations, respectively. In each 
diagram, the portion of grid points within the tropical ocean where 
the sign of the quantity agrees in at least 7 models is shown at the 
upper-right corner
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attributed to negative values of 1.2∆Ts(NOW) (Fig.  5b) 
and to a lesser extent, the positive values of ∆T700(NOW) 
(Fig.  5c), while the negative values of ∆EIS(NOW) are 
attributed to the positive values of 1.2∆Ts(NOW). The 
spatial variations in 1.2∆Ts(NOW) can subsequently be 
attributed to the fact that the subtropical ocean (10–30 S/N) 
warms less than the equatorial ocean (10S-10N) (see 
Fig. 5b). Averaged over all models, 1.2∆Ts(NOW) is 0.5 K 
less in the subtropical ocean than the equatorial ocean. This 

nonuniform warming is robust and occurs in every model. 
It is attributed in part to differences in local feedbacks 
between the two regions (Liu et al. 2005; Xie et al. 2010). 
In contrast, ∆T700(NOW) is relatively uniform in the trop-
ics, owing to the dynamical constraint of a weak tempera-
ture gradient in the tropical free-troposphere.

Averaged over the eight models, ∆EIS(NOW) increases 
the areal coverage of the inversion by 0.02, the mean inver-
sion strength by 0.39 K and the average inversion strength 

Fig. 6   Scatterplots of EIS changes averaged over the tropical ocean 
with inversion versus changes in the tropical SST in 8 abrupt4xCO2 
simulations. The blue dots represent the yearly changes in EIS and 
tropical SST in abrupt4xCO2 simulations relative to the respective 
climatological values in the piControl simulations. The red crosses 

represent changes in the mean inversion strength and tropical SST in 
amip4xCO2 simulations. Note that by construction there is no change 
in the tropical SST in amip4xCO2 simulations. The best-fit regres-
sion line between the two quantities is also shown in each diagram, 
as well as the correlation between the two quantities
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over the KH domains by 0.38 K (Table 6). Note that to cal-
culate changes in the inversion coverage due to NOW, we 
add ∆EIS(NOW) to simulated present-day EIS and com-
pute the inversion coverage associated with the perturbed 
EIS field. Then we quantify the difference with present-
day inversion coverage. Our estimate of the temperature-
mediated EIS change is in good agreement with Webb et al. 
(2012). According to their work, the CMIP3 ensemble-
mean temperature-mediated EIS change normalized by 
the global-mean temperature change is about 0.1–0.2 K/K 
(see their Fig.  7e). Using the ensemble-mean values of 
∆EIS(UOW) and ∆EIS(NOW) as well as the ensemble-
mean global-mean temperature change in both amip4K and 
amipFuture simulations (4.5  K), we estimate the CMIP5 
ensemble-mean temperature-mediated EIS change to be 
0.2 K/K.

5 � EIS change in the coupled model simulations

5.1 � Decomposing EIS change

The annual-mean EIS change in 8 abrup4xCO2 simula-
tions is scattered against the corresponding increase in the 
annual-mean tropical SST in Fig.  6. We find that the EIS 
changes in many simulations are a nonlinear function of 
tropical warming: EIS increases rapidly with warming dur-
ing the first few decades, but stagnates afterwards. This is 
further supported by the small correlation between the EIS 
and SST changes in most models. Because of this nonlin-
earity, the intercept of the best-fit regression line between 
the two quantities is generally much greater than the esti-
mated fast EIS response based on amip4xCO2 simulations 
(red crosses in Fig. 6). This suggests that the Gregory et al. 

(a)

(b)

(c)

Fig. 7   Geographic distribution of the ensemble-mean EIS change 
and its two components in the first 30  years of eight abrupt4xCO2 
simulations. a ∆EIS(abrupt4xCO2). b1.2∆Ts(abrupt4xCO2). c ∆T700

(abrupt4xCO2). In each diagram, the portion of grid points within the 
tropical ocean where the sign of the quantity agrees in at least 7 mod-
els is shown at the upper-right corner
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(2004) linear-regression method is not appropriate when 
the curves are nonlinear.

Figure 7 shows the geographic distribution of ensemble-
mean EIS change and associated changes in Ts and T700 
averaged over the first 30 years of eight abrupt4xCO2 sim-
ulations. There are widespread EIS increases in a warming 
climate. The largest increase occurs primarily in the east-
ern parts of subtropical oceans, consistent with the small 
surface warming there (Fig. 7b). In the North Atlantic, the 
regional EIS increase is further enhanced by a maximum 
of ∆T700(abrupt4xCO2) that appears related to a strong 
warming over the North Africa (Fig. 7c). Overall, the spa-
tial variations in the ensemble-mean ∆EIS(abrupt4xCO2) 
are mostly attributable to the spatial variations in the 
ensemble-mean ∆Ts(abrupt4xCO2) rather than the spatial 
variations in the ensemble-mean ∆T700(abrupt4xCO2). 
Comparison of Figs.  7a and 3, 4 and 5a reveals that the 
geographic distribution of ∆EIS(abrupt4xCO2) apparently 
bears more resemblance to the geographic distribution of 
ensemble-mean ∆EIS(NOW) than those of the ensemble-
mean ∆EIS(FR) and ∆EIS(UOW). In the first 30  years 
of abrupt4xCO2 simulations, the areal coverage of the 
inversion increases on average by 0.1, and the mean EIS 
increases by about 1 K for the inversion as a whole as well 
as the KH domains (Fig. 8; Table 7).

To decompose the EIS change in the first 30  years of 
abrupt4xCO2 simulations, we quantify the various terms 
(FR, UOW, NOW and residual) of ∆EIS(abrupt4xCO2) 
using Eq. (3). Recall that the terms of FR, UOW and NOW 
are computed by rescaling ∆EIS(FR), ∆EIS(UOW) and 
∆EIS(NOW) based on the effective radiative forcing and 
tropical oceanic warming in abrupt4xCO2 simulations. 
It turns out that averaged over the 8 models, the three 
terms make comparable contributions to various inversion 
changes, while the contribution of the residual term is small 
(Fig. 8).

The geographic distribution of ensemble-mean EIS 
change averaged over the last 30 years (years 121–150) of 
eight abrupt4xCO2 simulations (not shown) is very simi-
lar to Fig. 7a. The magnitudes of various inversion changes 
increase slightly from the first to last 30 years of the simu-
lations (Table 7), due to the increasing magnitudes of UOW 
and NOW terms in the last 30 years (Fig. 8). The FR term 
is unchanged because α = 1 for both periods (Table 4). On 
average, the residual term contributes little to changes in 
the inversion coverage and the average EIS over the KH 
domains. Nevertheless, it has a small, negative contribution 
to the mean EIS for the inversion as a whole.

(a)

(b)

(c)

Fig. 8   Changes in the tropical inversion and their four contribu-
tors in the first and last 30  years of eight abrupt4xCO2 simula-
tions. a Changes in the areal coverage of the tropical inversion (∆A

(abrupt4xCO2)). b Changes in the mean inversion strength (∆EIS

(abrupt4xCO2)). c Changes in the average EIS over the KH domains 
(∆EISkh (abrupt4xCO2))Table 7   The ensemble-mean and cross-model standard deviation of 

various inversion changes in 8 abrupt4xCO2, 8 RCP8.5 and 4 LGM 
simulations

1st column: Changes in the areal coverage of inversion (∆A). 2nd 
column: Changes in the mean inversion strength (∆EIS). 3rd column: 
Changes in the average EIS over the KH domains (∆EISkh). Unit for 
the EIS change is K

∆A ∆EIS ∆EISkh

abrupt4xCO2 (first 
30 years)

0.10 (±0.02) 1.10 (±0.24) 1.23 (±0.20)

abrupt4xCO2 (last 
30 years)

0.12 (±0.03) 1.17 (±0.28) 1.36 (±0.27)

RCP8.5 0.10 (±0.04) 0.86 (±0.23) 0.97 (±0.18)

LGM 0.04 (±0.03) 0.47 (±0.18) 0.58 (±0.36 )
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5.2 � Early versus late EIS change

To understand the nonlinear behavior of the EIS response 
in abrupt4xCO2 simulations (Fig.  6), we quantify the 

temperature-mediated EIS changes for the early and late 
stages of the simulations. For the early stage, we remove 
the fast EIS response from the overall EIS change aver-
aged over the first 30  years of the simulations. This is 

(a)

(b)

(c)

(d)

Fig. 9   Geographic distribution of the temperature-mediated compo-
nent of EIS change and associated Ts change in eight abrupt4xCO2 
simulations. a The temperature-mediated component of EIS change 
in the first 30 years. b The temperature-mediated component of EIS 
change between the first and last 30 years. c Normalized Ts change in 

the first 30 years. d Normalized Ts change between the first and last 
30 years. In each diagram, the portion of grid points within the tropi-
cal ocean where the sign of the quantity agrees in at least 7 models is 
shown at the upper-right corner
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equivalent to adding the terms of UOW, NOW and residual 
for that period altogether (see Fig.  8). For the late stage, 
we subtract the overall EIS change averaged over the first 
30  years from the overall EIS change averaged over the 
last 30  years. To facilitate comparison, we normalize the 
temperature-mediated EIS change in the early stage by the 
tropical SST change averaged over the first 30 years, and 
normalize the temperature-mediated EIS change in the late 
stage by the difference in tropical SST change between the 
first and last 30 years.

The geographic distributions of the ensemble-mean tem-
perature-mediated EIS change in the early and late stages 
are shown in Fig.  9a, b. We find that the EIS increase is 
generally much less in the late stage than the early stage. 
This is especially true in the eastern parts of the subtropical 

oceans. In several oceanic regions (e.g., the eastern equato-
rial Pacific and the Californian region), EIS even decreases 
in the late stage, in contrast to the early stage when EIS 
generally increases. Averaged over the tropical ocean with 
inversion, the ensemble-mean, temperature-mediated EIS 
change is 0.29 K/K in the early stage and only 0.06 K/K 
in the late stage (the cross-model standard deviation of 
temperature-mediated change in the two stages is respec-
tively: 0.09 and 0.08  K/K). Together with the fact that 
the ensemble-mean tropical SST change is less in the late 
stage (1.3 K) than in the early stage (2.5 K), this difference 
accounts for the smaller EIS change in the late stage than in 
the early stage (see Fig. 6; Table 7).

The nonlinear EIS response in abrupt4xCO2 simula-
tions may arise from differences in the surface warming 

(a)

(b)

(c)

Fig. 10   Geographic distribution of the ensemble-mean EIS change 
and its two components in four LGM simulations. a∆EIS(LGM). b 
1.2∆Ts(LGM). c∆T700(LGM). In each diagram, the portion of grid 

points within the tropical ocean where the sign of the quantity agrees 
in at least 3 models is shown at the upper-right corner
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pattern between the early and late stages of the simulations. 
To assess this hypothesis, we compare the geographic dis-
tribution of the ensemble-mean ∆Ts in the two stages. To 
facilitate comparison, we normalize ∆Ts in the two stages 
by the corresponding increase in tropical SST. The geo-
graphic distributions of the ensemble-mean, normalized 
∆Ts are shown in Fig.  9c, d. Consistent with differences 
in the EIS change between the two stages, the ensemble-
mean Ts change in the eastern parts of the subtropical 
oceans is generally greater in the late stage than the early 
stage. Averaged over the tropical ocean with inversion, the 
ensemble-mean, normalized Ts change is 0.96 K/K in the 
early stage and 1.12 K/K in the late stage. In contrast, the 
ensemble-mean, normalized T700 change (not shown) is 
slightly greater in the early stage (1.44 K/K) than the late 
stage (1.38 K/K). Consistent with this information, a typi-
cal spatial correlation of the SST change pattern between 
amipFuture and abrupt4xCO2 simulations is significantly 
higher in the early stage (0.70) than the late stage (0.41). 
Based on these numbers, we conclude that the decreas-
ing rate of EIS increase in the late stage of abrupt4xCO2 
simulations is largely driven by delayed warming in the 
eastern parts of the subtropical oceans relative to the rest 
of the tropics.

5.3 � EIS changes in RCP8.5 and LGM simulations

We also examine EIS changes in 8 RCP8.5 and 4 LGM 
simulations. The geographic distribution of the ensemble-
mean EIS change in 8 RCP8.5 simulations (not shown) 
is very similar to Fig.  7a. Various inversion changes in 

Fig. 11   Two idealized soundings following a dry adiabat below LCL 
and a moist adiabat above it: One represents the present-day climate 
(Ts = 290, the left solid curve), and the other represents a warmer cli-
mate (Ts = 294, the right solid curve). In both cases, ps = 1,010 hPa 
and RHs = 80 %. The EIS values corresponding to the two soundings 
are calculated using Eq. (1). To illustrate EIS, in each case, we draw 
two dashed lines whose lapse rates are equal to Γ 850

m , as defined in 
Sect. 2. The horizontal distance between the two lines is measured by 
EIS. The dotted line represents the typical height of the inversion base

(a)

(b)

(c)

Fig. 12   EIS in aqua simulations. a EIS climatology in 6 aquaCon-
trol simulations. b EIS change in 6 aqua4xCO2 simulations. c EIS 
change in 6 aqua4K simulations. The gray lines in each diagram rep-
resent individual simulations, while the black thick line represents the 
ensemble-mean
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RCP8.5 simulations are close to the corresponding quanti-
ties in the first 30 years of abrupt4xCO2 simulations (see 
Table  7). This is also true for different components (FR, 
UOW, NOW, residual) of the inversion changes (not shown, 
see discussions in Sect. 2).

The geographic distribution of ensemble-mean EIS 
change in 4 LGM simulations is shown in Fig.  10a. In 

contrast to abrupt4xCO2 and RCP8.5 simulations, there 
are widespread EIS decreases in the cooler climate. The 
most widespread decrease occurs in the southeast Pacific. 
Simulated EIS decreases are attributable to the fact that the 
magnitude of 1.2∆Ts is less than the magnitude of ∆T700 
(comparing Fig.  12b, c). Averaged over the four models, 
the areal coverage of the inversion decreases by 0.04, the 

Fig. 13   Vertical profiles of potential temperature change (solid lines) 
in 6 aqua4K simulations relative to their control simulations (aquaC-
ontrol) averaged over the 10S–10N latitude band. To focus on the 
regions with deep convection (i.e., those with large upward motion 
in the mid-troposphere), we weight the potential temperature change 
by total precipitation (including both convective and non-convective) 
before spatially averaging it. The corresponding profiles of potential 

temperature change implied by moist adiabatic lapse rate are also 
shown for comparison (dashed lines). To get these profiles, we first 
compute the potential temperature at each level in both aquaControl 
and aqua4K simulations using moist adiabatic lapse rate (see Appen-
dix 1 for detail), as well as simulated sea level pressure and tempera-
ture. (Surface relative humidity is fixed at 80 %.) Then, we calculate 
the difference between the two potential temperatures
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mean EIS decreases by 0.47 K and the average EIS over the 
KH domains decrease by 0.58 K (Table 7).

Finally, it is worth noting that while the sign of EIS 
change in both AGCM and coupled model simulations 
is largely consistent, the magnitude of the change var-
ies a great deal from model to model (see the cross-model 
standard deviation of various EIS changes in Tables  6, 
7; Fig.  8). To assess if the magnitude of simulated EIS 
change is somehow linked to models’ realism in simulat-
ing present-day EIS, we compute the cross-model correla-
tion between simulated present-day EIS and EIS change in 
the KH domains. The correlation turns out to be very small 
(r ≈ −0.1 for both early and late stages of abrupt4xCO2 
simulations), suggesting that the dynamics underpinning 
simulated EIS change are not closely related to the dynam-
ics shaping performance in simulating present-day EIS.

6 � Summary and discussion

In this study, we examine EIS in the tropical marine atmos-
phere and its response to climate change simulated in 18 
CMIP5 models. While CMIP5 models as an ensemble cap-
ture the geographic distribution of observed EIS reason-
ably well, they systematically underestimate present-day 
EIS off the west coasts of subtropical continents. Averaged 
over the KH domains and all models, the EIS bias is close 
to 1 K. This bias is largely attributable to the positive SST 
bias commonly seen in the fully coupled atmosphere-ocean 
simulations. Given the importance of EIS in regulating 
LCC, the negative EIS bias may also contribute to the low 
LCC bias in climate model simulations.

Using idealized simulations done with AGCMs, we 
demonstrate that EIS increases in response to anthropo-
genic forcing in absence of oceanic warming (FR) or oce-
anic warming in absence of anthropogenic forcing (UOW 
or NOW). Different mechanisms are responsible for the 
different EIS increases: The fast EIS increase is strongly 
impacted by the GHG-induced continental warming via 
tropical circulation. The UOW contribution is due to warm-
ing aloft greater than the moist adiabat in tropical warm 
pools. The NOW contribution is attributed to the fact that 
the warm pools warm more than the subtropical ocean.

EIS also increases in coupled model simulations 
(abrupt4xCO2 and RCP8.5), due to both fast and temper-
ature-mediated EIS changes. Both UOW and NOW con-
tribute to the temperature-mediated EIS change in these 
simulations. In abrupt4xCO2 simulations, the tempera-
ture-mediated EIS change varies with tropical warming in 
a nonlinear fashion: The EIS increase per degree tropical 
warming in the early stage of the simulations is almost five 
times the respective change in the late stage of the simula-
tions, due to delayed warming in the eastern parts of the 

subtropical oceans. Systematic decreases in the inversion 
coverage and strength are seen in the LGM simulations, 
suggesting that changes in the tropical inversion are sym-
metric with respect to the sign of climate change.

An issue which has not been discussed yet is that our 
estimates of the inversion changes are somewhat sensitive 
to an underlying assumption in deriving EIS: Surface rela-
tive humidity holds to a constant value (80  %). A small, 

(a)

(b)

Fig. 14   Changes in surface relative humidity and their influ-
ence on simulated EIS change in tropical oceanic area with posi-
tive EIS values. a The RHs change in various simulations including 
6 amip4xCO2 (FR), 6 amip4K (UOW), 6 ampiFuture (NOW), 15 
abrupt4xCO2 (abrupt), 16 RCP8.5 and 3 LGM. The RHs change due 
to FR and UOW is with respect to the corresponding amip simula-
tion, the change due to NOW is with respect to the corresponding 
amip4K simulation, the change in abrupt4xCO2 simulation is with 
respect to the corresponding piControl simulation and was aver-
aged over the first 30 years of abrupt4xCO2 simulation, the change 
in RCP8.5 simulation is between the periods 1979–2008 and 2070–
2099, and the change in LGM simulation is with respect to present-
day. b Differences in simulated EIS change due to changing RHs. To 
obtain them, we first re-compute various EIS changes using simulated 
RHs rather than 80 %. Then we quantify the difference between the 
new estimates of EIS changes and the original ones
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but systematic increase in this quantify is seen across the 
tropical ocean in a variety of climate warming simulations, 
while a small, but systematic decrease is seen in LGM sim-
ulations. Accounting for these changes in EIS calculations 
reduces estimated EIS changes by about 20 %. (See Appen-
dix 3 for detail.) Several aspects of the EIS behavior have 
not yet been fully understood, including (1) what drives 
the deviation from the moist adiabat in the warm pools, (2) 
what processes are most responsible for the uneven warm-
ing between the warm pools and the subtropical ocean, and 
(3) what drives the intermodel spread in the magnitude of 
EIS increase. Further work is necessary to answer these 
questions, and to have confidence in the model projections 
of EIS increase.

Another key question is how LCC would respond to the 
future EIS increase. Given the strong link between LCC 
and EIS, LCC ought to increase. One study by Caldwell 
et  al. (2012) supports this view. In their study, imposing 
CMIP3-model-simulated large-scale changes on a mixed 
layer model yields an increase in LCC. They attributed 
this increase primarily to the EIS increase. Furthermore, 
increases in EIS cause LCC to increase (albeit less strongly 
than observed) in many fully coupled atmosphere-ocean 
models (CMIP3 and CMIP5, see Qu et al. 2014). Neverthe-
less, LCC changes in those models are less impacted by the 
EIS increase than they are by other cloud controlling fac-
tors (e.g., an increase in SST). A recent study using Large-
Eddy Simulations also concludes that the EIS rise may be 
less important to the overall LCC change than other fac-
tors, namely the increases in moisture transport through the 
boundary layer which are fundamentally tied to the warmer 
temperature in the boundary layer (Bretherton and Blos-
sey 2014). Even so, the EIS change may still play a sig-
nificant role in coupled model simulations at least in two 
ways. First, it may contribute to the fast cloud response 
and thus modulate effective GHG radiative forcing (see 
Webb et  al. 2012). Second, due to its intrinsic nonlinear-
ity, the EIS change may contribute to the nonlinearity of 
the tropical low-cloud feedback (see Williams et  al. 2008 
and Andrews et  al. 2012). Finally, it is worth noting that 
the strategy of using idealized AGCM simulations to under-
stand the behavior of coupled model simulations may also 
be useful to study physical changes other than those in EIS.
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Appendix 1: EIS of moist adiabats

While the moist-adiabatic potential temperature gradi-
ent, Γm is function of temperature and pressure, a single 
value is used in defining EIS (see Sect.  2). To assess the 
bias associated with this assumption, we construct an ideal-
ized sounding using typical values for surface temperature 
(290 K), sea level pressure (1,010 hPa) and relative humid-
ity (80 %). The lapse rate of the sounding is dry adiabatic 
below the LCL and moist adiabatic above it (the left solid 
curve, Fig. 11). While there is no inversion in this sound-
ing, the corresponding EIS is 0.4  K. This suggests that 
EIS is a negatively biased estimate of inversion strength.

To assess whether this bias is systematic, we construct 
another idealized sounding, in which we increase the sur-
face temperature by 4 K, while keeping sea level pressure 
and relative humidity unchanged (the right solid curve, 
Fig.  11). We find that EIS in this sounding differs little 
from that in the original sounding. This suggests that the 
bias in EIS is systematic and similar for a reasonably large 
range of temperature values. Therefore, it introduces very 
little bias to the EIS changes examined in this study. It is 
worth noting that if the temperature profile follows the 
solid lines in both the present-day and warmer climates, 
the difference in 700  hPa potential temperature between 
the two climates is about 1.3 times the difference in surface 
potential temperature.

Appendix 2: EIS in aqua simulations

The climatological zonal-mean EIS in the 6 aquaControl 
simulations (gray lines) is shown in Fig. 12a. It is generally 
positive poleward of 15 degrees. Averaged over the six sim-
ulations, the areal coverage of the inversion in the region 
30S-30N is 0.53, and the mean inversion strength is 1.33 K. 
Fig. 12b shows the EIS change in the 6 aqua4xCO2 simu-
lations (gray lines). In at least 4 of the 6 models, positive 
EIS changes are seen at all latitudes. Averaged over the six 
simulations, the EIS increase is about 0.13  K and largely 
independent of latitude, with a large intermodel spread 
near 30S/N. Figure  12c shows the EIS change in the six 
aqua4K simulations. Broad EIS increases are also seen in 
these simulations, albeit with significant intermodel spread. 
Averaged over the six simulations, EIS change ranges from 
0.3 to 0.8 K, with the tropical mean of 0.5 K.

http://www.ecmwf.int/
http://www.ecmwf.int/
http://www.esrl.noaa.gov/
http://disc.sci.gsfc.nasa.gov/
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Figure  13 shows the vertical profile of potential tem-
perature change averaged over the 10S-10N latitude band 
in the six aqua4K simulations. While simulated change in 
potential temperature generally follows the moist adiabat 
(dashed lines) from the surface to 850  hPa, it is robustly 
more positive than the moist adiabat between 850 and 
600 hPa.

Appendix 3: Role of changing RHs

Surface relative humidity assumes a constant value (80 %) 
in all EIS calculations done so far. However, climate sim-
ulations suggest that RHs changes somewhat in climate 
change (Richter and Xie 2008). To assess whether these 
changes significantly affect estimated EIS change, we first 
examine the RHs in the various perturbation experiments 
analyzed in this study (Fig. 14a). Positive RHs changes are 
seen in all warming experiments, while negative changes 
are seen in LGM simulations. The ensemble-mean RHs 
change in the warming experiments ranges from 0.2 to 
1.5 %, while it is close to 1 % in LGM simulations. There 
is a large spread across models in the RHs increase within a 
particular warming experiment.

Figure 14b shows the difference in simulated EIS change 
due to changing RHs. We find that the RHs increase reduces 
simulated EIS increase in the warming experiments, while 
the RHs decrease reduces simulated EIS decrease in LGM 
simulations. This is consistent with our expectation because 
an increase in RHs tends to reduce LCL and a decrease in 
RHs tends to increase LCL (see Eq.  (1)). Note that in the 
case of NOW, the RHs increase has no systematic effect on 
simulated EIS change. Averaged over models within each 
simulation type, the RHs-induced difference in EIS change 
is generally less than 20 % of estimated EIS change with 
fixed RHs (see Tables 6, 7; Figs. 8, 14b). Note that similar 
reductions in the EIS change also occur in the aqua4xCO2 
and aqua4K simulations, which contribute up to 30  % of 
the additional warming at T700 (relative to the moist adi-
abat) seen in Fig. 13 (not shown).
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