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1  Introduction

Global Climate Models (GCMs) are an essential tool in 
assessing climate variability and change. These models, 
based on the governing physical laws such as conservation 
of mass, energy and momentum, and physical processes, 
represent large-scale (generally hundreds of kilometers and 
larger) flow patterns and dynamics of Earth system com-
ponents, including the atmosphere, ocean, land surface, 
and sea ice and have shown encouraging skill in simulat-
ing global climate responses to external forcing such as 
increased greenhouse gases (Randall et al. 2007). However, 
the ability of GCMs to simulate climate variations at local 
or even regional scales is limited by their coarse spatial res-
olution and the increasing importance of internal variability 
at small scales (Deser et al. 2014).

Dynamical downscaling provides a physically consist-
ent approach to resolve finer scale processes. Limited 
area, high-resolution climate models (Regional Climate 
Models, RCMs) are forced by lateral boundary and initial 
conditions commonly generated by a GCM (Giorgi 1990; 
Leung et al. 1999, 2004; Denis et al. 2001; Leung and Qian 
2005; Wang et  al. 2004; Liang et  al. 2008; De Sales and 
Xue 2011). RCMs have been used widely to improve the 
simulation and projection of small-scale climate informa-
tion deriving benefits from finer scales in surface charac-
teristics and improved representation of finer scale physical 
processes (Dickinson et al. 1989; Giorgi et al. 1994; Wang 
et  al. 2004; Lo et  al. 2008; Heikkila et  al. 2010; Maraun 
et  al. 2010; Qian et  al. 2009). RCMs produce high-res-
olution climate change scenarios and allow us to explore 
uncertainty due to large-scale forcing and model formula-
tion in regional-scale projections of future climate (Mearns 
et  al. 2009; PaiMazumder et  al. 2013; PaiMazumder and 
Done 2014). Dynamical downscaling has been successfully 
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employed by a number of ensemble-based regional climate 
simulation and assessment projects such as the Regional 
Climate Model Intercomparison Project for Asia (RMIP; 
Fu et  al. 2005), Ensembles-Based Predictions of Climate 
Changes and Their Impacts (ENSEMBLES; van der Lin-
den and Mitchell 2009), the North American Regional Cli-
mate Change Assessment Program (NARCCAP) (Mearns 
et al. 2009) and the Co-ordinated Regional Climate Downs-
caling Experiment (CORDEX).

The quality of any single downscaled simulation is 
inevitably limited by the quality of the boundary condi-
tions provided by the GCM and acceptable biases at global 
scales can degrade the downscaled simulation of regional 
climate and extreme weather (e.g. Liang et al. 2008; Hol-
land et  al. 2010; Ehret et  al. 2012; Xu and Yang 2012; 
Bruyère et  al. 2013; Done et  al. 2013). To compensate 
for this deficiency, some method of bias correcting driv-
ing data (known as boundary bias correction) prior to run-
ning the RCM has become a standard procedure (Xu and 
Yang 2012; Bruyère et  al. 2013; Done et  al. 2013). One 
such method used in climate change studies is to construct 
boundary conditions for a RCM by adding a seasonally and 
spatially varying climate change perturbation from a GCM 
simulation to reanalysis climate, a technique known as 
pseudo-global-warming (Schär et al. 1996; Sato et al. 2007; 
Rasmussen et  al. 2011a). Using pseudo-global-warming 
method, Rasmussen et  al. (2011a) investigated climate 
change impacts due to increased temperature and water 
vapor content on snowfall, snowpack, and runoff in the 
Colorado Headwaters region. A more recent boundary bias 
correction approach, developed by Holland et  al. (2010) 
and Bruyère et al. (2013a) corrects the seasonally varying 
mean bias in the GCM with 6-hourly reanalysis data but 
retains the six-hourly weather, longer-period climate vari-
ability, and climate change from the GCM. Application of 
this approach produces realistic tropical cyclone frequen-
cies (Holland et al. 2010; Done et al. 2013). Bruyère et al. 
(2013) showed that the correction of all boundary variables 
best reproduces regional climate across a range of metrics. 
A number of variations on this approach have been stud-
ied including; correcting bias in the mean and variance (Xu 
and Yang 2012), quantile–quantile mapping (Colette et al. 
2012), and feature location correction (Levy et  al. 2012) 
although the comparison study of White and Toumi (2013) 
recommends use of the simple mean bias correction.

In addition to bias introduced to the RCM by the driv-
ing GCM, RCMs are also subject to biases due to model 
formulation. For example, most RCMs have difficulty in 
simulating the occurrence of light and heavy precipitation 
(Fowler et al. 2007). RCMs also have larger biases for sum-
mer precipitation and temperature than other seasons, due 
to the difficulties in simulating convective rainfall (Chris-
tensen et al. 2008; Maraun et al. 2010; PaiMazumder et al. 

2013). This makes the use of RCM output data as direct 
forcing for impact models problematic (Wood et al. 2004; 
Baigorria et al. 2007; Ghosh and Mujumdar 2009; Teutsch-
bein and Seibert 2010). Therefore, some form of post-pro-
cessing bias correction of RCM output data is a necessary 
step for most climate change impact studies.

Several post-process bias correction methods ranging 
from a simple correction of the long-term mean to sophis-
ticated weather generators have been developed in the last 
decade. Roy et al. (2012) removed the mean bias of daily 
minimum and maximum temperature and applied a multi-
plication factor to daily precipitation so that the simulated 
and observed distributions have the same mean, in the out-
put from RCM simulations driven by reanalysis data and 
showed noticeable improvement in temperature and pre-
cipitation extremes. An alternative, widely used bias cor-
rection technique is to employ a transfer function derived 
from cumulative distribution functions of observed and 
simulated data (e.g., Wood et  al. 2004; Ines and Hansen 
2006; Li et al. 2010; Piani et al. 2010a, b; Dosio and Paru-
olo 2011). Using RCM simulated daily precipitation over 
Europe Piani et al. (2010a) showed that this technique per-
formed satisfactorily not only for mean but also for time 
dependent statistical properties, such as the number of 
consecutive dry days and the cumulative amount of rain-
fall for consecutive heavy precipitation days. Other, more 
advanced, bias correction methods have also been trailed 
such as quantile mapping (Themeßl et al. 2011).

Irrespective of these bias correction approaches, decreas-
ing the horizontal grid spacing to a resolution that begins 
to explicitly simulate finer-scale processes such as deep 
convection and more realistically represent finer scales of 
the land surface, has been shown to improve RCM simula-
tions for a number of studies. Ikeda et al. (2010) and Ras-
mussen et al. (2011b) showed noticeable improvements of 
simulated snowpack at horizontal resolution less than 6 km 
due to the improved representation of orographic forcing. 
Prein et al. (2013) showed a 4-km model improves upon a 
12-km model for the simulation of summertime precipita-
tion extreme events whereas for winter events, the perfor-
mance of 4- and 12-km grid models were comparable, yet 
both outperformed a 36-km simulation. However, regional 
climate simulations at these finer resolutions are computa-
tionally very expensive.

The relative importance of bias in the driving data and 
bias due to RCM model formulation in producing high-res-
olution climate scenarios for impact assessments requires 
further investigation. In particular the importance of bias 
correcting the driving data versus bias correcting the RCM 
output for the simulation of regional weather and climate 
extremes is not well understood. Recent studies that ana-
lyzed precipitation extremes in the NARCCAP ensem-
ble found large differences in the ability of the models to 
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capture the statistics of extremes (Wehner 2013; Singh 
et al. 2013). In addition, for the NARCCAP models driven 
by reanalysis data, the ability to capture day-to-day cor-
respondence with observed extremes is found to vary by 
season and distance from the domain boundary (Weller 
et al. 2013), suggesting an important role for the large-scale 
environmental forcing of extremes and the potential for 
improvements through bias correcting the driving data.

The overarching goal of this study is to determine the 
relative merits of bias correcting RCM driving data versus 
bias correcting the RCM output, and whether the benefits 
of bias correction outweighs the benefits of high resolution 
for the simulation of summer extremes. Model evaluation 
is focused on the simulation of summertime temperature 
and precipitation extremes since these provide a hard test 
for the modeling systems, are variables that are widely 
used for impact assessments, and simulation skill of the 
extremes cannot be inferred from simulation skill of mean 
quantities (Wehner 2013). The specific objectives are (1) to 
assess the baseline dynamical downscaling ability of RCMs 
when driven by GCM data to reproduce the observed statis-
tics of precipitation and temperature extremes, (2) to assess 
the relative merits of bias correcting RCM driving data ver-
sus bias correcting the RCM output, and (3) to assess the 
benefits of bias correction approaches compared to higher 
resolution.

2 � Experimental design

The experimental approach uses global model simulations 
to drive limited area regional models combined with two 
bias correction techniques. Simulations are analyzed for 

statistics of summer (June–July–August) extremes for nine 
climatic regions (Fig. 1) across the US and evaluated using 
reanalysis data.

2.1 � Dynamical model simulations

Global model data are provided by an existing simulation 
run using the Community Climate System Model ver-
sion 3 (CCSM3; Collins et al. 2006a) as part of the Cou-
pled Model Intercomparison Project 3 (CMIP3, Meehl 
et  al. 2007). CCSM3.0 is a fully-coupled climate-system 
model consisting of the Community Atmosphere Model 
(CAM) version 3 (Collins et  al. 2006b), the Community 
Land Model (CLM) version 3 (Dai et  al. 2003; Oleson 
et  al. 2004; Dickinson et  al. 2006), the Community Sea 
Ice Model (CSIM) version 5 (Briegleb et al. 2004) and the 
Parallel Ocean Program (POP) version 1.4.3 (Smith et  al. 
1992). The CCSM3 simulation used here was initialized in 
1850 and ran under 20th Century emissions at T85 reso-
lution (approximately 1.4° grid spacing in the atmosphere, 
and 1° in the ocean) using 26 vertical layers.

These global data have been downscaled using multiple 
RCMs. Done et  al. (2013) describe one such set of down-
scaled data using the Nested Regional Climate Model 
(NRCM; Bruyère et  al. 2013b, based on the Weather 
Research and Forecasting model, Skamarock et  al. 2008) 
at two different grid spacings (36- and 12  km) over large 
domains that cover most of North America and the North 
Atlantic (Fig.  1) for the period 1995–2005. The CCSM3 
data were used to drive the 36  km domain, which in turn 
was used to drive the nested 12 km domain, using one-way 
nesting. To explore downscaling ability of climate extremes 
and bias correction across multiple RCMs, we additionally 

Fig. 1   NRCM model domain at 36  km grid spacing (larger black 
domain) and 12 km grid spacing (smaller magenta domain), and three 
NARCCAP models (at 50 km grid spacing): CRCM (green domain); 
MM5I (blue domain) and WRFG (red domain). Nine climatic regions 

over the US are indicated where 1 Northwest, 2 West, 3 Southwest, 
4 Northern Rockies and Plains, 5 South, 6 Southeast, 7 Northeast, 8 
Ohio Valley and 9 Upper Midwest
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analyze three other RCM simulations available to us from 
the NARCCAP  (Mearns et  al. 2007). Conveniently, these 
simulations were driven using the same global CCSM3 
dataset in addition to NCEP/NCAR reanalysis data for the 
period 1979–1999. Specifically, we analyze simulations 
from the Canadian Regional Climate Model (CRCM; Caya 
and Laprise 1999), the Weather Forecasting and Research 
Model (WRFG; Michalakes et al. 2004) and the PSU/NCAR 
Mesoscale Model (MM5I; Grell et  al. 1995) that were run 
using 50-km grid spacing and a smaller domain than NRCM 
(Fig. 1). WRFG and NRCM36 both use WRF as their base 
model. NRCM36 uses the Kain–Fritsch cumulus scheme 
while WRFG uses the Grell scheme.

2.2 � Evaluation datasets

NCEP Climate Forecast System Reanalysis (CFSR; Saha 
et  al. 2010) is a global, high resolution, coupled atmos-
phere–ocean-land surface-sea ice system designed to pro-
vide the best estimate of the state of the atmosphere. CFSR 
hourly 2 m temperature (at 0.3° grid spacing) and precipi-
tation (at 0.5° grid spacing) for the period 1995–2005 are 
used to evaluate the RCM datasets. Although various stud-
ies have shown improvements of the CFSR dataset over ear-
lier reanalysis products, noticeable biases remain. Eichler 
and Londoño (2013) urged caution in the use of reanalysis 
data such as CFSR to assess regional climate variability, 
especially in areas of steep topography. Although several 
studies showed that CFSR improved the precipitation dis-
tribution and daily precipitation statistics compared to ear-
lier reanalysis products (Higgins et  al. 2010; Wang et  al. 
2011; Wang and Zeng 2012), the dataset may miss the very 
extreme values, particularly for precipitation. However, 
the relatively high resolution of the CFSR data (0.3°–0.5° 
grid spacing) allows for comparison with the similar reso-
lution RCM datasets. In addition, CFSR temperature and 
precipitation fields are similar to other observational data-
sets. For example, CFSR and NOAA CPC daily precipita-
tion data are highly correlated (average correlation over the 
US is 0.532 and peaks at 0.985). In this study, CFSR data 
are used to assess the relative merits of two bias correction 
approaches in the context of model resolution sensitivity. 
It is possible that the high-resolution simulation may be 
penalized by using a coarser resolution CFSR evaluation 
dataset and this is discussed further in Sect. 4. CFSR data 
are also used to remove systematic bias (described below) 
from simulated temperature and precipitation.

2.3 � Bias correction techniques

The relative merits of bias correcting RCM driving data 
versus bias correcting the RCM output data are assessed for 
the NRCM simulations only. Two bias correction methods 

are evaluated. Boundary Bias Correction (BBC described 
later in Sect. 2.3.1) is applied to the driving global model 
data prior to driving the RCM, and Systematic Bias Correc-
tion (SBC, described later in Sect. 2.3.2) removes the mean 
bias from the RCM output data.

2.3.1 � Boundary bias correction (BBC)

BBC is described in Bruyère et al. (2013) and Done et al. 
(2013) and removes the mean bias in the annual cycle from 
CCSM3 data while retaining the simulated synoptic and 
longer timescale variability. Briefly, 6-hourly CCSM3 data 
are broken down into a mean annual cycle plus a perturba-
tion term. The mean annual cycle is then replaced with a 
mean annual cycle calculated using NCEP/NCAR Reanaly-
sis Project (NNRP, Kalnay et al. 1996) data for the period 
1975–1994. BBC is applied to all variables needed to gen-
erate the lateral boundary conditions for NRCM; zonal and 
meridional wind, geopotential height, temperature, relative 
humidity, mean sea level pressure, and lower boundary 
condition of sea surface temperature. BBC is applied prior 
to running the 36 km NRCM simulation and this simulation 
is referred to hereafter as NRCM36_BBC. NRCM36_BBC 
is further downscaled using high-resolution (12  km grid 
spacing) simulation nested within the NRCM36_BBC sim-
ulation (Fig. 1) and the resulting data are referred to hereaf-
ter as NRCM12_BBC.

2.3.2 � Systematic bias correction (SBC)

The relative merits of NRCM36 are assessed under an 
unbiased mean state, where the systematic bias of each 
simulated variable is removed, following Roy et al. (2012). 
The correction is calculated and applied at each model 
grid point. For temperature, the mean monthly bias is 
interpolated to 6-hourly values and subtracted from each 
simulated 6-hourly value over the period 1995–2005. For 
precipitation, a multiplication factor is calculated based 
on the ratio of mean monthly observation and simulation 
and applied to the 6-hourly values so that the two distribu-
tions have the same mean. The systematic bias is removed 
from 6-hourly temperature and precipitation simulated by 
NRCM36 and the resulting data are referred to hereafter as 
NRCM36_SBC. This systematic bias correction technique 
was successfully used to assess the ability of climate mod-
els to reproduce climate extremes (Roy et  al. 2012). All 
downscaled datasets analyzed in this study are summarized 
in Table  1. Although NNRP data are used to bias correct 
the driving global model data, and CFSR data are used to 
bias correct the RCM outputs and CFSR data are used to 
evaluate the experiments, this is not an unfair comparison 
since Wang and Zeng (2012) suggested that no reanalysis 
product is superior to others in all variables at both daily 
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and monthly time scales. In addition, there is a high corre-
lation between CFSR and NNRP June–July–August mean 
temperature for the period 1995–2005, with an average cor-
relation across the US of 0.798 that peaks at 0.995. For sea-
sonal mean precipitation, the average correlation is 0.498 
and peaks at 0.998.

2.3.3 � Boundary systematic bias correction (BSBC)

The systematic bias is removed from 6-hourly temperature 
and precipitation simulated by NRCM36_BBC and the 
resulting data are referred to hereafter as NRCM36_BSBC 
using similar systematic bias correction technique men-
tioned in the previous Sect.  (2.3.2). The relative mer-
its of NRCM36, NRCM36_BBC, NRCM36_SBC and 
NRCM36_BSBC to simulate temperature and precipitation 
extremes are assessed in this article.

2.4 � Assessment indices

Daily minimum temperature (Tmin), daily maximum tem-
perature (Tmax) and daily precipitation (Prec) are used to 
derive six extreme indices (Table 2) for each summer. The 
temperature indices are chosen to assess the intensity of hot 
and cold extremes using the 90th percentile of Tmax and the 
10th percentile of Tmin for each summer. For precipitation, 
the frequency of wet days (using a threshold of 1 mm/day, 

see Hennessy et  al. 1999), the maximum number of con-
secutive dry days (CDD) and extremes of daily precipita-
tion totals using the 90th percentile value for each summer 
are assessed. Systematic bias correction is performed on 
NRCM36 and NRCM36_BBC simulated temperature and 
precipitation prior to calculating Tmin, Tmax and the extreme 
temperature and precipitation indices.

2.5 � Performance measures

A set of performance measures (Table 3) is used to assess 
the ability of the RCMs to reproduce observed extremes 
for each climatic region (defined later in Sect.  2.6). Bias 
indicates systematic error caused by differences in physi-
cal and/or geometric factors (terrain elevation, vegetation 
type, vegetation fraction, soil type, etc.) between simula-
tion and observations. The root-mean-square error (RMSE) 
assesses the average magnitude of the error. The stand-
ard deviation error (SDE) assesses the average magnitude 
of the error when the bias is removed and therefore indi-
cates the average magnitude of the error in the variability. 
SDE stems from observational error, or from initialization 
and boundary conditions of the model. The variance ratio 
(VR), defined as the ratio of the simulated variance to the 
observation variance, is used to assess the ability of RCMs 
to reproduce the spread of the summer season extremes. 
If VR <1, model variance is less than observed and if VR 
>1 model variance is greater than observed. Finally, Spear-
man’s correlation (SC) is used to assess the ability of the 
simulations to capture the spatial pattern of the extremes 
within each climatic region.

Statistical significance tests are performed to assess 
the significance (at the 95  % confidence level) of differ-
ences in temperature and precipitation extremes simu-
lated by NRCM36, NRCM36_BBC, NRCM36_SBC, 
NRCM36_BSBC and NRCM36_BBC in comparison to 
CFSR. Given that extremes are not normally distributed the 
t test is not the most appropriate significance test. Instead 

Table 1   Description of regional climate model experiments

Experiment Model Full name/description Driving data Grid spacing (km) Period

CRCM CRCM Canadian Regional Climate Model CCSM3 50 1979–1999

MM5I MM5 MM5—PSU/NCAR Mesoscale model CCSM3 50 1979–1999

WRFG WRF Weather Forecasting and Research Model CCSM3 50 1979–1999

NRCM36 WRF Nested Regional Climate Model CCSM3 36 1995–2005

NRCM36_BBC WRF Boundary bias-corrected Nested Regional Climate Model Bias corrected CCSM3 36 1995–2005

NRCM36_SBC WRF Systematic bias-corrected Nested Regional Climate  
Model

CCSM3 36 1995–2005

NRCM36_BSBC WRF Boundary and systematic bias-corrected Nested Regional 
Climate Model

Bias corrected CCSM3 36 1995–2005

NRCM12_BBC WRF Boundary bias-corrected Nested Regional Climate Model NRCM36_BBC 12 1995–2005

Table 2   Five extreme indices used to analyze hot and cold extremes, 
and precipitation intensity and frequency extremes

Name Definition (unit)

Tx90 90th percentile of Tmax (K)

Tn10 10th percentile of Tmin (K)

WD Days with precipitation ≥1 mm (days)

CDD Maximum number of consecutive dry days (days)

P90 90th percentile of daily precipitation (mm/day)
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the classical non-parametric Wilcoxon–Mann–Whitney 
rank-sum test is used. Wilks (2006) states that this test is 
resistant to outliers and robust in the sense that it is almost 
as powerful as the t test. The test statistic is a function of 
the sum of the ranks of the pooled samples. If the sum of 
the ranks is far apart compared to most other possible parti-
tions of the data, then the null hypothesis that the samples 
are drawn from the same distribution is rejected.

2.6 � Climate regions

Nine climatic regions (Northwest, West, Southwest, north-
ern Rockies and Plains, upper Midwest, Ohio Valley, 
South, Southeast and Northeast) (Karl and Koss 1984) have 
been chosen to validate the RCM simulations over the US 
(Fig.  1). For this study, performance measures are calcu-
lated for the extreme indices for each climatic region.

3 � Results

3.1 � Dynamical downscaling ability of RCMs

In this section, the ability of CCSM3 and several CCSM3-
driven regional climate models to simulate the spatial dis-
tribution of Tmax, Tmin and Prec is evaluated for the period 
for which all RCM datasets overlap (1995–1999). Fig-
ure 2 shows average Tmax, Tmin and Prec from CFSR for the 
period 1979–2010, and the difference between CCSM3 and 
CFSR and the difference between each RCM and CFSR 
for the period 1995–1999. Although 5 years is insufficient 
to remove the influence of decadal variability phase disa-
greements between CFSR and CCSM3, using 32 years of 

CFSR is sufficient to smooth out decadal variability from 
the evaluation dataset. Sensitivity tests using a series of 
5-year periods (1980–1984, 1985–1989, 1990–1994, 1995–
1999 and 2000–2004) of the CFSR data are shown in terms 
of variability in the bias fields using different observed 
5-year periods. The variability in the bias field is quite low 
(Fig.  2) and for most regions the bias patterns are robust 
to the evaluation period except for regions where the bias 
changes sign (warm to cold and dry to wet). In general, 
CCSM3 exhibits a warm bias in Tmax and a cold bias in 
Tmin. In summer biases in CCSM3-simulated Tmax and Tmin 
are caused by misrepresentation of convective events. For 
precipitation, CCSM3 has a wet bias over the Central Great 
Plains and eastern US and dry bias elsewhere (Fig. 2).

The three NARCCAP models and NRCM36 improve 
the simulations of Tmax, Tmin and Prec in comparison to 
their driving model, CCSM3 (Fig.  2). The pronounced 
warm bias in CCSM3-simulated Tmax is reduced in all 
the RCMs with the magnitude of the reduction depend-
ent on the RCM. In some RCMs this cooling is sufficient 
to reverse the sign of the Tmax bias over the western US. 
The strong cold bias over northern, western and northwest-
ern US in CCSM3-simulated Tmin is diminished in all the 
RCMs (Fig. 2). The wet bias in Prec over the Central Great 
Plains and eastern US is reduced in all the RCMs while the 
dry bias is enhanced, particularly over the southeastern US 
(Fig.  2). NRCM36 is wetter everywhere than WRFG and 
the Kain–Fritsch cumulus parameterization scheme used 
in NRCM36 has been shown to overestimate precipitation 
(Raktham et al. 2014).

Although dynamical downscaling using RCMs consid-
erably improves the CCSM3 simulation of Tmax, Tmin and 
Prec, the remaining bias reveals that the RCMs are limited 

Table 3   Skill score definitions used to evaluate model performance

Here xt is the simulated extreme variable and yt is the observed extreme variable for year t averaged for each of the nine climatic regions

Skill score Equation

Bias
1

11

11
∑

t=1

(xt − yt)

Root mean square error (RMSE) [

1

11−1

11
∑

t=1

(xt − yt)
2

]1/2

Standard deviation error (SDE) [

1

11−1

11
∑

t=1

{

(xt − yt)−
1

11

11
∑

t=1

(xt − yt)

}2
]1/2

Variation ratio (VR) ∑

11

t=1
(xt−x̄)2

∑

11

t=1
(yt−ȳ)2

Spearman’s correlation (SC) ∑n
i=1 (Xi−X̄)(Yi−Ȳ)

√

∑n
i=1 (Xi−X̄)

2
(Yi−Ȳ)

2

 where Xi and Yi are the ranked variables xi and yi and i is the model grid point and n is the num-
ber of grid points in each climatic region.



1571The roles of bias-correction and resolution

1 3

Maximum Temperature Minimum Temperature Precipitation
CFSR(K) 1979-2010        CFSR(K) 1979-2010       CFSR(mm/day) 1979-2010

CCSM3(K) 1995-1999       CCSM3(K) 1995-1999        CCSM3(mm/day)     1995-1999

CRCM50(K) 1995-1999       CRCM50(K) 1995-1999        CRCM50(mm/day)   1995-1999

MM5I50(K) 1995-1999       MM5I50(K) 1995-1999        MM5I50(mm/day)   1995-1999

WRFG50(K) 1995-1999       WRFG50(K) 1995-1999        WRFG50(mm/day)   1995-1999

NRCM36(K) 1995-1999      NRCM36(K) 1995-1999        NRCM36(mm/day)   1995-1999

Fig. 2   Daily summer maximum and minimum temperature (K) and 
precipitation (mm/day) derived from CFSR for the period 1979–
2010 (top row), and the biases in CCSM3, three NARCCAP models 
(CRCM50, MM5I50 and WRFG50) and NRCM36 simulated maxi-
mum and minimum temperature (K) and precipitation (mm/day) with 

respect to CFSR for the period 1995–1999. Shaded areas in the bias 
plots represent regions within ±0.5 for the coefficient of variation of 
biases in the model simulations for 1995–1999 with respect to series 
of 5-year periods (1980–1984, 1985–1989, 1990–1994, 1995–1999 
and 2000–2004) of CFSR data
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by both the quality of the boundary conditions provided by 
the CCSM3 and the RCM formulation. Both are explored 
in the remainder of this section.

3.2 � Impact of boundary bias correction

The influence of boundary forcing errors are illustrated by 
comparing the spatial distributions of biases in Tmax, Tmin 
and Prec derived from the NARCCAP model CRCM driven 
by NNRP versus driven by CCSM3 with respect to CFSR 
for the period 1979–1999 (Fig.  3). Overall results suggest 
that there are noticeable differences in biases in CCSM3- 
and NNRP-driven CRCM simulations. For Tmax, CCSM3-
driven simulation has warmer bias than that for NNRP-
driven simulation with the largest differences in biases of 
4  K over central, southern and southeastern United States. 
For Tmin, the differences in biases are far smaller and within 
~1 K. For Prec, the CCSM3-driven simulation has drier bias 
than the NCEP-driven simulation over South, Southeast and 
Ohio Valley while NCEP-driven simulation has wetter bias 
over Southwest and Rockies. The other RCMs also showed 
evidence for boundary forcing error (not shown). These 
boundary-forcing errors provide motivation to perform bias 
correction on the driving CCSM3 data.

The performance of boundary bias correction (BBC) 
for the simulation of regional climate mean quantities is 
evaluated by comparing NRCM36 and NRCM36_BBC 
simulations with CFSR (Fig. 4). The spatial bias pattern in 
NRCM36_BBC reveals that BBC considerably improves 
NRCM36 simulated Tmax, Tmin and Prec shown in Fig.  2. 
Further downscaling to 12  km (NRCM12_BBC) further 

improves the warm bias in Tmin over the Western US, but 
becomes too cold for Tmax and too wet over much of the US 
(Fig. 4). The performance of these simulations for summer 
extremes is presented in the next section.

3.3 � Impact of bias correction and resolution for the 
simulation of extremes

The relative merits of bias correcting RCM driving data 
(i.e. BBC) versus bias correcting the RCM output (i.e. 
SBC) for the simulation of two summertime tempera-
ture and three summertime precipitation extreme indices 
are presented here for the nine climatic regions over US 
(Fig.  1). The NRCM is the RCM chosen to conduct this 
comparison because it simulated Tmax, Tmin and Prec well 
overall (as described in Sect. 3.1 and Fig. 2).

Figure  5 shows the bias in the 90th percentile of Tmax 
(Tx90), 10th percentile of Tmin (Tn10), 90th percentile of 
precipitation (P90), number of wet days (WD) and maxi-
mum number of consecutive dry days (CDD) for NRCM36, 
NRCM36_SBC, NRCM36_BBC, NRCM36_BSBC and 
NRCM12_BBC. In general, for Tx90 all simulations have a 
cold bias with high resolution degrading the benefits of bias 
correction. Specifically, NRCM36 has a cold bias in Tx90 
over most climatic regions with the largest bias over west-
ern regions. The cold bias is reduced in NRCM36_SBC, 
NRCM36_BBC and NRCM36_BSBC over western regions 
and the South (Fig. 5). NRCM36_SBC and NRCM36_BSBC 
slightly improve the simulation of Tx90 over eastern regions 
while NRCM36_BBC increases the cold bias. Over the Mid-
west, SBC and BBC are unable to improve the performance 

Maximum Temperature (K) Minimum Temperature (K) Precipitation (mm/day)

NCEP-driven 1979-1999 NCEP-driven 1979-1999

CCSM3-driven 1979-1999 CCSM3-driven 1979-1999

NCEP-driven 1979-1999

CCSM3-driven 1979-1999

Fig. 3   Biases in daily summer maximum and minimum temperature (K) and precipitation (mm/day) derived from the NARCCAP model 
CRCM driven by NCEP-NCAR reanalysis data (top row) and driven by CCSM3 (bottom row) with respect to CFSR for the period 1979–1999
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Maximum Temperature (K) Minimum Temperature (K) Precipitation (mm/day)

NRCM36_BBC NRCM36_BBC NRCM36_BBC1995-2005 1995-2005 1995-2005

NRCM12_BBC NRCM12_BBC NRCM12_BBC 1995-2005 1995-2005 1995-2005

Fig. 4   Biases in NRCM36_BBC and NRCM12_BBC simulated daily summer maximum and minimum temperature (K) and precipitation (mm/
day) for the period 1995–2005

Fig. 5   Bias in the 90th per-
centile of Tmax (Tx90), 10th 
percentile of Tmin (Tn10), 
90th percentile of precipita-
tion (P90), number of wet 
days (WD) and maximum 
number of consecutive dry 
days (CDD) for NRCM36, 
NRCM36_SBC, NRCM36_
BBC, NRCM36_BSBC and 
NRCM12_BBC experiments 
with respect to CFSR. The 
x-axis represents all the experi-
ments for each extreme index 
and the y-axis represents the 
nine climatic regions
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of NRCM36. In general, for Tn10, simulations have a cool 
bias in eastern regions and a warm bias in western regions. 
Bias correction increases the warm bias over western regions 
with some recovery with increased resolution. Over eastern 
regions bias correction has little impact on the small biases 
whereas increased resolution increases the cold bias. Specifi-
cally, SBC and BSBC reduce the cold bias in NRCM36 over 
southern and eastern climatic regions while BBC tends to 
increase the cold bias. The biases over Midwest are reduced 
with both SBC and BBC.

For P90, NRCM36 has a wet bias over the majority of 
the climatic regions (Fig. 5). BBC generally produces little 
impact while SBC and BSBC enhance the wet bias in eastern 
regions. Increasing resolution tends to reduce the wet bias 
and changes over to a dry bias in eastern regions. NRCM36 
overestimates WD over a majority of climatic regions with 
the largest bias over western climatic regions (Fig. 5). The 
bias correction procedures and increased resolution have lit-
tle impact, although BBC brings the greatest bias reduction. 
NRCM36 underestimates CDD over most regions with the 
largest bias over western regions and is consistent with the 

overestimation in WD (Fig. 5). Similar to WD, each bias cor-
rection procedure and increased resolution has little impact 
although, again, BBC brings the greatest bias reduction.

Figure 6 shows the RMSE for the five extreme indices. 
For Tx90, errors are reduced in the NRCM36_SBC and 
NRCM36_BSBC experiments over most regions with high 
resolution generally degrading the benefits of bias correc-
tion. NRCM36 captures Tn10 well with bias correction 
having little impact. NRCM12_BBC brings improvement 
in the performance of NRCM36_BBC over western regions 
and degradation over eastern regions. For P90, NRCM36 
has low RMSE with bias correction and high resolution act-
ing to increase the error. For WD and CDD, NRCM36 has 
lowest RMSE over eastern regions indicating rainfall fre-
quency errors over the complex topography of the Western 
US that is only somewhat improved with bias correction.

Figure 7 illustrates the SDE for the five extreme indices. 
For Tx90, systematic bias correction only plays a minor 
role in alteration of variability error while BBC acts to 
increase or decrease the variability error depending on the 
region. For Tn10, each bias correction has little impact on 

Fig. 6   Same as Fig. 5, but for 
RMSE
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SDE while higher resolution reduces the error. For precipi-
tation indices, both bias correction and higher resolution 
have little impact although act to increase the variance error 
in P90 over eastern regions.

Figure 8 shows the VR for the five extreme indices. For 
Tx90, both bias corrections generally have little impact on 
the spread although both bias corrections and higher reso-
lution increase and degrade the spread compared to CFSR 
over western regions. For Tn10 both bias corrections again 
have little impact. For P90, SBC increases and degrades 
the spread whereas BBC has little impact. Bias corrections 
have little impact on the high model variance in WD over 
western regions and CDD sees generally mixed results. 
Higher resolution generally increases the spread across all 
five extreme indices.

Figure 9 shows SC, a measure of spatial correlation, for 
the temperature and precipitation extreme indices. In gen-
eral, SC is higher in western than eastern regions likely due 
to the strong local topographic forcing over western regions. 
SC is also higher for temperature than precipitation likely 
due to the convective-scale noise inherent in the spatial 

precipitation fields and precipitation is much more compli-
cated to simulate than temperature because of microphys-
ics and interaction with topography. Both bias corrections 
generally have little impact on the spatial correlation of the 
extremes although SBC is notable in the degradation of the 
spatial correlation in P90 and WD over eastern regions.

The overall impact of bias correction and model resolution 
for simulation of the statistics of the summer extremes is sum-
marized in Table 4. The table shows the experiments that were 
statistically different (at 95 % confidence) to the non-bias cor-
rected simulation (NRM36). For Tx90, only a few experiments 
have a significant impact over eastern regions while the major-
ity of the experiments have a significant impact over western 
regions. For Tn10, all three bias correction experiments have a 
significant impact over western regions (except the Northwest) 
while over eastern regions, increasing resolution has a signifi-
cant impact (Table 4). For P90, the majority of experiments 
have significant impact over the majority of climatic regions 
(except Southwest). For WD, on the other hand, only western 
regions show significant impacts for all experiments and for 
CDD, results are generally mixed.

Fig. 7   Same as Fig. 5, but for 
SDE
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The overall performance of regional climate experiments 
over nine climatic regions and five extreme indices is sum-
marized in Table  5. The table shows the regional climate 
experiments that were statistically similar (at 95  % confi-
dence) to CFSR. If two or more experiments are significant 
for the same climatic region and index, the experiment listed 
has the highest skill scores (Table  3). For Tx90, SBC per-
forms best over Northeast, South, Midwest and Rockies and 
BBC shows best performance over West. None of the experi-
ments show any improvement in comparison to CFSR over 
Southeast, Ohio Valley and Southwest (Table 5). For Tn10, 
experiment with increasing resolution performs best over 
Rockies, Southwest and West and SBC improves the model 
performance over Southeast, South and Midwest while bias 
corrections and increasing resolution degrade the model per-
formance over Ohio Valley and Northwest (Table 5). For P90, 
BBC and increasing resolution show best performance over 
majority of the climatic regions except Northeast, Ohio Val-
ley and Midwest. For Northeast and Ohio Valley, bias correc-
tion and increasing resolution degrade the model performance 
while none of the experiments shows any improvement over 

Midwest (Table 5). For WD, none of the experiments shows 
any improvement over western regions and Rockies while 
increasing resolution performs best over Northeast and South 
and BBC and SBC improve the model performance over 
rest of the climate regions (Table 5). For CDD, SBC shows 
best performance over Ohio Valley and South while bias cor-
rections and increasing resolution degrade the model per-
formance over eastern regions and none of the experiments 
shows any improvement in comparison to CFSR over Rock-
ies and western regions (Table 5). For some cases, applica-
tion of both bias corrections (BSBC) provides greater benefit, 
albeit slight, than either BBC or SBC alone but for major-
ity of these cases, there is no significant difference between 
BSBC and either SBC or BBC.

4 � Discussion and conclusion

The quality of high-resolution climate scenarios for impact 
assessments obtained through dynamical downscaling is 
limited by the quality of the driving data and RCM error. 

Fig. 8   Same as Fig. 5, but 
for VR. Blue colors indicate a 
variance ratio less than 1 (model 
variance less than observed) and 
red colors indicate a variance 
ratio greater than 1 (model vari-
ance greater than observed)
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For RCMs driven by GCM data, the relative merits of two 
approaches to bias correction (bias correcting RCM driv-
ing data versus bias correcting the RCM output) were 

examined and compared to the benefits of higher model 
resolution for the simulation of summertime temperature 
and precipitation extremes. Analysis focused on the 5-year 

Fig. 9   Same as Fig. 5, but for 
SC

Table 4   A summary of the regional climate experiments that were statistically different (at 95 % confidence) from the non-bias corrected exper-
iment (NRCM36) for nine climatic regions and five extreme indices

An “X” indicates none of the simulations were significantly different from NRCM36 and “ALL” indicates all the simulations were significantly 
different from NRCM36. Here NRCM36_SBC, NRCM36_BBC, NRCM36_BSBC and NRCM12_BBC are represented by SBC, BBC, BSBC 
and BBC12, respectively

Tx90 Tn10 P90 WD CDD

NorthEast BBC BBC, BBC12 SBC, BSBC, BBC12 X BSBC

SouthEast X BBC12 ALL SBC X

Ohio Valley X BBC, BBC12 SBC, BSBC, BBC12 X BBC12

South X SBC SBC, BSBC, BBC12 SBC SBC, BSBC

Midwest BBC, BBC12 SBC, BBC, BBC12 BBC12 X X

Rockies X BBC12 BSBC, BBC12 SBC, BSBC SBC, BSBC, BBC12

SouthWest SBC, BBC, BSBC SBC, BBC, BSBC X X X

West ALL SBC, BBC, BSBC BBC, BBC12 ALL SBC, BBC, BSBC

NorthWest SBC, BBC, BSBC X SBC, BBC, BBC12 ALL ALL
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period 1995–1999 for multi-RCM analysis over the US and 
the 11-year period 1995–2005 for the NRCM across nine 
climatic regions of the US.

Initial analysis considered daily temperature max-
ima and minima and daily rainfall. The driving model, 
CCSM3 had an overall warm bias in temperature maxima, 
a cold bias in temperature minima, and wet bias over the 
central Great Plains and eastern US and dry bias over 
western regions. Biases in CCSM3 may be attributed to 
the coarse representation of local climate forcings such 
as lake-land temperature and moisture contrasts (Molders 
et al. 1996) and lower mountain peaks and higher valleys 
than observed, misrepresentation of convective events, 
vertical grid resolution and incorrectly simulated atmos-
pheric moisture transport. In CCSM, terrain elevation 
is grid-cell average height, so mountains are flatter than 
the highest natural peaks. Consequently, orographically-
induced precipitation may be underestimated or occur fur-
ther downwind than in nature. The RCMs considered here 
generally reduce the magnitude of the biases in CCSM3 
for 1995–1999, although the RCMs also change the large-
scale spatial pattern of the biases and remaining bias indi-
cates that dynamical downscaling is limited by the quality 
of the boundary conditions provided by the CCSM3 and 
RCM error.

To assess the role of bias correction and model resolu-
tion for simulation of the statistics of the summer extremes, 
a comprehensive evaluation was conducted for the NRCM 
using five extreme indices of temperature and precipitation, 
nine climatic regions and five performance measures. The 
NRCM has a general cool bias for hot and cold extremes 
and the cool bias for hot extremes is greater than the cool 
bias in cold extremes. The NRCM also has a wet bias for 
wet precipitation extremes and dry bias for dry precipita-
tion extremes that is particularly pronounced over west-
ern regions. In general, the bias correction methods had 

significant impacts over western regions whereas impacts 
over eastern regions were less consistent. Both bias correc-
tion methods generally reduced the bias and reduced the 
average magnitude of the errors. The notable exception is 
for extreme precipitation intensities in eastern regions for 
which bias correcting the model output severely degraded 
model performance. Bias correcting the mean of the pre-
cipitation intensity distribution therefore does not lead to 
a reduction in bias in the extremes. Conversely, bound-
ary bias correction improved simulation of extreme pre-
cipitation intensities in this region and this may be due to 
improved representation of the large-scale environment 
within which convective episodes develop.

Higher resolution tended not to lead to further improve-
ments. However, the performance of model physics across 
scales and the use of a coarse resolution evaluation dataset 
requires careful interpretation of these results. First, we did 
not perform any additional tuning of the parameterizations 
for simulations on the 36- and 12 km grids. The parameter-
izations will therefore interact differently with the resolved 
scales on the two different grids meaning comparisons are 
not solely due to model resolution. Secondly, it is likely 
that our 12 km simulation is being penalized by the use of 
the coarser resolution evaluation dataset. For example, high 
resolution leads to a more realistic representation of orog-
raphy and surface fields, and for the Western US Prein et al. 
(2013) revealed that a 12  km simulation outperforms a 
36 km model simulation to simulate daily heavy precipita-
tion in comparison to precipitation derived from 99 stations 
within the Snowpack Telemetry network (Serreze et  al. 
1999). However, the differences between NRCM36_BBC 
and NRCM12_BBC are not only at small scales but extend 
to continental scales (see Fig. 4, for example). It is there-
fore likely that the large-scale environment is also sensitive 
to model resolution and these large-scale differences can 
be evaluated fairly using the coarser resolution evaluation 

Table 5   A summary of the regional climate experiments that were statistically similar (at 95 % confidence) to CFSR for nine climatic regions 
and five extreme indices

If two or more experiments are significant for the same climatic region and index, the experiment listed has the highest skill scores (Table 3). An 
“X” indicates none of the simulations were significantly similar to CFSR

Tx90 Tn10 P90 WD CDD

NorthEast NRCM36_SBC NRCM36_BBC NRCM36 NRCM12_BBC NRCM36

SouthEast X NRCM36_SBC NRCM36_BBC NRCM36_SBC NRCM36

Ohio Valley X NRCM36 NRCM36 NRCM36_BBC NRCM36_SBC

South NRCM36_SBC NRCM36_SBC NRCM36_BBC NRCM12_BBC NRCM36_SBC

Midwest NRCM36_SBC NRCM36_SBC X NRCM36_BBC NRCM36_BSBC

Rockies NRCM36_SBC NRCM12_BBC NRCM36_BSBC X X

SouthWest X NRCM12_BBC NRCM12_BBC X X

West NRCM36_BBC NRCM12_BBC NRCM12_BBC X X

NorthWest NRCM36_BSBC NRCM36 NRCM36_BBC X NRCM36_BBC
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dataset. Future work will use multiple resolution evaluation 
datasets and surface station data to more comprehensively 
assess the relative merits of bias correction versus high 
resolution.

Isolating error in the variance from error in the bias 
revealed that bias correcting the mean of the RCM output 
has little impact on error in the variance (by definition). 
Boundary bias correction, however, either increased or 
decreased the variance error depending on the region and 
is likely due to the changed variability in the large-scale 
environment (permitted by the large NRCM domain) that 
improved the variance in some regions and degraded it in 
others. Higher resolution tends to increase variability in the 
summer extremes above that in CFSR for both temperature 
and precipitation and in particular precipitation intensity. 
Finally, temperature and precipitation extremes have a far 
higher spatial correlation with observations over the West-
ern US than over the Eastern US likely due to the strength 
of the local forcing from complex topography in the West. 
This agrees with Singh et al. (2013) who found NARCCAP 
ensemble was unable to accurately capture spatial patterns 
of extreme precipitation in the western region. Spatial cor-
relations are also far higher for temperature than precipita-
tion extremes due to the dominance of convective scales in 
the precipitation fields.

Overall, both bias corrections generally reduced the 
bias and overall error with some indication that boundary 
bias correction provided greater benefits than bias cor-
recting the mean of the RCM output data, particularly for 
precipitation. Regional extreme precipitation is strongly 
influenced by the large-scale environment that is improved 
through boundary bias correction, as found by Done et al. 
(2013) for the case of tropical cyclones, whereas correct-
ing the mean of the RCM output does not necessarily con-
fer benefits to the extremes. This study also showed that 
bias correction techniques (particularly using the ‘mean-
correction’ approach as studied here) are regionally 
dependent as bias correction can increase errors in some 
regions. Therefore, the effects of a particular bias correc-
tion should be fully studied for a region before being used 
in impact studies. In summary, this study demonstrates 
that application of simple bias correction approaches such 
as correcting the mean bias in the driving data and cor-
recting the downscaled outputs can improve the quality of 
dynamical downscaling in producing summer temperature 
and precipitation extremes. High resolution tended not 
to lead to further improvements though further work is 
needed using multiple resolution evaluation datasets and 
convection permitting resolution simulations to compre-
hensively assess the value of high resolution. Additional 
work is needed to explore the relative merits of bias cor-
rection to alternative methods that improve the represen-
tation of extremes in model data such as weighting RCM 

ensemble members (e.g. Wehner 2013) or improvements 
in model physics (e.g. Yang et al. 2012).
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