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1  Introduction

Considerable research is currently devoted to improving 
near-term (i.e. interannual to interdecadal) climate predic-
tions using coupled atmosphere–ocean climate models 
(e.g., Meehl et al. 2014). One essential aspect is the initiali-
sation of such predictions using available observations to 
provide more accurate representations of phases in atmos-
pheric and oceanic states associated with internal variabil-
ity of the coupled system. Using initialised states generally 
results in more skillful predictions, e.g. see Troccoli and 
Palmer (2007), Keenlyside et  al. (2008), Pohlmann et  al. 
(2009), Mochizuki et al. (2010), Matei et al. (2012), Meehl 
and Teng (2012), Robson et al. (2012), Doblas-Reyes et al. 
(2013), Smith et al. (2013) among others. However, a lack 
of consensus on the most effective initialization strategies 
is apparent in the wide variety of approaches, particularly 
with respect to initialisation of low-frequency compo-
nents of the climate system. Here we address this prob-
lem by considering coupled atmosphere–ocean ensemble 
data assimilation strategies and, in particular, conditions 
for which the Atlantic meridional overturning circulation 
(AMOC) may be recovered from a limited set of obser-
vations, including the case where only the atmosphere is 
observed.

Extant initialisation methods include forcing an ocean 
model with analysed surface fields (e.g. atmospheric and/
or sea surface temperature) (e.g., Keenlyside et  al. 2008; 
Meehl and Teng 2012; Yeager et al. 2012; Pohlmann et al. 
2013); performing data assimilation (DA) in the ocean 
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only; considering only sea surface fields (e.g., Swinge-
douw et al. 2013; Meinville et al. 2013); including deeper 
ocean observations (e.g., Tatebe et al. 2012); using weakly 
coupled (i.e. assimilating observations separately in the 
atmosphere and ocean but using a fully coupled model as a 
forward propagator) (e.g., Troccoli and Palmer 2007; Pohl-
mann et  al. 2009; Mochizuki et  al. 2010; Doblas-Reyes 
et al. 2011; Robson et al. 2012; Hazeleger et al. 2013; Ham 
et al. 2014); and fully coupled atmosphere–ocean DA sys-
tems (e.g., Zhang et al. 2007; Sugiura et al. 2008; Mochi-
zuki et  al. 2009; Yang et  al. 2013). The latter is the most 
comprehensive approach as it explicitly considers covari-
ability in atmospheric and oceanic states as part of the DA 
process (i.e. assimilating atmospheric observations not only 
generates updated atmospheric states but also updates oce-
anic states, and similarly for oceanic observations versus 
atmospheric states). The latter framework also provides the 
means for generating mutually consistent initial conditions 
(ICs) between the two coupled media, which should lead to 
relatively smaller initial transients in forecasts.

Despite the comprehensive nature of the fully coupled 
DA approach, obstacles remain to the generation of con-
sistent coupled ICs. A key problem concerns accurate 
estimation of error covariances between atmospheric and 
oceanic states across widely different time scales. This 
issue has been the focus of recent studies involving the 
use of ensemble DA applied to simplified coupled mod-
els. Han et al. (2013) show enhanced skill in analyses of 
pycnocline depth through fully coupled DA, and empha-
sise the critical importance of using a large ensemble to 
adequately estimate the atmosphere–ocean cross covari-
ances. Tardif et  al. (2014) used ensemble DA applied to 
a low-order representation of the atmosphere coupled to a 
slowly overturning ocean to show that assimilating time-
averaged observations increases covariability between 
low-frequency atmosphere–ocean interactions. Compared 
to the very weak covariabilities between the fast (i.e. 
noisy) atmosphere and slow ocean at the short time scales 
(i.e. frequency of observation availability), time averaging 
yields more robust estimates of atmosphere–ocean cross 
covariances with smaller ensemble size, leading to more 
effective coupled DA and more accurate analyses of low-
frequency phases in the coupled system. The study also 
highlights the significant advantage of fully coupled DA in 
producing analyses of the AMOC, a key driver of low fre-
quency variability.

Here we consider AMOC analysis as a canonical prob-
lem in coupled atmosphere–ocean state estimation. Proper 
initialisation of the AMOC is important as it is linked to 
enhanced predictability of North Atlantic climate (e.g., 
Latif and Keenlyside 2011; Boer 2011; Srokocz et al. 2012; 
Swingedouw et al. 2013). Despite the recent deployment of 
Argo profiling floats (Roemmich et al. 2009) and the Rapid 

Climate Change Programme (RAPID) array, the latter spe-
cifically designed to monitor AMOC variability (Cunning-
ham et al. 2007), and advances in assimilating these newly 
available observations (e.g., Smith et  al. 2010; Stepanov 
et  al. 2012; Hermanson et  al. 2014), difficulties in accu-
rately initialising the AMOC remain. These are particularly 
severe in the absence of comprehensive oceanic observa-
tions (e.g. Zhang et al. 2010), limiting the ability to gener-
ate realistic ICs for multidecadal hindcasts for evaluation 
using modern-era observations. Here, we build upon Tardif 
et al. (2014) (hereafter referred to as THS14) by pursuing 
two specific objectives:

1.	 Evaluate the potential of using a simplified ensemble 
DA approach that does not require ensemble model 
simulations, which we will call “no-cycling”.

2.	 Assess the assimilation of time-averaged observations 
for generating analyses of the unobserved AMOC by 
applying the method to a comprehensive model of the 
coupled atmosphere–ocean system.

The remainder of the article is organised as follows. The 
no-cycling DA method is described in Sect. 2. Section 3 
compares AMOC analyses obtained through a traditional 
“cycling” approach with the no-cycling approach for experi-
ments with the low-order coupled model described in Roeb-
ber (1995) and THS14. The impact of assimilating time-aver-
aged observations is investigated in Sect. 4 with no-cycling 
experiments based on data from a simulation performed with 
a state-of-the-art coupled atmosphere–ocean global climate 
model (AOGCM) as part of the Coupled Model Intercom-
parison Project Phase 5 (CMIP5) (Taylor et  al. 2012). A 
summary and conclusions are given in Sect. 5.

2 � Data assimilation method

2.1 � Ensemble Kalman filter

Data assimilation is performed with an ensemble Kalman 
filter (EnKF), for which the classical form of the update 
equation is:

xb and xa are the background (prior) and analysis (poste-
rior) state vectors respectively, containing joint representa-
tions of atmospheric and oceanic states. y is the vector of 
observations while yb is the background state mapped to 
observation space, i.e. yb = H(xb), where H is a forward 
operator that may be nonlinear. An EnKF implementation 
with serial processing of perturbed observations 
(Houtekamer and Mitchell 2001) is utilised, in which the 
Kalman gain Ki involved in the assimilation of yi, the ith 
component of y, may be simply expressed as

(1)xa = xb +K[y− yb].
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where “cov()” and “var()” are the covariance and variance 
derived from ensemble estimates and therefore subject to 
sampling error as discussed later. Here, Ri is a scalar repre-
senting the corresponding observation error variance. Since 
xb is a vector containing both atmospheric and oceanic 
states, cov(xb, yib) contains covariances between variables 
residing in different components (i.e. atmosphere–ocean 
cross covariances). We note that covariance localization 
is not required in the context of the simplified low-dimen-
sional system considered in this study.

2.2 � Assimilation of time‑averaged observations

As shown in THS14, analyses of the slowly-varying ocean 
can be more effectively produced through the assimilation 
of observations time-averaged over annual and longer inter-
vals. Time averaging has also been considered by Sugi-
ura et  al. (2008) in a coupled 4D-var system for the gen-
eration of enhanced predictions of seasonal to interannual 
variability.

With an EnKF, the update is performed using Eq. (1) 
with the observations and the prior replaced by their time 
averages, y and xb respectively, where () indicates a time 
average. A time-invariant H is assumed. The gain matrix is 
composed of covariances between time-averaged quantities, 
yielding an updated time-averaged state (i.e. xa). Assum-
ing that deviations from the time mean do not covary with 
time-averaged observations (i.e. cov(xb′, yb) ≈ 0, where (′) 
is a deviation from the time mean), xb′ is not changed by 
the assimilation and can simply be added to the updated 
time average to recover the full state (i.e. xa = xa + xb′).  
For a more complete derivation, see Dirren and Hakim 
(2005) and Huntley and Hakim (2010).

2.3 � The no‑cycling implementation

In a traditional implementation of the EnKF, the prior is 
determined by the forward integration of a nonlinear model 
from past analysed ensemble states. The information pro-
vided by assimilating observations is thus carried by the 
model from one DA update to the next (i.e. cycling). In the 
context of near-term coupled atmosphere–ocean predic-
tions, this approach requires that an ensemble of AOGCM 
simulations be carried out, which demands considerable 
computer resources.

A simplification consists of foregoing the forward inte-
gration of ensemble members in favor of using model states 
drawn from a single model integration. Specifically, the xb 
ensemble is formed using N random draws of model states 
from a preexisting, preferably long, coupled simulation, 
where N is the ensemble size. This is done at every DA 

(2)Ki = cov(xb, yi
b)[var(yi

b)+ Ri]
−1, update time, hence forecasts from a previous analysis are 

not used (i.e. DA without cycling). In the limit of large N, 
the prior ensemble-mean corresponds to the model’s cli-
matology and deviations from the mean represent anoma-
lies. If, in addition, the model approximately reproduces 
the observed climatology, the ensemble will be drawn from 
the same distribution as the true state to be estimated and 
covariance inflation will not be required (see Huntley and 
Hakim 2010).

With this simplified approach, ensemble-estimated error 
covariances now represent climatological statistics (i.e. no 
longer time- or flow-dependent). The use of climatologi-
cal error covariances estimated from a single long model 
integration as an inexpensive alternative was first pro-
posed by Oke et  al. (2002) and described as the ensem-
ble optimal interpolation (EnOI) approach by Evensen 
(2003). Although there is evidence that the EnKF outper-
forms EnOI (e.g. Oke et al. 2007), the more cost effective 
approach has been shown to be a viable alternative in a 
number of applications (e.g. Oke et al. 2005).

Steiger et  al. (2014) successfully use time averages in 
a no-cycling approach for paleoclimate reconstructions. 
However, the adverse consequences, if any, from the use 
of climatological rather than flow-dependent error statis-
tics and absence of cycling remain unknown in a context 
of fully coupled atmosphere–ocean state estimation. The 
impact of these simplifications is estimated in Sect. 3 with 
the simple coupled model used in THS14.

3 � Efficient DA with a low‑order coupled model

The model is an idealised simplification of the North Atlan-
tic climate system, with a large-scale atmospheric circu-
lation (Lorenz 1984) interacting with a Stommel 3-box 
model of the meridionally overturning ocean (Stommel 
1961). In this “Lorenz–Stommel” coupled model, high-
frequency atmospheric variability is driven by interactions 
between the zonal jet and transient eddies, both influenced 
by low-frequency variability of the upper ocean tempera-
ture. Low-frequency variability in ocean temperature and 
salinity is driven by nonlinear interactions with the ther-
mohaline overturning circulation. In turn, the atmosphere 
influences the overturning circulation by modulating the 
meridional gradient of upper ocean salinity through a sim-
ple representation of the hydrological cycle (i.e. evapora-
tion over subtropical waters, eddy-driven poleward trans-
port of water vapor and freshening of the subpolar ocean by 
precipitation). For a more comprehensive description of the 
Lorenz–Stommel coupled model see Roebber (1995) and 
THS14.

THS14 compare analyses of the unobserved AMOC 
generated using coupled ensemble DA (EnKF) performed 
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on a daily basis (i.e. defined as the frequency of observa-
tion availability) against analyses obtained from the assimi-
lation of time-averaged (i.e. yearly) observations. This 
is motivated by the increase of the atmosphere-AMOC 
covariability in the model for time scales longer than one 
year. Similar experiments are carried out here, but for the 
no-cycling implementation of the EnKF. As before, a per-
fect model framework is used, with truth and observations 
taken from the same 5,000-year-long reference simulation 
described in THS14, along with the same observation error 
statistics (10  % of climatological standard-deviations for 
atmospheric variables and 0.5 K for ocean temperature and 
0.1 psu for salinity).

3.1 � Sampling error and ensemble size

To gauge the necessary ensemble size, AMOC analyses 
are produced using no-cycling DA with ensemble sizes 
varying from 5 to 5,000 for daily atmospheric observations. 
This scenario represents the most severe test for ensemble 
covariance estimation as atmosphere-AMOC covariances 
are very weak at the daily time scale (see THS14). For each 
ensemble size, analyses are generated over one hundred ran-
domly sampled 5-year periods from the reference simula-
tion in order to sample a wide variety of climate states. The 
root-mean-square error (RMSE) over the one hundred real-
isations is shown as a function of ensemble size in Fig. 1.  
As expected, RMSE values are largest for the smaller 
ensembles, and rapidly decrease with an increase in ensem-
ble size. A plateau is reached for ensembles of about 500 
members, beyond which average RMSE values continue to 
decrease, but at a smaller rate. This value represents a lower 
bound for robust estimation of climatological covariances 

between instantaneous atmosphere and ocean states in the 
simple model, and is used for the no-cycling experiments 
presented next.

3.2 � Cycling–no‑cycling comparison

AMOC analyses generated using climatological informa-
tion for the prior ensemble are compared to a traditional 
DA configuration with cycling of model ensembles. At 
every analysis time, the prior is defined using 500 random 
draws of daily model states from the reference solution 
and analyses covering the first 1,000 years of the reference 
simulation are produced, a period long enough to sample 
the various phases of the ocean’s low-frequency variabil-
ity. Distinct sets of analyses are produced in which progres-
sively fewer oceanic variables are assimilated:

(a)	 Temperature and salinity in the subtropical and sub-
polar upper ocean, and in the deep ocean (i.e. well-
observed ocean),

(b)	 Temperature and salinity in the upper ocean only,
(c)	 Upper ocean temperature only,
(d)	 None (i.e. only atmospheric observations).

Experiments also consider different variables describing 
transient eddies in the atmosphere, i.e. eddy phases and 
eddy energy, the latter being characterised by a signifi-
cantly enhanced covariability with the AMOC when 
states are time-averaged over annual and longer time 
scales (see THS14 Fig. 6).

The accuracy of analyses is evaluated using the coeffi-
cient of efficiency (Nash and Sutcliffe 1970):

where xti is the truth at time  ti and xt  is the corresponding 
time mean, while xa are the analyses. CE is a relative meas-
ure of the analysis error variance to the variance in true 
states. This is a particularly attractive feature in a context 
of examining skill at various temporal scales, as averaging 
over longer time intervals leads to reduced variances in the 
signal. Perfect analyses have CE = 1 while CE ≈ 0 charac-
terises analyses that do not contain additional information 
over climatology.

Results for cycling DA show that more accurate AMOC 
analyses are obtained when observations are assimilated 
in the ocean (Fig. 2). The loss of accuracy associated with 
fewer assimilated oceanic observations is reduced for time-
averaged observations, particularly for atmospheric eddy 
energy observations. There is no skill for daily DA of only 

(3)CE = 1−
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Fig. 1   Root mean square error (RMSE) of AMOC analyses in Sver-
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atmospheric observations, whereas the reduction in skill 
between assimilating ocean observations compared to only 
atmospheric observations is of the order of 20  % when 
individual  time-averaged eddy phases are assimilated and 
only 10 % when eddy energy is assimilated. By compari-
son, no-cycling daily DA is found to be less accurate by 
15–25  % when ocean observations are assimilated, while 
the assimilation of only atmospheric variables still has no 
skill. In contrast, the decrease in accuracy between cycling 
and no-cycling is only 5–10  % for yearly time-averaged 
DA when oceanic observations are assimilated, and 30 % 
with only-atmosphere observations. When time-averaged 
observations of eddy energy are assimilated instead of the 
individual eddy phases, the decrease in skill is only about 
5–10 % with ocean DA, and 20 % in the only-atmospheric 
case.

These results suggest that no-cycling DA is a viable 
alternative to the more computationally intensive cycling 
DA. A decrease in skill is evident, but by a reduced margin 
when time-averaged observations are assimilated.

4 � Experiments with CMIP5 data

Motivated by the results for the idealised model, we next 
repeat, as closely as possible, the previous no-cycling 
experiments using gridded simulation data from a compre-
hensive AOGCM.

A perfect model framework is adopted for DA experi-
ments using data from the “Last Millenium” simulation of 

the Community Climate System Model Version 4 (CCSM4) 
(Gent et al. 2011) performed in the context of the Coupled 
Model Intercomparison Program Phase 5 (CMIP5) (Tay-
lor et  al. 2012). This simulation and model were chosen 
as they represent the longest available pre-industrial simu-
lation (i.e. covering the period from 850 to 1,850) from a 
well-characterised coupled climate model. The simulation 
constitutes a state-of-the-art depiction of climate’s natural 
variability, externally influenced by solar activity and varia-
bility in aerosols from volcanic eruptions. No anthropogen-
ically induced trends in greenhouse gas concentrations are 
imposed. To preserve a basis for comparison with results 
presented above, gridded model output is “coarse-grained” 
to a set of variables similar to those in the Lorenz–Stommel 
model.

4.1 � Low‑order variables

The CMIP5 database contains monthly-averaged data for a 
wide variety of variables, including the AMOC streamfunc-
tion for certain models and experiments, while daily data 
is available for a restricted set of model output. Hence, the 
monthly time scale is considered as the shortest represented 
scale in the low-order analogue, and defines the frequency 
at which observations are available.

The Atlantic basin north of the equator is divided into 
three boxes as in the Lorenz–Stommel model, with an 
upper ocean subtropical box defined from the equator 
to 40°N, an upper ocean subpolar box between 40°N to 
65°N. The deep ocean is represented by a box covering the 
equator to 65°N. Monthly temperature and salinity data at 
a depth of 200 m are taken as representative of the upper 
ocean and are spatially averaged over the respective boxes. 
Data at 2 km depth, averaged over the whole basin, are 
taken as representing the deep ocean.

For the atmosphere, gridded monthly-averaged 700 hPa 
air temperatures are spatially averaged over subtropical 
and subpolar boxes respectively, defined using the same 
latitude-longitude boundaries as in the ocean. A mean 
westerly circulation component (i.e. zonal wind) is derived 
by taking the temperature difference between the subtropi-
cal and subpolar boxes (i.e. thermal wind balance) so that 
positive values indicate westerlies. Similar area-averaged 
tropospheric humidity variables are derived using gridded 
700 hPa specific humidity data. Variables describing tran-
sient atmospheric eddies are defined by an approach similar 
to Chang et al. (2013). First, daily mean sea-level pressure 
data are used to derive the variance of pressure perturba-
tions associated with transient eddies (i.e. eddy variance) 
at every grid point using the 24-hr filter of Wallace et  al. 
(1988):

(4)E = (Pmsl)
′2 = [Pmsl(t + 24hr)− Pmsl(t)]

2,
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where Pmsl is the daily mean sea-level pressure and t repre-
sents time. The overbar in (4) represents a monthly average. 
As pointed out by Chang et al. (2013) this simple 24-hour 
difference filter has a response highlighting the synoptic 
time scale, i.e. transient eddies. Gridded meridional eddy 
heat and water vapor fluxes are similarly estimated using 
the following covariances: 

where vg is the daily surface meridional geostrophic wind 
derived from mean sea level pressure and T and q are the daily 
near-surface air temperature and specific humidity respec-
tively. Low-order variables are then formulated by averaging 
the gridded values of eddy amplitude and eddy heat and mois-
ture fluxes along the 40°N transect across the Atlantic Ocean.

Finally, a single variable describing the time-varying 
strength of the overturning circulation is derived by taking 
the maximum monthly value of the AMOC streamfunc-
tion within a latitude-depth cross-section between 30◦N 
and 70◦N and between depths of 500 m and 2000 m as in 
Zhang et al. (2010) and Danabasoglu et al. (2012).

4.2 � AMOC variability and covariability

The time series of maximum AMOC streamfunction in 
the North Atlantic (i.e AMOC index) from the 1,000-year 
CCSM4 simulation is shown in Fig. 3. The maximum trans-
port is characterised by an average value 2.6× 1010 kg s−1 
and rich variability, e.g. substantial seasonal and interan-
nual variations superimposed on low-frequency variability 
characterised by well-defined periods of enhanced pole-
ward transport as evidenced by the 10 year moving aver-
age. Here, the main focus is on recovering the low-fre-
quency component of the AMOC.

(5a)HE = v′gT
′ = (vg(t + 24hr)− vg(t))(T(t + 24hr)− T(t)),

(5b)ME = v′gq
′ = (vg(t + 24hr)− vg(t))(q(t + 24hr)− q(t)),

The correlations between the AMOC maximum trans-
port and each of the low-order variables described in the 
previous section are shown as a function of averaging time 
scale in Fig. 4. As in the low-order model, covariability 
between the AMOC and the atmosphere is weak at sub-
annual time scales. Only a slight increase toward positive 
correlations takes place in the 1–10 year range for variables 
describing the mean subpolar atmosphere, while covari-
ability with the subtropical atmosphere remains weak. A 
small increase in correlation is evident for averaging time 
intervals longer than a decade. The mean westerly circu-
lation (i.e. temperature difference between the subtropi-
cal and subpolar atmosphere) is negatively correlated with 
the AMOC at interannual time scales and longer, with an 
increasing correlation magnitude for longer averaging time 
scales. This suggests that a stronger AMOC is associated 
with a warmer subpolar atmosphere, but with a weaker 
effect on the subtropical atmosphere resulting in a reduc-
tion in the tropospheric meridional temperature gradient 
and weaker westerlies.

Similar behavior is observed for variables related to 
atmospheric eddies, with negative correlations increasing 
in magnitude for averaging intervals of one year and longer. 
This is consistent with the “Bjerknes compensation” mecha-
nism (Bjerknes 1964), which posits that under weakly vary-
ing top-of-atmosphere radiative fluxes and heat storage, 
the total energy transport should not vary greatly, imply-
ing compensating responses in large-scale heat transport 
between the ocean and atmosphere. Shaffrey and Sutton 
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(2006) analysed output from a control run of the Third Had-
ley Centre Coupled Ocean Atmosphere General Circulation 
Model (HadCM3) and found that a stronger AMOC and 
related poleward heat transport lead to reduced large-scale 
baroclinicity in the atmosphere, which in turn leads to a 
weakened transient eddy transport. These authors also found 
that the degree of compensation in the northern extratropics 
increases with increasing time scale as found here. Farnetti 
and Vallis (2013) also found a significant degree of compen-
sation between atmospheric and oceanic meridional fluxes 
at decadal time scales in two different models developed at 
the Geophysical Fluid Dynamics Laboratory (GFDL). They 
also found positively correlated moisture and sensible heat 
transport, as diagnosed here in the CCSM4 (e.g.  although 
the moisture eddy flux is not shown in Fig. 4a, both eddy 
fluxes are similarly anticorrelated with the AMOC). These 
results suggest that significant consistencies exist in dec-
adal-scale atmosphere–AMOC interactions between the 
CCSM4 and other state-of-the-art AOGCMs (e.g. HadCM3 
and GFDL models).

Clear signals are also present in the ocean (Fig. 4b). 
Correlations between the AMOC index and subpolar upper 
ocean temperature and salinity are weakly positive at the 
monthly time scale, and gradually increase with the aver-
aging interval, to values greater than 0.8 for 50-year time 
averages. Strong decadal-scale covariability between the 
AMOC and upper ocean temperature over large areas of the 
subpolar Atlantic have already been reported in the CCSM4 
(Danabasoglu et  al. 2012) and in various other models 
(e.g., Latif et al. 2004; Knight et al. 2005; Heslop and Paul 
2012; Cheng et al. 2013; Roberts et al. 2013). The positive 
correlation between the AMOC and upper subpolar ocean 
salinity in CCSM4 described here is also consistent with 
other models (e.g., Cheng et al. 2013).

Covariability with the subtropical ocean is weakly nega-
tive at sub-annual time scales, becoming very weak in the 
interannual to decadal range, and increasing to larger posi-
tive values for averaging intervals longer than a decade. 
Deep ocean temperature and salinity are positively cor-
related with the AMOC index, with correlation strength 
increasing with averaging time scales. Corroboration with 
other research is less clear in this case. Wang and Zhang 
(2013) describe intricate AMOC-related anticorrelated 
variability between the upper and deeper temperature at 
subtropical latitudes in “historical” simulations covering 
the industrial period. Such regional signals are lost when 
averaging over large regions as we do here. Nevertheless, 
Wang and Zhang (2013) find a positive regression between 
AMOC-driven decadal-scale upper ocean temperature vari-
ations and basin-wide temperature to depths of 2 km in 
some models, including the CCSM4, consistent with our 
results. Significant differences are apparent in how the 
upper and deep ocean are connected in various models, 

suggesting large uncertainties remain in the attribution and 
simulation of mechanisms determining the statistical links 
described above.

The details of the causal relationships between the 
AMOC and other state variables is beyond the scope of 
this work. From a DA perspective, the covariability charac-
teristics are most important, particularly their dependence 
on time scale. Experiments designed to explore how this 
covariability can be exploited for improved coupled DA are 
presented next.

4.3 � Data assimilation experiments

The system is composed of time series of the coarse-grained 
variables, forming the basis for DA experiments in a perfect-
model framework. Synthetic observations are constructed 
by starting with the monthly averaged states from the 1,000-
year simulation, excluding the AMOC index, and adding 
independent realizations of Gaussian noise whose standard 
deviation is taken as 10 % of the climatological value. As 
in THS14, error statistics of time-averaged observations are 
appropriately scaled by reducing the standard deviation by 
a factor equal to the square root of the number of observa-
tions used to calculate the average. Analyses of the AMOC 
index are produced for monthly observations and compared 
to those derived from time-averaged observations with aver-
aging intervals of 1, 5, 10, 25 and 50 years.

As in THS14, two configurations of assimilated atmos-
pheric variables are considered. A basic DA configuration 
includes the assimilation of zonal wind, eddy variance, 
tropospheric air temperature and specific humidity (sub-
tropical, subpolar). A second configuration is tested, in 
which the eddy variance and tropospheric temperatures 
and humidities are replaced by the meridional eddy fluxes 
of heat and water vapor, akin to tests performed in THS14 
with the assimilation of eddy energy, a higher-order vari-
able correlating more strongly with the AMOC.

Ensemble size should be large enough to minimize sam-
pling error but is limited by the availability of independent 
samples in the finite-length reference simulation. In a noisy 
system with memory (i.e. red noise spectra), as in the cou-
pled atmosphere–ocean system, we follow Bretherton et al. 
(1999) who show that for quadratic statistics between two 
variables x1 and x2, an estimate of the number of independ-
ent samples is

where Ntot is the total number of available samples and r1 
and r2 are the respective lag-1 autocorrelation coefficients. 
This estimate is applied to time series of the AMOC and 
the other variables time-averaged over the various inter-
vals considered. Corresponding estimates of independent 

(6)Nind = Ntot

1− r1r2

1+ r1r2
,
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samples (i.e. ensemble sizes used in DA experiments) are 
shown in Table 1. Ensemble sizes decrease to relatively 
small numbers for longer averaging intervals, but any 
adverse impact is compensated by the stronger covariabili-
ties between key state variables and the AMOC over these 
longer scales. This reduces the need for large ensembles 

for reliable estimation of covariances. Monte Carlo experi-
ments indicate that statistical significance levels of esti-
mated covariances can be maintained at 90 % using ensem-
ble sizes listed in Table 1, except for variables defining 
subtropical states (not shown). The remaining impact of 
sampling error on the analyses is discussed below.

A series of DA experiments are performed for contrast-
ing scenarios of observation availability, including the 
extreme case of atmosphere-only observations. For each 
time-averaging interval, and observation-availability sce-
nario, one hundred sets of analyses covering the entire 
Last Millenium simulation are produced. The ability to 
recover the AMOC using the different DA configurations 
is summarised in Figs. 5 and 6. Note that CE values cor-
responding to the ensemble-mean background states are 
zero, including those for time-averaged states. Here, the 
ensemble-mean represents the model climatology, without 
any specific information about states taken at any particular 
time. The departure from zero for CE values characterising 
analysed states can be considered a measure of the infor-
mation gained through DA. 

Time-averaged AMOC analyses CE values increase 
with averaging time, indicating relatively more accurate 
analyses with respect to climatology. Not surprisingly, 
results slightly deteriorate as fewer oceanic observations 
are assimilated. The assimilation of atmospheric meridi-
onal heat flux leads to more accurate time-averaged AMOC 
analyses compared to eddy amplitude, particularly for dec-
adal and longer time averages. This contrast is greatest for 
the atmosphere-only case.

The impact of sampling errors on AMOC analyses, 
represented by the spread in CE distribution (see shaded 
areas in Figs. 5, 6), is small for averages less than 10 years 
but increases for longer times scales. In comparison to 
the larger ensembles used for the shorter time scales, the 
smaller ensembles associated with averages over the longer 
intervals lead to a slight increase in sampling uncertainty. 
Such uncertainty in AMOC analyses decreases for atmos-
pheric eddy flux assimilation due to enhanced covariability 
with that quantity.

For reference, results corresponding to the monthly 
AMOC analyses “upscaled” (i.e time averaged) to the dif-
ferent intervals are shown as dots on Figs. 5 and 6. CE val-
ues for time-averaged DA that exceed the upscaled monthly 
analyses indicate added value from assimilating time-aver-
aged observations. Upscaled monthly analyses are of supe-
rior accuracy when ocean observations are assimilated for 
interannual and longer time averages when the baseline DA 
configuration is used; this difference decreases when eddy 
heat flux is assimilated. The most noticeable advantage of 
time-averaged DA is obtained for atmosphere-only assimi-
lation, which is dramatic for multidecadal time averages. In 
this case, monthly analyses have no skill at representing the 

Table 1   Ensemble sizes (i.e. number of independent samples) used 
in the CMIP5 data assimilation experiments

Averaging interval Ensemble size

Month 5,000

1 year 300

5 years 70

10 years 50

25 years 20

50 years 15
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Fig. 5   Coefficient of efficiency (CE) of AMOC analyses produced 
with the baseline DA configuration, for various levels of assimilated 
oceanic observations: a all, b upper ocean temperature and salinity, 
c upper ocean temperature only, d no ocean observations. Solid lines 
correspond to the average and shaded areas indicating the 10th and 
90th percentiles of the CE distribution from one hundred realisations 
of each experiment with the assimilation of time-averaged observa-
tions. Dots represent the average CE for monthly AMOC analyses 
time-averaged over corresponding time intervals



1423Coupled atmosphere–ocean data assimilation AMOC initialization CMIP5

1 3

low frequency AMOC variability, whereas AMOC analyses 
obtained from the assimilation of time-averaged atmos-
pheric observations are only slightly less accurate than 
those obtained with ocean DA.

To assess the level of skill in recovering non-assimilated 
oceanic variables other than the AMOC, CE values for ana-
lysed ocean temperature and salinity are evaluated for the 
case where atmospheric eddy fluxes are observed. Results 
for the subpolar upper ocean are shown (Figs. 7 and 8 for 
temperature and salinity respectively), as well as for the sub-
tropical upper and deep ocean temperature (Figs. 9 and 10). 
Similar results are found for deep ocean salinity (not shown). 
These figures only show results for analysis variables that 
are not assimilated. Analyses of assimilated variables give 
CE values near unity as expected (not shown). Results con-
firm the lack of skill at representing consistent oceanic states 
when performing monthly DA with atmospheric observa-
tions only. Corresponding CE values remain near zero even 
when analyses are averaged over longer time scales; the 
information on ocean low-frequency variability contained in 
monthly atmospheric fields is hidden beneath the noise char-
acterising the subannual variability of the atmosphere.   

However, analyses of the subpolar upper ocean from 
atmosphere-only DA (Figs. 7, 8b) show enhanced skill 

when time-averaged observations are assimilated, par-
ticularly for longer time averages. More accurate salinity 
analyses are obtained when upper ocean temperature obser-
vations are assimilated (Fig. 8a) compared to when DA is 
performed in the atmosphere only (Fig. 8b), confirming 
the importance of temperature–salinity covariability (e.g., 
Zhang et  al. 2007). Furthermore, comparable accuracy is 
obtained with time-averaged DA compared to upscaling 
monthly analyses (i.e. solid lines versus dots in Fig. 8a).
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Fig. 6   Same as Fig. 5 but for  the configuration assimilating eddy 
fluxes in the atmosphere

DA atmos.: Zonal wind + eddy fluxes

10
−2

10
−1

10
0

10
1

10
2

−0.2
0

0.2
0.4
0.6
0.8

1

Averaging time interval (years)

C
E

 (
S

u
b

p
o

la
r 

T
)

DA ocean: None

Fig. 7   Coefficient of efficiency (CE) for analyses of the subpolar 
upper ocean temperature in experiments with assimilation of atmos-
pheric data only (i.e. the only DA configuration for which this vari-
able is not assimilated in our experiments)
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Fig. 8   Coefficient of efficiency (CE) for analyses of the subpolar 
upper ocean salinity in experiments with assimilation of a atmos-
pheric observations and upper ocean temperature and b atmospheric 
data only (i.e. only DA configurations for which the considered vari-
able is not assimilated)
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Fig. 9   Coefficient of efficiency (CE) for analyses of the subtropical 
upper ocean temperature in experiments with assimilation of atmos-
pheric data only
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For the subtropical upper ocean, temperature analyses 
show no skill in the case of atmosphere-only observations, 
for both monthly and time-averaged DA (Fig. 9). As with 
subpolar salinity, more skillful analyses are obtained at all 
time scales when observations of upper ocean temperature 
are assimilated (not shown).

Deep-ocean temperature is recovered with similar accu-
racy on subdecadal timescales for both monthly and time-
averaged upper oceanic observations, while slightly more 
skillful analyses of low frequency variability (i.e. decade and 
longer) are obtained with time-averaged DA (Fig. 10a, b).  
The advantage of time-averaged DA is again apparent for 
the atmosphere-only case (Fig. 10c), particularly at the 
longest averaging time scale considered where the skill 
is similar to the case where upper ocean observations are 
assimilated. Although not shown, we find similar skill in 
analyses of deep ocean salinity.

5 � Summary and conclusions

We have examined coupled atmosphere–ocean data assimi-
lation (DA) techniques with an emphasis on analysing the 
low-frequency AMOC. Our study is motivated by the need 
for computationally efficient initialization of the AMOC 
when limited or no ocean observations are available, and 

it extends Tardif et al. (2014) who demonstrated that time 
averaging of observations greatly improved the AMOC 
analyses from an EnKF assimilating only atmospheric 
observations.

The “no-cycling” DA approach proposed here combines 
two ideas. First, we use time averages of observations as 
in Tardif et  al. (2014) to update estimates of the slowly 
varying components of the atmosphere–ocean system. 
Second, we use an ensemble drawn from a climatological 
simulation of an atmosphere–ocean coupled climate model 
(AOGCM) as the background, hence using climatologi-
cal covariance information during DA as proposed by Oke 
et al. (2002). No-cycling DA eliminates the need for multi-
ple integrations of an AOGCM, but at the expense of lack-
ing the state-dependent covariances.

We pursued two specific objectives: (1) evaluate the 
potential of the cost-effective no-cycling DA, in particular 
whether using flow-dependent covariances is crucial to ini-
tialising the AMOC and, (2) assess the value of assimilat-
ing time averages of observations in a more realistic repre-
sentation of the climate system compared to the low-order 
model used by Tardif et al. (2014). Experiments in two dif-
ferent settings are performed: one with the simplified low-
order model to address objective (1) and the second using 
synthetic observations generated from a long integration of 
a state-of-the-art AOGCM to address objective (2).

Results from the low-order model show that ensemble 
DA based on a climatological ensemble, in which members 
are drawn from a single long model integration, performs 
nearly as well as a full EnKF when estimating the AMOC 
from time-averaged observations. Thus, in the context of 
this simplified model, it is not essential to capture the tem-
poral variation of covariances between the low-frequency 
AMOC and oceanic and atmospheric observables.

A powerful capability enabled by the no-cycling simpli-
fication is the straightforward evaluation of fully coupled 
DA with a more complex and realistic AOGCM at minimal 
cost. Given the results above, we performed DA experi-
ments similar to those in the simple low-order model but 
using data from the “Last Millenium” simulation of the 
CCSM4 model. These experiments derive from a long time 
series of coarse-grained atmospheric and oceanic variables 
from the gridded model output. Synthetic observations hav-
ing additive noise are assimilated to assess the potential for 
estimating the AMOC. As in the simple model, no-cycling 
DA provides useful estimates of AMOC variability at dec-
adal scales and longer given only time-averaged atmos-
pheric observations, because the AMOC and atmospheric 
observables covary strongly over time scales of several 
years and longer. In addition, we find that low-frequency 
temperature and salinity variability in other parts of the 
ocean (e.g., particularly the subpolar upper and basin-scale 
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Fig. 10   Coefficient of efficiency (CE) for analyses of the deep ocean 
temperature in experiments with assimilation of a atmospheric obser-
vations and upper ocean temperature and salinity, b atmospheric 
observations and upper ocean temperature and c atmospheric data 
only
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deep ocean) can also be recovered with no-cycling DA, 
demonstrating the robustness of the results obtained in Tar-
dif et al. (2014).

We acknowledge that these results are based on an 
assumption of a perfect model and therefore represent a 
best-case scenario. Larger analysis errors are expected 
in the more realistic case of an imperfect model, either 
arising from model biases or from erroneous covariances 
between state variables and observables. Techniques 
to circumvent the effect of model biases exist, such as 
anomaly initialisation (e.g., Carassi et al. 2014) or appli-
cation of posteriori correction methods (e.g., Fučkar 
et al. 2014), all of which can be adapted to the concepts 
proposed here. The issue of errors related to misrepre-
sented covariances however remains an open question 
that warrants closer attention. Such efforts are left for 
future endeavors.

Despite the best-case character of the results, the pro-
posed fully coupled DA approach, combining no-cycling 
and time-averaging of observations, has the potential to 
yield accurate estimates of the low-frequency AMOC and 
other key ocean variables, with modest computational cost, 
even for time periods where availability of observations in 
the ocean is minimal or nonexistant. These results are rel-
evant not only for improving our ability to efficiently pro-
duce analyses of the modern AMOC, but also for estimat-
ing the past AMOC. A crucial step in developing enhanced 
climate prediction capabilities is to perform decadal-scale 
hindcasts, whose quality can be evaluated using modern-
era observations but which must be initialized at times 
pre-dating the deployment of a denser network of oceanic 
observations.

 In considering the complete initial-value problem of 
decadal climate predictions, the findings of this study 
suggest that future efforts should focus on extending the 
proposed DA method to a multi-time scale approach and 
assessing its potential for initialising other subcomponents 
of the coupled climate system involving interactions over 
multiple time scales, such as the land-atmosphere system.
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