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1 Introduction

Heat waves are reportedly occurring more frequently across 
much of the globe, and under a warming climate they are 
expected to increase in frequency, intensity, and duration 
(Coumou and Rahmstorf 2012; Grumm 2011; IPCC 2012; 
World Meteorological Organization 2012). In general, 
approaches to quantifying risk of extreme events, such as 
heat waves, assume stationarity in their statistical proper-
ties. However, climatological studies indicate that the sta-
tistical properties of climate records change through time 
due to time varying signals such as sea surface temperature 
(SST) oscillations and climate change (Chang et al. 2006; 
Chavez et al. 2003; Graham 1994; IPCC 2012; Keellings 
and Waylen 2012; Levitus et al. 2000; Nitta and Yamada 
1989). Therefore, time-varying signals should be incor-
porated into the modeling of heat wave events in order to 
improve overall model fit and to investigate possible drivers 
of events. A trend analysis of heat waves could be used to 
explore their temporal evolution under climate change but 
such an approach is beneficial only after the effects of cli-
mate variability have been accounted for Kundzewicz and 
Robson (2004). In this study we focus on the dependence 
of heat waves on atmospheric oscillations rather than on 
trends in the observational record.

Characterizing and predicting the changing frequency, 
magnitude, duration, and timing of heat waves may be 
accomplished by combining statistical and physical 
approaches through inclusion of known atmospheric driv-
ing patterns within extreme value analyses (EVA). EVA is 
well-established in the literature and has been applied exten-
sively to studies of extreme hydrological and meteorological 
events (Rice 1945; Leadbetter et al. 1983; Rodriguez-Iturbe 
and Bras 1985; Waylen 1988; Waylen and LeBoutillier 1989; 
Katz et al. 2002; Goto-Maeda et al. 2008; Waylen et al. 2012; 
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Keellings and Waylen 2014). Several studies have combined 
EVA with atmospheric drivers to examine impacts on temper-
ature extremes in a non-stationary fashion (Brown et al. 2008; 
Cebrián and Abaurrea 2006; Gershunov and Douville 2008; 
Unkašević and Tošić 2008; Sillmann et al. 2011). These stud-
ies were limited to an examination of temperature magnitude 
without inclusion of event frequency or duration. Furrer et al. 
(2010) combined EVA with a stochastic algorithm based heat 
wave simulator in order to incorporate trends in heat wave 
frequency, magnitude, and duration. Another recent study 
included an examination of frequency, duration, and magni-
tude of heat wave events above a high threshold in Europe 
with relation to three large-scale circulation patterns (Pho-
tiadou et al. 2014). We add to these aforementioned works 
through: the use of a higher spatial resolution gridded dataset, 
a bivariate heat wave definition (joint crossing of high maxi-
mum and minimum temperature thresholds), and an examina-
tion of event timing within the year in Florida.

Some of the more dominant low-frequency drivers of 
climate variability in the Northern Hemisphere have been 
shown to impact Florida’s weather patterns. Enfield et al. 
(2001) found that the long-term variations of the Atlantic 
multi-decadal oscillation (AMO) have a strongly positive 
correlation with Florida rainfall, a pattern further confirmed 
by Kelly and Gore (2008) in a study of AMO’s impact on 
river discharges. Enfield et al. (2001) also showed that the 
AMO has a spatially varying impact on Florida rainfall 
bringing heavier precipitation to south Florida during warm 
phases. The AMO is known to have a significant influence 
on mean air temperatures in both the eastern United Sates 
and Western Europe (Kerr 2000; Sutton and Hodson 2005; 
Goto-Maeda et al. 2008; Arguez et al. 2009). The high or 
warm phase (above average) of multi-decadal Atlantic 
SSTs has been associated with mean temperature anomaly 
increases of up to 1.5 °C (~3 °F) in the North Atlantic region 
with peaks in these anomalies occurring during the summer 
months of June, July, August, and September (Arguez et al. 
2009). The influence of the AMO also decreases during 
both cold and warm phases of the more dominant pattern of 
El Niño-Southern Oscillation (ENSO) (Enfield et al. 2001). 
The warm phase of ENSO tends to bring increased amounts 
of precipitation to Florida, while the cold phase brings drier 
conditions (Douglas and Englehart 1981; Kahya and Dra-
cup 1993). Goodrick and Hanley (2009) found that 56 % 
of the areas burnt by wildfires in Florida happened during 
the cold phase of ENSO (La Nina), while only 10 % of the 
areas burned during the warm phase (El Nino).

In our previous study (Keellings and Waylen 2014) we 
employed EVA in a static manner to examine changes in 
bivariate heat wave properties between two time periods 
using stationary bivariate extreme value distributions. In this 
paper we build upon our previous work through exploration 
of the influence of ENSO and the AMO as possible drivers 

of the magnitude, frequency, timing, and duration of Florida 
heat waves (combined high maxima and minima temperature 
events) during the second half of the twentieth century. We 
investigate the relative influence of these time-varying sig-
nals on the occurrence of bivariate heat waves by introducing 
these atmospheric variables as covariates in non-stationary 
extreme value analysis based models. The methodology 
applied in this study is designed to test the basic hypothesis 
that one or both of the aforementioned large scale atmos-
pheric circulation patterns influence heat wave properties in 
Florida with a varied intensity and spatial context.

2  Data

2.1  Gridded surface dataset

Statistical modeling of heat wave characteristics is based on 
historic gridded maximum and minimum daily temperature 
data provided by the Surface Water Modeling group at the 
University of Washington (Maurer et al. 2002). The data-
set is model-derived from observed data and has a spatial 
resolution of 0.125° yielding 833 cells covering the entire 
state for the period 1949–2000. These temperature data are 
from Co-op stations and are gridded using a synergraphic 
mapping system (SYMAP) algorithm and then interpolated 
using an asymmetric spline (Maurer et al. 2002). The inter-
polated surface provides a complete dataset, representing 
an advantage over historic station records which are spa-
tially and temporally scattered and often incomplete. The 
dataset provides a solid basis for the probabilistic charac-
terization of heat wave events at a high resolution that can 
be mapped across the entire state.

2.2  Teleconnection indices

All of the teleconnection indices are obtained from National 
Oceanic and Atmospheric Administration and cover the 
same period (1949–2000). The AMO index is based on 
North Atlantic SST anomalies calculated from detrended 
long run averages of mean SST observations (Enfield et al. 
2001). The ENSO signal at the monthly/seasonal scale is 
transmitted through the atmosphere and thus the Bivari-
ate EnSo Timeseries (BEST) index—obtained by combin-
ing the standardized Southern Oscillation Index with Niño 
3.4 SST standardized anomalies (Smith and Sardeshmukh 
2000) will be used to couple the interaction between SST 
anomalies and atmospheric waves.

2.3  Heat wave definition

We define heat waves based on the definition used in 
Keellings and Waylen (2014). The 90th percentile of the 
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entire distribution of daily maximum and minimum tem-
perature is adopted as a common threshold to identify an 
extremely hot day. These threshold levels are calculated 
separately for each grid cell from the entire temperature 
record (1949–2000) at each grid cell. Minimum duration 
criterion of at least 2 days of consecutive above threshold 
days is set. Only joint crossings of high daily maximum 
temperature thresholds and high daily minimum tempera-
ture thresholds are examined. Events are considered to be 
independent if separated by at least 4 days of below thresh-
old temperatures; otherwise data of consecutive events are 
amalgamated (Keellings and Waylen 2014). Independence 
criterion was set in this manner to account for the possi-
ble epidemiological significance of having fewer than four 
relief days between events as is confirmed in medical lit-
erature for three major population centers in Florida by the 
weak association between heat-related mortality on any 
given day and temperatures in excess of 3 days prior (Cur-
riero et al. 2002). The use of an empirical independence 
criterion is also necessary to satisfy the underlying statisti-
cal assumption of independence between events (Ferro and 
Segers 2003).

3  Methods

Extreme value analysis using a point process approach is 
chosen to characterize and model the frequency, timing, 
magnitude, and duration of heat waves. This approach 
unifies existing approaches to the modeling of extremes, 
namely the peak over threshold (POT) and block max-
ima approaches which have been applied extensively in 
hydrological and climatological studies of events above 
high or low thresholds (Rice 1945; Leadbetter et al. 1983; 
Rodriguez-Iturbe and Bras 1985; Waylen 1988; Waylen 
and LeBoutillier 1989; Goto-Maeda et al. 2008; Waylen 
et al. 2012). The point process is formulated in terms of 
the limiting Generalized Extreme Value (GEV) distribu-
tion parameters (µ, σ, ξ) and as a result, extremal proper-
ties are characterized by only these three parameters (Coles 
2001). Modeling of the frequency and magnitude of events 
are effectively combined in a single point process model 
instead of being fitted separately as in the POT approach. 
The approach also optimizes the use of available data, 
unlike the traditional block (annual) maxima approach, 
as all values above the threshold are included resulting in 
more reliable results.

The point process approach has been extended further 
by utilizing a bivariate extreme value distribution defini-
tion of events, adding a geometric distribution to explore 
heat wave duration, and by incorporating a time-depend-
ent Poisson function to examine heat wave timing within 
the year (Keellings and Waylen 2014). In this paper we 

use univariate extreme value theory to fit a point process 
model and subsequent distributions to an a priori series 
of maximum daily temperatures that has been filtered 
to include only above high (90th percentile) threshold 
maximum temperatures that were accompanied by above 
high (90th percentile) minimum threshold temperatures. 
Another approach would be to use bivariate extreme value 
theory for modeling maximum and minimum temperature 
extremes jointly (see Coles et al. 1994; Keellings and Way-
len 2014) but in this paper we propose a simpler, and per-
haps more numerically stable (Furrer et al. 2010), approach 
making use of the more widespread univariate extreme 
value theory. All computations in this paper have been done 
in the free software environment for statistical computing 
and graphics, R, using the extremes and ismev packages 
(see http://www.r-project.org/).

The occurrence of a heat wave can be thought of as an 
independent event above a high threshold that is drawn 
from an extreme data series that conforms to an Extreme 
Value Distribution (Coles 2001). Events from such an 
extreme series are said to be part of a Poisson process as 
they are occurring randomly and at a variable rate (Coles 
2001). Maximizing the likelihood of this Poisson process 
leads to estimates of the parameters μ (location or central 
tendency), σ (scale or variance), ξ (shape or skew) of the 
limiting GEV distribution of the corresponding block maxi-
mum (Coles 2001). The cumulative distribution function of 
the GEV is given by:

The magnitude of event or cluster maxima, within a 
POT framework, follow a Generalized Pareto Distribution 
(GPD). The cumulative distribution function of a GPD is 
given by Coles (2001):

The parameters of the GEV and that of the correspond-
ing POT approach are directly related through (Davison 
and Smith 1990):

These GEV parameter transformations can then be 
used to describe a Poisson process with rate parameter 
(Λ) derived from the estimated scale parameter σ, shape 
parameter ξ and location parameter μ, and u equal to the 
threshold. The Poisson distribution assumes that events 

(1)P(x) = exp

⌈

−

{

1+ ξ
x − µ

σ

}−1/ξ
⌉

(2)P(x) = 1−

⌈

1+ ξ
x − u

σ

⌉−1/ξ

(3)

ξ = ξGPD = ξGEV

σGPD = σ + ξ(u− µ)

� = [1+ ξ(u− µ)/σ]−1/ξ

http://www.r-project.org/
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are equally likely within a time period, in this case a year. 
However, this assumption is unrealistic as heat wave events 
are strongly seasonal in their nature. The Poisson distribu-
tion should therefore be modified to include a time-depend-
ent or non-homogeneous function:

where λ(t) is the mean number of events expected up to the 
day of the year, t, and n is the number of events up to that 
time in a year. Modeling of distributions of the timings of 
events throughout the year can be accomplished through 
estimation of λ(t) by a Gaussian distribution (Keellings and 
Waylen 2014):

where G(t : µ, σ) is a Gaussian distribution fitted to the 
timing of events with μ being mean date of exceedances, σ 
their standard deviation, and � the annual rate.

The duration of events represents the length of time 
between successive upward and downward crossings of the 
temperature threshold. It is reasonable to assume that the 
duration of events will follow an exponential-like distri-
bution (Cramer and Leadbetter 1967). A discrete geomet-
ric distribution was adopted (Keellings and Waylen 2014; 
Wilks 2005):

where D is the duration (1, 2, 3,…) of the event in days and 
θ equals the reciprocal of the mean duration.

The point process approach to extremes has a further 
advantage over the block maxima and POT approaches to 
extremes in that it allows for the simple introduction of 
covariate effects (Coles 2001). Here we examine the influ-
ence of atmospheric covariates (AMO, ENSO, NAO) on 
the occurrence of heat waves by introducing these signals 
into non-stationary models as covariates in Generalized 
Linear Models (GLMs) of both the location and log-trans-
formed scale parameters of the distributions such that:

where β0(i) are the stationary model parameter estimates 
and β1(i)x are linear transformations of the time-varying 
atmospheric covariates AMO, ENSO and NAO. The shape 
parameter, ξ, was modeled as an intercept only term as 
this parameter is numerically difficult to estimate with any 
accuracy (Katz et al. 2002).

The influence of atmospheric covariates on heat wave 
duration were examined using a GLM, where the reciprocal 
of the mean of the geometric distribution of a hot spell with 
duration of D days is governed by the stationary parameter 

(4)P(m(t) = n) = e−�(t) · �(t)n/n!

(5)�(t) = G(t : µ, σ) ·�

(6)P(D) = (1− θ)D−1θ

(7)

µ(x) = β0(i) + β1(i)x

ln{σ(x)} = β0(i) + β1(i)x

ξ(x) = β0(i)

estimates, β0(i), and linear transformations of the atmos-
pheric covariates, β1(i)y (see Furrer et al. 2010). GLMs 
were fitted using the glm function within R.

To assess the influence of each signal on the occurrence 
of heat waves the improvement over the stationary model 
was examined using the deviance statistic or log-likelihood 
ratio test, as this is most appropriate for comparing nested 
models fitted with fixed MLEs (Coles 2001), whereby 
the difference in negative log-likelihood values between 
two models is tested for significance using a Chi squared 
distribution.

4  Results

4.1  Significance of covariates

In the following section, a description of significant point 
process and geometric model improvements with each tel-
econnection as a covariate term are presented. Significance 
is shown at 0.05 level and covariates are applied simultane-
ously to both the location and log-transformed scale param-
eters or, in the case of durations, to the mean of the geomet-
ric distribution.

4.1.1  Point process parameter estimates

The inset map in Fig. 1a shows significance of improve-
ments to both the GEV location and log-transformed scale 
parameters with ENSO incorporated as a covariate term. 
ENSO significantly improved the point process model 
estimates in 30 % of Florida’s land area with most located 
across areas in northeast and south Florida. ENSO, there-
fore, has a significant influence on the joint occurrence 
(frequency and magnitude) of high daily maximum and 
high daily minimum temperature events or heat waves in 
these areas within Florida.

Significant improvements to the point process models 
occur with the inclusion of the AMO as a covariate on both 
the GEV location and log-transformed scale parameters 
(inset in Fig. 2a). The AMO has a significant influence on 
heat wave frequency and magnitude across much of Florida 
(approximately 80 % of Florida’s land area), particularly in 
the north.

4.1.2  Geometric parameter estimates

The inset map in Fig. 3a shows that improvements to the 
geometric model for duration of events, with ENSO as a 
covariate, are spatially scattered across Florida. Approxi-
mately 50 % of Florida’s land area exhibits a significant 

(8)ln{θ(x)} = β0(i) + β1(i)x
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improvement with the largest areas of significance occur-
ring in the north and south.

Significant improvements to the geometric model with 
AMO as a covariate occur throughout much of Florida 
(Fig. 3b). Approximately 75 % of Florida’s land surface 
exhibits a significant improvement with the inclusion of 
AMO. Both ENSO and AMO are found to have a signifi-
cant impact on the duration of events with that of the AMO 
being more pervasive across Florida.

4.2  Impacts of covariates

In the following section, we present a description of the 
impact that ENSO and AMO have on estimated return 
periods, frequency, duration, and timing of heat waves. To 
examine the impact of each teleconnection we extracted 
the maximum and minimum value of each teleconnection 
index observed during the months of May through Sep-
tember. Each heat wave measure (return period, frequency, 
duration, timing) was then estimated using the maximum 
and minimum index value as covariates in GLMs of the 
point process and geometric parameters.

Fig. 1  ENSO impacts on 50, 25, and 10 year return period temper-
atures. Shown as difference of maximum (a–c) and minimum (d–f) 
value of ENSO model in relation to stationary model. Inset map in (a) 
shows significance (α = 0.05) of improvement with ENSO as covari-
ate in GLM of both location and scale parameters

Fig. 2  AMO impacts on 50, 25, and 10 year return period tempera-
tures. Shown as difference of maximum (a–c) and minimum (d–f) 
value of AMO model in relation to stationary model. Inset map in (a) 
shows significance (α = 0.05) of improvement with AMO as covari-
ate in GLM of both location and scale parameters

Fig. 3  Impact of ENSO (a, c) and AMO (b, d) on duration of heat 
waves. Shown as difference between maximum/minimum value of 
covariate geometric model and stationary geometric model. Inset 
maps show significance (α = 0.05)
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4.2.1  ENSO

The influence of highly positive (maximum value) or warm 
phase ENSO on heat wave magnitude, in absolute dif-
ference in degrees Celsius from the stationary model, is 
shown in Fig. 1 for the 50, 25, and 10 year return period 
estimates (i.e. 2, 4, and 10 % chance of occurrence in any 
year). Areas of model significance (shown in the inset map) 
in the northern half of Florida coincide with decreases in 
heat wave magnitudes by over 1 °C. In contrast, areas of 
model significance in south Florida coincide with increases 
in heat wave magnitudes in excess of 1 °C. Figure 1 also 
shows the influence of highly negative (minimum value) 
or cool phase ENSO on heat wave magnitude. Cool phase 
ENSO brings the opposite effect on return periods to that 
of the warm phase. Areas of significance in north Florida 
exhibit increases in heat wave magnitudes in excess of 1 °C 
while those in south Florida decrease by over 1 °C.

Figures 3 and 4 show the influence of ENSO on heat 
wave duration and frequency. Warm phase ENSO shows 
little impact on the frequency of heat waves in north Flor-
ida but brings increases in the average number of events 
by in excess of four per year in south Florida. Cool phase 
ENSO also has relatively little impact on frequency in north 
Florida bringing increases of up to two events per year 
in only an isolated area. In south Florida the cool phase 
again brings the opposite effect to that of the warm phase 
by decreasing heat wave frequency by over 1. Duration of 

events generally increase across Florida with either maxi-
mum or minimum values of ENSO as covariates. Warm 
phase ENSO brings relatively modest increases to the dura-
tion of events in north Florida and larger increases in south 
Florida of up to 4 days increased duration. Cool phase 
ENSO increases duration in north Florida by up to 3 days 
but brings relatively modest increases in south Florida.

The influence of ENSO on timing of heat waves is 
shown in Fig. 5. We mapped the day of the year on which 
the chance of having at least one heat wave equals or 
exceeds 50 %. In south Florida the warm phase of ENSO is 
associated with events occurring up to 25 days earlier in the 
year than during cool phase ENSO. There is relatively little 
change in event timing between warm and cool phases of 
ENSO in areas of model significance in north Florida.

4.2.2  AMO

The influence of highly positive (maximum value) or warm 
phase AMO on heat wave magnitude, in absolute difference 
in degrees Celsius from the stationary model, is shown in 
Fig. 2. The majority of Florida exhibits an increase in heat 
wave magnitudes during warm phase AMO. In the south-
ern tip of Florida warm phase AMO is associated with large 
increases in heat wave magnitude (>4 °C). In contrast, 

Fig. 4  Impact of ENSO (a, c) and AMO (b, d) on frequency of heat 
waves. Shown as difference between maximum/minimum value of 
covariate location and scale model and stationary model. Inset maps 
show significance (α = 0.05) Fig. 5  Impact of ENSO (a–c) and AMO (d–f) on day of year on 

which the chance of having at least one heat wave equals or exceeds 
50 %. Shown as Julian day for maximum (warm phase) and mini-
mum (cool phase) value of covariate location and scale model and the 
difference calculated from the minimum minus the maximum. Inset 
maps show significance (α = 0.05)
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highly negative (minimum value) or cool phase AMO coin-
cides with decreases (<−1 °C) in heat wave magnitude 
across much of the Florida.

The warm phase of AMO is associated with general 
increases in heat wave frequency across much of Florida 
by up to four more events per year (Fig. 4b). Although, the 
southern tip of Florida exhibits decreases in frequency by 
in excess of one event per year. Cool phase AMO coincides 
with widespread decreases in heat wave frequency by over 
two events per year (Fig. 4d). The duration of heat waves 
increases under both highly warm and cool phases of AMO 
(Fig. 3b, d). However, the warm phase is associated with 
relatively large increases in excess of 4 days in duration. 
Warm phase AMO brings a 50 % risk of having at least one 
heat wave up to 25 days earlier in the year (Fig. 5). Under 
the influence of the warm phase, events occur earlier across 
most of Florida with the largest shifts taking place in the 
south.

5  Discussion and conclusions

We demonstrated a statistical model combining the point 
process with a time-dependent function, a geometric dis-
tribution, and GLMs of parameter estimates to examine 
the impact of ENSO and the AMO on the frequency, mag-
nitude, timing, and duration of heat waves in Florida. We 
implemented our methodology over a high-resolution his-
torical gridded dataset, allowing for an extensive spatial 
and temporal representation of the influence of these tel-
econnections on heat waves. Using this methodology and 
dataset we established the impact of the teleconnections on 
each heat wave property, which may be beneficial for quan-
tifying future heat wave properties as part of forecasts or 
longer-term projections from climate models.

We find only small and isolated areas of significance 
with ENSO as a covariate of heat wave magnitude, fre-
quency, and timing. Furthermore, within these areas of 
model significance we found only relatively weak impacts 
on heat wave properties. ENSO has a significant impact on 
heat wave duration across half of Florida but again exhibits 
only a weak influence. Despite the relatively modest impact 
of ENSO on all investigated heat wave properties, the mod-
els indicate that warm phase ENSO and cool phase ENSO 
result in geographically opposing heat wave impacts. Warm 
phase ENSO brings more intense events to south Florida 
in terms of increased magnitude, frequency, duration, and 
earlier timing while diminishing events in the north. Cool 
phase ENSO amplifies events in north Florida while dimin-
ishing events in the south. The small areas of significance 
with ENSO as a covariate and the relatively weak impact 
on heat wave properties are supported by others who found 
that ENSO is limited to wintertime impacts on precipitation 

and temperature in Florida (Douglas and Englehart 1981; 
Kahya and Dracup 1993; Gershunov and Barnett 1998; 
Goodrick and Hanley 2009).

In agreement with others, we find that the AMO is a sig-
nificant driver of extreme summertime temperatures (Sut-
ton and Hodson 2005; Arguez et al. 2009). These previous 
studies have concluded that the AMO is associated with 
warmer mean summertime temperatures across the eastern 
United States. We add to those prior findings by concluding 
that the AMO is also a driver of extreme temperature events 
in Florida. The AMO was found to be positively associ-
ated with heat wave properties across much of Florida. 
The warm phase of AMO brings heat waves earlier in the 
summertime (up to 25 days earlier) while also increasing 
their magnitude (>4 °C), frequency (up to four more events 
per year), and duration (up to 4 days longer). The strongest 
impacts occur on the magnitude and duration of events in 
south Florida. Interestingly, warm phase AMO is associated 
with slight decreases in the frequency of events in south 
Florida. This is likely a result of a merging effect from the 
increase in magnitude and duration of heat waves bringing 
events with fewer intervals and so apparently reducing their 
frequency.

A limitation of the current approach is that taken sep-
arately, ENSO or AMO can only explain part of the vari-
ability in Florida heat waves. The inclusion of additional 
atmospheric covariates such as the North Atlantic Oscilla-
tion and Pacific-North American could improve the fit of 
the extreme value theory based models. Another avenue 
of research would be to explore these additional covari-
ates both individually and in combination as covariates 
in the extreme value models. In the present paper our aim 
was to first explore individual covariates in order to gain 
a better understanding of their stand-alone impact on 
Florida heat waves. Exploring combinations of covari-
ates will be the topic of a future paper in which we will 
look at the conditional affects of atmospheric covariates 
on Florida heat waves. However, there may be a trade-
off in such an approach as given the lack of extreme data 
(further limited by our joint crossing approach), models 
that include multiple covariates are likely to exhibit only 
insignificant improvements over single covariate models. 
In the case of ENSO and AMO, we find little evidence to 
suggest that ENSO has much of an impact on summertime 
extreme temperatures (heat waves) in Florida and empiri-
cal evidence suggests that ENSO is limited to wintertime 
impacts. Therefore, we believe that the inclusion of ENSO 
and AMO in a single model of heat waves in Florida will 
bring little further explanation of variability, especially 
given little evidence of their combination as a summertime 
heat wave generating process.

The novel methodology adopted in this study is intended 
to allow for a more complete representation of bivariate 
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heat waves by defining joint thresholds and including more 
information regarding their properties (magnitude, fre-
quency, duration, timing) than have hitherto been applied 
in modeling efforts. We also demonstrated the inclusion 
of teleconnection indices in this approach to facilitate an 
investigation of how different phases of ENSO and the 
AMO affect each heat wave property. We have assessed the 
influence of teleconnections to gain a greater understand-
ing of the consequences of ENSO and the AMO, two of the 
main drivers of Florida’s climate, on periods of extreme 
heat in Florida. This knowledge could be implemented in 
climate models to improve estimates of future responses of 
heat wave properties in Florida.
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