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Abstract A noise reduction technique, namely the inter-

active ensemble (IE) approach is adopted to reduce noise at

the air–sea interface due to internal atmospheric dynamics

in a state-of-the-art coupled general circulation model

(CGCM). The IE technique uses multiple realization of

atmospheric general circulation models coupled to a single

ocean general circulation model. The ensembles mean

fluxes from the atmospheric simulations are communicated

to the ocean component. Each atmospheric simulation

receives the same SST coming from the ocean component.

The only difference among the atmospheric simulations

comes from perturbed initial conditions, thus the atmo-

spheric states are, in principle synoptically independent. The

IE technique can be used to better understand the impor-

tance of weather noise forcing of natural variability such as

El Niño Southern Oscillation (ENSO). To study the impact

of weather noise and resolution in the context of a CGCM,

two IE experiments are performed at different resolutions.

Atmospheric resolution is an important issue since the noise

statistics will depend on the spatial scales resolved. A simple

formulation to extract atmospheric internal variability is

presented. The results are compared to their respective

control cases where internal atmospheric variability is left

unchanged. The noise reduction has a major impact on the

coupled simulation and the magnitude of this effect strongly

depends on the horizontal resolution of the atmospheric

component model. Specifically, applying the noise reduc-

tion technique reduces the overall climate variability more

effectively at higher resolution. This suggests that ‘‘weather

noise’’ is more important in sustaining climate variability as

resolution increases. ENSO statistics, dynamics, and phase

asymmetry are all modified by the noise reduction, in par-

ticular ENSO becomes more regular with less phase asym-

metry when noise is reduced. All these effects are more

marked for the higher resolution case. In contrast, ENSO

frequency is unchanged by the reduction in the weather

noise, but its phase-locking to the annual cycle is strongly

dependent on noise and resolution. At low resolution the

noise structure is similar to the signal, whereas the spatial

structure of the noise deviates from the spatial structure of

the signal as resolution increases. It is also suggested that

event-to-event differences are largely driven by atmospheric

noise as opposed to chaotic dynamics within the context of

the large-scale coupled system, suggesting that there is a

well-defined ‘‘canonical’’ event.

Keywords ENSO � Couple models �
Climate simulations � Atmospheric noise

1 Introduction

There are theories that argue that the irregularity of ENSO

and ultimately the loss of predictability are largely driven

by stochastic (internal atmospheric) noise forcing (e.g.,

Kirtman and Schopf 1998; Eckert and Latif 1997; Blanke

et al. 1997; Penland and Matrosova 1994; Penland and

Sardeshmukh 1995; Flügel and Chang 1996; Moore and

Kleeman 1996; Kleeman and Moore 1997; Xue et al. 1997;

Chen et al. 1997; Moore and Kleeman 1999a, b; Thompson

and Battisti 2001; Kleeman et al. 2003; Flügel et al. 2004;

Zavala-Garay et al. 2003a, b, 2004, 2005, 2008). If the

stochastic forcing is of primary importance then it is
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possible that the details (e.g., space–time structure and

state dependence) of the noise are also important.

For example, Moore and Kleeman (1999a, b) calculated

the stochastic optimal of an intermediate coupled model

and argued that their spatial structure is consistent with the

spatial structure associated with observed Westerly Wind

Bursts (WWBs). That is, the space–time statistics of the

stochastic forcing may be important in producing optimal

growth (i.e., produce larger response in the coupled sys-

tem). Kirtman and Shukla (2000) argued that wind stress

noise associated with the Indian summer monsoon has a

specific structure in the tropical Pacific that can trigger

ENSO. Zavala-Garay et al. (2003a) found that perturbation

growth due to stochastic forcing is more favorable over the

western/central Pacific where SST is moderately warm and

more sensitive to noise forcing. There are many studies

pointing at the importance of noise in triggering ENSO

events. Larson and Kirtman (2013) argued that the low-

frequency component of the noise is more important and

serve as trigger to ENSO as oppose to high frequency

noise. Other example of ENSO trigger includes the Pacific

Meridional Model (Chang et al. 2007a, b; Zhang et al.

2009a, b). This mode of variability is associated with

westerly wind anomalies over the central Pacific subtropics

along with peak SSTA during boreal spring (Chiang and

Vimont 2004).

The understanding of the importance of stochastic

forcing is complicated by the possibility that it may be state

dependent. A case in point is the results of Kirtman et al.

(2005) who found that the spatial structure of the dominant

wind stress noise was remarkably similar to the spatial

structure of the coupled signal and that the noise was state

dependent. Jin et al. (2007) formulated a simple coupled

model to examine how state independent noise versus state

dependent noise affected ENSO variability. In that study,

they found that unlike for state-independent noise, when

the noise is state-dependent, it alters the ensemble mean

evolution of ENSO, and also amplifies the ensemble spread

during ensemble forecast. In a modeling study, Lopez et al.

(2013) found that state-independent noise (i.e., noise with

stationary space–time statistics) has little effect in modu-

lating ENSO and tropical Pacific variability. In contrast,

they found significant impact on ENSO when the noise is

state-dependent.

Examples (non-exhaustive) of state independent and

dependent noise are as follows:

1. The Madden-Julian oscillation (MJO; Chen et al.

1996): Zhang and Gottschalck (2002) indicated a

tendency for larger SST anomalies of ENSO warm

events in the eastern Pacific, to be preceded by stronger

oceanic Kelvin wave anomalies induced by the MJO in

the western Pacific.

2. Cold surges from mid-latitude over the western Pacific

(Love 1985; Chu 1988; Kiladis 1994): Yu and

Rienecker (1998) indicated in their case study of the

1997–1998 El Niño that Westerly Wind Bursts

(WWBs) were associated with cyclones induced by a

northerly surge. Yu et al. (2003) showed that changes

in northerly surge pathways, influenced by ENSO

phases, were related to WWBs occurrences through

cyclone formations over the western Pacific. WWBs

can result from tropical cyclones (Keen 1982; Yu and

Rienecker 1998).

3. WWBs associated with twin cyclones over the western

Pacific, accelerated the development of the 1986–1987

El-Nino event (Nitta and Motoki 1987; Nitta 1989).

Murakami and Sumathipala (1989) emphasized that

collective occurrences of WWBs lasting 7–20 days

over the western Pacific were related to ENSO.

4. Larson and Kirtman (2013) found that the Pacific

Meridional Mode (PMM) appears to be an effective

trigger of ENSO events when the western-to-central

Pacific is preconditioned (i.e., anomalously high sea

surface heights or heat content).

5. Other sources of stochastic noise forcing are: Indian

summer monsoons (Kirtman and Shukla 2000) and

midlatitude atmospheric variability (Vimont et al.

2003a, b).

Throughout this paper we will refer to variability due to

atmospheric internal dynamics as noise. The goal of this

study is to understand how internal atmospheric dynamics

affects the coupled climate system at different resolutions.

This is an interesting question, given that the ocean

response may depend on the space–time structure of the

noise forcing, and as noted above, the statistics of the noise

is likely to be dependent on atmospheric model resolution.

In order to tackle this question we will make use of the

Interactive Ensemble (IE) coupling strategy proposed by

Kirtman and Shukla (2002) and applied to CCSM3 (Kirt-

man 2009; Kirtman et al. 2011), so that any signal

dependence in the noise statistics is retained. The IE

technique was specifically developed with the purpose of

studying the relative importance of stochastic (weather

noise) forcing and deterministic coupling in generating

climate variability in CGCMs. This noise reduction tech-

nique is different from the a posteriori ensemble averaging

of multiple coupled model realizations in that the ensemble

averaging is done to the atmospheric fluxes as the CGCM

evolves, therefore it is viewed as fully interactive. Using

the IE technique Kirtman and Shukla (2002) suggested that

noise reduction only slightly decreased the amplitude of

ENSO in the COLA anomaly coupled model (Kirtman

et al. 2002), shortened its periodicity, and increased its

regularity. In a separated IE study, Yeh and Kirtman
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(2004a, b) diagnosed SST variability in the North Pacific

and argued that the local effect of noise forcing dominated

the variability and blurred the tropical-midlatitude SST

teleconnections. That is, the teleconnection is still present,

but the amplitude of the local noise is much larger. Wu and

Kirtman (2004a, b) made use of the IE technique to isolate

the importance of coupled air-sea feedbacks over warm

tropical oceans for monsoon-global ocean teleconnections.

In the context of this paper, we refer to noise as the

stochastic component of atmospheric fluxes at the air-sea

interface. Whereas in most of the previous work, stochastic

forcing was externally prescribed and derived as some

approximation to weather noise statistics that is state

independent. The difference here is that weather noise is

internally produce by the atmospheric model and is state

dependent. The goals/purposes of this paper are to:

1. Understand how ENSO is affected by internal atmo-

spheric dynamics and how atmospheric model resolu-

tion might influence these interactions;

2. Diagnose the role of atmospheric noise in the diversity

of ENSO, including event-to-event and phase (warm-

to-cold) asymmetry;

3. Examine the role the signal plays (if any) in modifying

noise amplitude and spatial structure at different

resolution.

The first point is a general issue that will be discussed

throughout this study. The second point is mainly aiming at

the importance of noise forcing in sustaining/modifying/

diversifying what is often called ‘‘signal’’. The third point

is attempting at understanding the role of the signal mod-

ulating the noise, namely signal dependent noise.

The rest of this paper is organized as follows: Sect. 2

describes observational estimates and the coupled model

used for this study. The interactive ensemble technique is

briefly discussed in Sect. 3. Section 4 discusses the effect

of noise reduction on the mean state. Section 5 highlights

the effect of noise reduction in tropical Pacific variability,

including the effect of noise on ENSO statistics, dynamics,

and phase asymmetry with and without noise reduction. An

analysis of the structure of noise is also presented in this

section. A summary and discussion section is also included

as Sect. 6.

2 Observation datasets and the coupled model

The SST is taken from the reconstructed Reynolds and

Smith (1994), with a horizontal resolution of 2�
(*220 km) and period from January 1950 to December

2001. The CGCM used in this work is the Community

Climate System Model version 3 (CCSM3) from the

National Center for Atmosphere Research (NCAR). This

model is an earth system model comprised of four geo-

physical components consisting of atmosphere, land,

ocean, and sea ice components all linked by a flux coupler.

The coupler exchanges information among the components

interactively while the model is running. The atmosphere is

modeled by the Community Atmosphere Model version 3

(CAM3). The land surface is modeled by the Community

Land Surface Model version 3.0 (CLM3). The oceans are

represented using the Parallel Ocean Program version 1.4.3

(POP) and the sea ice is modeled by the Community Sea

Ice version 5 (CSIM5).

In this work, CAM3 and CLM3 have horizontal reso-

lution of T42 (128 longitude and 64 latitude points, or

*280 km) for the low-resolution case and T85 (256 lon-

gitude and 128 latitude points, or *140 km) for the

medium resolution case. There are 26 atmospheric vertical

levels for all experiments. For the POP and CSIM5, the

horizontal resolution is approximately 1� in the longitude

and variable in the latitude direction with finer resolution,

about 1�/3�, near the equator. The POP has 40 vertical

levels with level thickness monotonically increasing from

approximately 10–250 m with depth. For each model run

presented here, the initial conditions are taken from pre-

vious model run after spinup. The model is further inte-

grated for hundreds of years with only the last 200 years

employed for the analysis.

CCSM3 uses a daily coupling interval for the ocean

component and an hourly coupling frequency for the other

components of the climate system. Air-sea coupling is

conservatively and communicating momentum, heat, fresh

water, sensible, latent, and radiative heat fluxes between

the ocean and atmosphere. At every hour, the atmosphere

component communicates to the coupler average wind

speed, humidity, potential temperature, precipitation, air

density, geopotential height of the lowest grid level, fluxes

of net surface solar and long-wave radiation. The ocean

component sends the coupler the upper-level time-aver-

aged temperature and velocity at the end of the coupling

period. With these inputs from the ocean and atmosphere,

the coupler calculates momentum, heat, and fresh water

fluxes hourly, and then passes them to the ocean model as

daily means.

A detailed description of CCSM3 simulation of ENSO is

found in Collins et al. (2006) and for ENSO prediction in

Kirtman and Min (2009). Here, some of the most relevant

issues with this model are highlighted. Interannual SSTA

associated with ENSO extend too far to the west in CCSM3

as compared to observations. This is consistent with the

well-documented westward displacement of the mean

eastern Pacific cold tongue position. The SSTA also show a

strong meridional confinement about the equator as com-

pared to observations. This confinement can be the result of

significantly narrow zonal wind stress forcing in CCSM3.
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Deser et al. (2006) found that the meridional confinement

of zonal wind stress is related to the high frequency of

interannual variability in CCSM3, and the mechanism for

this is described in Kirtman (1997). Despite the well-

known errors in ENSO statistics, CCSM3 has also been

shown to have reasonable ENSO prediction skill. For

instance, Kirtman and Min (2009) compared CCSM3

ENSO predictions to the operational NOAA Climate

Forecasting System (CFS), and found that the both the

deterministic and probabilistic forecast quality in the

Nino3.4 region was comparable.

3 The Interactive Ensemble technique

The IE strategy has been used to diagnose the ENSO-

Monsoon relationship (Wu and Kirtman 2003) and mech-

anisms for low-frequency SST variability (Yeh and Kirt-

man 2004a, b; Wu et al. 2004; Schneider and Fan 2007)

among others. It uses multiple realizations of the atmo-

spheric model (CAM) coupled to a single realization of the

ocean model (POP), a single realization of the sea-ice

model and a single realization of the land-surface model.

The coupling of the multiple realizations of CAM to the

single realizations of the other component models is

accomplished through the CCSM coupler. The purpose of

this coupling strategy is to significantly reduce the sto-

chastic forcing of the ocean due to internal atmospheric

dynamics. Ensemble averaging of fluxes of heat, momen-

tum and fresh water produced by the individual CAM

ensemble members before they are passed to POP effec-

tively filters the noise in the fluxes due to internal atmo-

spheric dynamics. The sea-ice and land surface models are

also coupled to the ensemble mean fluxes. Additional

details can be found in Kirtman (2009).

The interactive ensemble strategy works as follows

(Fig. 1 of Kirtman et al. 2005). Each realization of CAM is

statistically identical; the only difference among the CAM

ensemble members is the initial condition. Because the

atmosphere is sensitively dependent on initial conditions,

the CAM realizations evolve differently. As the interactive

ensemble evolves, each CAM realization experiences the

same SST predicted by the ocean component. POP, on the

other hand, experiences surface fluxes of heat, momentum

and freshwater that are the ensemble average of the CAM

realizations. The CAM realizations are noise independent

(i.e., the noise among the ensemble members is uncorre-

lated), but since they are all coupled to the same SST, they

have the same SST forced signal. The interactive ensemble

coupling does not modify the internal dynamics of the

individual CAM realizations, up to any changes in the

mean state and the character of the SST variability. This is

because the ensemble averaging is only applied to the

fluxes of heat, momentum and freshwater as they are pas-

sed to the ocean component. In our experiments, both low

and medium-resolution IE are implemented using six

atmospheric GCMs realizations.

4 Impact of IE on the mean state

Here, we discuss the impact of applying the IE to the low

and medium resolution atmospheric component models,

with the ocean having the same 1� resolution (see Sect. 2).

We compare 200-year simulations of the control and its

respective IE (see Table 1 for experiment description). We

remind the reader that any differences between control and

the IE experiment in CCSM3 is assumed to be caused by

internal atmospheric dynamics—we cannot completely

eliminate the possibility of non-linearity in, for example,

the signal or the mean state.

Here we primarily focus on climate variability, but as

noted above it is also possible that the mean climate could

be affected, and could contribute to the differences in the

simulations. This is because the coupled model is ‘‘tuned’’

using only one atmospheric GCM, and reducing noise can

have a rectified effect on the mean (see also Kirtman 2009;

Kirtman et al. 2011). Figure 1, for example, shows the

mean SST along the equatorial Pacific, for both low and

medium-resolution control and IE simulations along with

observational estimates. The general SST gradient is cap-

tured in all simulations, and is fairly consistent among the

simulations. Notable differences are in the far western

Pacific and far eastern Pacific. For example, the warm pool

bias appears (or more precisely the warm SST plateau in

the west Pacific) to be reduced in both simulations with IE.

Note that the medium-resolution (T85-control) experiment

does the worst job in depicting the SST plateau west of

160E. The T42-control simulation has a large warm bias in

the far west of the basin, but there is some hint of an SST

plateau around 140E. It should be noted we are not arguing

that the IE is the way to improve the simulation in the west

Pacific, but rather it provides a potential mechanistic

understanding of the source of the warm pool bias.

Table 1 Experiments description

Experiment Description Atmosphere

resolution

T42-CTL Low resolution control T42 (*2.8�)

T42-IE Low resolution interactive ensemble T42 (*2.8�)

T85-CTL Mid resolution control T85 (*1.4�)

T85-IE Mid resolution interactive ensemble T85 (*1.4�)

The ocean resolution is the same for all experiments
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The application of IE also slightly reduces the SST bias

just off the coast of South America. This is also true irre-

spective of the resolutions examined here. A region where

IE degrades the mean climate is in the cold tongue, espe-

cially between 120 W and 90 W. Note that T85 IE is

arguably the worst simulation in this region with cold bias

of about 2 �C. It appears that the IE tends to improve the

simulation in regions where the atmosphere strongly forces

the ocean (e.g. warm pool region), whereas it degrades

simulation in other regions (e.g. cold tongue). This deg-

radation or improvement may be model dependent, but is

not resolution dependent in this model.

There are a few physical mechanisms by which atmo-

spheric noise affects SST. Over the equatorial western

Pacific, the mean thermocline is considerably deep; there-

fore thermocline dynamics has little effect on the surface

temperature. Changes in SST over this region are more

related to mixed-layer processes. SST changes in this region

can be influenced by air-sea heat fluxes, temperature

advection by currents (both geostrophic and Ekman com-

ponents), radiative fluxes at the bottom of the mixed layer to

the ocean interior, entrainment, and diffusion. All of these

can be influenced by atmospheric noise. For example, stir-

ring by surface winds can enhance latent and sensible heat

fluxes, reducing buoyancy and SST. Entrainment of water

from below the mixed layer is influenced by turbulent

kinetic energy balance, which is related to wind stirring and

surface heating. The impact of atmospheric noise on SST

over the eastern Pacific is more related to thermocline

dynamics. The thermocline there is very shallow therefore

downwelling/upwelling Kelvin waves have significant

effects on the surface response. These waves can be gener-

ated by atmospheric noise in the wind stress (e.g., WWBs).

5 Tropical Pacific variability and IE

Before looking at how ENSO is modified by IE, we analyze

in general, variability in the tropical Pacific. An analysis of

variance is performed for SSTA, zonal wind stress (sx), and

precipitation. Variance is calculated using anomalies

obtained by removing the climatological annual cycle from

each field. The variances for precipitation and sx are cal-

culated from the ensemble mean of those fields, which is

used to force the ocean component. Figure 2 shows the

standard deviation for SST, zonal wind stress and precip-

itation for the control models at different resolution. SST

variability is slightly larger at T42ctl and extends further

westward compared to T85ctl. This was also noted in Deser

et al. (2006). The zonal wind stress variability is similar in

both models and is dominated by extratropical variance.

The precipitation pattern has a sideways ‘‘v’’ structure with

maximum variability over the warm pool and away from

the equator.

Figure 3 shows the standard deviation ratio (i.e., rIE/

rCTL) for IE divided by control for both T42 and T85

simulations. Shaded contours indicate 99 % statistical

significant based on F-test with smaller values indicating

regions of large variance reduction—the results are statis-

tically significant almost everywhere. Overall, the SST

standard deviation ratio (IE/control) ranges from 0.5 at T85

and to about 0.65 for T42 in the equatorial Pacific. This

ratio is a useful diagnostic for quantifying the coupled

feedback strength. That is, Kirtman et al. (2005) demon-

strated that when the standard deviation ratio is greater than

1.0, unstable coupled feedback and non-linear dynamics

are likely important in forcing SST variability. When the

ratio falls between 0.4 and 1.0, unstable coupled feedbacks,

non-linearity, or ocean dynamics may play a significant

role. When this ratio is less than 0.4, SST variability is

mostly due to atmospheric noise forcing alone. This critical

standard deviation ratio of 0.4 (i.e., 1/6 variance ratio) is

based on six atmospheric ensemble members. Non-linear-

ity and coupled feedbacks are likely to be important in

determining the dynamical regime of CCSM3 as described

in Kirtman (2009).

The differences in variance reduction between the

medium (0.5) and low (0.65) resolution simulations are

also statistical significant at 99 % confidence level based

on an F test. This, along with Fig. 3 suggests that the

variability in the T85 control case is more noise dependent

than the T42 control, i.e., the variance reduction at T85 is

larger than T42. Most of the reduction in variance occurs

away from the equator for both resolutions. This is gen-

erally seen by considerable lower standard deviation ratios

away from the equator.

In the deep tropical Pacific at T42, the spatial structure

of the standard deviation ratio (rIE/rCTL) for SSTA and

Fig. 1 Equatorial mean seas surface temperature (SST, �C) from

observed estimates and the four CCSM3 experiments. The horizontal

axis corresponds to longitude across the Pacific Ocean

Tropical Pacific internal atmospheric dynamics and resolution 513

123



Fig. 2 Standard deviation of

SST (�C), zonal wind stress

(10-1 N m-2), and precipitation

(mm) for control models at

different resolution. Standard

deviation is calculated from

interannual anomaly defined by

removing model climatology

Fig. 3 SST (top), zonal wind

stress (middle), and

precipitation (bottom) standard

deviation ratio along the tropical

Pacific sector. The ratio is

defined as IE divided by the

control experiment for T42 (left)

and T85 (right) resolution cases.

Shaded contours indicate 99 %

statistical significance using an

F test
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zonal wind stress resembles the spatial structure of the

control standard deviation (i.e., Fig. 2). This is in contrast

to T85 where the variance reduction has a distinctly dif-

ferent spatial structure than the control standard deviation.

The T42 results presented here are consistent with the

Kirtman et al. (2005) results for the COLA T42 model in

that the dominant noise patterns largely projected on the

‘‘signal’’ patterns. As resolution increases the dominant

noise structures start to deviate from the signal patterns

significantly. This will be discussed in more detail later in

the paper.

Similar to the SST, the variance reduction for the wind

stress and precipitation is more marked for T85 case (i.e.,

lower values of variance fraction). Most of the region

shows values \0.5 for wind stress. The precipitation

structure is more complicated, it has values close to 1 over

the southeast tropical Pacific ‘‘ocean desert’’ region for

both resolutions. This is mostly due to very small precip-

itation variances in both simulations. An interesting pattern

emerges at T85 with ratios\0.3 over the cold tongue. This

is a region of very cold SST bias (Fig. 1) for T85 IE case,

which may be playing a role in suppressing noise-induced

variability or in reducing the noise.

5.1 ENSO characteristics: variance

In this Section we diagnose how the IE implementation

affects ENSO at different resolutions. Table 2 provides a

quantitative comparison of Niño3.4 SSTA by showing the

second, third, and four statistical moments with their

respective confidence interval at a 99 and 95 % level. The

observed standard deviation is 0.83 �C. The two control

experiments suggest higher than observed variability of

ENSO, with the medium resolution being closer to observed

(e.g., rT42CTL = 0.91 �C and rT85CTL = 0.88 �C); this is

consistent with Deser et al. (2006). Implementing the IE

noise reduction technique consistently reduces ENSO var-

iability (e.g., rT42IE = 0.58 �C and rT85IE = 0.51 �C), and

this is consistent with Figs. 2 and 3 discussed above. The

differences in standard deviation discussed before are sta-

tistical significant at 99 % confidence level for all cases.

The higher resolution case is the most affected by IE. The

positive skewness of the observed ENSO is described by the

third moment. Note that the low-resolution control is neg-

atively skewed (significant to a 99 % level). A near-zero

skewness is obtained by the noise reduction at T42. Dif-

ferences in the third moment for the T85 cases are also

statistical significant. Comparison for the fourth moment for

all cases is not obvious due to a lack of statistical signifi-

cance. Irrespective of resolution, internal atmospheric

dynamics is a key component in determining the overall

shape of the PDF. The dominant periodicity, as detected

from the Nino3.4 power spectra (not shown), is not modi-

fied by the interactive ensemble coupling.

Figure 4 shows the variance by calendar month associ-

ated with Niño3.4 SST anomaly. The solid-black line

depicts observed estimates, whereas the various simula-

tions are noted in the legend. All the experiments agree, in

a general sense, there is a reduction in variance during the

boreal spring, and the two IE experiments show an overall

reduction in variance compared to the control that is con-

sistent with Fig. 3. Atmospheric resolution affects the

seasonal variations in variance. This is particular pro-

nounced during late boreal spring and boreal summer

where the two control variances are relatively similar, but

the T85 IE variance is considerably smaller than the

T42 IE variance. Most of the enhanced reduction of vari-

ance associated with T85 IE seen in Fig. 3 appears to be

associated with this limited period of the annual cycle. This

is a season often characterized by low signal-to-noise ratio;

this may suggests that SST variability during this period is

mostly noise induced. We will also comeback to this issue

later in the paper.

5.2 ENSO composite evolution

Here we explore the effects of atmospheric noise in terms

of the evolution of composite of warm and cold events. The

composite analysis is based on the warm and cold events

that have a December–January–February (DJF) Niño3.4

SSTA greater than one standard deviation. Based on this

threshold and that we have about 200 years of monthly

data from all cases, the composite includes more than 40

events both warm and cold from each experiments.

Table 2 Second, third, and four statistical moments associated with Niño3.4 SSTA described by the probability density function (PDF) on

Fig. 12

Observed Experiment

T42ctl T42 IE T85ctl T85 IE

StDev 0.83 ± 0.05(0.04) 0.91 ± 0.03(0.02) 0.58 ± 0.02(0.01) 0.88 ± 0.03(0.02) 0.51 ± 0.02(0.01)

Skewness 0.278 ± 0.21(0.14) -0.22 ± 0.09(0.07) -0.088 ± 0.11(0.08) 0.097 ± 0.098(0.07) -0.117 ± 0.11(0.08)

Kurtosis 0.055 ± 0.34(0.24) -0.296 ± 0.17(0.12) 0.078 ± 0.18(0.13) -0.180 ± .019(0.14) 0.0524 ± 0.18(0.13)

The statistical significant interval is also shown to a 99 % (95 %) confidence level
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Figure 5 shows the lag/lead composite warm events for

T42ctl (top–left), T42 IE (top–right), T85ctl (bottom–left),

and T85 IE (bottom–right). The panels represent SSTA

evolution from March of year 0 (leading to the extreme

event) to May of year ?1 (after the event). Notably the

T42ctl simulation has stronger warm anomalies in the

western Pacific that first appear in mid-summer and persist

through the fall. In the T42ctl simulation, the warm SSTA

begin to emerge by late May(0) and migrate westward until

reaching a maximum extent in January(?1). The maximum

T42ctl SSTA (*1.8 �C) is located in the Niño3.4 region

with a hint of eastward propagation. This maximum occurs

during DJF and is also associated with significant activity

in precipitation and zonal wind stress (not shown). Just like

for the T42ctl case, Fig. 5 (bottom–left) shows the com-

posite for T85ctl. The warm SSTA begin to emerge around

April(0) which is about 2 months earlier than those at T42

resolution, then they propagate westward reaching maxi-

mum amplitude and western extent during boreal winter.

Interesting, the El Niño amplitude is *0.2 �C warmer at

T85 than at T42 case whereas for the cold (La Niña) cases

(not shown) T42 has slightly larger amplitude. The results

on ENSO phase asymmetry will also be discussed later.

The noise-reduced warm events composite are shown

for T42 IE (Fig. 5 top-right) and T85 IE (Fig. 5 bottom-

right). Applying the IE noise reduction technique at higher

resolution (Fig. 5 bottom) leads to a significant reduction in

amplitude, which is consistent with the standard deviation

ratios shown in Fig. 2. In fact, as the variance analysis

indicates, the reduced atmospheric noise at the air-sea

interface has a greater effect on the composite at higher

atmospheric model resolution. There are additional points

to note in the bottom-right panel of Fig. 5. First, there is a

lack of a well-defined maximum in the composites, sug-

gesting that the phase locking to the annual cycle is

weakened in the T85 IE simulation. Second, as in T85ctl,

SSTA first emerges during April (0), which is earlier than

at T42. This suggests that any difference in when the initial

SSTA emerges is independent of atmospheric internal

variability and probably more related to other processes

that are sensitive to atmospheric model resolution.

The robustness of the composite warm events is asses-

sed in Fig. 6 (left column) and cold events (right column).

The motivation is that we seek to document how much of

the differences among events can be attributed to noise at

the air-sea interface and how much is due fundamental

non-linearity within the context of the coupled system. The

spread among events in the above composite is also shown

in Fig. 6 along with estimates of the deviations about the

composite mean. The events represent the Niño3.4 SSTA

evolution from early boreal spring to the following spring.

Overall, there is considerable spread for warm events in

T42ctl with only a few events peaking earlier or later than

the ensemble mean peak in DJF. For T42 IE, there is a

noted reduction in the spread as well as the amplitude of

events. Also noted is the flattening of the ensemble mean

Fig. 4 Seasonality of SST anomaly variance over the Niño3.4 region

for observed and model experiments. Anomaly is defined as the

deviation from the seasonal mean

Fig. 5 Hovmoller diagram of composite analysis for warm (El Niño)

events greater than one standard deviation. The horizontal axis

corresponds to longitude across the equatorial Pacific Ocean. The

vertical axis correspond to lead time in months, where year (0) is

prior and year (1) is post the peak event. Composite based on Niño3.4

sea surface temperature anomaly (SSTA, �C) centered on December–

January–February
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curved without a well define peak season. Most of the

spread for T42ctl is observed from late boreal spring

through fall leading to the DJF composite ENSO peak. This

is in contrast with T42 IE where there is an indication of

preferentially larger relative spread during boreal summer,

which is associated with flattening of composite SSTA

from August to the following January.

The T85ctl has similar features as those discussed for

T42ctl. The spread for both control cases are of similar

magnitude. For T85 IE, the ensemble mean of events are

even flatter than those from T42 IE. Also, there is a more

marked reduction in the spread; basically most warm

events for this case evolve similarly without a well-defined

peak. The overall impression from Fig. 6 is that noise at the

air-sea interface has a larger role in the differences among

warm events in the T85 model compared to the T42 model.

If atmospheric noise is state-dependent, then we might

expect that the noise reduction associated with IE will be

different for cold events. For this, we repeat the composite

analysis but for La Niña cases (Fig. 6 right column).

Similar to the warm events, the T42ctl case shows signif-

icant spread among events compared to the T42 IE case. In

contrast to warm events, the spread for T42ctl is consis-

tently large throughout the evolution of the cold event. The

T85ctl cold composite has the largest spread among the

experiments and all warm and cold composites. For this

case, there is significantly large spread early in the evolu-

tion of the event (e.g., May-to-July). Similar to the warm

events, the ensemble mean of cold events evolution is

flatter for the IE cases compared to the corresponding

control. The T85 IE model produces the least spread with

most cold events evolving similarly.

As previously mentioned, the noise reduction has a

larger impact in the T85 model. In addition, it appears to

have an asymmetric effect, with the La Niña phase being

more affected than the El Niño phase. As further evidence

of the asymmetric effect of the noise reduction we com-

puted the change in spread for warm and cold events. For

this, a mean spread value is found by averaging the spread

for all months of the composite in Fig. 6 for each case and

ENSO phase. For warm events, the spread of IE experi-

ment is 46 % of the control experiment at T42 (i.e., ratio of

IE/CTL). In contrast the change in spread is 40 % at T85.

Similarly, the spread for cold events of T42 IE case is only

27 % of the control and T85 IE is 23 % of control.

5.3 ENSO phase asymmetry

Figures 1, 2, 3, 4, 5 and 6 have provided an overall picture

how the IE coupling affects the variability in the tropical

Pacific and the evolution of ENSO as a function of atmo-

spheric model resolution. We also identified three issues

that we require more in depth analysis, namely: (1) the

structural similarities or differences between the signal and

the noise (see Fig. 3 and associated discussion); (2) the

sensitivity of the annual cycle of variance to IE coupling

and resolution (see Fig. 4 particularly in late boreal spring

and summer); and (3) the differences in the effects of the IE

coupling on ENSO phase asymmetry. We address these

issues in reverse order and begin this sub-section with a

more in depth analysis of the phase asymmetry (i.e., issue

3; particularly Fig. 9). The annual cycle sensitivity is

addressed in more detail in the discussion of Fig. 11 (i.e.,

issue 2) and spatial structure issues are diagnosed in the

discussion of Fig. 14 at the end of the sub-section.

To study the impact of noise forcing and resolution on

ENSO phase asymmetry, the composite analysis discussed

above is used to examine the differences between warm

and cold events. Warm and cold events greater than one

standard deviation are averaged. Then, the symmetric

(asymmetric) ENSO response is defined by subtracting

(adding) the warm composite to the cold composite. Due to

the opposite polarity of warm and cold phase, the

Fig. 6 Composite analysis of Niño3.4 SST anomaly evolution during

warm (left-column) and cold (right-column) events. Composite is

based on December-January–February Niño3.4 SST anomaly greater

(less) than one standard deviation for warm (cold) events. The

composite expands from boreal spring of the year (0) leading to the

event to the following spring. Showing all individual events (grey-

thin line), the ensemble mean of events (black-thick line), and the

spread of events (red bars)
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symmetric part is then, divided by 2. For each experiments,

there are over 40 warm and cold events contributing to the

composites. Figures 7 and 8 show the symmetric and

asymmetric ENSO response respectively for T42ctl (a),

T42 IE (b), T85ctl (c), and T85 IE (d) respectively. SSTAs

[�C] are depicted by shaded contours and wind stress

[Nm-2] by vector contours.

5.3.1 Low (T42) resolution

For T42ctl (Fig. 7a), the symmetric component of ENSO

has SSTA that is narrowly confined to the equator, with

higher amplitudes in the central basin and significant

equatorial wind stress convergence over most of the posi-

tive SSTA region. Overall, almost all the symmetric ENSO

signal is confined to a narrow band from 10�S to 10�N. The

asymmetric ENSO component is shown in Fig. 8a for

T42ctl. Note the difference in contour interval with respect

to Fig. 7 indicating that the asymmetric component is on

the order of 25 % of the symmetric component. The

positive center of action off the coast of South America in

SST (Fig. 8a) suggests that the warm phase has larger

amplitude there. This is consistent with observational

estimates (Chiang and Vimont 2004). Generally speaking,

the cold phase dominates throughout most of the domain,

especially over the western portion of the basin. Unlike for

the symmetric component, there is some off-equatorial

activity in the wind stress and SST.

Similarly, Figs. 7b and 8b depicts the symmetric and

asymmetric ENSO response in T42 IE. There is a clear

reduction in amplitude (about 20 %) for the symmetric

response in IE. The overall spatial coherence is unchanged

for the SST and wind stress. Perhaps, the biggest difference

is in the reduced western extent of the SST. For the IE

experiment, the eastward shift could be associated with the

slight cooling of SSTs over the western Pacific shown

earlier. For the asymmetric response (Fig. 8b), the warm

SST center of action off the coast of Peru weakens

Fig. 7 ENSO linear (symmetric) responses for sea surface temper-

ature anomaly SSTA (shaded, �C) and surface wind stress (vector,

Nm-2). The linear ENSO response is defined by subtracting the warm

events composite to the cold events composite and dividing by 2 due

to opposite polarity. The composite for both ENSO phases includes

over 30 events, defined by magnitudes greater than one Niño3.4

SSTA standard deviation. a Corresponds to T42ctl, b to T42 IE, c to

T85ctl, and d to T85 IE respectively

Fig. 8 Same as 7, but for the ENSO non-linear (asymmetric)

response. The asymmetric or phase-asymmetry is defined by adding

the warm to the cold event composite. a Corresponds to T42ctl, b to

T42 IE, c to T85ctl, and d to T85 IE respectively
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significantly, suggesting that whatever is responsible for it

is related to the weather noise forcing. As with T42ctl,

most of the asymmetry is negative, especially in the wes-

tern Pacific and just off the equator. Most of the phase

asymmetry beyond 10� north and south weakens but what

variability remains lies within the 10�S–10�N latitudinal

bands. This argues that most of the noise reduction is away

from the equator, or at least, noise has a greater relative

effect there.

5.3.2 Medium (T85) resolution

The same analysis is repeated using the T85 simulations.

Again, more than 40 warm and cold events contribute to the

composite for both control and IE experiments. Before

comparing the effect of the IE technique, we first describe

difference in the control runs (Figs. 7a, c, 8a, c). For the

symmetric response (Fig. 7a, c), the amplitude of the

symmetric signal is reduced in the east in T85, and a slight

reduction in the west. The more marked differences are in

the asymmetric response (Fig. 8a vs. c). Here, it is clearly

shown that at higher resolution, the ENSO phase asymmetry

increases significantly, and the structure sharpens dramati-

cally. This sharper structure is most apparent in the western

Pacific where the T85 model has a well-defined sideways

cold ‘‘v’’ pattern that is blurred and even difficult to detect

in the T42 model. The warm signal in the center of the ‘‘v’’

is also more clearly defined in the T85 model. The strong

warm asymmetric signal seen in T42ctl (Fig. 8a) is com-

pletely removed and even weakly negative in T85ctl.

Figures 7d and 8d demonstrate the symmetric and

asymmetric ENSO response for T85 IE experiment. For the

symmetric response, the amplitude of anomalies is signifi-

cantly smaller as compared to T85ctl. In fact, variance

drops by about 50 %, this is considerably larger drop than at

T42 resolution. Most of the symmetric response is located

over the central basin and in a narrow equatorial latitudinal

band. When looking at the phase asymmetry, the overall

reduction in amplitude is consistent in the two resolution IE

experiments. The most marked reduction at T85 is the cold

sideways ‘‘v’’ pattern in the western Pacific. This is a region

were the T85ctl simulation has considerable rainfall vari-

ability that is apparently associated with asymmetric SSTA

variability that is not captured at T42, and that is signifi-

cantly reduce when the IE coupling is applied. We should

also note that this is a region where CCSM3 has particular

difficulty in capturing the mean structure of the SST (see

Fig. 1) and rainfall, and is the region where the IE appar-

ently improves the overall structure of the western Pacific

warm pool plateau (see Fig 1).

The ENSO phase asymmetry while different at different

resolutions is clearly dependent on the noise. However, it is

not clear whether the changes in the symmetric and

asymmetric component are simply associated with the overall

variance reduction or whether there are some asymmetric

effects due to the noise reduction. Simply put, is the observed

reduction in asymmetry due to noise or is it a result of sig-

nificant amplitude reduction in the symmetric component?

To address the above question, Fig. 9 describes the ratio

of IE versus control experiments and for symmetric (red)

and asymmetric (blue) components calculated as a variance

using the SSTA composite squared across the equatorial

Pacific. The components are meridionally averaged from

10 S to 10 N. There are two diagnostic elements evaluated

in Fig. 9:

(i) Impact of noise reduction separately for the sym-

metric and asymmetric components evaluated

across atmospheric model resolution. The horizon-

tal dashed-green line corresponds to variance reduc-

tions that are significance to a 95 % confidence level

based on F-test. Essentially, if the blue and/or red

Fig. 9 Ratio of IE versus control experiments (T42 top) and (T85

bottom) for symmetric (red) and asymmetric (blue) components

calculated as a variance using the SSTA composite squared across the

equatorial Pacific. The components are meridionally averaged from

10 S to 10 N. The horizontal dashed-green line corresponds to

variance ratios significance to a 95 % confidence level based on

F-test. Regions depicted by grey shade indicate where the phase

asymmetry (e.g. warm plus cold) are different than the phase

symmetry to a 95 % confidence level based on a Student T test
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lines are below the green dashed line, then the IE

coupling significantly reduces the variance of the

symmetric component in the case of the red line and/

or the asymmetric component in the case of the blue

line. If the red or blue are above the green, then the

variance reductions fail to be significant according

to this F test. The larger variance reduction at T85 is

readily apparent, and perhaps more interesting is

that the variance reduction is larger for the asym-

metric component. This can be seen by the fact that

the blue line in the top panel generally lies above the

red, and generally lies below the red in the bottom

panel. Indeed, there are large regions where the T42

asymmetric component is not significantly reduce in

the IE simulation, whereas in the T85 case the red

and blue lines are well separated from the 95 %

confidence line.

(ii) Impact of noise reduction on symmetric and asym-

metric components within a specific resolution.

Regions depicted by grey shading indicate where

the IE effect on phase asymmetry (e.g. warm plus

cold) is different than the IE effect on phase symmetry

to a 95 % confidence level based on a Student T test

for a particular resolution. In other words, if the IE

effect was the same for the symmetric and asymmetric

components of say the T42 model, then the red and

blue curves in the top panel would be statistically

indistinguishable. The same argument applies for the

T85 case. For T42 resolution, the effect of noise

reduction on the asymmetric component is smaller

than that on the symmetric component that is

statistically significant for fairly large regions of the

central Pacific. In the west Pacific, at T42 the IE effect

is larger for the asymmetric component. In the east

Pacific the reduction is similar for both the symmetric

and asymmetric components. At T85, throughout

much of the west and central Pacific the IE effect is

significantly larger to the asymmetric component.

There are some final points to note with Fig. 9. For

example, the positive center of action off the coast of South

America in the T42 model (Fig. 8a) is reduced by a similar

amount both the symmetric and asymmetric component,

therefore we conclude that this reduction is due to the

overall reduction in variance and is not specific to ENSO

asymmetry. At T85 (Fig. 9 bottom), the asymmetry is

strongly degraded (i.e., *0.2 or 20 %) and is significantly

different than the symmetric effect for most of the central

and eastern Pacific. Recall from Fig. 8c, d that these are the

regions of largest differences in phase showing the cold

sideways ‘‘v’’ pattern.

The marked reductions in amplitude over both sym-

metric and asymmetric ENSO characteristics further

highlight the importance of weather noise in ENSO

dynamics. More interestingly, the importance of the noise

appears to increase with resolution. This resolution

dependence is clearly shown in the asymmetric component

plots, where T85ctl is the most asymmetric simulation and

T85 IE is the least asymmetric of all the experiments. Also,

the marked reduction in asymmetry at T85 appears to be

different than just a reduction in the amplitude of the

symmetric component. That is, much of the asymmetry at

T85 is noise driven.

5.3.3 Asymmetry due to noise

The source of the asymmetry is an ongoing debate in the

ENSO community. Timmermann et al. (2003) proposed a

non-linear bursting scenario for extreme warm events.

Differences in amplitude between El Niño and La Niña

phase could be attributed to non-linear dynamical thermal

advection (Jin et al. 2003). Kang and Kug (2002) suggested

that atmospheric non-linear response to warm and cold

SSTA could lead to ENSO phase asymmetry. Thus far, the

results presented here suggest that at least some of the

asymmetry is due to atmospheric internal dynamics or

noise at the air-sea interface. There are at least two possible

mechanistic explanations for how the noise supports

asymmetry: (i) that the noise is different for warm versus

cold events (i.e., non-linearity in the noise forcing itself), or

(ii) that warm and cold events respond differently to the

same noise (i.e., non-linearity in the response to the noise

forcing).

We consider here (i) above, that is the possibility that

the noise is different for warm and cold events. In order to

examine the potential for non-linearity in the response to

the noise forcing (i.e., ii above), additional experiments

may be required which are beyond the scope of this study.

To address the first possibility—namely that the noise

statistics are different for warm and cold events we

examine the wind stress noise separately for warm and cold

events. One of the advantages of the IE technique is that

there are six atmospheric realizations that are responding to

the same ocean forcing. Therefore, it is possible to quantify

atmospheric internal variability by simply analyzing the

ensemble spread among the atmospheric simulations. Here,

we define the ensemble spread based on all possible dif-

ferences among the ensemble members, this yields M = 15

different combinations.

Ensemble spread ¼ 1

M

XM

i¼1

xi � xiþ1ð Þ2
" #1=2

ð1Þ

Equation (1) is suitable for our IE cases where multiple

atmospheric simulations are readily available. Given that

our control simulations only contain one atmosphere
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coupled to one ocean, (1) cannot be used for extracting the

atmospheric noise. For the control simulation, we attempt

to extract the noise using the following procedure. First, a

given variable xk(t) can be decomposed by a linear signal

Ln(t), a non-linear signal NL(t), and noise as described in

(2). Here, k represents the ensemble member, which for

control case is just x(t) since there is only one ensemble

member. For our case, variable x(t) is zonal wind stress.

The linear signal is just modeled by a simple linear

regression between Niño3.4 SSTA and variable x(t). A

remainder R(t) can be obtained by subtracting the linear

signal from the total field x(t), so that R(t) includes the non-

linear signal plus the noise component only. Here, we refer

to NL(t) as the component of the signal that is not extracted

by the linear regression. In order to separate the noise in the

remainder, we make use of composite averaging as in (3).

The RðtÞ term inside the square bracket in (3) denotes the

composite averaging for N warm or cold events. If N is

large enough, RðtÞ should mostly contain the non-linear

signal associated with those N events. Finally, a spread or

noise can be obtained by the root-mean-square difference

between the residual R tð Þ and RðtÞ. It should be noted that

event-to-event variations in the ENSO asymmetry could be

included in the noise estimate Ri(t).

xk tð Þ ¼ Ln tð Þ þ NL tð Þ þ Noisek tð Þ ð2Þ

NoiseðtÞ ¼ 1

N

XN

i¼1

Ri tð Þ � RðtÞ
� �2

" #1=2

ð3Þ

Given both the control and the IE simulations we can

test whether (1) and (3) provide similar noise estimates.

Figure 10 depicts equatorial Pacific Hovmoller diagrams of

zonal wind stress noise evolution averaged over all warm

(El Niño) events. Panels (a) and (d) correspond to T42 IE

and T85 IE noise structure calculated using Eq. (1). Sim-

ilarly, panels (b) and (e) correspond to T42 IE and T85 IE

noise structure using Eq. (3). Panels (c) and (f) are similar

to (b) and (e) respectively but Eq. (3) is applied to the

ensemble mean of xk(t) (N = 6 for IE cases) wind stress

given that that is what forces the ocean model. The first

point to make here is that both definitions of noise (i.e.,

Eqs. 1 and 3) produce similar noise estimates. This can be

seen by the fact that Fig. 10a is very similar to Fig. 10b, d

is very similar to Fig 10e. Results from (3) have slightly

less localized amplitude than those from (1) but the general

structure in evolution corresponds well. Based on Fig. 10

we assert (3) is a reasonable estimate of the noise evolution

and can be used to compare noise in the control with IE

where only one atmosphere simulation is readily available.

The second point to make with Fig. 10 is that the noise

is considerably smaller when Eq. (3) is applied to the

ensemble mean of xk(t). This is expected and is

highlighting how the IE technique works. The noise in

panels (b) and (e) can be though as atmospheric internal

dynamics (AID) for a particular atmosphere ensemble

member indicating that individual IE ensemble members

can be used to estimate noise in the control, whereas

panels (c) and (f) are the actual wind stress noise forcing

to the ocean when the IE technique is applied. It should

also be mentioned that all individual ensemble members

show a similar noise pattern.

Figure 11 shows the evolution of the noise for zonal

wind stress for warm and cold events for all four simula-

tions. For the control simulations, noise evolution between

warm and cold events is fundamentally different. For

example, for the T42ctl case, the cold phase appears to

have larger noise amplitude during the growth phase (e.g.,

from May to November) than that of the growth phase of

warm events. In contrast, there is larger noise amplitude for

Fig. 10 Hovmoller diagram depicting zonal wind stress [10-3Nm-2]

noise evolution across the equatorial Pacific during warm (El Niño)

events. a, d correspond to T42 IE and T85 IE noise calculated using

Eq. (1), where b and e correspond to T42 IE and T85 IE noise using

Eq. (3). c, f Similar to b, e respectively but Eq. (3) is applied to the

ensemble mean (N = 6 for IE cases) wind stress given that that is

what forces the ocean model. The horizontal axis corresponds to

longitude across the equatorial Pacific Ocean. The vertical axis

corresponds to lead-time in months. Composite is based on Niño3.4

sea surface temperature anomaly (SSTA) centered during December–

January–February
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warm events during the maximum SSTA. Similarly, the

T85ctl case has the largest noise for the La Niña phase with

a late spring maxima. Recall that this is the season of very

significant cold SSTA spread (see Fig. 6 T85ctl panel).

Also, Fig. 4 shows more late boreal spring variance in

T85ctl compared to T42ctl, where T85 IE variance is

consistently smaller than T42 IE throughout the year. This

suggests that the enhanced SSTA variance in T85ctl

(Fig. 4) during late spring is highly noise induced. The

noise asymmetry is largely reduced for the IE cases. The

T42 IE model has some apparent phase dependence and

any phase dependence in the T85 IE simulation is difficult

to detect at best. The bottom line is that the phase asym-

metry in both the SSTA evolution and the noise statistics is

clobber by applying the IE coupling.

Given that the noise amplitude may depend on the signal

amplitude, we cannot definitively determine from Fig. 11

whether the noise is larger in T85 or T42. We can address

this to some extent by considering the signal-to-noise ratio

where the noise is defined by (3) for all cases. Figure 12

shows the zonal wind stress signal-to-noise ratio evolution

(shaded) during warm ENSO events (left-column), simi-

larly for cold events (middle-column). Differences in warm

minus cold signal-to-noise ratio are shown (right-column).

The signal is defined as the absolute value of the ensemble

mean anomaly. Recall that the signal in the control runs is

defined by compositing several events, but each event only

has a single realization. In contrast, for the IE runs, the

signal is defined by composite of the ensemble mean of

multiple realizations for several events. For all cases, the

highest signal-to-noise ratios are observed over the central

Pacific, and this is mostly over the maximum SSTA vari-

ance region. Consistent with Fig. 11, warm events are less

noisy than cold events for the control simulations. Inter-

esting, the higher resolution case depicts significantly

smaller signal-to-noise ratios compared to the low-resolu-

tion case, suggesting that T85 has more noise than T42

relative to the signal amplitude. This is especially true for

cold events. Moreover, the warm-cold asymmetry in the

signal-to-noise ratio is larger in amplitude and has a more

coherent structure for both control cases with respect to the

IE cases. This simply means there is less phase asymmetry

in the IE simulations.

This study concentrates on internal atmospheric

dynamics and coupled processes over the tropical Pacific

only. However, it is useful to examine some of the basic

characteristics of internal atmosphere variability in the

extratropics that may play a role in diversifying ENSO

events. For this, we computed Empirical Orthogonal

Functions (EOF) of the internal atmosphere variability as

defined in Eq. (3). Here, the EOF analysis is applied to the

March–April–May (MAM) sensible heat flux and latent

heat flux during El Niño and La Niña events. These events

are defined based on the Niño3.4 standard deviation. The

internal atmosphere variability is defined as the deviation

from the ensemble mean of all events. For example, the

T42ctl case has only one atmospheric realization but over

60 warm and 60 cold events. This gives over 60 maps of

the internal atmospheric variability for which we calculate

the EOF. On the other hand, the T42 IE case has 6

ensemble members and about 50 warm and cold events.

This gives 6 9 50 or 300 maps of internal atmospheric

variability for EOF analysis.

The motivation for analyzing atmospheric noise in term

of boreal spring latent and sensible heat fluxes over the

North Pacific is as follows. The work of Vimont et al.

(2003a, b) identified a mechanism by which mid-latitude

atmospheric variability influences ENSO, namely the

Fig. 11 Hovmoller diagram depicting zonal wind stress [10-3 Nm-2]

noise evolution across the equatorial Pacific during warm (El Niño)

events (left column) and during cold (La Niña) events (right column)

for each experiment (rows). The horizontal axis corresponds to

longitude across the equatorial Pacific Ocean. The vertical axis

correspond to lead time in months, where year (0) is prior and year (1)

is post the peak event. Composite is based on Niño3.4 sea surface

temperature anomaly (SSTA) with horizontal black-dashed line

representing zero-lag centered during December–January–February.

The noise is defined by Eq. (3) applied to the ensemble mean (N = 1

for control and N = 6 for IE cases) wind stress given that that is what

forces the ocean model
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‘‘seasonal foot-print mechanism.’’ The process is that mid-

latitude internal atmospheric variability during winter

imparts an SST ‘‘footprint’’ through modification of the

surface heat fluxes. This SST footprint persists through the

boreal spring season with associated heat fluxes and

atmospheric circulation anomalies. Vimont et al. (2003a, b)

also noted that the seasonal footprint mechanism is not the

primary ENSO mechanism but means for stochastic forcing

of ENSO. The spatial structure of this mechanism closely

resembles the so-called North Pacific Oscillator of Rogers

(1981) and was also detected as an ENSO precursor in

CCSM4 (Larson and Kirtman 2013).

Figure 13 depicts the spatial structure of the leading

EOF of latent and sensible heat flux. The latent heat flux is

one order of magnitude larger than sensible heat flux for all

cases. The spatial structure of atmospheric internal vari-

ability in Fig. 13 strongly resembles that associated with

the seasonal footprint mechanism discussed earlier (Vi-

mont et al. 2003a, b). The noise asymmetry seen in the

control cases (e.g., T42ctl and T85ctl) nearly vanishes in

the noise-reduced experiment (e.g., T42 IE and T85 IE).

This result is more pronounced for the T85 resolution case.

Internal atmospheric variability is significantly asymmetric

in amplitude and structure for T85ctl, but nearly identical

for T85 IE case. These results support those presented in

the original manuscript in that atmospheric variability is

asymmetric, both in the tropics and mid-latitude. This leads

to asymmetric ENSO forcing that ultimately leads to an

asymmetric ENSO response.

Thus far, we have demonstrated that atmospheric noise

is fundamental in sustaining ENSO variability and asym-

metry, particularly as the resolution increases. What has

not been clarified is that if the relative structure of the noise

with respect to the signal is responsible for the marked

Fig. 12 Zonal wind stress

signal-to-noise ratio evolution

across the equatorial Pacific

during warm ENSO events (left-

column), similarly for cold

events (middle-column). Black

contours show where the signal-

to-noise ratio equals unity.

Differences in warm minus cold

signal-to-noise ratio are shown

(right-column) with black

contours depicting differences

equals 0.5. Composite is based

on Niño3.4 sea surface

temperature anomaly (SSTA)

centered during December–

January–February
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resolution dependence in these results. That is, as resolu-

tion increases the dominant noise structure start to deviate

from the dominant signal patterns. Recall that Kirtman

et al. (2005) with a T42 model argued that the noise and

signal spatial structures were similar, and that we hypoth-

esized here that this was the case with the T42 case, but not

T85. To test this hypothesis, we compare the noise struc-

ture presented in Fig. 11 with the signal structure. We

remind the reader that the noise is calculated using (3) and

the signal is defined as the ensemble mean for all events,

Figure 14 describes the zonal wind stress [10-3 Nm-2]

structure across the equator for the (a) T42 and (b) T85

models for warm and cold events combined. Thick-dashed

lines depict the signal and thick-solid lines depict the noise

for the control (black) and IE (grey). Atmosphere internal

dynamics (AID) is determined by applying (3) to each

individual IE ensemble member and is indicated by thin-

dotted lines. All fields are meridionally averaged from 2�N

to 2�S. Note that for the two control cases (i.e., T42ctl and

T85ctl) the AID and noise is the same as there is only one

atmosphere for these cases. Alternatively, the noise felt by

the ocean component in the IE simulations (thick solid grey

line) is calculated by applying (3) to the ensemble mean

wind stress. The curves denoted as noise are the standard

deviation, and hence are positive definite (see y-axis on the

right). The signal fields include the sign dependence (see

y-axis on the left). It is important to note that the signal and

noise structure are separately calculated for warm and cold

events before they are combined.

In Fig. 14, the signal-independent noise reduction (dSI,

light blue shade) can be estimated as the difference

between the thin grey dashed curves and the thick solid

grey curve. This is because the noise standard deviation in

the individual ensemble members (thin grey dashed curves)

and the noise standard deviation in the ensemble mean

(think solid grey curve) are calculated from the same IE

simulation where all atmospheric ensemble members feel

the same SST (i.e., same signal). The atmospheric

ensemble members have the same signal; therefore, the

differences noted in Fig. 14 are the signal independent

noise reduction. Alternatively, the signal dependent noise

differences (dSD, orange shade) can be estimated by

Fig. 13 Spatial structure of the leading structure (i.e., EOF1) of the

internal atmosphere variability of latent (sensible) heat flux shown by

shaded (black contour) in Wm-2 for the North Pacific during March–

April–May leading to warm (left) and cold (right) ENSO events.

These events are defined based on the Niño3.4 standard deviation.

The internal atmosphere variability is defined as the deviation from

the ensemble mean of all events

Fig. 14 Zonal wind stress [10-3 Nm-2] structure a cross the equator

for; a T42 and b T85 resolution model for warm and cold events

combined. Thick-dashed lines depict the signal and thick-solid lines

depict the noise for control (black) and IE (grey) experiment.

Atmosphere internal dynamics (AID) for each IE ensemble member is

shown by thin-dotted lines. Signal-independent noise reduction (dSI)

is highlighted by light-blue shade, whereas signal-dependent noise

reduction (dSD) is shown by orange shade. All fields are meridionaly

averaged from 2�N to 2�S
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comparing the control noise standard deviation with the

noise standard deviation of each individual ensemble

member in the IE simulation. Here we are assuming that

the individual IE ensemble member would have the same

noise standard deviation as the control if the IE SST was

the same as the control SST. Of course, the control SST

and IE SST have very different signals, and therefore the

differences in the noise standard deviations are assumed to

be signal dependent noise—at least in the sense of the

overall amplitude.

A few important points to note with Fig. 14:

• The amplitude reduction in the zonal wind stress signal

is significantly larger at T85 (compare grey dashed with

black dashed), consistent with reduction in SSTA signal.

• The zonal structure of the wind stress signal is more

similar to the noise structure at lower (T42) resolution.

This can be seen by noting the noise in the T42

simulation is more peaked in the central Pacific where

the signal also peaks. At T85 the noise amplitude has a

minimum where the signal has a peak in the central

Pacific. This is also consistent with Fig. 3 in that the

spatial structure of variance ratio (rIE/rCTL) resembles

the spatial structure of the control (rCTL) at T42 but is

different at T85.

• There is little changes in the amplitude of the noise due

to changes in the signal (dSD) east of 150 W suggest-

ing that most of the noise over the cold-tongue region is

state independent. The largest dSD are west of 150 W

suggesting that most of the state dependent noise occurs

over the warm-pool region. This is independent on

model resolution only that at T85 the dSD extends

further east.

6 Summary and discussion

A state-of-the-art climate system model, namely CCSM3,

was adopted in order to study the effect of weather noise

and its resolution on tropical Pacific variability. For this,

four different experiments were compared. In particular,

two control experiments were presented at different reso-

lutions, a low resolution *2.8� and a medium resolution

*1.4� grid spacing for the atmospheric component (see

Deser et al. 2006 of these simulation). Note that the ocean

model resolution is the same for all cases. Two additional

experiments were performed at these resolutions where the

impact of internal atmospheric dynamics was suppressed

by a noise reduction technique. The noise reduction tech-

nique adopted is the interactive ensemble approach from

Kirtman and Shukla (2002) where ensemble averages of

multiple AGCM realizations are coupled to a single

OGCM as the model evolves.

Over the tropical Pacific Ocean, the noise reduction has

significant impacts almost everywhere in both the mean

and the variability. These changes include increased cold

bias over the eastern Pacific, closer to observed SST

simulation over the warm pool including, the appearance

of a SST plateau west of 160E longitude, an observed

feature that is not simulated on the control simulations.

One of the systematic errors of this model is the warmer

than observed SST off the South American coast, this is

also reduced by the noise reduction. It is possible that the

model has too much noise forcing over regions where the

noise-reduced simulations are in better agreement with the

observational estimates. These results are more marked

with the higher resolution case. This also possibly sug-

gests that at coarser resolution, the noise is so large scale

that the IE technique is interpreting it as signal. The

improvements noted above should not be interpreted as an

argument for using the IE technique for direct model

improvement. This is merely a diagnostic that suggests

that the AGCM noise may be too strong in these partic-

ular regions.

We analyzed the variability of SST, zonal wind stress,

and precipitation anomalies. At higher resolution, there is a

10 to 30 % more variance reduction when compared to the

low-resolution case. Variance ratios between IE and con-

trol cases suggest that noise is more important in forcing

tropical Pacific variability as resolution increases. In the

higher resolution case the Niño3.4 standard deviation is

reduced by *60 %. From both resolutions, noise appears

to play no role in the ENSO period, at least for this par-

ticular model. ENSO phase locking to the annual cycle is

also modified by noise reduction. The two control simu-

lations have distinct differences during the boreal spring

season. This difference is eliminated in the noise-reduced

simulations.

The ENSO evolution during the calendar year was very

distinct between the two models. In the T85 simulations,

the SSTA emerges about two months earlier (e.g., early

April) than those from the low-resolution model (e.g., late

May). This difference appears to be related to a difference

in the noise evolution, with the T85 model having signif-

icantly stronger noise forcing during the boreal spring.

The irregularity among ENSO events was studied using

two different approaches. First, we separately quantified

differences among warm events and differences among

cold events. That is, we compute the spread of El Niño and

La Niña events separately with and without the presence of

noise. It was observed that both control simulations

depicted similar and significant spread for warm events.

Reducing the noise reduces the spread of events, especially

for the higher resolution case where there was very little

differences among the warm events. For the cold phase, the

higher resolution control model shows the most irregularity
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among all the experiments, and the high resolution IE had

the smallest differences among the individual events—

again pointing to the fact that atmospheric noise is more

important at high resolution. This irregularity is strongest

during late boreal spring, which corresponded to signifi-

cantly larger zonal wind stress noise forcing. This suggests

that most of the event-to-event differences are driven by

atmospheric noise as opposed to chaotic dynamics within

the context of the large-scale coupled system. Moreover,

this also suggests that there is a well-defined ‘‘canonical’’

event in this coupled model.

ENSO phase asymmetry was also examined. We

acknowledge the weak asymmetry in CCSM3 compared to

observations as pointed by Zhang et al. (2009a). However,

in this paper, we were able to show that ENSO asymmetry

in this model is still statistically significant. More impor-

tantly, the asymmetry is significantly reduced when

atmospheric noise is reduced via Interactive Ensemble

coupling. The higher resolution control has the most

asymmetry, and the higher resolution noise-reduced IE

case has the least asymmetry. That is, applying the noise

reduction technique had the largest impact in reducing the

asymmetry of ENSO at T85 resolution. It was found that

the ENSO phase asymmetry is strongly related to the noise

forcing. This supports the argument (at least in this model)

that the ‘‘canonical’’ warm and cold events are linear and

that the observed asymmetry is either associated with dif-

ferences in the space–time structure of the noise (i.e., non-

linearity in the noise) or in the response to the noise (i.e.,

non-linearity in the response). While we did not examine

the non-linearity in the response to the noise, we did

demonstrate that noise itself is asymmetric, with larger

spread in the zonal wind stress during La Niña events. This

result was further validated by analysis of the noise

structure in the extratropics.

Analysis on the zonal wind stress across the tropical

Pacific suggested that the spatial structure of the noise

starts to deviate from the signal as resolution increases. We

separated the state independent and state dependent noise

amplitude, and found that the atmospheric noise in the

eastern Pacific was largely state independent. In contrast,

most of the reduction in the amplitude of noise in the

western Pacific was state-dependent.

Certainly, these results should be tested with even

higher resolution atmospheric models and different cou-

pled systems. Of course issues related to ocean resolution

should also be investigated. Nevertheless, the results sug-

gest that many properties of ENSO statistics (amplitude,

phase locking with the annual cycle, phase asymmetry) are

resolution dependent. This raises important question

regarding how well do we need to resolve weather statistics

in order to capture the correct mechanisms for climate

variability.
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Flügel M, Chang P, Penland C (2004) The role of stochastic forcing in

modulating ENSO predictability. J Clim 17:3125–3140

Jin F-F, An S-I, Timmermann A, Zhao J (2003) Strong El Niño events

and nonlinear dynamical heating. Geophys Res Lett 30:1120.

doi:10.1029/2002GL016356

Jin F-F, Lin L, Timmermann A, Zhao J (2007) Ensemble-mean

dynamics of the ENSO recharge oscillator under state-dependent

stochastic forcing. Geophys Res Lett 34:L03807. doi:10.1029/

2006GL027372

Kang I-S, Kug J-S (2002) El Niño and La Niña sea surface

temperature anomalies: asymmetric charactyeristics associated

with their wind stress anomalies. J Geophys Res 107(D19):

4372–4381

Keen RA (1982) The role of cross-equatorial tropical cyclone pairs in

the Southern Oscillation. Mon Wea Rev 110:1405–1416

Kiladis GN, Meehl GA, Weickmann KM (1994) Large-scale circu-

lation associated with westerly wind bursts and deep convection

over the western equatorial Pacific. J Geo Phys Res 99:

18527–18544

526 H. Lopez, B. P. Kirtman

123

http://dx.doi.org/10.1029/2007GL030302
http://dx.doi.org/10.1029/2007GL030302
http://dx.doi.org/10.1029/2007GL030302
http://dx.doi.org/10.1029/2002GL016356
http://dx.doi.org/10.1029/2006GL027372
http://dx.doi.org/10.1029/2006GL027372


Kirtman BP (1997) Oceanic Rossby wave dynamics and the ENSO

period in a coupled model. J Clim 10:1690–1704

Kirtman BP, Min D (2009) Multimodel ensemble ENSO prediction

with CCSM and CFS. Mon Wea Rev 137:2908–2930

Kirtman BP, Schopf PS (1998) Decadal variability in ENSO

predictability and prediction. J Clim 11:2804–2822

Kirtman BP, Shukla J (2000) Influence of the Indian summer

monsoon on ENSO. Quart J Roy Meteor Soc 126:213–239

Kirtman BP, Shukla J (2002) Interactive coupled ensemble: a new

coupling strategy for GCMs. Geophys Res Lett 29:1029–1032

Kirtman BP, Fan Y, Schneider EK (2002) The COLA global coupled

and anomaly coupled ocean-atmosphere GCM. J Clim 15:

2301–2320

Kirtman BP, Pegion K, Kinter S (2005) Internal atmospheric

dynamics and climate variability. J Atmos Sci 62:2220–2233

Kirtman BP, Straus DM, Min DH, Schneider EK, Siqueira L (2009)

Toward linking weather and climate in the interactive ensemble

NCAR climate model. Geophys Res Lett 36

Kirtman BP, Schneider EK, Straus DM, Min D, Burgman R (2011)

How weather impacts the forced climate response. Clim Dyn.

doi:10.1007/s00382-011-1084-3

Kleeman R, Moore AM (1997) A theory for the limitation of ENSO

predictability due to stochastic atmospheric transients. J Atmos

Sci 54:753–767

Kleeman R, Tang Y, Moore AM (2003) The calculation of

climatically relevant singular vectors in the presence of weather

noise. J Atmos Sci 60:2856–2868

Larson S, Kirtman B (2013) The Pacific Meridional Mode as a trigger

for ENSO in a high-resolution coupled model. Geophys Res Lett

40:3189–3194. doi:10.1002/grl.50571

Lopez H, Kirtman BP, Tziperman E, Gebbie G (2013) Impact of

interactive westerly wind bursts on CCSM3. Dyn Atmos Oceans.

doi:10.1016/j.dynatmoce.2012.11.001

Love G (1985) Cross-equatorial influence of winter hemisphere

subtropical cold surges. Mon Wea Rev 113:1487–1498

Moore AM, Kleeman R (1996) The dynamics of error growth and

predictability in a coupled model of ENSO. Quart J Roy Meteor

Soc 122:1405–1446

Moore AM, Kleeman R (1999a) The nonnormal nature of El Niño and

intraseasonal variability. J Clim 12:2965–2982

Moore AM, Kleeman R (1999b) Stochastic forcing of ENSO by the

intraseasonal oscillation. J Clim 12:1199–1220

Murakami T, Sumathipala WL (1989) Westerly bursts dur- ing the

1982/83 ENSO. J Clim 2:71–85

Nitta T (1989) Development of a twin cyclone and westerly bursts

during the initial phase of the 1986–87 El Niño. J Meteor Soc

Jpn 67:677–681

Nitta T, Motoki T (1987) Abrupt enhancement of convective activity

and low-level westerly burst during the onset phase of the

1986–87 El Niño. J Meteor Soc Jpn 65:497–506

Penland C, Matrosova L (1994) A balance condition for stochastic

numerical models with application to the El Niño-Southern

Oscillation. J Clim 7:1352–1372

Penland C, Sardeshmukh PD (1995) The optimal growth of tropical

sea surface temperature anomalies. J Clim 8:1999–2024

Reynolds RW, Smith TM (1994) Improved global sea surface temper-

ature analyses using optimum interpolation. J Clim 7:929–948

Rogers JC (1981) The North Pacific Oscillator. J Climatol 1:39–57

Schneider EK, Fan M (2007) Weather noise forcing of surface climate

variability. J Atmos Sci 64:3265–3280

Thompson CJ, Battisti DS (2001) A linear stochastic dynamical

model of ENSO. Part II: analysis. J Clim 14:445–466

Timmermann A, Jin F–F, Abshagen J (2003) A nonlinear theory for

El Niño bursting. J Atmos Sci 60:152–165

Vimont D, Wallace J, Battisti D (2003a) The seasonal foot-printing

mechanism in the Pacific: implication for ENSO. J Clim

16:2668–2675

Vimont D, Battisti D, Hirst AC (2003b) The seasonal footprint

mechanism in the CSIRO general circulation model. J Clim

16:2653–2667

Wu R, Kirtman BP (2003) On the impact of the Indian summer

monsoon on ENSO in a coupled GCM. Quart J Roy Meteor Soc

129:3439–3468

Wu R, Kirtman BP (2004a) Impact of the Indian Ocean on the Indian

summer monsoon-ENSO relationship. J Clim 17:3037–3054

Wu R, Kirtman BP (2004b) Understanding the impacts of the Indian

Ocean on ENSO variability in a coupled GCM. J Clim

17:4019–4031

Wu Z, Schneider EK, Kirtman BP (2004) Causes of low frequency

North Atlantic SST variability in a coupled GCM. Geophys Res

Lett 31:L09210. doi:10.1029/2004GL019548

Xue Y, Cane MA, Zebiak SE (1997) Predictability of a coupled

model of ENSO using singular vector analysis. Part I: optimal

growth in seasonal background and ENSO cycles. Mon Wea Rev

125:2043–2056

Yeh S-W, Kirtman BP (2004a) The impact of atmospheric internal

variability on the North Pacific SST variability. Clim Dyn

22:721. doi:10.1007/s00382-004-0399-8

Yeh S-W, Kirtman BP (2004b) Decadal North Pacific sea surface

temperature variability and the associated global climate anom-

alies in a coupled general circulation model. J Geophys Res

109:D20113. doi:10.1029/2004JD004785

Yu L, Rienecker MM (1998) Evidence of an extratropical atmo-

spheric influence during the onset of the 1997–98 El Niño.

Geophys Res Lett 25:3537–3540

Yu L, Weller RA, Liu TW (2003) Case analysis of a role of ENSO in
regulating the generation of westerly wind bursts in the western

equatorial Pacific. J Geophys Res 108:3128. doi:10.1029/

2002JC001498

Zavala-Garay J, Moore AM, Perez CL, Kleeman R (2003a) The

response of a coupled model of ENSO to observed estimates of

stochastic forcing. J Clim 16:2827–2842

Zavala-Garay J, Moore AM, Kleeman R (2003b) Influence of

stochastic forcing on ENSO prediction. J Geophys Res

109:C11007. doi:10.1029/2004JC002406

Zavala-Garay J, Zhang C, Moore AM, Kleeman R (2005) The linear

response of ENSO to the Madden–Julian Oscillation. J Clim

18:2441–2459

Zavala-Garay J, Zhang C, Moore AM, Wittenberg AT, Harrison MJ,

Rosati A, Vialard J, Kleeman R (2008) Sensitivity of hybrid

ENSO models to unresolved atmospheric variability. J Clim

21:3704–3721

Zhang C, Gottschalck J (2002) SST anomalies of ENSO and the

Madden–Julian oscillation in the equatorial Pacific. J Clim

15:2429–2445

Zhang Li, Chang Ping, Tippett Michael K (2009a) Linking the pacific

meridional mode to ENSO: utilization of a noise filter. J Clim

22:905–922

Zhang T, De-Zhen S, Neale R, Rasch P (2009b) An evaluation of

ENSO asymmetry in the community climate system models: a

view from the subsurface. J Clim 22:5933–5961

Tropical Pacific internal atmospheric dynamics and resolution 527

123

http://dx.doi.org/10.1007/s00382-011-1084-3
http://dx.doi.org/10.1002/grl.50571
http://dx.doi.org/10.1016/j.dynatmoce.2012.11.001
http://dx.doi.org/10.1029/2004GL019548
http://dx.doi.org/10.1007/s00382-004-0399-8
http://dx.doi.org/10.1029/2004JD004785
http://dx.doi.org/10.1029/2002JC001498
http://dx.doi.org/10.1029/2002JC001498
http://dx.doi.org/10.1029/2004JC002406

	Tropical Pacific internal atmospheric dynamics and resolution in a coupled GCM
	Abstract
	Introduction
	Observation datasets and the coupled model
	The Interactive Ensemble technique
	Impact of IE on the mean state
	Tropical Pacific variability and IE
	ENSO characteristics: variance
	ENSO composite evolution
	ENSO phase asymmetry
	Low (T42) resolution
	Medium (T85) resolution
	Asymmetry due to noise


	Summary and discussion
	Acknowledgments
	References


