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Abstract A high resolution regional climate model

(RCM) is used to simulate climate of the recent past and to

project future climate change across the northeastern US.

Different types of uncertainties in climate simulations are

examined by driving the RCM with different boundary

data, applying different emissions scenarios, and running

an ensemble of simulations with different initial conditions.

Empirical orthogonal functions analysis and K-means

clustering analysis are applied to divide the northeastern

US region into four climatologically different zones based

on the surface air temperature (SAT) and precipitation

variability. The RCM simulations tend to overestimate

SAT, especially over the northern part of the domain in

winter and over the western part in summer. Statistically

significant increases in seasonal SAT under both higher and

lower emissions scenarios over the whole RCM domain

suggest the robustness of future warming. Most parts of the

northeastern US region will experience increasing winter

precipitation and decreasing summer precipitation, though

the changes are not statistically significant. The greater

magnitude of the projected temperature increase by the end

of the twenty-first century under the higher emissions

scenario emphasizes the essential role of emissions choices

in determining the potential future climate change.

Keywords Regional climate change � Regional climate

model simulation � Northeastern US

1 Introduction

Global and regional climates are changing with the accel-

erating consumption of fossil fuel, and the profound

impacts of climate change on humans and the natural

environment have already been experienced across the

northeastern US. The potential future impacts for climate-

sensitive sectors, including coastal regions, marine fisher-

ies, forests, agriculture, winter recreation, and human

health, have been addressed by a set of previous studies

(Frumhoff et al. 2008; Kirshen et al. 2008; Fogarty et al.

2008; Iverson et al. 2008). Given the distinctive regional

impacts and responses to climate change, it is of consid-

erable importance to investigate possible future climate

change at the regional scale. These future climate projec-

tions can provide underlying climate science information

for impacts assessments and development of effective

mitigation and adaptation strategies.

Based on outputs from nine coupled atmosphere–ocean

general circulation models (AOGCMs), a hydrological

model [i.e., the Variable Infiltration Capacity (VIC)

model], and Spring Indices models (i.e., a suite of models

that simulate the spring phenology of representative plants

based on daily maximum and minimum temperature data;

see Schwartz et al. 2006), Hayhoe et al. (2007) assessed

future changes in climate, hydrological, and biological

indicators across the northeastern US. It was found that

these indicators are projected to change consistent with a

warming climate, and the magnitude of their future trends

are much larger under the higher emissions scenario than

under the lower scenario. As climate simulations and

projections by coarse resolution GCMs lack the regional

details for impacts studies, different downscaling methods

have been developed to derive finer resolution information

from the GCM output. Statistical downscaling and regional
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climate modeling are two primary downscaling approa-

ches. While statistical downscaling estimates the corre-

sponding regional characteristics based on the established

statistical relationships between the large-scale and local

variables (Hewitson and Crane 2006; Ning et al. 2012),

regional climate modeling applies sophisticated regional

climate models (RCMs) consistent with their driving

GCMs in the large-scale features to directly simulate the

dynamics of the regional climate. The North American

Regional Climate Change Assessment Program (NARC-

CAP) (Mearns et al. 2009, 2012) archived outputs from

multiple RCM simulations driven by different GCMs to

provide high resolution climate scenarios over North

America. By analyzing climate projections from nine

NARCCAP GCM-RCM pairs, Rawlins et al. (2012) found

a significant increase in seasonal air temperature, a sig-

nificant increase in winter precipitation, and a decrease in

summer precipitation across the northeast US during the

mid twenty-first century relative to the end of the twentieth

century.

The uncertainties of the future climate projections exist

due to the emissions scenario uncertainty, the uncertainty

in the response of climate, and the natural variability

uncertainty. The emissions scenario uncertainty and the

natural variability uncertainty can be addressed by making

climate projections under a range of emissions scenarios

and using an ensemble of projections with different initial

conditions. The uncertainty in the climate response, which

arises from our imperfect understanding of key processes

and feedbacks in the climate system, can be accounted for

by applying a variety of climate models under the same

emissions scenario.

In this study, we perform regional climate simulations

over the northeastern sector of the United States and

adjacent parts of southern Canada, applying a high reso-

lution RCM developed by the UK Hadley Centre. The

objectives are to evaluate the ability of this RCM to

reproduce observed climate and to assess the future climate

change over the northeastern US. To complement the

results produced by previous studies (Hayhoe et al. 2007;

Rawlins et al. 2012), this study focuses on a much larger

domain than the traditionally defined northeastern US

region, and provides finer-scale regional climate simula-

tions with a horizontal resolution of 25 km. A set of

experiments was designed to estimate different types of

uncertainties in the present-day simulations and future

projections. The RCM simulations were driven by different

boundary data to evaluate the uncertainty due to our

imperfect understanding of the climate system (‘‘science

uncertainty’’). We also quantified the ‘‘natural variability

uncertainty’’ by running an ensemble of RCM simulations

with different initial conditions. In addition, the ‘‘emissions

scenario uncertainty’’ was examined by projecting future

climate change under both higher and lower emissions

scenarios. This RCM has already been applied in many

previous studies to evaluate the sensitivity of simulations to

domain size (Jones et al. 1995; Bhaskaran et al. 1996) and

to project greenhouse gas induced climate change in vari-

ous regions (Urrutia and Vuille 2009; Karmalkar et al.

2011; McCarthy et al. 2011).

2 Models, experiments, and methodology

2.1 A regional modeling system: PRECIS

Providing REgional Climates for Impacts Studies (PRE-

CIS) is a regional modeling system developed at the UK

Hadley Centre for the purpose of providing regional-scale

high resolution climate projections for impact studies

(Jones et al. 2004). It is composed of the latest version of

the Hadley Centre RCM, a graphical user interface which

makes the experimental setup easier, and a visualisation

and data-processing package to display and process the

RCM output. PRECIS is quite flexible for applications over

any area of the globe and computationally inexpensive to

meet the growing demand for regional climate projections

and adaptation studies. More detailed information on dif-

ferent components of PRECIS can be found in the hand-

book (Jones et al. 2004) and the technical manual (Wilson

et al. 2011).

The current version of the PRECIS RCM (HadRM3P)

was developed from an improved version of the atmo-

spheric component (HadAM3P) of the Hadley Centre

coupled atmosphere–ocean general circulation model

(HadCM3) (Gordon et al. 2000). It is a limited-area high-

resolution atmospheric and land surface model with hori-

zontal resolutions of 50 and 25 km. The atmospheric

component is a hydrostatic primitive model with a regular

latitude-longitude grid in the horizontal and a hybrid ver-

tical coordinate system. There are 19 vertical levels in the

atmosphere and four levels in the soil. The atmosphere

extends from the lowest at *50 m to the highest at 0.5 hPa

with terrain-following r-coordinates for the bottom four

levels, purely pressure coordinates for the top three levels

and a combination in between (Simmons and Burridge

1981). Boundary conditions, derived either from reanalysis

data [e.g., ERA40 provided by the European Centre for

Medium-Range Weather Forecasts (ECMWF)] or from

global climate model (GCM) integrations (e.g., the Hadley

Centre’s global atmosphere-only model HadAM3P), are

required to provide the meteorological forcing for the

RCM. These boundary conditions comprise lateral bound-

ary conditions of atmospheric pressure at the surface,

horizontal wind components, temperature and humidity

through the depth of the atmosphere, and the necessary
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chemical species when the sulphur cycle is being modeled,

as well as surface boundary conditions of sea surface

temperature (SST) and sea-ice extent and thickness. These

lateral boundary conditions are provided at the latitudinal

and longitudinal edges of the model domain and updated

every 6 h, whereas the surface boundary conditions are

only required over ocean and inland water points and

updated every day. A relaxation technique is applied to

drive the RCM values towards values interpolated from the

large-scale driving fields across a four-point lateral buffer

zone.

In order to provide high resolution regional climate

projections consistent with the large-scale circulation from

the GCM and to achieve maximum compatibility, the

PRECIS RCM and its driving GCM employ identical

dynamical and physical formulations, apart from certain

details (e.g., horizontal diffusion) which are dependent on

resolution. Physical parameterizations of clouds, precipi-

tation, radiative processes, boundary layer and the land

surface are represented by their respective schemes and

included as source and sink functions in the equations to

modify the meteorological state variables. The radiation

scheme, including the seasonal and diurnal cycles of

incoming solar radiation, computes short wave and long

wave fluxes which depend on atmospheric temperature and

humidity, concentrations of radiatively active gases, clouds

and sulphate aerosol concentrations. Both the direct effect

(i.e., scattering and absorption of incoming solar radiation)

and the first indirect effect [i.e., aerosols acting as cloud

condensation nuclei (CCN)] of sulphate aerosols are

modeled. The land surface scheme employed is MOSES

(Met Office Surface Exchange Scheme, Cox et al. 1999),

and there is the option of using a more advanced scheme

MOSES2.2 than the default MOSES1 in the latest version

of the PRECIS RCM. Surface characteristics over land are

prescribed based on a 1� 9 1� global dataset of vegetation

and soil types of Wilson and Henderson-Sellers (1985).

The surface hydrology scheme includes a vegetative can-

opy which intercepts some of the rainfall by both retaining

water and evaporating it back to the atmosphere. The soil

model uses a four-layer scheme to simulate soil hydrology

and thermodynamics. The soil layer thicknesses, which are

0.1, 0.25, 0.65 and 2.0 m from the top to the bottom, are

chosen to resolve both the diurnal and seasonal cycles with

minimal distortion.

2.2 Experimental design

The model domain selected for this study covers the east-

ern US, parts of Canada and the surrounding oceans

(Fig. 1). The boundaries are placed over plains and oceans.

The western boundary is away from the complex terrain in

the western US to avoid the noise due to the mismatch

between the coarse resolution driving data and the high

resolution RCM topography in the interior adjacent to the

buffer zone. Our region of interest, the northeastern US, is

in the centre of the domain and well away from the lateral

buffer zone.

We performed the following experiments at a horizontal

resolution of 0.22� 9 0.22� latitude/longitude (a grid

spacing of 25 km) to simulate both climates of the recent

past and future: (1) One RCM baseline simulation driven

by a quasi-observed set of boundary data derived from

ERA40 during the 1957–2002 interval [RCM (ERA40)

BL], (2) three RCM baseline simulations driven by three

31-year integrations of HadAM3P during the 1960–1990

interval [RCM (HadAM3P) BL #1-3], (3) three RCM

simulations driven by HadAM3P during the 2070–2100

interval with the SRES A2 emissions scenario [RCM

(HadAM3P) SRES A2 #1-3], and (4) One single realization

driven by HadAM3P during the 2070–2100 interval with

the SRES B2 emissions scenario [RCM (HadAM3P) SRES

B2]. The descriptions of these experiments in terms of the

source of the boundary data and the relevant emissions

scenarios are listed in Table 1. The three ensemble mem-

bers of the driving HadAM3P, using the same evolution of

atmospheric composition, are initialized with different

atmospheric and land surface states. Accordingly, the three

RCM ensemble members for both current [‘‘RCM (Had-

AM3P) BL #1-3’’] and future [‘‘RCM (HadAM3P) SRES

A2 #1-3’’] simulations downscale the three parallel Had-

AM3P integrations, and the differences between the three

RCM realizations from an ensemble reflect the ‘‘natural

variability uncertainty’’.

The surface boundary conditions for ‘‘RCM (ERA40)

BL’’ were derived from a combination of the monthly

Hadley Centre Sea Ice and Sea Surface Temperature

dataset (HadISST) and weekly NCEP observed datasets,

Fig. 1 PRECIS RCM domain and topography. The area between the

outer and inner rectangles is the lateral buffer zone where the RCM

values are relaxed towards the coarse resolution driving data. This rim

of 8 grid points has been excluded from the analysis
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while ‘‘RCM (HadAM3P) BL #1-3’’ used the HadISST

observed time series of SSTs and sea-ice. Note that Had-

ISST is the Hadley Centre’s global monthly SST and sea

ice dataset, which has a 1� 9 1� latitude/longitude reso-

lution and covers the period from 1870 to date (Rayner

et al. 2003). For the future projections ‘‘RCM (HadAM3P)

SRES A2 #1-3’’, surface boundary conditions were

obtained by adding changes in SSTs and sea-ice from the

coupled atmosphere–ocean model HadCM3 to the Had-

ISST observed time series. Compared to taking the surface

Table 1 PRECIS RCM simulations performed in this study

RCM simulations Boundary conditions

Lateral (surface pressure, winds, temperature, humidity) Surface (SST and sea-ice)

Driving model Emissions scenario

RCM (ERA40) BL ERA40, an ECMWF

reanalysis dataset

Observed values of greenhouse gases; No

explicit representation of atmospheric

aerosols

A combination of the monthly

HadISST and weekly NCEP

observed datasets

RCM (HadAM3P) BL #1 The Hadley Centre’s global

atmosphere-only model

HadAM3P

Observed values of greenhouse gases;

Prescribed evolution of aerosols

The HadISST observed time series

RCM (HadAM3P) BL #2

RCM (HadAM3P) BL #3

RCM (HadAM3P) SRES

A2 #1

HadAM3P SRES A2 Combining changes in the HadCM3

with the HadISST observed time

seriesRCM (HadAM3P) SRES

A2 #2

RCM (HadAM3P) SRES

A2 #3

RCM (HadAM3P) SRES

B2

SRES B2

Fig. 2 PRECIS RCM domain

over land divided into seven

regions using EOF analysis and

cluster analysis on simulated

seasonal mean SAT and PREP

from ‘‘RCM (ERA40) BL’’ in

a winter and b summer seasons.

c, d Same as (a) and (b), but

denote the overlapping areas of

the winter and summer clusters

for the four northeastern US

regions in gray. Subsequent

analyses are performed

separately for these four regions

(A, B, C, and D) delimited by

the thick black lines at 36.5�N

and 49.5�N
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boundary information directly from the HadCM3, this

method of combining coarse resolution GCM changes with

higher resolution observed data could remove historical

biases in the HadCM3 and provide corrected future surface

boundary conditions (Rowell 2005).

All the baseline simulations use the observed values of

greenhouse gas concentrations to provide relevant

information on atmospheric composition. However, the

representations of atmospheric aerosols are different when

using different lateral boundary conditions. While there is

no explicit representation of atmospheric aerosols in

ERA40, the evolution of aerosol emissions are prescribed

within the HadAM3P’s sulphur cycle model component. In

other words, when using lateral boundary conditions from

Fig. 3 Comparison of

multiannual mean surface air

temperature (SAT) for the

winter season from a ‘‘RCM

(ERA40) BL’’, b ‘‘RCM

(HadAM3P) BL’’, c CRU data

during the 1961–1990 period,

and d NARR data during the

1980–1990 period. The RCM

simulated SAT mean biases are

shown relative to the CRU data

in e and f for the 1961–1990

period and the NARR data in

g and h for the 1980–1990

period. The results presented for

‘‘RCM (HadAM3P) BL’’ are

based on the ensemble mean of

three integrations
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the HadAM3P, not only emissions from within the RCM

domain are included as source terms, aerosols may also be

advected into the domain via the lateral boundary condi-

tions. The evolution of greenhouse gases and aerosols in

the future projections are prescribed based on the ‘‘SRES

scenarios’’ data (Nakićenović et al. 2000). Since how

anthropogenic emissions will change in the future are

uncertain and these ‘‘SRES scenarios’’ are equally plausi-

ble, running RCM simulations consistent with different

emissions scenarios will help estimate the range of possible

future climates. For the higher SRES A2 and lower SRES

B2 scenarios used in this study, atmospheric concentrations

Fig. 4 Comparison of

multiannual mean surface air

temperature (SAT) for the

summer season from a ‘‘RCM

(ERA40) BL’’, b ‘‘RCM

(HadAM3P) BL’’, c CRU data

during the 1961–1990 period,

and d NARR data during the

1980–1990 period. The RCM

simulated SAT mean biases are

shown relative to the CRU data

in e and f for the 1961–1990

period and the NARR data in

g and h for the 1980–1990

period. The results presented for

‘‘RCM (HadAM3P) BL’’ are

based on the ensemble mean of

three integrations
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of carbon dioxide (CO2) will rise to approximately 850 and

620 ppm by 2,100, respectively.

It is worth noting that in the following analysis, a 1-year

spin-up period for the soil variables in the land-surface

model to come into equilibrium with the atmospheric

forcing and 8-point buffer zone where the RCM values are

relaxed towards the driving boundary data have been

eliminated. The results related to the RCM simulations

driven by the HadAM3P (i.e., ‘‘RCM (HadAM3P) BL’’ and

‘‘RCM (HadAM3P) SRES A2’’) are presented as the

ensemble average of the three ensemble members.

2.3 Regionalization

Due to wide-ranging characteristics of the mean and vari-

ability of climatic variables across the northeastern United

States, it is useful to divide the relatively large RCM

domain into several climatologically similar regions. Fol-

lowing the strategy developed by Karmalkar et al. (2011),

we divided the land area of the domain in terms of surface

air temperature (SAT) and total precipitation rate (PRCP).

This approach employs a combination of empirical

orthogonal functions (EOF) analysis to isolate character-

istic patterns of variability and K-means cluster analysis to

partition the land points into clusters. First of all, we per-

formed the EOF analysis on seasonal mean SAT and PRCP

fields simulated by ‘‘RCM (ERA40) BL’’ for winter (DJF)

and summer (JJA) seasons separately (Figs. S1–S4 in the

online supplement). The PRCP fields were smoothed (i.e.,

spatially averaged over blocks of 49 grid points) before the

EOF analysis to reduce the impact of small-scale spatial

features. The first three SAT and first four PRCP EOF

spatial patterns, which explain more than 80 and 50 % of

the total variance, were retained and put into the K-means

clustering algorithm to divide the RCM domain over land

into seven regions (Fig. 2a, b).

The northeastern US region of interest was divided into

four sub-divisions (A, B, C and D in Fig. 2a, b) for both

winter and summer seasons. Although the divisions are

slightly different between the two seasons, the large

overlapping areas (Fig. 2c, d) indicate their common fea-

tures. Despite the arbitrariness in the choice of the number

Table 2 Comparison of observed and simulated multiannual mean surface air temperature (SAT) and total precipitation rate (PRCP) for winter

and summer seasons over the four northeastern US regions during the current period

CRU 3.0

(1961–1990)

NARR

(1980–1990)

ERA40

(1961–1990)

RCM (ERA40) BL

(1961–1990)

HadAM3P

(1961–1990)

RCM (HadAM3P)

BL (1961–1990)

SAT (�C) region A

Winter (DJF) -8.94 -8.50 -8.15 -7.35 -7.44 -5.57

Summer (JJA) 21.13 21.92 21.30 23.17 23.45 24.90

SAT (�C) region B

Winter (DJF) -10.32 -8.96 -8.77 -8.15 -7.57 -6.57

Summer (JJA) 16.85 17.09 17.49 17.89 16.62 17.75

SAT (�C) region C

Winter (DJF) -1.20 -1.51 -1.03 0.10 0.21 1.29

Summer (JJA) 24.64 25.31 24.65 27.49 28.39 29.38

SAT (�C) region D

Winter (DJF) -1.18 -1.18 -0.56 -0.29 0.62 1.66

Summer (JJA) 21.77 21.94 22.03 23.37 23.08 24.31

PRCP (mm day-1) region A

Winter (DJF) 1.13 0.80 1.27 1.49 2.10 1.78

Summer (JJA) 3.10 2.99 2.23 2.62 2.37 2.18

PRCP (mm day-1) region B

Winter (DJF) 2.64 1.21 2.37 2.84 3.05 2.81

Summer (JJA) 3.19 2.74 2.52 3.09 2.77 2.77

PRCP (mm day-1) region C

Winter (DJF) 1.57 1.68 1.37 1.64 3.01 2.57

Summer (JJA) 3.17 3.05 2.65 2.53 2.06 1.97

PRCP (mm day-1) region D

Winter (DJF) 2.48 2.21 2.22 3.02 3.94 3.74

Summer (JJA) 3.30 3.11 2.81 3.39 2.81 2.89
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of clusters, the division distinguishes relatively cold and

dry (Region A), cold and wet (Region B), warm and dry

(Region C), and warm and wet (Region D) climatic

regions, and these sub-divisions were subsequently used to

examine climate changes across the larger region.

3 Model validation

3.1 Multiannual mean

As temperature and precipitation are two primary climate

indicators, it is crucial to first examine the extent to which

the RCM baseline simulations are able to reproduce

observed characteristics of these two indicators. Compari-

son of multiannual mean SAT from the RCM baseline

simulations and the observed data are shown in Figs. 3 and

4 for the winter and summer seasons, respectively. The

RCM simulations reproduce well the large-scale spatial

structure of the mean SAT field, as represented by the CRU

data and the NARR data. In comparison with the CRU

data, the RCM simulations overestimate the SAT, espe-

cially for the northern regions in winter and western

regions in summer. The significant winter warm biases in

both ‘‘RCM (ERA40) BL’’ and ‘‘RCM (HadAM3P) BL’’

over the northern part of the domain relative to the CRU

data may be attributed to the differences in the modeled

and observed snow-ice albedo feedbacks. Moreover, more

pronounced winter warm biases in ‘‘RCM (HadAM3P)

BL’’ could be a reflection of the driving HadAM3P biases.

The quantified values of the observed and simulated

SAT and PRCP over the four northeastern US regions

during the current period are compared in Table 2. The

overestimation of the mean SAT is more prominent in

‘‘RCM (HadAM3P) BL’’ than in ‘‘RCM (ERA40) BL’’,

which may be attributable to large warm biases in the

Fig. 5 Comparison of

multiannual mean total

precipitation rate (PRCP) for the

winter season from a ‘‘RCM

(ERA40) BL’’, b ‘‘RCM

(HadAM3P) BL’’, c CRU data

during the 1961–1990 period,

and d NARR data during the

1980–1990 period. The RCM

simulated PRCP mean biases

are shown relative to the CRU

data in e and f for the

1961–1990 period. The results

presented for ‘‘RCM

(HadAM3P) BL’’ are based on

the ensemble mean of three

integrations
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driving HadAM3P. Though the RCM can freely generate

its own features on smaller temporal and spatial scales, the

large-scale RCM circulation can not diverge from its

driving GCM. Consequently, relatively strong overesti-

mation of SAT in HadAM3P (Table 2), especially in

region B during winter (?2.75 �C) and region C during

summer (?3.75 �C), is partly responsible for the relatively

large warm biases in ‘‘RCM (HadAM3P) BL’’. Further, the

RCM simulations exhibit stronger overestimation of the

mean SAT than their driving HadAM3P.

The simulated and observed multiannual mean PRCP

and biases relative to the CRU data for winter and summer

seasons are illustrated in Figs. 5 and 6. The spatial patterns

of the precipitation climatology biases relative to the

NARR data are not presented due to some deficiencies in

this reanalysis product (Bukovsky and Karoly 2007). For

instance, there is an apparent precipitation discontinuity

along the United States-Canada and United States-Mexico

borders during the summer season (Fig. 6d), which arises

from the different precipitation observations used to pro-

duce the NARR archive. The precipitation climatology

over Canada during the winter season also seems to be

unrealistic (Fig. 5d). In addition, while the NARR repro-

duces precipitation over the continental United States

reasonably well, it does not provide reliable precipitation

data over the northern oceans. This is attributed to the fact

that the full precipitation assimilation of the CMAP (Cli-

mate Prediction Center’s Merged Analysis of Precipitation)

data (Xie and Arkin 1997) is only available over the oceans

south of 27.5�N (Mesinger et al. 2006). Some inaccuracies

in the NARR precipitation mentioned above (e.g., winter

precipitation minima in Canada, and the summer precipi-

tation discontinuity over the United States-Canada bound-

aries) are also reflected in the multiannual mean

precipitation comparison between the NARR and CRU

data (Fig. S5 in the online supplement). For most parts of

Fig. 6 Comparison of

multiannual mean total

precipitation rate (PRCP) for the

summer season from a ‘‘RCM

(ERA40) BL’’, b ‘‘RCM

(HadAM3P) BL’’, c CRU data

during the 1961–1990 period,

and d NARR data during the

1980–1990 period. The RCM

simulated PRCP mean biases

are shown relative to the CRU

data in e and f for the

1961–1990 period. The results

presented for ‘‘RCM

(HadAM3P) BL’’ are based on

the ensemble mean of three

integrations
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the northeastern US, the RCM baseline simulations tend to

overestimate PRCP in winter but underestimate PRCP in

summer. The largest overestimation (expressed as per-

centage bias) of winter precipitation by ‘‘RCM

(HadAM3P) BL’’ is seen in the northwestern part of the

domain, which receives the lowest winter precipitation in

the present-day period (Table 2). Comparing the summer

PRCP biases (Fig. 6e, f) with the summer SAT biases

Fig. 7 Probability density

functions (PDFs) of monthly

SAT in a winter and b summer

seasons for the CRU data

(black), ‘‘RCM (ERA40) BL’’

(dashed black), ‘‘RCM

(HadAM3P) BL’’ (thin color),

‘‘RCM (HadAM3P) SRES B2’’

(dashed thick color), and ‘‘RCM

(HadAM3P) SRES A2’’ (thick

color) in the four northeastern

US regions defined in Fig. 2.

Vertical lines denote the means

of respective distributions. The

fitted Gaussian distributions are

plotted, and the results

presented for ‘‘RCM

(HadAM3P) BL’’ and ‘‘RCM

(HadAM3P) SRES A2’’ are

based on the ensemble mean of

three integrations
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(Fig. 4e, f), it is evident that the underestimation of sum-

mer precipitation over the western and central parts of the

domain coincides with the overestimation of summer SAT.

A plausible explanation is that less precipitation is asso-

ciated with less evaporation and higher surface tempera-

ture, which leads to positive sensible heat flux biases from

the surface and consequently warm SAT biases.

3.2 Probability density functions

For the purpose of examining the temporal and spatial

distributions, we used probability density functions (PDFs)

to describe the monthly mean SAT and PRCP distributions

during winter and summer over the 30-year period across

each of the four northeastern US regions. The monthly

means of SAT may be assumed to come from the Gaussian

distribution written as

f xjl; rð Þ ¼ 1

r
ffiffiffiffiffiffi

2p
p e�

1
2

x�l
rð Þ

2

; ð1Þ

where l and r are the mean and standard deviation. The

comparisons between the SAT distributions from original

data and their PDFs in ‘‘RCM (ERA40) BL’’ indicate

that monthly SAT distributions over every northeastern

US region conform to a Gaussian distribution (Fig. S6 in

the online supplement). Figure 7 shows the Gaussian

distributions of the observed and simulated monthly

mean SAT from the thirty-year data for all the grid

points within every region during winter and summer

seasons, respectively. The RCM biases of the SAT mean

and variability in comparison with the CRU data are

tabulated in Table 3. The means of the SAT distributions

are greater in the RCM baseline simulations than in the

CRU observations, especially for region B in winter and

region C in summer. The mean biases are relatively

small in the southern part of the domain (regions C and

D) for winter and in the eastern part (regions B and D)

for summer. While the widths of the RCM simulated

SAT distributions are narrower than those of the

observed distributions during the winter, the case is

exactly opposite for the summer season. In general,

‘‘RCM (ERA40) BL’’ shows smaller SAT mean and

variability biases than ‘‘RCM (HadAM3P) BL’’, indi-

cating that better simulation results are obtained by using

quasi-observed driving data. For those regions with rel-

atively large SAT mean biases (i.e., northern regions in

winter and western regions in summer), the warm biases

in ‘‘RCM (ERA40) BL’’ are at least 1.5 �C smaller than

that in ‘‘RCM (HadAM3P) BL’’.

We also present the Gaussian distributions of monthly

SAT for the three baseline simulations [‘‘RCM (Had-

AM3P) BL #1*3’’] and three SRES A2 simulations

[‘‘RCM (HadAM3P) SRES A2 #1*3’’] to estimate the

‘‘natural variability uncertainty’’ (Fig. S8 in the online

supplement). The differences in the mean and variability of

monthly SAT between the three ensemble realizations are

quantified (Table S1 in the online supplement). The PDFs

of SAT distributions for the three baseline ensemble sim-

ulations have very close means and similar shapes and

widths. The differences in the means of SAT PDFs

between different baseline realizations from an ensemble

are only of the order 10-2 or 10-1 �C, far smaller than the

differences between the baseline simulations driven by

different boundary data.

The monthly means of PRCP follow the gamma distri-

bution, which can be expressed in terms of the gamma

function and two parameters as

f xjk; hð Þ ¼ 1

hkC kð Þ
xk�1e�

x
h; ð2Þ

where k and h denote shape and scale parameter, respec-

tively. The comparisons between the PRCP distributions

from original data and their PDFs in ‘‘RCM (ERA40) BL’’

suggest that a gamma distribution is an appropriate fit to

monthly precipitation data (Fig. S7 in the online supple-

ment). The gamma distributions of the observed and sim-

ulated monthly mean PRCP are illustrated in Fig. 8 and the

PRCP biases are tabulated in Table 4. The relatively large

absolute mean biases of precipitation are in the southern

regions (regions C and D) during the winter and in the

western regions (regions A and C) during the summer. It is

important to note that a small absolute bias may be asso-

ciated with a large percentage bias due to the small

amounts of precipitation received in the dry regions. As it

is illustrated in Tables 2 and 4, though the absolute wet

bias for Region A (0.65 mm day-1) during the winter is

only half of the bias for region D (1.26 mm day-1) in

Table 3 The RCM simulations biases in the mean (l) and standard

deviation (r) of monthly SAT relative to the CRU data for the four

northeastern US regions during the 1961–1990 period

lbias (�C) rbias (%)

RCM

(ERA40)

RCM

(HadAM3P)

RCM

(ERA40)

RCM

(HadAM3P)

Winter season (DJF)

Region A 1.59 3.37 -10.6 -15.2

Region B 2.17 3.75 -11.2 -13.1

Region C 1.30 2.49 -15.2 -23.1

Region D 0.89 2.84 -7.6 -11.7

Summer season (JJA)

Region A 2.04 3.76 30.3 53.4

Region B 1.05 0.90 11.7 17.7

Region C 2.85 4.73 35.0 62.4

Region D 1.60 2.54 18.4 28.0
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‘‘RCM (HadAM3P) BL’’, the percentage biases in these

two regions are comparable (58.3 vs. 51.2 %). During the

winter season, the PRCP variability biases are positive for

all four regions. For summer, the wetter regions (regions B

and D) have positive variability biases and the drier regions

(regions A and C) have negative variability biases.

Fig. 8 Probability density

functions (PDFs) of monthly

PRCP in a winter and b summer

seasons for the CRU data

(black), ‘‘RCM (ERA40) BL’’

(dashed black), ‘‘RCM

(HadAM3P) BL’’ (thin color),

‘‘RCM (HadAM3P) SRES B2’’

(dashed thick color), and ‘‘RCM

(HadAM3P) SRES A2’’ (thick

color) in the four northeastern

US regions defined in Fig. 2.

Vertical lines denote the means

of respective distributions. The

fitted gamma distributions are

plotted, and the results

presented for ‘‘RCM

(HadAM3P) BL’’ and ‘‘RCM

(HadAM3P) SRES A2’’ are

based on the ensemble mean of

three integrations
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4 Response to climate change

4.1 Surface air temperature response

The projected future changes in the multiannual mean SAT

are shown in Fig. 9. There is an overall warming for the

whole RCM domain under both SRES A2 and SRES B2

scenarios for both winter and summer seasons, except for a

small region over the northeast coast during the summer.

According to a Student t test, the warming is statistically

significant (p \ 0.001 for a one-sided test), indicating the

robustness in the future increase in SAT.

The projected future distributions of monthly SAT and

the quantified changes in their mean and variability over

the four northeastern US regions are presented (Fig. 7;

Table 5). The future changes in the multiannual mean SAT

during the winter season under the higher emissions sce-

nario (SRES A2) are 4.95, 5.39, 3.83, and 3.59 �C in the

four regions, respectively. Compared with the winter

warming (3.59–5.39 �C), the RCM projects an even larger

increase in summer mean SAT (5.83–6.81 �C) under the

SRES A2 scenario. Under the lower emissions scenario

(SRES B2), summer warming is also larger than winter

warming except for region B. The end-of-century temper-

ature increase over the northeastern region (B) projected by

this PRECIS RCM is larger than that based on the

ensemble average from 9 AOGCMs (Hayhoe et al. 2007),

which projects 3.7 �C winter warming and 4.3 �C summer

warming by 2070–2099 relative to 1961–1990 under the

SRES A2 scenario. But the projected warming by this

PRECIS RCM is within the range of temperature projec-

tions from individual AOGCM simulations. It is interesting

to note that the projected increase in the mean SAT during

the winter is insensitive to the emissions scenario uncer-

tainty. The differences in the winter mean SAT between

the two emissions scenarios, which are less than 0.9 �C for

the four regions, are comparable to those between different

realizations from the future SRES A2 ensemble (Fig. S8

Table 4 The RCM simulations biases in the mean (l) and standard

deviation (r) of monthly PRCP relative to the CRU data for the four

northeastern US regions during the 1961–1990 period

lbias (%) rbias (%)

RCM

(ERA40)

RCM

(HadAM3P)

RCM

(ERA40)

RCM

(HadAM3P)

Winter season (DJF)

Region A 32.1 58.3 28.7 37.2

Region B 7.6 6.6 16.2 11.8

Region C 4.0 63.1 0.9 51.1

Region D 21.7 51.2 25.2 45.8

Summer season (JJA)

Region A -15.5 -29.7 -3.5 -0.4

Region B -3.0 -13.1 29.4 21.9

Region C -20.0 -37.9 -16.8 -12.3

Region D 2.8 -12.4 26.5 23.5

Fig. 9 Projected future changes

in the multiannual mean SAT

under the SRES A2 (a, c) and

SRES B2 (b, d) scenarios

during winter (a, b) and summer

(c, d) seasons. The future

warming is statistically

significant (p \ 0.001 for a one-

sided test) for almost all the grid

points in the domain. The

results presented are the

differences between the

ensemble averaged future and

current integrations
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and Table S1 in the online supplement). However, the

magnitude of summer warming in the higher emissions

scenario is much larger than that in the lower scenario. The

differences in the summer mean SAT between the two

scenarios are an order of magnitude larger than those

between different realizations from the future higher sce-

nario ensemble. More intense warming is predicted in the

northern regions (region A and B) during the winter and in

the western regions (regions A and C) during the summer,

where the overestimates of the mean SAT relative to the

CRU data also have larger magnitudes. The projected

future changes in the mean SAT exceed the mean biases

under either SRES A2 or SRES B2 scenario, though the

magnitude of summer warming is only slightly larger than

the overestimation over region C under the SRES B2

scenario. The width of the future SAT distributions will

decrease in winter and increase in summer, indicating

reduced and enhanced variability respectively.

4.2 Precipitation response

In contrast to the consistent increasing response of the SAT

to greenhouse radiative forcing across the whole domain,

the differences between the future and baseline PRCP cli-

matology indicate both increasing and decreasing precipi-

tation over different regions (Fig. 10). The future increases

in the winter precipitation are statistically significant at the

two-sided a = 0.01 level in the southern Canada and the

east coast of the US. Winter precipitation is projected to

decrease over the western part of the domain but the

reduction is not significant. The changes in the summer

precipitation climatology patterns depict a contrast

between the northwestern and southeastern parts of the

domain with significantly reduced precipitation over the

northwestern inland regions and significantly enhanced

precipitation over the ocean.

The PDFs of the future PRCP analyzed individually

for the four regions are shown in Fig. 8 and the quanti-

fied changes are provided in Table 5. The four north-

eastern US regions are projected to experience a slight

increase in winter precipitation under the future scenar-

ios. For regions A, C and D, these projected changes

(4.8–9.4 %) in winter precipitation are far less than the

mean biases (51.2–63.1 %) relative to the CRU observed

values. The projected winter precipitation changes for

region B under the SRES A2 (8.7 %) and SRES B2

(9.7 %) scenarios have the same order of magnitude as

the mean bias (6.6 %). These results are consistent with

the findings by Rawlins et al. (2012), which indicate that

all nine GCM-RCM pairs analyzed project wetter winter

conditions across the nine northeast US states by mid-

century, but the change in winter mean precipitation is

less than the mean bias. With the exception of region B

under the SRES B2 scenario, summer precipitation is

projected to decrease, with the relatively dry regions

(regions A and C) showing a greater decline. A winter

precipitation increase of 8.7 % and summer precipitation

decrease of -2.7 % over the northeastern Region

(B) projected by this PRECIS RCM under the SRES A2

scenario is in agreement with the ensemble-averaged

precipitation changes from 9 AOGCM projections (Hay-

hoe et al. 2007). Rising summer temperature associated

with decreasing summer rainfall may increase the fre-

quency of short-term droughts, particularly under the

Table 5 Projected changes in

the mean (l) and standard

deviation (r) of monthly SAT

and PRCP under the SRES A2

and SRES B2 emissions

scenarios for the four

northeastern US regions

Changes are calculated based on

the differences or percentage

differences between ‘‘RCM

(HadAM3P) SRES A2’’ [‘‘RCM

(HadAM3P) SRES B2’’] and

‘‘RCM (HadAM3P) BL’’

Surface air temperature

(SAT)

Winter season (DJF) Summer season (JJA)

lchange (�C) rchange (%) lchange (�C) rchange (%)

SRES

A2

SRES

B2

SRES

A2

SRES

B2

SRES

A2

SRES

B2

SRES

A2

SRES

B2

Region A 4.95 4.17 -12.8 -16.5 6.81 4.67 13.6 16.7

Region B 5.39 4.56 -18.9 -17.3 5.83 3.89 22.8 8.5

Region C 3.83 3.33 -4.5 -14.6 6.56 4.88 12.0 7.3

Region D 3.59 3.05 -3.2 -12.2 6.04 4.39 15.1 16.6

Total precipitation rate

(PRCP)

Winter season (DJF) Summer season (JJA)

lchange (%) rchange (%) lchange (%) rchange (%)

SRES

A2

SRES

B2

SRES

A2

SRES

B2

SRES

A2

SRES

B2

SRES

A2

SRES

B2

Region A 9.4 4.8 13.1 5.6 -27.3 -18.5 -10.9 -6.4

Region B 8.7 9.7 4.6 10.6 -2.7 8.4 17.1 16.1

Region C 9.0 8.2 21.7 21.0 -13.0 -17.3 -12.5 -21.8

Region D 8.5 6.2 20.5 18.6 -5.7 -2.7 4.7 -5.4
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higher emissions scenario. Projected changes in the

widths of the PDFs suggest an increase in the winter

precipitation variability for all four regions. For the

summer season, the relatively dry regions are not only

projected to receive less precipitation, but also experience

a decrease in the precipitation variability.

Fig. 10 Projected future

changes in the multiannual

mean PRCP under the SRES A2

(a, e) and SRES B2 (b,

f) scenarios during winter (a,

b) and summer (e, f) seasons. c,

d, g, h Regions where the

change is significant at the two-

sided a = 0.01 level (a = 0.1

level) are shaded in red (cyan).

The results presented for ‘‘RCM

(HadAM3P) BL’’ and ‘‘RCM

(HadAM3P) SRES A2’’ are

based on one realization of the

3-member ensemble
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5 Conclusions

Model validation for the thirty-year seasonal temperature

and precipitation indicates that the RCM simulations gen-

erally capture the large-scale features, but their perfor-

mance may vary seasonally and spatially across the

domain. Relatively large warm biases are evident in the

northern part of the domain during the winter and in the

western part during the summer. The wet (dry) biases are

particularly significant over the northwestern (western)

regions during the winter (summer). Deficient precipitation

simulated by the RCM simulations relative to the CRU data

during the summer leads to the drying of the surface and

higher sensible heat flux, and thus results in warm SAT

biases. The RCM simulation forced by the quasi-observed

boundary data (ERA40) shows better capabilities than

those simulations forced by the GCM (HadAM3P) in

reproducing observed temperature and precipitation with

reduced warm biases and diminished wet (dry) biases

during the winter (summer).

While the projected future increase in winter SAT is

relatively insensitive to the emissions scenario uncertainty,

the difference in the summer warming is more distin-

guishable between the higher and lower emissions sce-

narios. The projected summer temperature increase in this

PRECIS RCM across the northeastern US region by the

end of the twenty-first century (5.83–6.81 �C) is more than

3 �C greater than the summer warming projected by the

ensemble mean of nine GCM-RCM pairs by the mid-cen-

tury (2.6 �C) (Rawlins et al. 2012) under the SRES A2

scenario, suggesting a continuous temperature increase in

response to greenhouse gas forcing. The projected future

changes in precipitation indicate increasing winter precip-

itation and decreasing summer precipitation. However, less

confidence is ascribed to the future precipitation changes

over most parts of the northeastern US region due to the

lack of statistical significance of the changes. The greater

temperature increase under the higher emissions scenario

than under the lower scenario indicates the importance of

reducing emissions today to avoid dramatic climate chan-

ges and disastrous impacts over the course of the twenty-

first century.
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