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Abstract In this study, the climate mean, variability, and

dominant patterns of the Northern Hemisphere wintertime

mean 200 hPa geopotential height (Z200) in a CMIP and a

set of AMIP simulations from the National Centers for

Environmental Prediction (NCEP) Climate Forecast Sys-

tem Version 2 (CFSv2) are analyzed and compared with

the NCEP/NCAR reanalysis. For the climate mean, it is

found that a component of the bias in stationary waves

characterized with wave trains emanating from the tropics

into both the hemispheres can be attributed to the precip-

itation deficit over the Maritime continent. The lack of

latent heating associated with the precipitation deficit may

have served as the forcing of the wave trains. For the

variability of the seasonal mean, both the CMIP and AMIP

successfully simulated the geographical locations of the

major centers of action, but the simulated intensity was

generally weaker than that in the reanalysis, particularly for

the center over the Davis Strait-southern Greenland area. It

is also noted that the simulated action center over Aleutian

Islands was southeastward shifted to some extent. The shift

was likely caused by the eastward extension of the Pacific

jet. Differences also existed between the CMIP and the

AMIP simulations, with the center of actions over the

Aleutian Islands stronger in the AMIP and the center over

the Davis Strait-southern Greenland area stronger in the

CMIP simulation. In the mode analysis, the El Nino-

Southern Oscillation (ENSO) teleconnection pattern in

each dataset was first removed from the data, and a rotated

empirical orthogonal function (REOF) analysis was then

applied to the residual. The purpose of this separation was

to avoid possible mixing between the ENSO mode and

those generated by the atmospheric internal dynamics. It

was found that the simulated ENSO teleconnection patterns

from both model runs well resembled that from the

reanalysis, except for a small eastward shift. Based on the

REOF modes of the residual data, six dominant modes of

the reanalysis data had counterparts in each model simu-

lation, though with different rankings in explained variance

and some distortions in spatial structure. By evaluating the

temporal coherency of the REOF modes between the

reanalysis and the AMIP, it was found that the time series

associated with the equatorially displaced North Atlantic

Oscillation in the two datasets were significantly corre-

lated, suggesting a potential predictability for this mode.

Keywords Model bias � Climate variability � Dominant

modes of circulation � Predictability

1 Introduction

The second version of climate forecast system (CFSv2) of

the National Centers for Environmental Prediction (NCEP)

(Saha et al. 2014), with significant improvement in hind-

cast skills (Peng et al. 2013), was implemented for opera-

tional climate forecast in March 2011. Meanwhile, a series

of diagnostics studies towards understanding various
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aspects of the model performance are being conducted.

These studies are aimed at understanding and documenting

model’s simulation of climate variability, and more

importantly, documenting model biases that could be tar-

geted for improvement in future developmental efforts. As

a part of the ongoing CFSv2 diagnostics effort, this study

focuses on the comparison of seasonal mean atmospheric

circulation in a fully coupled free run (CMIP-type) and a

set of observed SST forced runs (AMIP-type) of the

CFSv2, and also on the comparison of model results with

that from the reanalysis data. These comparisons are

expected to tell the impact of air-sea interactions and the

realism of model performance in this respect. For the sake

of brevity, the analysis presented here is for the Northern

Hemisphere (NH) winter season (December–January–

February) only. The reason for choosing the winter season

is that for this season the circulation is more active than in

other seasons due to the largest temperature contrast

between the tropics and the polar region, and further,

tropical-extratropical teleconnection related to ENSO SST

variability is best defined (Newman and Sardeshmukh

1998).

Since many features of large scale circulation are well

depicted by 200 hPa geopotential height (hereafter denoted

by Z200), most analyses in this study is for the Z200 field.

Following the time mean versus transient formalism of

decomposing characteristics of circulation (Wallace and

Blackmon 1983), this study examines the climate mean,

variance and major modes of the December–January–

February (DJF) seasonal mean Z200. In comparison with

observations, the analysis documents how well the model

can simulate the stationary waves, the distribution and

amplitude of the DJF variability, and the spatial and tem-

poral characteristics of the variability.

Since the pioneering work in the earlier 1980s by

Wallace and Gutzler (1981) and Horel (1981), the mode

analysis has become a common tool in climate diagnostics

and modeling studies (Kang and Lau 1986; Mo and Liv-

ezey 1986; Barnston and Livezey 1987; Kushnir and

Wallace 1989; Kumar et al. 2005). The mode analysis

helps in understanding of the dynamics and predictability

of climate phenomena, since different modes, with their

unique spatial patterns and temporal characteristics, may

owe their existence to different internal and external

sources of variability. In the practice of extended-range

weather and short term climate predictions, it is particu-

larly important for a model to be able to generate modes of

variability realistically so as to be able to correctly predict

weather regimes and boundary forced climate anomalies.

In past, the empirical orthogonal function (EOF) tech-

nique, or its variant the rotated EOF (REOF), is usually

applied to monthly or seasonal mean data to quantify major

modes of climate variability. The procedure, although

simple and efficient, has the potential to mix internal and

external sources of variability. For example, the method-

ology can easily intermingle teleconnection pattern due to

the El Nino-Southern Oscillation (ENSO) SST variability

with the Pacific-North-America (PNA) pattern associated

with internal atmospheric variability since the spatial sig-

nature of two patterns are quite similar over the PNA

region. In order to avoid mixing two different sources of

variability, Straus and Shukla (2002) grouped data into

ENSO years and non-ENSO years and treated them sepa-

rately in their analysis of dominant modes of variability.

Their approach can distinguish ENSO related pattern of

variability from the PNA pattern, but has two drawbacks:

(a) the information of PNA pattern is not continuous in

time, and (b) it is likely that PNA pattern also exist in

ENSO years (Peng and Kumar 2005). In this study we

follow an alternate approach: first remove the component

of Z200 variability associated with ENSO pattern based on

linear regression, we then apply the REOF analysis to the

residual field. As the results will demonstrate, this

approach is quite effective and efficient in separating

internal and external modes of variability. Further, as the

mode decomposition is done for all years, the procedure

results in more complete temporal information for across

both ENSO and non-ENSO years. This approach is par-

ticularly suitable to the analysis for a single time series of

seasonal mean data, such as the reanalysis data and the

CMIP-type run data where seasonal mean is comprised of

both internal and external components of variability.

The paper is organized as follows: Sect. 2 provides a

description of data used in the study and the analysis

procedure. Section 3 presents the results of the analysis.

Summary and discussions are given in the Sect. 4.

2 Data and analysis procedure

2.1 Data

The data used in this study include geopotential height at

200 hPa (Z200), wind at 200 hPa and surface (10 meter

height), sea surface temperatures (SSTs), and precipitation

rate (hereafter denoted by Prate). The model data are

derived from two kinds of model simulations. One is a fully

coupled free run (CMIP-type) with the full CFSv2, and the

other is a set of model simulations forced with observed

SSTs (AMIP-type) with the atmospheric component of

CFSv2. Details about CFSv2 can be found in Kumar et al.

(2012) and Saha et al. (2014).

The corresponding observational data is taken from the

NCEP–NCAR reanalysis (Kalnay et al. 1996) for height

and wind, the CPC precipitation analysis (CMAP) (Xie and

Akin 1996) for Prate, and the Extended Reconstructed Sea
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Surface Temperature dataset (ERSST.v3) (Smith et al.

2008) for SST. Hereafter we refer to these data sets as

observations.

The CMIP-type run started from January 2001 and

proceeded to the end of 2101. The CO2 concentration in

this run was prescribed to the observed until available

(2010) and was projected to increase by 2 ppm per year

after 2010. The data used for this analysis is from the

100-year period of 2002–2101, with the first year data not

included to avoid issues related to initial model drift. More

detailed description about the CMIP-type run can be found

in Saha et al. (2014).

The AMIP simulations include an ensemble of 12

members that started with different initial conditions from

the beginning of 1950 and proceeded to the end of 2010.

Different initial conditions are taken from the days sur-

rounding and including the 1st January 1950. All runs were

forced with the observed SSTs. The CO2 concentration in

the model was specified from observations.

Considering the time period of the CMIP run is different

from that of the AMIP and each type of runs contains

different CO2 concentration, and that our intent is not to

analyze trends due to changes in atmospheric composition,

all the data used for the analysis in this study was detrended

with the linear least square method.

The DJF seasonal mean anomalies were calculated with

respect to the climatology over the whole period of the

data. The data length for the reanalysis is 63 years

(1949–2011), while for the CMIP and AMIP, it is

100 years (2002–2101) and 61 years (1950–2010),

respectively. The CMAP precipitation data is shorter and is

only 31 years long (1979–2010).

2.2 Analysis procedure

The climate mean, and the standard deviation of the DJF

seasonal mean SST are calculated for both observations

and the CMIP simulation to first compare the realism of

SST variability in the coupled simulation. Special attention

was paid to the comparison of the spatial pattern associated

with ENSO SST variability, which was obtained by

regression of global SST with the Nino3.4 SST index. The

Nino3.4 SST index is the SST averaged over the area of

130�W to 170� and 5�S to 5�N.

We next compared climate mean for Z200 and Prate. In

this comparison, the model biases in the stationary waves

(eddy part of Z200) and the zonally asymmetric Prate were

examined. The purpose of analyzing the zonally asym-

metric component was to assess if the bias in stationary

waves can be explained by the corresponding bias in

tropical diabatic heating. In other words, it is hypothesized

that at least part of the bias in the stationary waves is forced

by the bias in the zonally asymmetric tropical diabatic

heating. Following the examination for climate mean, the

standard deviation of Z200 is used to quantify the geo-

graphic distribution and amplitude of circulation variabil-

ity. In addition, climate bias in upper level jets and their

relationship with the bias in circulation variability was also

examined. The reason for examining this relationship is

that low-frequency variability is dynamically associated

with the climatological jet streams (Branstator 1992).

Therefore, to some extent a bias in low frequency vari-

ability could be related to the mean bias in jet streams.

The next step in our analysis was the mode decompo-

sition for the Z200 variability. As mentioned before, this

analysis was done in two steps. The first is to get the ENSO

teleconnection pattern by regressing Z200 to the Nino34

index. Based on the yearly value for the DJF Nino 3.4 SST

index, the corresponding linearly reconstructed Z200 was

then removed from the data. We are aware of that the

atmospheric responses to El Nino and La Nina are not

exactly symmetric (Hoerling et al. 1997), and thus the

linear ENSO removal may not be very clean, but consid-

ering the linear response is the dominant response, we keep

in the framework of linear analysis. The second step was to

find the leading modes of the NH circulation patterns by

applying the rotated EOF (REOF) analysis to the residual.

In order for the analysis of the AMIP-type ensemble sim-

ulations to mimic that for the observation and the CMIP

run, 12 members of the AMIP runs were first concatenated

into one long time series.

For ENSO teleconnection regression pattern, the

Nino3.4 SST index from observation is used for the

reanalysis and the AMIP data, while the index from the

CMIP simulations was used for the CMIP run data. The

spatial domain for the EOF analysis was from 20�N to

90�N so as to focus on patterns for middle and higher

latitudes. For the variability at different latitudes to be

treated equally, the data are weighted with the square root

of the cosine of latitude. The EOF analysis is based on

covariance matrix, so as to have more variance explained

with fewer leading modes. The number of EOF modes kept

for rotation is 10 for the observation and the CMIP run, and

12 for the AMIP run. These cutoff numbers were chosen

for an optimal use of REOF (O’Lenic and Livezey 1988).

After the REOF analysis, common modes of the three

datasets are identified and compared to each other. The

rankings in explained variance, and the amplitude of the

regression and correlation patterns, are used to compare the

relative strength of these modes. Pattern correlations

between the modes from model simulations and those from

observations were computed for comparing the spatial

structure.

We conclude the analysis with an assessment of SST

forcing for different modes for AMIP simulations. This

was done by evaluating temporal coherency between
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modes from the AMIP simulation and their counterparts in

observation. SST and surface wind patterns are identified

with regression technique for understanding the coherent

evolution between AMIP and observations.

3 Results

3.1 Model bias in SST

One of the basic assessments of coupled model simulations

is the SST since biases in SSTs can influence atmospheric

variability through air-sea interactions. Biases in SST

simulations can be both in the mean climatology and its

variability. Figure 1 shows the climate mean DJF SST for

observation and the CMIP simulation, with the upper panel

for observation over the period of 1949–2011, the middle

panel for the deviation of the CMIP from the observation

over the overlapping period of 2002–2010, which can be

approximated as the mean bias of the model, and the lower

panel also for a deviation for the CMIP simulation but with

the data period being 1949–2011 for observation and

2002–2101 for the CMIP. A purpose for presenting the

deviation in the lower panel is to examine the background

state of the inter-annual variability over the whole period of

the CMIP simulation.

The model mean bias shown in the middle panel,

obtained as the model minus observed climatology over

their overlapping period, is towards a warmer state in the

tropical and southern high latitude oceans and colder state

in northern and southern middle latitude oceans. Prominent

warm bias is found in the tropical oceans off the west

coasts of South America and Africa, and is due to the

model errors in the estimate of marine stratus clouds over

those regions (Xie et al. 2006; Huang et al. 2007; Hu et al.

2008). The same model errors are likely responsible for the

warm bias in the southern oceans off the coast of Antarctic

as well (Wanqiu Wang, personal communication). The

lower panel exhibits enhanced warmer temperatures than

that in the middle panel, with the warmer area extending to

most southern oceans. The northern oceans, however,

remain colder. The tendency towards a general warming in

tropical and southern oceans is consistent with the warming

SST trend in the CMIP run (not shown), and therefore, may

be attributed to the imposed, and increasing, CO2 forcing.

As no corresponding cooling trend is found in the CMIP

run for the northern oceans (Jha et al. 2013), the cold bias

there can’t be simply attributed to the CO2 forcing. The

zonally asymmetric component of the SST bias (that would

tend to downplay the tendency towards warmer SSTs) is

also in good agreement with the SST bias in short range

initialized predictions (Kumar et al. 2012; Xue et al. 2013)

confirming that the cold bias is unrelated to an increase in

CO2.

Figure 2 shows the standard deviation of DJF SST, with

the upper panel for the observation over the period of

1949–2011, and lower panel for the CMIP bias, that is, the

CMIP minus observation. The CMIP variability is based on

its 100 year data (2002–210). For the observation, the

maximum in the eastern and central equatorial Pacific is

due to the SST variability related to ENSO. The local

maximum in middle and higher latitudes is because of

active atmospheric forcing (i.e. wind driven) related to the

mid-latitude storm track over those regions (Frankignoul

1985). Further, a part of the SST variability in North

Pacific is also due to response to ENSO teleconnections

(Wang et al. 2012). In the CMIP bias shown in the lower

panel, there is a modest positive bias in the equatorial

Pacific, indicating stronger ENSO variability in the model.

Fig. 1 Climate mean of DJF SST (�C): a climate mean of observa-

tion over the period of 1949–2011; b CMIP climate mean minus the

observed over their common period of 2002–2010; c CMIP climate

mean over 2002–2101 minus the observed over 1949–2011
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Other regions with positive bias in the SST variability exist

over North Atlantic and the southern oceans near the

Antarctic. Over all, the inter-annual variability of DJF

SSTs in the CMIP run is comparable to that in observation.

The most important inter-annual variability in SST is

associated with ENSO. In order to describe the ENSO

behavior in free coupled simulations, Saha et al. (2014)

computed the power spectrum of Nino34 SST index in the

CMIP simulation, and found a spectral peak over 0.2–0.3

cycles per year frequency band, narrower than that in

observations (0.15–0.45 cycles per year). A narrower

spectrum band means more regular ENSO occurrence in the

CMIP run. Here we present the ENSO related SST pattern

in the model and compare it with that from observation.

Figure 3 shows the spatial pattern of global SST regression

to the Nino34 SST index for observation and for the CMIP

simulation. It can be seen that the model pattern resembles

the observation very well, and some differences are (1)

larger amplitude for ENSO related SSTs in the tropical

Pacific consistent with the larger interannual standard

deviation (Fig. 2), and (2) a larger meridional width of

ENSO related signal in the equatorial tropical Pacific.

3.2 Model bias in climate mean precipitation rate

(Prate) and stationary waves

Atmospheric stationary waves determine the zonally

asymmetric distribution of other features of climate, for

example, surface temperature and precipitation. The sta-

tionary waves owe their origin to asymmetric distribution

of tropical heating, surface orography, transient fluxes

associated with momentum etc. (Nigam et al. 1986, 1988;

Held et al. 2002). Biases in the model representation of

these forcings may also cause bias in the simulation of

stationary waves. Considering precipitation (Prate) as a

measure of the vertically integrated condensational heat-

ing, which is one of the major forcings for the general

circulation, here we examine, and relate, model bias in

Prate with the stationary wave bias.

Figure 4 presents the climatology of zonally asymmetric

Prate (left column) and eddy Z200 (right column), repre-

senting stationary waves for observation, CMIP and AMIP

simulations. The reason for removing the zonally symmetric

Fig. 2 Standard deviation of DJF SST (�C): a observation; b CMIP

minus the observation. The data periods are 1949–2011 for the

observation and 2002–2101 for the CMIP. All data are linearly

detrended
Fig. 3 Regression of global SST (�C) to the Nino3.4 SST index for

DJF season: a from observational data over 1949–2011, b from CMIP

data over 2002–2101, and c the result of b minus a. All the data are

linearly detrended
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part of the Prate is to provide a more direct connection with

eddy Z200. The upper panels of the figure are for observa-

tions, while the middle and lower panels are for the bias in

AMIP and CMIP simulations, respectively. The time period

over which climatology is calculated is 1979–2010 for the

observation and AMIP simulations because satellite

retrieved precipitation data are available only since 1979.

For the sake of a fair comparison, the bias of the CMIP run is

calculated with the data over 2002–2010, the overlapping

period of the observation and the CMIP run.

In Fig. 4a positive values of Prate in tropics are asso-

ciated with the strong convection over the Indo-Pacific

warm pool area, and over the South America, and also in

association with the South Pacific Convergence Zone

(SPCZ) and the Intertropical Convergence Zones (ITCZs)

in equatorial Pacific and Atlantic oceans. In contrast, the

negative values of Prate (i.e., values below the zonal

mean average) are over relatively cooler SST regions,

including the eastern tropical South Pacific and South

Atlantic oceans, and also over the semi-arid regions of

Africa. In the extratropics, positive Prate is associated

with the location of storm tracks over the two ocean

basins, and the negative Prate values are found over the

Asia and the North American lands. Comparing Fig. 4a,

d, we can see that there is a good agreement between the

positive values of Prate in tropics and the subtropical

Z200 with pairs of highs in the subtropics (corresponding

to anticyclones) straddling major positive Prate regions

and pairs of subtropical lows (corresponding to cyclones)

straddling major negative Prate regions. These subtropical

anticyclone (cyclone) pairs, seen as a part of stationary

waves, can be explained as the Rossby wave responses to

the zonally asymmetric diabatic heating (cooling) (Gill

1982). In addition, in Fig. 4d we also show climate mean

zonal wind at 200 hPa (U200) with contours to locate the

jet streams. The geostrophic relationship between the jet

and the meridional gradient of Z200 is obvious in the

figure.

Fig. 4 Climate mean of the

zonally asymmetric DJF

precipitation rate (mm/day) (left

column) and eddy 200 hPa

height (m) (right column): The

upper row is for the climate of

observation over 1979–2010,

the middle row is for the bias of

AMIP runs from the observation

over the same period, and the

bottom row is for the bias of

CMIP run over 2002–2010. The

contours with the height fields

are the climate mean of 200-mb

zonal wind (U200) in

observation (d) and model bias

for AMIP and CMIP runs (e, f).
With m/s unit, the contour

levels for U200 climate are 30,

40, 50 and 60, for U200 bias are

5, 10, and 15. The red dotted

lines illustrate the paths of

anomalous stationary wave

trains from the tropics
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Having examined the relationship between climatolog-

ical spatial tropical heating and stationary waves in

observation, we turn our attention to model bias. Figure 4b,

c show the model bias in Prate for the AMIP run and the

CMIP simulations, respectively. It is found that the largest

Prate bias for the two types of runs is in tropics. This is to

be expected since the largest values for Prate are also

located in tropical latitudes, and larger biases can be

associated with large mean. The spatial patterns of bias for

two simulations is very similar with a strong deficit over

the Maritime continent over the western Pacific and regions

with positive rainfall bias spread over the other three ocean

basins.

Consistent with the similarity between precipitation

bias, model bias in stationary waves for the two simula-

tions (Fig. 4e, f) also show similar patterns, with lows

(highs) over the Prate deficit (surplus) areas in the tropics

and wave-like features in the extratropics. A careful

examination on the features of the stationary wave bias

over the globe reveals a pair of wave-trains emanating

from the area over the Maritime continent and spreading

to the middle and higher latitudes of both hemispheres.

The wave-train feature of the bias is particularly evident

in AMIP run (Fig. 4e). The pair of the wave trains is

symmetric about the equator, with the Northern Hemi-

sphere branch being stronger and resembling the PNA

pattern. The phase structure of these wave trains is found

to be qualitatively similar to the linear model response to

the diabatic cooling in western Pacific (Peng 1995;

DeWeaver and Nigam 2004), therefore, we conjecture

that the wave-train-like bias in stationary wave is caused

(or forced) by the latent heat deficit over the Maritime

continent in the western Pacific. In general, the tropically

forced wave train is in essence a Rossby wave, with its

vertical structure being baroclinic in the tropics and

barotropic in the extratropics (Ting 1996), and extending

along the great circle around the globe (Hoskins et al.

1983).

The model bias in U200 is shown with contours in

Fig. 4e, f. It is found that in both simulations, the Pacific

jet is enhanced and shifted eastward. Comparing the

U200 bias with the Z200 bias, one can easily see the

geostrophic relationship between the two. In fact, the

zonally asymmetric part of U200 bias, which is domi-

nant, must be a manifestation of stationary wave bias in

Z200 field.

3.3 Model bias in Z200 variability

In this section, we examine the model bias in the inter-

annual variability of DJF mean Z200. Shown in Fig. 5 is

the standard deviation of Z200, with the upper panel

showing for the observation, and the middle and lower

panels the bias for the AMIP and CMIP model simula-

tions. All the results are based on the data over the

entire period of the respective datasets. For the Z200

variability in observation (Fig. 5a), the most noticeable

features are the four local maxima (or called centers of

action), two of them are in the NH extratropics and the

other two are in the subtropics. In the NH extratropics,

one center is over the North Pacific located south of the

Aleutian Islands. The other one, also the stronger of the

two, is over the North Atlantic sector, over the Davis

Strait-Southern Greenland region. We will see later that

the both centers are associated with some dominant

mode of climate variability, such as the ENSO telecon-

nection and PNA patterns over Pacific, and the North

Fig. 5 Standard deviation of DJF mean Z200 (m): a total quantity of

the observation; b AMIP minus observation; c CMIP minus

observation. The contours, with the same levels and unit as that in

Fig. 4, are for the corresponding climate mean U200. The results are

based on the data from the whole period of each dataset
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Atlantic Oscillation (NAO) pattern over northern Atlan-

tic. The two subtropical centers are in the eastern Pacific

and are symmetric about the equator, and as will be

discussed later, are associated with ENSO teleconnection

patterns.

For the model bias in Z200 variability (Fig. 5b, c), the

both centers of action in NH extratropics are weaker than in

observation. In particular, the center over the North

Atlantic is about 30 % weaker in amplitude in both simu-

lations. This bias is quite common across a range of climate

models. For the North Pacific center, the bias is not only in

strength, but also in the location. The center of variability

is south-eastward shift with respect to the observed.

Comparing the two simulations, one can see that the

amplitude bias is less for the AMIP, but south-eastward

shift in its location is more profound.

As in Fig. 4, the observed U200 climatology and the

bias in model simulations are also shown in Fig. 5. The

U200 bias for CMIP run here (Fig. 5c) is stronger and more

eastward extended than that in Fig. 4f. The reason is that

the U200 climatology of CMIP used here is taken over the

whole 100-year period, reflecting the response to the pro-

jected CO2 forcing.

3.4 ENSO patterns in Prate and Z200

We next examine the dominant modes of NH DJF circu-

lation. As mentioned before, in the methodology adopted

for the mode decomposition of this study, ENSO-related

pattern is first linearly removed, and then other patterns of

variability are computed from the residual.

Figure 6 shows the Prate (left column) and Z200 (right

column) patterns associated with ENSO for observation

and model simulations, and are obtained as regressions/

correlations with the Nino34 SST index. The purpose of

showing ENSO regression for Prate is to assess the ENSO

related tropical heating, which serves as the direct forcing

for the corresponding global teleconnection pattern. Both

the Prate and Z200 patterns have appeared previously in

literature and their dynamics have also been extensively

studied (see Trenberth et al. 1998; Hoerling and Kumar

2002 and references there in). Our interest here is to

compare the model results with observation.

For Prate, the results for simulations are in good

agreement with observations both in spatial structure and

for amplitude. Although the amplitude of ENSO SST pat-

tern in the CMIP is somewhat larger than in observation

Fig. 6 Regression patterns of

DJF mean precipitation rate

(mm/day) (left column) and 200

hPa height (m) (right column) to

the Nino3.4 SST index for

observation (top row), AMIP

data (middle row), and CMIP

data (bottom row). For the

height patterns, the contours are

for regression and shading for

correlation, with contour

interval of 10 m, and shaded

areas passing the 95 %

significant level. The data

periods are the same as that in

Fig. 5
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over the central and eastern equatorial Pacific (see Fig. 3c),

the differences in Prate related to ENSO are small. The

results for the ENSO regression pattern for Z200 (in con-

tours) are also encouraging with pattern correlation coef-

ficients between model and observation exceeding 0.92.

However, a more careful analysis reveals some biases in

the geographical locations of the high and low centers over

the Pacific, and the model simulated subtropical highs are

eastward shifted with respect to the observed. Similar shift

also appears in the center of low in the North Pacific, but

with a little bit southward component added. The shift of

the pattern is likely due to the eastward extension of the

climatological Pacific jet as shown in Figs. 4 and 5. The

eastward extended jet, along with the extended storm track,

could lead to an eastward shift in the ENSO pattern through

the forced wave-basic flow interaction and also transient

eddy forcing (Sardeshmukh and Hoskins 1988; Held et al.

1989 and Ting and Sardeshmukh 1993). This possibility is

also supported by the comparison of the CMIP and AMIP

and the extent of pattern shift and jet extension. The pattern

shift in the CMIP is more apparent than that in the AMIP,

and thus is consistent with the more extended jet in the

CMIP simulation. We also noted that in the observation,

the North Pacific low in the pattern has its tail extending to

north Asia, while in the model the extent of low is confined

to that over the ocean. In addition, the AMIP has stronger

response in North Pacific, and partially accounts for its

stronger variability than for the CMIP run over that area

(see Fig. 5). As to why the ENSO pattern in the AMIP run

is stronger than that in the CMIP is not apparent as their

tropical heating is almost the same. The difference may be

in basic state or/and in the amplitude of transient eddy

forcing.

The relationship between Z200 and Nino34 SST index is

also quantified by correlations, which are depicted with

shadings in the three right panels of Fig. 6. The colored

shadings are applied to the areas with the absolute values of

the correlation coefficients exceeding 0.25. The number

0.25 is significant at 95 % level based on the t test for

degrees of freedom 60. Because even the shortest dataset in

this analysis, the AMIP simulation, is longer than 60 years

and interannual variability is dominant in DJF Z200, the

colored patterns in the right panels at least meet the 95 %

significance level. As expected, high correlations are found

in tropics. Beyond tropics, only moderate correlations

appear in the crests and nadirs of the wave-like telecon-

nection patterns. The ENSO impact on the global Z200

variability can be better quantified by the fraction of total

variance explained by ENSO. The variance fraction, shown

in Fig. 7, is calculated by squaring the correlation coeffi-

cients between Nino34 and Z200 shown in Fig. 6. The

color levels start from 6.25 %, which corresponds to the

correlation coefficient of 0.25 and exceeds 95 %

significance level based on t test. It is evident that ENSO

accounts for a substantial fraction (30–80 %) of Z200

variance in tropics, but much less beyond 20� north and

south. Comparing the three panels in Fig. 7, we can see

that in tropics ENSO impact in observation is bigger than

that in model simulations, while beyond tropics the impact

in model simulations is bigger. The comparison also shows

that the impact in the AMIP is bigger than that in the

CMIP. Whether this difference is due to air-sea interaction

or the projected CO2 forcing is not clear.

3.5 REOF modes of Z200 residual

In this section, we present the spatial patterns of six REOF

modes of DJF Z200 for the observation and two model

Fig. 7 Percentage of the variance of DJF Z200 explained by ENSO

for the observation (a), the AMIP runs (b) and the CMIP run (c). The

shaded area are above the 95 % significant level. The data perios are

the same as that in Fig. 5
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simulations. As mentioned before, the EOF analyses are

performed with the Z200 residuals (i.e., with ENSO related

variability removed) and over the spatial domain of 20 N–

90 N. These six modes are selected because they exist in

all three datasets. The patterns shown in the Figs. 8, 9 and

10 consist of two aspects, one is the regressions of Z200 to

the normalized rotated principal component (RPC) time-

series, and the other one is the correlation coefficients of

Z200 to the RPCs. The regression patterns tell the relative

strength of the modes, while the correlation patterns give

Fig. 8 NAO (left column) and

PNA (right column) patterns of

DJF Z200 for the observation

(top row), AMIP runs (middle

row) and CMIP run (bottom

row). The patterns are obtained

by regressing/correlating Z200

to the rotated principal

components (RPCs) of the Z200

residuals (with ENSO related

variability removed) over the

extratropical Northern

Hemisphere (20 N–90 N). The

contours with interval of 10 m

are for regression, and shading

(%) for correlation. On the top

of each penal, the numbers give

the ranking, explained variance

(%), and the spatial correlation

between the pattern from model

and that from observation,

respectively
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the information about the statistical significance of the

pattern, and furthermore, squared correlation coefficients

tell the fractions of local variance explained by the modes.

Note the Z200 used in the calculation of the correlation

patterns are total fields, not residuals, so correlations reflect

the relative importance of the modes for the total

variability.

Figure 8 shows the North Atlantic Oscillation (NAO)

pattern (left column) and the Pacific and North America

(PNA) pattern (right column) for the observation (upper),

Fig. 9 As in Fig. 8, but for

WPO and NA patterns
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AMIP (middle) and CMIP (lower). The numbers on the top

of each pattern map are the ranking of the mode in

explained variance and the quantity (%) of explained var-

iance. For model simulated patterns, an additional number

shown there is the pattern correlation between the

observation and the model for the NH domain (20�N–

90�N). In the maps, contours are for regression patterns and

shadings for correlation patterns. Same as in Fig. 6, the

color shadings indicate the 95 % and higher significance

levels for the degrees of freedom 60.

Fig. 10 As in Fig. 8, but for

ED_NAO and TNH patterns
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The NAO pattern is the leading mode of variability in

the observation and the CMIP run, but is the fourth mode in

the AMIP run. The resemblance of the pattern in the CMIP

to that in the observation is almost perfect, with correlation

coefficient reaching 0.93. The correlation for the pattern

with the AMIP is slightly lower (r = 0.84), due to some

discrepancies over North Pacific.

The PNA pattern is the second leading mode in the

observation and the CMIP run, but the first mode in the

AMIP run. It is a dominant mode over the PNA region, and

is associated with the zonal oscillation of the Pacific jet.

This mode is very important in modulating the weather and

climate of North America. The pattern from the AMIP is

very close to that from the CMIP run, except the former is

stronger. Comparing them with that from the observation,

we can see the center of low over the North Pacific in the

model simulations is southeastward shifted, and this bias is

similar to that for the corresponding ENSO regression

pattern. The shift is likely due to the eastward extension of

the Pacific jet in the model. Differences are also found

downstream to the center of low over the Pacific. As a

result, their pattern correlations to that from the observa-

tion are below 0.5.

Figure 9 shows the west Pacific oscillation (WPO) pat-

tern (left column) and North Asia (NA) pattern (right

column). The WPO pattern is ranked third in the obser-

vation, second in the AMIP and fifth in the CMIP simu-

lation. This mode is associated with the meridional

oscillation of the Pacific jet (Linkin and Nigam 2008), with

a downstream influence to North America. The patterns

from the model runs are very alike to their observational

counterpart; however, a southward shift with respect to that

in the observation is apparent. The model-observation

correlation for this pattern is 0.69 for the AMIP and 0.49

for the CMIP.

The North Asia (NA) pattern is the fourth mode in both

observation and the CMIP, but the eighth mode in the AMIP

simulation. The resemblance between the model results and

that from reanalysis is strikingly high, with the pattern cor-

relation 0.88 for the AMIP run and 0.86 for the CMIP run.

In Fig. 10, the pattern ranked fifth in the observation is

similar to NAO in spatial structure, except it is equatorially

displaced by about 20 degrees. This pattern is named the

eastern Atlantic (EA) pattern in Wallace and Gutzler

(1981), but we prefer to follow the nomenclature of van

den Dool et al. (2006), and call it the equatorially displaced

NAO (ED_NAO) because of its striking resemblance to the

NAO. The ED_NAO pattern is the fifth mode in the AMIP

and the third mode in the CMIP. Model simulations for this

pattern are very close to observations both in their ampli-

tude and pattern structure, with pattern correlations to the

observation reaching 0.84 for the AMIP and 0.90 for the

CMIP simulation.

The final pattern (right column of Fig. 10) in the com-

parison is the Tropical Northern Hemisphere (TNH) pattern

(Mo and Livezey 1986) and is ranked ninth in observation,

third in the AMIP and the seventh in the CMIP. The TNH

pattern appears as a shifted PNA pattern, with the center of

low close to the west coast of Canada. Model simulations

for this mode are quite good, with pattern correlation

coefficient with observation being 0.81 for the CMIP and

0.86 for the AMIP.

Based on the mode analysis, it is found that the six out

of ten REOF modes in observation can be generated by

CFSv2 in either the CMIP or the AMIP simulation, and

four out of the six simulated modes have high pattern

correlations to their counterparts in observation. The two

modes (PNA and WPO) with lower pattern correlation are

associated with the oscillations of the Pacific jet. Thus, it is

conceivable that the bias in PNA and WPO modes is likely

a result of the bias in the Pacific jet and its associated storm

track. It is also evident that each pair of the patterns from

two types of simulation is strikingly similar to each other.

Because the two types of runs share the same atmospheric

model, and have very close stationary waves, the striking

similarity between the two runs suggests that these modes

are intrinsic to the atmospheric variability, and the impact

from the coupled air-sea interactions may not be very

important. In addition, although some modes can only

explain quite small fraction of the total variance over the

entire NH domain, their explained local variance are gen-

erally much larger. This can be seen from locally large

values of their correlation patterns.

3.6 Influence of SST to the REOF modes

After the examination of the six REOF modes from the

Z200 residuals, a question is the possible influence of SSTs

on these modes in the AMIP simulation. This is important

in the context of the predictability of second kind, that is,

the influence of boundary forcing. Since the AMIP runs are

forced with the observed SSTs, for a particular mode to be

influenced by SSTs it must demonstrate temporal coher-

ence with its observational counterpart. The temporal

coherency is quantified by correlation between the RPCs of

a mode in the model and the corresponding mode in

observation. The correlation actually gives the potential

prediction skill of the mode if one can predict SSTs. We do

the analysis based on ensemble average of 12 simulations

to enhance signal–noise ratio by reducing the influence of

internal variability (Kumar and Hoerling 2000). Based on

this analysis we find that out of six modes, only the

ED_NAO mode has its correlation (=0.44) exceeding the

99 % significance level based on t test with degrees of

freedom 60. The other five modes in the model are not

significantly influenced by the prescribed SST forcing, and
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therefore, are dominated by atmospheric internal

variability.

Figure 11 shows the RPCs of the ED_NAO mode for

observation and the AMIP run. The original RPCs are nor-

malized. The amplitude for the AMIP run has smaller

amplitude, and is due to the noise reduction by the ensemble

averaging. It turns out that the variance of the ensemble

averaged RPC is about 20 % of the not averaged. It means the

SST forced part accounts for about 20 % variance of the

original variability in the ED_NAO mode for the model. This

variance partition can be easily converted to a quantity of

signal-to-noise ratio (SNR), which is defined as the ratio of

standard deviation of ensemble mean over ensemble spread

in the context of ensemble forecast. The obtained SNR for

the ED_NAO mode is about 0.5. Visually the dominant

variability of the RPCs is on inter-annual time scale. This is

confirmed by their auto correlations, with 1-year lag value

being 0.25 for the AMIP run and 0.002 for observation.

Considering the RPCs are calculated from residuals, one

may question the influence of the ENSO removal to the

results. In order to clarify this, we generate two time series

by projecting the ED_NAO pattern onto the Z200 total

fields and residuals respectively, then compare them each

other and with the corresponding RPC. Figure 12 shows

the results from the observational data. Evidently the two

time series from projections (black and red lines) are

almost identical, with temporal correlation coefficient over

the 63-year period about 0.99. This is to be expected

because as shown in Fig. 7, the ENSO explained variance

over the extratropical Atlantic is small. The differences

between the projection generated time series and the RPC

(blue line), however, are more identifiable with temporal

correlation around 0.9. This discrepancy comes from the

non-orthogonality of REOF patterns, which makes the

RPCs-to-patterns calculation not exactly reversible.

In order to identify and understand the SST forcing

responsible for ED_NAO mode in the AMIP simulation, we

calculated correlations of SST to the RPCs shown in Fig. 11.

The SST correlation patterns, together with the patterns of

regression of surface wind (at 10 m height) and Z200 to the

same RPCs, are displayed in Fig. 13 for observation and the

AMIP run. The AMIP data of wind and Z200 used in the

regression calculation are ensemble averages of the 12

members. In observation (left panel), the most prominent SST

feature is the negative anomaly to the south of the low.

Because the wind over this area is stronger-than-normal

westerly (i.e., positive wind anomaly associated with the

ED_NAO pattern), the negative SST anomaly is likely caused

by the southward Ekman transport (Kushnir et al. 2002), and

also forced by local atmospheric heat fluxes resulting from the

mean wind anomaly and high frequency weather associated

with the ED_NAO pattern. According to Fan and Schneider

(2012), high frequency weather is dominant in generating heat

flux forcing. Therefore, the SST anomaly corresponding to the

ED_NAO pattern in observation is primarily wind-driven. By

comparing the SST correlations in the AMIP run, it is found

that the SST pattern is almost the same as that in observation,

except the correlation value is lower. That the SST forcing for

this mode in the model has the same pattern as the wind-driven

SST in observation means that a part of the ED_NAO mode in

model is indeed forced by the SST that in observations is also

driven by this pattern. This analysis suggests that in obser-

vation there may exit SST feedback for the ED_NAO mode,

and the SST feedback could make the life span of this mode

longer (Peña et al. 2004). The reason that SST correlation is

not higher in the AMIP run is that not all the observed SST

variability over the region shown in Fig. 13 is driven by the

ED_NAO pattern, and further, feedback of SSTs on con-

straining atmospheric variability is weak (Bretherton and

Battisti 2000).

Fig. 11 Rotated principal components (RPCs) of the ED_NAO mode

for observation (black) and the AMIP run (red). The RPC for

observation is normalized, and so is the original RPC of the AMIP

run. Shown here the RPC for the AMIP run is the ensemble mean of

the 12 members. COR = 0.44 is the correlation between the two.

With the degrees of freedom around 60, this correlation exceeds the

99 % significant level (0.33) in t test. The vertical axis is in the unit of

standard deviation of the original RPCs
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Based on above analyses, it is clear that although in the

nature the ED_NAO mode is basically an internal mode,

there is a mechanism whereby it can cause SST anomalies,

and the SST anomalies in turn can feedback and provide a

weak constrain on the atmospheric variability. Comparing

to other extratropical modes, such as NAO and PNA, the

ED_NAO mode is potentially more predictable and further

estimation of its prediction skill needs to be done based on

initialized prediction experiments in a fully coupled model.

4 Summary and conclusions

Based on a CMIP, and a set of AMIP runs of the NCEP CFSv2,

this study focused on the analysis of the climate mean,

variability and dominant patterns of the Northern Hemisphere

(NH) wintertime mean Z200 and a comparison to that in

observation. For a better understanding of the circulation, the

study started with the analysis of SST climatology and the

variability of the seasonal mean for the CMIP run and a

comparison to observations. Overall, the model SST climate

was warmer in the tropical and southern oceans and colder in

the NH extratropics. Part of the warming is likely due to the

prescribed higher CO2 concentration. The standard deviation

of the DJF mean SST in general was comparable to that in

observation, but in the equatorial Pacific Ocean it was some-

what stronger than that in observation. This feature was related

to the stronger ENSO variability in the CMIP run.

For the climate mean Z200, it was found that for both

the CMIP and AMIP runs, part of the bias in stationary

Fig. 12 Normalized time series

obtained by projecting

ED_NAO patterns to Z200 total

fields (Pt, black line) and

residual (Pr, red line), and the

rotated principal component of

the mode (RPC, blue line) for

the observation of DJF season

over 1949–2011. Also shown

are the temporal correlation

coefficients between Pt and Pr

(0.99), between Pt and RPC

(0.89) and between Pr and RPC

(0.90)

Fig. 13 Correlations of SST

(shadings in %) and regressions

of surface wind (arrows in m/s)

and Z200 (contours in meters)

to the RPC of ED_NAO mode.

The left panel is for observation

and right for AMIP run. The

RPC used here for the AMIP

results is the ensemble mean of

its 12 members as shown with

the red line in Fig. 11.

Ensemble averaging is also

applied to surface wind and

Z200 before correlation and

regression calculation. The

areas shaded with colors are

where the correlations exceed

the 95 % significance level in

t test for degrees of freedom 60
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waves, characterized with wave trains emanating from the

tropics to both hemispheres, can be attributed to the bias in

climate mean precipitation over the Maritime continent.

The systematic deficit in latent heating, seen as the pre-

cipitation deficit in that area, served as the forcing of the

bias in stationary waves. The manifestation of the sta-

tionary wave bias in 200 hPa zonal wind is the enhance-

ment and eastward extension of the Pacific jet in the CMIP

run, and the southeastward extension of the jet in the AMIP

runs.

For the variability of the seasonal mean Z200, both the

AMIP and CMIP runs quite successfully simulated the

geographical locations of the major centers of action, but

the simulated intensity was generally weaker than that in

observations, particularly for the center over the Davis

Strait-southern Greenland. It is also noted that the simu-

lated centers of action over Aleutian Islands was south-

eastward shifted to some extent. The shift is likely caused

by the eastward extension of the Pacific jet. Differences

also existed between the two types of the runs, with the

center of action over the Aleutian Islands stronger in the

AMIP and the center over the Davis Strait-southern

Greenland area stronger in the CMIP simulation.

In the mode analysis, the ENSO teleconnection pattern

in each dataset was first removed from the data, a rotated

EOF (REOF) analysis was then applied to the residual. The

purpose of this separation procedure was to avoid possible

mixing between the ENSO mode and those generated by

the atmospheric internal dynamics. It was found that the

simulated ENSO teleconnection patterns by both types of

runs resembled well the observational counterpart, except

somewhat eastward shifted for twin anticyclones straddling

the equator and a slight southeastward shift of the low

center over the North Pacific.

For the REOF modes of the residual data, six dominant

modes in observations had their counterparts in each type

of run, though with different rankings in explained variance

and some distortions in spatial structure. These modes were

NAO, PNA, WPO, NA, ED_NAO and TNH modes.

Among them, the NAO, NA, ED_NAO and TNH were

simulated very well in pattern, with their pattern correla-

tions to that in observation over 0.80. The lower pattern

correlations for PNA and WPO modes (between 0.4 and

0.7) were possibly due to their southeastward shift with

respect to observations. This shift was likely caused by the

eastward or southeastward extension of the climatological

Pacific jet in the model.

We also note that each pair of the patterns from two

types of runs is almost identical. Because the two types of

runs share the same atmospheric model, and have very

close spatial structure of stationary waves, the striking

mode resemblance between the two simulations suggests

that these modes were intrinsic to the atmospheric

variability, and the impact from the coupled air-sea inter-

actions was quite limited.

SST influence to the six REOF modes is examined by

the temporal coherency between observation and the AMIP

run. It is found that ED_NAO mode was the only one with

the correlation (=0.44) exceeding the 99 % significance

level.

Overall, the NCEP CFSv2 is capable of simulating

major features of NH winter season mean circulation with

good fidelity. Some distortions in the spatial structure of

some dominant modes, such as PNA and WPO patterns,

are likely caused by the model bias in its stationary

waves. Part of the stationary wave bias likely originated

from the mean precipitation bias over the Maritime con-

tinent. Thus it can be speculated that an improvement of

the precipitation bias in that area could improve model

performance in the climate forecast for North America

area, and should represent a key target for future model

improvements and assessment.
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