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Abstract Polar climate studies are severely hampered by

the sparseness of the sea ice observations. We aim at filling

this critical gap by producing two 5-member sea ice his-

torical simulations strongly constrained by ocean and

atmosphere observational data and covering the 1958–2006

and 1979–2012 periods. This is the first multi-member sea

ice reconstruction covering more than 50 years. The

obtained sea ice conditions are in reasonable agreement

with the few available observations. These best estimates

of sea ice conditions serve subsequently as initial sea ice

conditions for a set of 28 3-year-long retrospective climate

predictions. We compare it to a set in which the sea ice

initial conditions are taken from a single-member sea ice

historical simulation constrained by atmosphere observa-

tions only. We find an improved skill in predicting the

Arctic sea ice area and Arctic near surface temperature but

a slightly degraded skill in predicting the Antarctic sea ice

area. We also obtain a larger spread between the members

for the sea ice variables, thus more representative of the

forecast error.

Keywords Sea ice � Arctic � Antarctic � Climate

prediction � Initialization

1 Introduction

The Arctic Ocean has experienced a sharp decline in sea

ice extent and thickness in the recent decades (Serreze et al.

2007; Comiso et al. 2008; Parkinson and Cavalieri 2008;

Stroeve et al. 2012) and a record-breaking low in Arctic sea

ice extent of 3.61 million km2 was reached in September

2012 (http://www.nsidc.org/arcticseaicenews/). This dra-

matic evolution of the sea ice cover has been seen as an

early indication of global climate change (IPCC 2007) and

has aroused worries about the consequences of such

changes on the European climate (Tang et al. 2014). On

seasonal to decadal time scales, the Arctic sea ice cover

changes have been shown to have a significant impact on

the Northern hemisphere climate (e.g. (Francis et al. 2009;

Petoukhov and Semenov 2010; Outten and Esau 2011).

Polar climate studies are however severely hampered by

the sparseness of sea ice observations over the last century.

Up to 1973, the Arctic sea ice data have been limited to

monthly estimates of sea ice extent, with complete cover

assumed within the ice pack and a necessary treatment of

missing data in the marginal seas (Walsh and Johnson

1978). The situation is even worse in the Antarctic where

sea ice data is limited to estimates of extent climatologies

over two distinct periods: 1929–1939 (Deutsches_Hydro-

graphisches_Institute 1950) and 1947–1962 (Tolstikov
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1966). From 1973, the U.S. Navy, Canadian and Danish

aerial reconnaissance provided quasi-weekly estimates of

sea ice concentration (Knight 1984). Following the advent

of satellite microwave imagery in 1978, sea ice concen-

tration data became available at a 2-day frequency, later

increased to a daily-frequency (in 1987), and roughly at a

1� resolution (Cavalieri et al. 1996). The publicly distrib-

uted sea ice concentration datasets, the National Snow and

Ice Data Center (NSIDC) sea ice concentration fields

(Cavalieri et al. 1996) covering the 1978-present period

and HadISST, (Rayner et al. 2003) covering the

1870-present period, stand as the best estimates obtained

from combination, homogenization and extrapolation of

these sparse observational data. When considering the sea

ice thickness, the lack of observational data is even more

striking. The first unified dataset (Lindsay 2010) was

released in 2010. It combines Arctic submarine observa-

tions from 1975, moored upward looking sonar observa-

tions from 1990 and air-borne or satellite electromagnetic

measurements in the last decade.

The knowledge of the initial climate system state has

been shown to be a source of information in seasonal

forecasts (Balmaseda and Anderson 2009; Doblas-Reyes

et al. 2006) as well as in decadal climate predictions (Smith

et al. 2007; Keenlyside et al. 2008; Pohlmann et al. 2009).

In particular, the spring Arctic sea ice thickness distribution

has been shown to be a precursor of the following Sep-

tember sea ice cover (Chevallier et al. 2011) in a model

study. A summer-to-summer reemergence mechanism has

been suggested whose memory lies in the sea ice thickness

(Blanchard-Wrigglesworth et al. 2011a). Wang et al.

(2013) also find a dependence of the sea ice prediction skill

on the initial sea ice thickness. Filling the critical gap in sea

ice thickness observations is therefore crucial to provide

optimal sea ice initial conditions and improve the quality of

seasonal to decadal climate predictions. Estimating the

observed sea ice thickness over the last decades has been

attempted by several authors through the implementation

of sea ice data assimilation techniques exploiting the

available observations of sea ice concentration (Tietsche

et al. 2012; Tang et al. 2013) and velocity (Lindsay and

Zhang 2006; Duliere and Fichefet 2007). Data assimilation

generally allows for a more realistic representation of the

sea ice extent, thickness and draft as compared to the few

available observations. The lack of observations in the

1960s and 1970s prevents the production of a coherent sea

ice reanalysis covering the 1958-present period, i.e. the

focus of the climate prediction exercise achieved within the

CMIP5 (Coupled Model Intercomparison Project Phase 5)

project. We present, in Sect. 2, the alternative method of

constraining sea ice historical simulations by ocean and

atmosphere observations only. While previous studies

produced single-member reanalyses, we produce here an

ensemble comprising five members using atmospheric and

oceanic perturbations which attempt at estimating the

uncertainty in the sea ice state. Our sea ice reconstruction

therefore offers a double added-value compared to previ-

ous reconstructions:

1. They cover a longer period than the satellite period

(but exploit less observational data for the sake of

consistency in the observations along the

reconstruction).

2. Containing five members, they aim at sampling the

uncertainty in the sea ice state.

These simulations then provide best estimates of initial sea

ice extent and thickness for a set of 3-year long five-

member retrospective climate predictions performed with

the EC-Earth forecast system (Hazeleger et al. 2010, 2012).

Most current operational seasonal forecast systems do not

initialize their sea ice component from contemporaneously

observed sea ice conditions but from a climatology (Arri-

bas et al. 2011), or do not even include a sea ice model

(Gueremy et al. 2005; Stockdale et al. 2011). In the

framework of the CMIP5 climate prediction exercise, many

institutes initialized the ocean component of their forecast

system but did not constrain the sea ice component towards

observations (Matei et al. 2012; Voldoire et al. 2012).

Efforts towards initializing the sea ice state are emerging

(Chevallier et al. 2011; Wang et al. 2013; Chevallier et al.

2013; Sigmond et al. 2013; Tang et al. 2013) and a thor-

ough evaluation of its benefits in different forecast systems

remains to be done. We assess in Sect. 3 the added-value of

our sea ice initial conditions on the prediction performance

of EC-Earth. Furthermore, we evaluate, for the first time,

the impact of taking into account the uncertainty in the sea

ice initial state on the spread along the predictions, by

initializing from the five different members of our sea ice

reconstructions. Discussion and conclusions are provided

respectively in Sects. 4 and 5.

2 Sea ice historical simulations constrained by ocean

and atmosphere reanalyses

2.1 Prior sea ice simulations used to initialize the EC-

Earth forecast system

Within the framework of the CMIP5 project, the decadal

climate predictions performed with the EC-Earth forecast

system (Hazeleger et al. 2010, 2012) were initialized, for

the sea ice component, from a single-member simulation

(Brodeau et al. 2010) run with the Louvain-la-Neuve

(LIM2) sea ice model (Fichefet and Maqueda 1997; Goosse

and Fichefet 1999) embedded into version 2 of the NEMO

(Nucleus for European Modelling of the Ocean) ocean
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model (Madec 2008; Ethe et al. 2006). The ocean-sea ice

model was forced by DFS4.3 (Brodeau et al. 2010) atmo-

spheric surface fields over the 1958–2006 period. The sea

ice state was therefore constrained by atmospheric obser-

vational datasets but no constraint by oceanic observational

datasets was applied.

2.2 Description of the simulations

Our strongly-constrained sea ice historical simulations are

run with the Louvain-la-Neuve (LIM2) sea ice model

embedded into the version 3.2 of the NEMO ocean model,

which is a more recent version than the one used by Bro-

deau et al. (2010). In all of the experiments described

below and sketched on Fig. 1, the ocean and sea ice models

are forced by either DFS4.3 or ERA-interim (Dee et al.

2011) atmospheric surface fields through the CORE bulk

formulae (Large and Yeager 2004). To additionally con-

strain the ocean towards observational data, the ocean

temperature and salinity are nudged towards their monthly

counterpart from the ORAS4 ocean reanalysis (Mogensen

et al. 2011; Balmaseda et al. 2012). Although the ORAS4

ocean reanalysis only provides an estimate of the ocean

state based on model and observations, such a physical

extrapolation of the available observations stands as one of

the best estimates of the ocean state over the last decades.

This nudging exerts a strong constraint on the sea ice extent

as any ice transported towards an area where the Sea

Surface Temperature (SST) is above the sea water freezing

point melts. The timescale for the nudging is set to 360

days below 800m and 10 days above, except in the mixed

layer, but the SST and Sea Surface Salinity (SSS) are also

restored (-40 W/m2 and -150 mm/day/psu). The nudging

is not applied in the 1�S–1�N band to avoid disrupting the

strong equatorial currents but is applied anywhere else. The

nudging prevents sea ice appearing in regions where the

SST in ORAS4 is above the freezing point, but a weaker

constraint applies in regions where the SST is below the

freezing point. Indeed an SST below the freezing point

favours sea ice production but does not constrain the

intensity of such sea ice production which can be insuffi-

cient to stand against a strong atmospheric forcing. Hence,

we obtain an asymmetrical impact of the ocean nudging on

the sea ice, which acts as a strict upper bound for sea ice

extent but as a weak lower constraint. We do not use any

sea ice data assimilation.

• SpinNudg is a 10-year spin-up experiment forced by

the DFS4.3 atmospheric surface fields and started in

January 1958 from the LEVITUS climatology (Levitus

and Boyer 1994), 3m of ice in the Arctic and 1m in the

Antarctic. The ocean reaches an equilibrium almost

immediately due to the nudging. This spin-up is

therefore mainly required for the sea ice conditions to

reach a stable realistic state and to obtain five different

January initial sea ice conditions as initial conditions

for the next simulation. This spin-up is validated in the

Supplementary Materials (see Sect. 1 and Figure S1).

• HistDfsNudg is a five-member historical experiment

covering the 1958–2006 period and started from the 31

December of years 1961 to 1965 of SpinNudg, a

different year per member. Each member of this

historical simulation is nudged towards a different

member of the ORAS4 reanalysis. They are forced with

DFS4.3 atmospheric surface fields, with additional

wind-stress perturbations. These three different com-

ponents are used to provide perturbations to create the

five ensemble members. This methodology is inspired

by the one used to generate five members for the

ORAS4 ocean reanalysis (Mogensen et al. 2011):

different initial conditions from a spinup in which data

assimilation is implemented, thinning of the observa-

tions and wind stress perturbations. Our wind stress

perturbations are computed following the methodology

used for the ORAS4 ocean reanalysis, the previous

ORAS3 (Balmaseda et al. 2008) reanalysis and in the

ENSEMBLES project (Weisheimer et al. 2007; Doblas-

Reyes et al. 2010) which we describe in more detail in a

separate paragraph below.

• HistEraNudg is a five-member historical experiment

covering the 1979–2012 period and started from

HistDfsNudg on the 31 December 1978. This experi-

ment is forced by the ERA-interim atmospheric surface

fields with wind stress perturbations, and the ocean is

nudged towards the 5-member ORAS4 reanalysis.

• SpinFree is a second spin-up experiment identical to

SpinNudg, except that no nudging is applied. It is run

for 49 years. This spin-up is validated in the Supple-

mentary Materials (see Sect. 1 and Figure S1).

• HistDfsFree is a one-member historical experiment

identical to HistDfsNudg, except that no nudging is

applied. It is started from the 31 December 1974 of

SpinFree. In the choice of year 1974, we aim at finding

a compromise between dates as early as possible to

minimise the greenhouse warming compared to the

1958 ocean state and dates as late as possible to allow

for an equilibrium of the ocean state.

We have constrained our sea ice reconstructions with the

ERA40/ERA-interim reanalyses (DFS4.3 corresponds to a

correction of the ERA40 reanalysis by observations; Bro-

deau et al 2010) above the sea ice system and with the

ORAS4 ocean reanalysis below. This methodology also

intends to optimize the consistency between the ocean, the

atmosphere and the sea ice initial conditions that we will
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use afterwards to initialize our climate predictions. Indeed,

as explained later in Sect. 3.1, we use the ERA40/ERAin-

terim reanalyses to initialize the atmospheric component

and the ORAS4 reanalysis for the ocean component.

Wind stress perturbations (Weisheimer et al. 2007;

Balmaseda et al. 2008; Mogensen et al. 2011). We compute

the differences between the monthly 10m wind of DFS4.3

and ERAinterim over the 1979–2006 period. These dif-

ferences provide an estimate of the observational error in

the wind field. We obtain 28 differences for each month of

the year. January perturbations are then picked randomly

from the set of January differences, February perturbations

from the set of February differences, etc … After drawing

the perturbations for a complete year, i.e. 12 monthly

perturbations, they are interpolated linearly to obtain daily

perturbations. The perturbations are added to four of our

five members following the methodology applied for the

ORAS4 reanalysis.

2.3 Reference observational datasets

Our sea ice reconstructions are validated against:

• sea ice area: the estimates computed from the HadISST

and NSIDC datasets as the integral of the grid-point

product of sea ice concentration and grid area.

• sea ice volume: the UCL (Université Catholique de

Louvain la Neuve) (Mathiot et al. 2012) and the

PIOMAS (Zhang and Rothrock 2003) sea ice reanalyses

• ocean heat content and meridional overturning circu-

lation: the ORAS4 ocean reanalysis (Mogensen et al.

2011).

• sea ice thickness: IceSat observational dataset (Kwok

et al. 2007; Kwok and Cunningham 2008; Kwok et al.

2009) available for February–March 2004, 2005, 2006

and 2008, March–April 2007 and October–November

2003 to 2007.

2.4 Validation of the sea ice conditions

In the nudged historical simulations (HistEraNudg,

HistDfsNudg), the Arctic (Fig. 2a) and Antarctic (Fig. 2c)

sea ice areas tend to be underestimated as compared to the

HadISST observational estimates, though they are in better

agreement with the NSIDC estimates. Discrepancies

between the HadISST and NSIDC estimates mainly origi-

nate from the different combinations of source data but also

from the different combinations of channels in their algo-

rithm for retrieval and from different corrections for

weather and satellite drifts. The use of two different

observational datasets provides some hints about the

observational uncertainty for which no robust estimate

exists for sea ice area. The underestimation of the sea ice

area also appears in the UCL reanalysis to a lesser extent.

As described in Sect. 2.2, the ocean nudging exerts an

asymetric constraint on the sea ice cover, acting as a strict

upper bound for sea ice area but as a weak lower constraint,

hence favouring a reduction of the sea ice area in His-

tDfsNudg as compared to HistDfsFree. The nudging also

tends to improve the agreement with the observational

estimates in terms of interannual variability, especially in

the Arctic, and in terms of the long-term trend, especially

Fig. 1 Sketch of the

experiments used throughout

this article and described in

detail in Sect. 2.2 and 3.1
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for the summer Arctic sea ice area and the winter Antarctic

one. The underestimation of the long-term trend in His-

tDfsFree might be partly caused by the DFS4.3 surface

fluxes which consist of a climatology for precipitation and

snow until 1979 and for downwelling longwave and

shortwave radiation until 1984 (Brodeau et al. 2010) and

monthly estimates of those fields afterwards. The ocean

nudging corrects for this underestimation. The spread

between members is larger in the Antarctic than in the

Arctic, consistent with the sparser observational coverage

in the Antarctic Ocean. The spread is also larger for the sea

ice volume (Fig. 2b, d) than for the sea ice area, consistent

with the lack of sea ice thickness observations. As very few

observations are available for sea ice thickness, we validate

here the sea ice volume against the PIOMAS (Zhang and

Rothrock 2003) and UCL (Mathiot et al. 2012) reanalyses

in which no constraint towards sea ice thickness observa-

tions has been used but only constraints towards sea ice

concentration observations. The nudging in HistDfsNudg

tends to improve the agreement of the winter sea ice vol-

ume with the UCL and PIOMAS sea ice reanalyses as

compared to HistDfsFree although the sea ice volume still

seems to be overestimated. The choice of nudging the

ocean temperature and salinity towards ORAS4 was mainly
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2 km depth, (f) Total global ocean heat content

Sea ice reconstructions for climate predictions 2817

123



driven by the poor ocean circulation simulated in His-

tDfsFree as illustrated by the Atlantic Meridional Over-

turning Circulation (AMOC) index (Fig. 2e). This AMOC

index is chosen as the average of the Meridional Over-

turning Streamfunction between 40�N and 55�N and

between 1 and 2 km, which corresponds to the region of

the ORAS4 maximum. The AMOC strength in the free

historical simulation (HistDfsFree) amounts to about 25 %

of ORAS4 and barely exhibits any variability. The ocean

nudging allows for a more realistic ocean circulation and

associated heat transports which reproduce the decadal

variability seen in the ORAS4 reanalysis, though they are

still underestimated by about 25 % in HistEraNudg and

HistDfsNudg. Given the coupling on decadal timescales of

the Arctic sea ice cover with the AMOC and associated

heat transports suggested by several studies (Zhang et al.

1995; Goosse et al. 2002; Hakkinen and Proshutinsky

2004; Koenigk et al. 2006; Mahajan et al. 2011), the ocean

nudging appears crucial to capture this source of Arctic sea

ice variability. The total global ocean heat content tends

also to be overestimated (Fig. 2f) in HistDfsFree as com-

pared to ORAS4. A suddden increase by about 223J also

occurs in the mid 1970s in HistDfsFree which might be

related to the assimilation from 1973 of synthetic surface

pressure observations from satellite imagery in the surface

atmospheric forcings (Brodeau et al. 2010). With the ocean

nudging, the total ocean heat content in HistEraNudg and

HistDfsNudg follows ORAS4 closely. Only ocean

temperature and salinity are nudged towards ORAS4,

which explains the almost perfect reproduction of the OHC

and the underestimation of the AMOC.

Sea ice thickness observations are only available for

the Arctic ocean and for a few seasons over the course of

the last decade. The average of the IceSat observations

(Kwok et al. 2007, 2009; Kwok and Cunningham 2008)

over the years covered by the HistDfsNudg reconstruction

for February and March on the one hand and October and

November on the other hand are displayed in Fig. 3

together with their simulated counterpart. The simulated

Arctic spring sea ice thickness (Fig. 3a) tends to be

underestimated in the Chukchi Sea and overestimated in

the East Siberian, Laptev and Beaufort Seas as well as

over the Central Arctic. The steep increase in sea ice

thickness when approaching Greenland is well captured.

The Arctic autumn sea ice thickness (Fig. 3c), on the

contrary, is underestimated in the East Siberian and

Laptev Seas but still overestimated in the central Arctic.

The validation of the sea ice thickness in the HistEraNudg

reconstruction against the average of the IceSat observa-

tions over all the available seasons is provided in the

Supplementary Materials (See Sect. 2 and Figure S2). To

complement the validation of the simulated sea ice

thickness, the HistDfsNudg, HistDfsFree and HistEra-

Nudg distributions averaged over the 1979–2006 period

are compared with the UCL reanalysis in Fig. 4 for March

and Fig. 5 for September. The ocean nudging generally

(a) February-March HistDfsNudg (b) February-March IceSat

(c) October-November HistDfsNudg (d) October-November IceSat

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 6 10

sea ice thickness (m)

Fig. 3 Observed and
simulated sea ice thickness a,

b February–March, c,

d October–November sea ice

thickness, in metre, averaged

over years a, b 2004, 2005 and

2006, c, d 2003, 2004, 2005 and

2006 in a, c the HistDfsNudg

experiment, b, d) the IceSat

observations
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decreases the sea ice thickness but the distribution is very

similar between HistDfsNudg and HistEraNudg. The

simulated Arctic March sea ice thickness in HistDfsNudg,

HistDfsFree and HistEraNudg (Fig. 4a-c) shows a rela-

tively good agreement with the UCL reanalysis (Fig. 4d).

A slight overestimation of the ice thickness appears

however in the Hudson and Baffin Bays, and in the

Bering Sea and Sea of Okhotsk, together with a slight

underestimation in the central Arctic which contrasts with

the overestimation with respect to IceSat observations in

the recent years. The nudging partially corrects for the

overestimations in the peripheral seas, but also decreases

the sea ice thickness in the central Arctic. The same bias

and effect of the nudging appear for the Arctic September

sea ice thickness (Fig. 5a–d) in the central Arctic but not

in the peripheral seas where there is no ice during this

season. The Antarctic March sea ice thickness (Fig. 4e–g)

also shows a relatively good agreement with UCL (Fig.

4h). The nudging prevents the overestimation of the ice

thickness in the Bellinshausen Sea. In September, the

(a) HistDfsNudg (b) HistDfsFree

(c) HistEraNudg (d) UCL

(e) HistDfsNudg (f) HistDfsFree

(g) HistEraNudg (h) UCL

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 6 10

sea ice thickness (m)

Fig. 4 March sea ice thickness
in metre averaged over years

1979–2006
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asymetry of the sea ice distribution between West and

East Antarctica in the UCL reanalysis (Fig. 5h) is less

pronounced in our historical simulations (Fig. 5e–g). The

nudging tends to reduce the sea ice thickness but does not

correct for the lack of asymetry in the sea ice distribution,

although few oceanic observations are available in this

region to constrain the ORAS4 reanalysis and subse-

quently our historical simulations.

3 Added-value in interannual climate predictions

3.1 The simulations

The added-value of this new set of sea ice initial conditions is

assessed by performing hindcasts (or retrospective forecasts)

with the EC-Earth (Hazeleger et al. 2010, 2012) coupled

general circulation model version 2.3 which comprises:

(a) HistDfsNudg (b) HistDfsFree

(c) HistEraNudg (d) UCL

(e) HistDfsNudg (f) HistDfsFree

(g) HistEraNudg (h) UCL

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 6 10

sea ice thickness (m)

Fig. 5 September sea ice thickness in metre averaged over years 1979–2006
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• the IFS atmospheric component with 62 vertical levels

and a TL159 horizontal resolution.

• the NEMO version 2 ocean component in the ORCA1

configuration with 42 levels.

• the Louvain-la-Neuve (LIM2) sea-ice model version 2

embedded into NEMO version 2.

The atmospheric and oceanic components are coupled

through OASIS3 (Valcke 2006). Du et al. (2012) describes

the standard initialization approach for all the components

of the EC-Earth forecast system. Three sets of five-member

hindcasts are used in this article and represented in Fig. 1:

• PredicCTL: As a contribution to the CMIP5 project,

decadal predictions have been initialized every 1st

November from 1960 to 2005 from the five-member

ORAS4 ocean reanalysis (Mogensen et al. 2011) for the

ocean component, from the ERA-40 reanalysis (Uppala

et al. 2004) for all start dates before 1989 and from

ERA-Interim afterwards for the atmospheric compo-

nent and from a single-member NEMO2-LIM2 simu-

lation forced with DFS4.3 atmospheric surface fields

for the sea ice component (see Sect. 2.1).

• PredicDfsNudg: Climate predictions have been initial-

ized on 1st November, as in PredicCTL but only every

2 years from 1960 to 2005 plus in years 1965, 1975,

1985, 1995, 2005, to limit the computational cost,

which makes a total of 28 start dates. The only

difference with the PredicCTL experiment resides in

the sea ice initial conditions which are taken from the

five-member HistDfsNudg reconstruction. The predic-

tions have been run for only 3 years into the future

which corresponds to the timescales over which the

predictability of Arctic sea ice have been suggested to

be dominated by initial conditions (Blanchard-Wrig-

glesworth et al. 2011a, b).

• PredicEraNudg: Climate predictions have been ini-

tialized on 1st November, as in PredicCTL but only

every 5 years from 1980 to 2005, plus in years 2001,

2002, 2003 and 2004 which makes a total of 10 start

dates. The sea ice initial conditions are taken in this set

from the five-member HistEraNudg reconstruction. The

predictions have also been run for only 3 years into the

future.

The exact same EC-Earth model version has been used in

those 3 different experiments which only differ by their sea

ice initial conditions.

3.2 Reference observational datasets

Our retrospective predictions are validated against:

• sea ice area: the HadISST and NSIDC estimates.

• sea ice volume: the PIOMAS and UCL estimates.

• SST: the NOAA Extended Reconstructed SST v3b

dataset (named ERSST in this article) (Smith et al.

2008) and the HadISST v1.1 dataset from the UK Met

Office (HadISST) (Rayner et al. 2003)

• ocean heat content: the ORAS4 ocean reanalysis

(Balmaseda et al. 2012)

• sea level pressure: the HadSLP2 dataset (Allan and

Ansell 2006)

• 2-metre temperature (T2M): the NCEP/NCAR R1

(Kalnay et al. 1996) (named NCEP) and ERA40

(Uppala et al. 2004) reanalyses and a merged dataset

(named GHCNERSSTGISS in this article) combining

land air temperatures from the GHCN/CAMS dataset

(Fan and van den Dool 2008) and SST from ERSST,

except outside the 60�N–60�S band where the GISS-

TEMP (Hansen et al. 2010) dataset with 1200 km

decorrelation scale is used.

3.3 Methodology

The model or observation climatology is defined as a

function of the forecast time, by averaging the hindcast

variable across the start dates, using only hindcast values

for which observations are available at the corresponding

dates. The model climatologies obtained in such a way are

then subtracted from each raw hindcast to obtain anomalies

over the whole hindcast period. The same method is

applied to the observations to obtain anomalies over the

whole observational period. The anomalies thus obtained

are referred to as ‘‘per-pair’’ anomalies following Garcia-

Serrano and Doblas-Reyes (2012). Following this meth-

odology, the trend along the forecast is removed but the

trend along the start dates for a given forecast time is still

present. We do not apply any detrending along the start

dates because any available detrending method has draw-

backs and can introduce spurious signals. We focus in this

article on the added-value of our initial conditions on the

forecast skill rather than on the level of skill itself.

The hindcast performance is assessed from the bias-

corrected ‘‘per-pair’’ anomalies. Hindcast skill is measured

either using the anomaly correlation coefficient (ACC) or

the Root Mean Square Error (RMSE). The confidence

interval for the ACC is computed after a Fisher-Z trans-

formation and takes into account the autocorrelation of the

time series following VonStorch and Zwiers (2001). The

confidence interval for the RMSE relies on a v2 distribution

and for the ratio of two RMSE, it is computed through a

Fisher test, accounting for the autocorrelation of the time

series in both cases. The spread between the members is

measured using the Inter-Quartile Range (IQR). Its confi-

dence interval is computed by bootstrapping. To assess

whether the level of spread is sufficient, the ratio between
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the Standard-Deviation (SD) of the members around the

ensemble-mean and the RMSE of the ensemble-mean is

computed.

3.4 Impact of improved sea-ice initialization

on the prediction skill

The Root Mean Square Error (RMSE) for the Arctic sea ice

area (Fig. 6a) is decreased at almost each forecast time

when initialized from our reconstruction in PredicDfsNudg

(blue) as compared to PredicCTL (red). The RMSE in

HistDfsNudg is provided in black as a reference for the

upper bound of the prediction skill (the lower bound of the

RMSE). The RMSE ratio of PredicDfsNudg over Predic-

CTL is not significantly different from 1 at the 95 % level,

which is consistent with the strong overlapping of the

confidence intervals of the two RMSE. Indeed, even when

using 28 hindcasts initialized 1 or 2 years apart, two con-

secutive hindcasts can not be considered as independent.

The number of effective independent data ranges between

5 and 20 depending on the variable considered when

applying the formula described in VonStorch and Zwiers

(2001) based on the autocorrelation function. More inde-

pendent hindcasts would be required for such a small dif-

ference in RMSE to be significant at the 95 % level.

Increasing the frequency of the startdates over the re-

forecast period does not provide more independent hind-

casts but those could be obtained by lengthening the period

sampled by our start dates. Unfortunately, obtaining

accurate initial conditions for such a backward extension of

the reforecast period is extremely challenging given the

sparse observational coverage. The persistence through the

forecast of a reduced RMSE in PredicDfsNudg suggests

however a robust added value of our sea ice initial condi-

tions on the forecast quality for the Arctic sea ice cover.

The forecast skill is particularly improved during the boreal

summer season. Such an improvement does not appear for

the Antarctic sea ice cover (Fig. 6b), but the base RMSE is

larger in the Antarctic region than in the Arctic region and

the reference observational dataset used for verification

itself bears much more uncertainty. We also assess the

performance in predicting the sea ice volume against the

two reanalyses (UCL and PIOMAS) in Fig. 6c. It should be

noted that the UCL and PIOMAS reanalyses only cover the

1979–2007 and 1979–2012 period respectively and they do

not include any observational constraint of sea ice thick-

ness, but do include observational constraints of sea ice

concentration. We obtain a better skill in predicting the sea

ice volume in PredicDfsNudg than in PredicCTL when we

use either UCL or PIOMAS as a reference. The perfor-

mance of PredicDfsNudg are barely discernable from the

sea ice reconstruction HistDfsNudg for the fist 18 months.

The improved skill in predicting the Arctic sea ice

conditions translates into an improved skill in predicting

the Arctic near surface temperature (Fig. 6d). The impact

on the skill in predicting the global mean surface atmo-

spheric temperature is only marginal though (Fig. 6e). The

skill in predicting the Arctic ocean heat content (OHC)

seems also slightly improved in PredicDfsNudg (Fig. 6f).

Similar conclusions are drawn from the ACC as a measure

of skill on raw and detrended anomalies (not shown). The

same RMSE scores computed for the PredicEraNudg and

PredicCTL experiments over their common start dates are

shown in the Supplementary Materials (see Sect. 4 and

Figure S3). It should be noted that the scores computed for

PredicCTL and shown in Figs. 6, 8 and 9 are not the same

as the ones shown in Figures S3 to S5 since start dates over

different periods have been used.

Further insight into the extrapolar impacts of our sea

ice initial conditions is provided by Fig. 7. The skill in

near surface temperature is improved (Fig. 7a, c) over

most of the Arctic Ocean for Years 1 and 2 although this

improvement is significant only over the central Arctic

for Year 1. Only a few continental areas close to the

Arctic Ocean show a marginally increased skill: North-

West Canada and East Siberia for Years 1 and 2 although

these improvements are not significant. The regions of

maximal increase in skill also correspond to regions

where PredicCTL shows a particularly low skill (Fig. 7b,

d). The skill in sea level pressure (Fig. 7e, g) is reduced

over the Arctic Ocean and during the second forecast

year over Antarctica but this degradation of skill is not

significant. The same conclusions are drawn when using

the ACC as a measure of skill rather than the RMSE (not

shown).

3.5 Spread

While the five members in PredicCTL run in the

framework of the CMIP5 project did not include any

perturbations of the sea ice initial conditions, PredicDfs-

Nudg is initialized from the five different members of our

HistDfsNudg historical simulation. We assess here the

impact of using our five-member ensemble of sea ice

initial conditions on the spread between the members of

the PredicDfsNudg ensemble predictions compared to

using single-member sea ice initial conditions as in Pre-

dicCTL (see Sects. 2.1 and 3.1 for more detail about the

experimental design). The spread between the members is

estimated through their interquartile range (IQR) which

gives a more robust estimate than the standard-deviation

(SD). We also compare the spread between the members

to the RMSE of the ensemble-mean prediction. In this

comparison, we use the SD of the members around the

ensemble-mean as a measure of spread for homogeneity
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with a RMSE and we compute the ratio of the SD of the

members over the RMSE of the ensemble-mean. This

ratio should be one optimally so that the ensemble spread

is representative of the forecast error. The spread (IQR)

between the members in terms of simulated Arctic sea ice

area seems slightly increased during the first half of the

forecast (Fig. 8a) in PredicDfsNudg as compared to Pre-

dicCTL. Due to the large reduction in RMSE of the

ensemble-mean forecast, the ratio of the standard devia-

tion (SD) of the members around the ensemble-mean to

the RMSE of the ensemble-mean forecast (Fig. 8b) is

increased by about 20 % in PredicDfsNudg as compared

to PredicCTL. This ratio is still underestimated though as

it reaches a maximum of 0.65, .i.e. the spread is still too

low as compared to the forecast error. The spread (IQR)

is also generally increased along the forecast for the

Antarctic sea ice area (Fig. 8c) except during a few

months at the end of the first year and beginning of the

second year. The ratio of the SD of the members to the

RMSE of the forecast (Fig. 8d) is not larger, however, in
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bound for the prediction RMSE. The observational datasets used for
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reanalysis for the Arctic Ocean Heat Content. The anomalies have
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computation
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PredicDfsNudg than in PredicCTL, since the sea ice ini-

tial conditions from HistDfsNudg tend to increase the

RMSE (except during the first months of the forecast).

The Arctic near surface temperature does not show any

larger spread (IQR) in PredicDfsNudg than in PredicCTL

(Fig. 8e). The ratio of the SD to the RMSE is, however,
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Fig. 7 Root Mean Square
Error. a, c, e, g The ratio of the

RMSE in the PredicDfsNudg

experiment over the RMSE in

the PredicCTL experiment

whereas b, d, f, h the RMSE in

the PredicCTL experiment. The

observational datasets used for

reference are: a–d the

GHCNERSSTGISS merged

dataset for near surface

temperature, e–h the HadSLP2

observational dataset for sea

level pressure. Dots regions

where the 95 % significance

level is reached for the RMSE

ratio in the left column. Dots

can be seen in a the Bering

Strait and North of Scandinavia,

c along the Pacific Coast of

U.S.A. and off west coast of

Chile, d South of Tasmania,

g South of Tasmania and East of

New Zealand. Year 1 (Year 2)

comprises month 3–14 (15–26)

of the retrospective forecasts
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substantially larger in PredicDfsNudg than in PredicCTL

due to the lower RMSE, but it still does not exceed 0.8.

The larger spread in the sea ice variables (Fig. 8a, b) in

PredicDfsNudg than in PredicCTL do not translate into

any larger spread (IQR) in the global mean near surface

temperature (Fig. 9a), upper ocean heat content (Fig. 9c)

or sea surface temperature (Fig. 9e). Given the marginal

decrease in RMSE for the global mean atmospheric

temperature and global mean SST, the ratio of the SD to

the RMSE does not show any robust increase in Predic-

DfsNudg as compared to PredicCTL for any of those

variables (Fig. 9b, f). This ratio is larger all along the

forecast in PredicDfsNudg than PredicCTL for the upper

OHC (Fig. 9d), though still lower than 0.7. In summary,

introducing perturbations in the sea ice initial conditions

increases the spread between the members for the sea ice

variables only, thus more representative of the forecast

errors. Outside the polar regions and above the sea ice

cover, the ratio of the SD to the RMSE closer to one

mainly originates from the reduced forecast error. The

spread between the members is also compared between

PredicCTL and PredicEraNudg in Figures S3 and S4 but

since only 10 common start dates between those experi-

ments are available, those scores are much more noisy

than the ones shown in the main article and comparing

PredicDfsNudg and PredicCTL.
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4 Discussion

4.1 Limitations of the constraint by atmospheric

and oceanic reanalyses only

Our methodology to generate sea ice reconstructions relies on

constraining a sea ice model by the atmospheric and oceanic

reanalyses that we use afterwards to initialize our climate

predictions. We do not apply any sea ice data assimilation. The

constraint by the atmospheric and oceanic reanalyses pro-

viding the initial conditions for climate predictions attempt at

optimizing the consistency of our sea ice initial conditions

with the atmospheric and oceanic components. However,

these oceanic and atmospheric reanalyses were not provided

any information from our sea ice reconstructions at their

production time. Although consistent with one another since

using the same sea ice cover, they are not fully consistent with

our sea ice reconstructions. Only a coupled ocean, sea-ice and

atmosphere data assimilation system, such as the ones tested

by Wang et al. (2013) and Sigmond et al. (2013), can ensure a

full consistency between the initial conditions in the various

components of the climate system and prevent any initial

shock. Furthermore, the polar regions stand as the areas where

the main weaknesses of those atmospheric and oceanic rea-

nalyses can be found, primarily due to the sparse available

observations to constrain them. They were produced without
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any sea ice model but using observed sea ice concentration.

These limitations can be overcome by using sea ice data

assimilation with an adequate propagation of the sea ice

concentration updates to other sea ice variables in a coupled

data assimilation system. The development of such coupled

data assimilation system is on-going work.

4.2 Limitations of the perturbation method

For consistency of our sea ice reconstructions with the ORAS4

ocean reanalysis that we use to initialize our climate predic-

tions, we have nudged each member of the sea ice recon-

struction towards a different member of ORAS4 and we have

used the same methodology as in ORAS4 to generate surface

forcing perturbations. Most of the spread between the mem-

bers of our sea ice reconstructions comes from the surface

forcing perturbations (not shown). These perturbations are

only applied to the surface wind field. They aim at accounting

for the observational uncertainty by using the monthly dif-

ferences between two set of surface forcings, namely DFS4.3

and ERA-interim, along their common period. This pertur-

bation method has been designed to generate ocean reanaly-

ses, and hence focuses on the wind field only, which plays a

key role in shaping the ocean variables. In our sea ice recon-

structions, the near-surface temperature and humidity, the

solid and liquid precipitation, the surface winds and the

downwelling shortwave and longwave radiation are used to

force the coupled ocean and sea ice models through the CORE

bulk formulae (Large and Yeager 2004). A more complete

method to account for the uncertainty in all those variables

could be developed by extending the wind perturbation

method to all the other variables.

4.3 Degradation of the skill in predicting the large-

scale atmospheric circulation

Although the use of our sea ice reconstructions allows for

an increase in skill in predicting the Arctic sea ice area and

near surface temperature with a significant improvement in

the central Arctic, we also obtain a degradation of the skill,

though not significant, in predicting the sea level pressure

over the Arctic, i.e. the large scale atmospheric circulation.

As a consequence, we do not observe any robust

improvement in skill outside the polar regions when using

our sea ice reconstructions. The reasons behind the deg-

radation of the skill in large-scale atmospheric circulation

are still under investigation.

5 Conclusion

In this study, we present two five-member sea ice his-

torical simulations constrained by ocean and atmosphere

observations and covering the 1958–2006 and 1979–2012

period, which is the focus of the climate prediction

exercise achieved within the CMIP5 (Coupled Model

Intercomparison Project Fifth phase) project. Our

ensemble sea ice reconstruction stands as the longest

available up to date and attempts at sampling, for the first

time, the uncertainty on the sea ice state. The constraint

by ocean observations is performed via a nudging of the

simulated three-dimensional temperature and salinity

towards their counterpart from the ORAS4 ocean reanal-

ysis from the European Center for Medium Range

Weather Forecasts (ECMWF). The constraint by atmo-

sphere observations is performed by running ocean and

sea ice coupled simulations forced by atmospheric data

from the DFS4.3 observational data, on the one hand, and

the ERA-interim reanalysis, on the other hand, which

cover the 1958–2006 and 1979–2012 periods respectively.

By introducing wind stress perturbations and nudging

towards the five different members of the ORAS4

reanalysis, we produce five different members for our

constrained historical simulations. This methodology

allows for the generation of sea ice initial conditions for

operational use in seasonal and decadal forecasting which

are publicly available on request. Several observational

datasets have been used for the validation of our sea ice

reconstructions but the large observational uncertainty

limitates this validation. The obtained Arctic and Ant-

arctic sea ice areas show a reasonable agreement with

their estimates from the NSIDC and HadISST datasets.

These sea ice reconstructions then provide best estimates

of initial sea ice extent and thickness for a set of 3-year

long retrospective climate predictions. We compare this

set with a reference one where the sea ice initial condi-

tions were taken from a single-member ocean and sea ice

coupled simulation forced by DFS4.3 observational data

and performed with an older model version. Initializing

from our reconstruction allows for an improved skill in

predicting the Arctic sea ice cover and Arctic near surface

temperature, but the skill in predicting the Antarctic sea

ice cover is slightly degraded. Using our sea ice initial

conditions also allows for a larger spread between the

members for the sea ice variables, thus more representa-

tive of the forecast error.
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