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Abstract We assess the impact of improved ocean initial

conditions for predicting El Niño-Southern Oscillation

(ENSO) and Indian Ocean dipole (IOD) using the Bureau

of Meteorology’s Predictive Ocean Atmosphere Model for

Australia (POAMA) coupled seasonal prediction model for

the period 1982–2006. The new ocean initial conditions are

provided by an ensemble-based analysis system that

assimilates subsurface temperatures and salinity and which

is a clear improvement over the previous optimal interpo-

lation system which used static error covariances and was

univariate (temperature only). Hindcasts using the new

ocean initial conditions have better skill at predicting sea

surface temperature (SST) variations associated with

ENSO than do the hindcasts initialized with the old ocean

analyses. The improvement derives from better prediction

of subsurface temperatures and the largest improvements

come during ENSO–IOD neutral years. We show that

improved prediction of the Niño3.4 SST index derives

from improved initial depiction of the thermocline and

halocline in the equatorial Pacific but as lead time increases

the improved depiction of the initial salinity field in the

western Pacific become more important. Improved ocean

initial conditions do not translate into improved skill for

predicting the IOD but we do see an improvement in the

prediction of subsurface temperatures in the Indian Ocean

(IO). This result reflects that the coupling between sub-

surface and surface temperature variations is weaker in the

IO than in the Pacific, but coupled model errors may also

be limiting predictive skill in the IO.

Keywords Seasonal forecast � Prediction skill of ENSO �
Data assimilation

1 Introduction

The capability to make global seasonal climate forecasts

with coupled climate models derives primarily from the

ability to predict tropical sea surface temperature (SST)

variations associated with the El Niño-Southern Oscillation

(ENSO) and Indian Ocean dipole (IOD) (Cane et al. 1986;

Latif et al. 1993; Kirtman et al. 1997; Ji et al. 1998; Wang

et al. 2002; Saha et al. 2006; Luo et al. 2008; Zhao and

Hendon 2009; Stockdale et al. 2011). The skill and ultimate

utility of the seasonal forecasts is limited by various

components of the forecast system, such as the quality of

the initial condition, errors in the coupled model, the

method of generating the forecast ensemble and the cali-

bration strategy. Here we consider the impact of improved

ocean initial conditions, which is the primary source of

long lead predictability.

Ocean initial conditions are typically generated by

driving the ocean component of the coupled forecast model

with atmospheric fluxes of heat, momentum and fresh water

in order to provide the first guess to estimate the ocean state.

The first guess will have substantial error resulting from

errors in the model and forcing fields. This error can be

reduced by combining the first guess with oceanic obser-

vations of subsurface temperatures, currents and salinity via

a data assimilation procedure. Although the tropical oceans

historically have not been well observed, the Tropical

Ocean-Global Atmosphere (TOGA) Program that was

A partnership between the Australian Bureau of Meteorology and

Commonwealth Scientific Industrial Research Organization.

M. Zhao (&) � H. H. Hendon � O. Alves � Y. Yin

Centre for Australian Weather and Climate Research (CAWCR),

GPO Box 1289, Melbourne, VIC 3001, Australia

e-mail: m.zhao@bom.gov.au

123

Clim Dyn (2014) 42:2565–2583

DOI 10.1007/s00382-014-2081-0



initiated in the 1980 resulted in the Tropical Atmosphere-

Ocean (TAO) array of moored buoys in the equatorial

Pacific, a surface drifting buoy program, an island and

coastal tide gauge network, and a volunteer observing ship

network of expendable bathythermograph measurements

(McPhaden et al. 1998), thereby providing good coverage

of the subsurface at least in the tropical Pacific which is the

heart of the most predictable component of the climate

system (ENSO). Globally, the situation improved markedly

in the 2000’s with the beginning of the deployment of a

global array of approximately 3,000 free-drifting profiling

floats, known as the ARGO ocean profiling network (http://

www.argodatamgt.org/). The ocean observation from

ARGO provide real-time measurements of surface winds,

SST, subsurface temperature and salinity profiles in the

upper 2,000 m ocean, sea level, and ocean velocity. The

new data sets play a core role in helping to better understand

ENSO and IOD events, to develop improved coupled

models, and to provide improved ocean initial conditions

via data assimilation. However, to best use these new

observations to produce improved ocean initial conditions

requires improved methods of data assimilation.

Data assimilation can significantly reduce the model

analysis errors and improve both the depiction of the mean

state and the analysis of anomalies of the first guess,

especially noticeable in the tropical oceans (Zhang et al.

2007; Behringer 2007; Balmaseda et al. 2008; Yin et al.

2011). Assimilated initial states can have a favourable

impact on the prediction skill of seasonal forecasts of SST

(Ji and Leetmaa 1997; Ji et al. 1998; Schneider et al. 1999;

Wang et al. 2002; Alves et al. 2003; Balmaseda et al. 2009;

Balmaseda and Anderson 2009; Stockdale et al. 2011). A

wide variety of assimilation techniques are used by forecast

centres that are making routine coupled model seasonal

forecasts including univariate (temperature only) or mul-

tivariate (e.g., temperature and salinity) optimal interpola-

tion (OI) systems, three or four-dimension variational

(3Dvar or 4Dvar) methods, and the use of variants of the

Ensemble Kalman Filter (EnKF); for a review of these

systems see Balmaseda et al. (2009).

The first generation data assimilation system that pro-

vided initial conditions for coupled model seasonal climate

forecast mainly focused on assimilating temperature

because subsurface temperature was believed to play the

dominant role for providing predictive skill of ENSO.

Salinity was typically ignored or simply constrained by

climatological relationships. This was motivated in part by

the paucity of salinity observations prior to the advent of

ARGO. However, even in the absence of abundant salinity

data, a proper treatment of salinity in the assimilation

process is crucial to properly depict the density field.

In 2002, the Australian Bureau of Meteorology imple-

mented an ocean data analysis system for the Predictive

Ocean Atmosphere Model for Australia (POAMA) sea-

sonal forecast model. This ocean analysis system was

based on a univariate (temperature only) optimum inter-

polation scheme (Alves et al. 2003; http://poama.bom.gov.

au/). We refer to it as POAMA Optimum Interpolation

(POI). In POI, surface salinity was constrained by the cli-

matological surface flux of fresh water (E-P) but subsurface

salinity was otherwise not incremented during the assimi-

lation cycle. A new ensemble-based ocean analysis system

called the POAMA Ensemble Ocean Data Assimilation

System (PEODAS) has been developed and was imple-

mented in 2010. This second generation data assimilation

systems use more sophisticated error covariances (e.g.,

flow dependent) and includes the assimilation of salinity

that is more dynamically and thermodynamically in bal-

ance with temperature through the use of covariances of

temperature and salinity (Yin et al. 2011).

In a earlier study (Zhao et al. 2013), we highlighted some

profound impacts of the changes in the depiction of the mean

state T (temperature) and S (salinity) fields using PEODAS

compared to POI for ENSO behaviour in forecasts with the

POAMA model. We especially highlighted the impacts on

the predicted ENSO characteristics due to the erroneous

depiction of mean salinity in the Pacific halocline in POI and

that those impacts developed quickly (1–2 months) and were

long lived because the initial mean-state salinity errors set off

a coupled response. This current paper is a continuation of

that study but will focus on the impacts on forecast skill of

ENSO and the IOD due to the improved depiction of initial

anomalies for both temperature and salinity.

A brief description of the assimilation systems and

experimental set up is provided in Sect. 2, and a compar-

ison between the old and new ocean analyses is presented

in Sect. 3. In Sect. 4, we will compare prediction skills for

ENSO/IOD and also subsurface temperatures and salinity

in the two hindcast sets that are initialized with the old and

new ocean initial conditions. We will argue in Sect. 5 that

the improvement in tropical SST skill for ENSO and the

IOD derives from the improvement in predicting the sub-

surface, which in turns stems from an improved depiction

of the initial temperature and salinity fields in the upper

ocean. Discussion and conclusion follow in Sect. 6.

2 The POAMA coupled models and experimental

design

2.1 Ensemble generation

For this study we explore hindcast skill for seasonal fore-

casts from the first of each month during January 1982

through December 2006 from two versions of POAMA.

POAMA is based on coupled ocean–atmosphere general
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circulation models. The atmospheric model is based on

BAM3 (Zhong et al. 2001) and is run at T47L17 resolution

(Alves et al. 2003). The ocean model component is version

2 of the Australia Community Ocean Model (ACOM2;

Schiller et al. 2002), which is a global configuration of

version 2 of the Modular Ocean Model (MOM2; Paca-

nowski 1995). The ocean model has 2� zonal resolution and

1� latitudinal resolution that increases to 0.5� in the Tro-

pics. It has 25 vertical levels (0–5,000 m). More detail

about the model configuration can be found in Alves et al.

(2003), Zhong et al. (2005), Zhao and Hendon (2009) and

Wang et al. (2011).

The first set of hindcasts are from POAMA version 1.5b

(called V1_POI hereafter), which was the operational

seasonal forecast system at BoM from 2002 to 2010.

V1_POI was initialized using the POI ocean assimilation.

Atmospheric/land surface initial conditions are provided by

the Atmosphere–Land Initialization (ALI) scheme (Hudson

and Alves 2007; Hudson et al. 2011). The ensemble of

forecasts was generated by perturbing the atmospheric

initial conditions by successively picking the analysis from

a 6 h earlier period (i.e., the tenth member was initialized

2.5 days earlier than the first member). A single ocean

initial condition was provided by the POI system for the 1st

of each month.

The second version of POAMA is version P2.4c (here-

after V1_PEO), which is one of the three versions of the

models that forms part of the new operational version of

P24. The atmosphere and ocean models are the same ver-

sion as used for V1_POI but the initialization of the fore-

casts is different. The ocean initial conditions are provided

by the new PEODAS assimilation system. And, in contrast

to V1_POI, the ensemble of initial conditions was gener-

ated by using 9 additional ocean initial conditions as pro-

vided by PEODAS, while only a single atmospheric initial

condition on the 1st of each month, as provided by ALI,

was used to initialize the atmosphere. Table 1 lists the

major different set up details about two experiments.

All results are based on a 10-member ensemble inte-

grated out to 9 months. We adopt the terminology that a

lead time of 1 month means a hindcast initialized on, for

instance, 1 January that is valid for the month of January.

Hindcast anomalies are formed relative to the hindcast

model climatology, which is a function of start month and

lead time and is unique to each model version. In this

fashion, the mean bias from the hindcasts is removed.

2.2 Climate indices and verification data

Our focus is on performance of predicting the coupled

climate in the Indo-Pacific. We define the region of the

tropical Pacific Ocean (PO) as 120�E–90�W, 10�N–10�S,

and the region of the tropical Indian Ocean (IO) as 50�E–

110�E, 10�N–10�S. Results are also analysed using indices

of SST relevant to the ENSO and IOD. ENSO in the Pacific

is monitored with the Niño3.4 index (SST anomalies

averaged over 170�W–120�W, 5�N–5�S). For the IOD, we

use the SST anomaly over the western pole (WIO, 50�–

70�E, 10�N–10�S) or eastern pole (EIO, 90�–110�E, 0�–

10�S) of the tropical IO (Saji et al. 1999). For verification

of SST, we use the NOAA Optimum Interpolation (OI)

SST V2 data (Reynolds et al. 2002) for the period

1982–2006. For the subsurface, we verify using the anal-

yses from PEODAS, POI or the ENACT (EN3) analysis,

which is based on a quality-controlled database (Ingleby

and Huddleston 2007).

3 Ocean analysis systems

3.1 The POI and PEODAS analysis systems

The same ocean model component of POAMA is used for

both the coupled model forecasts and the ocean assimila-

tion. More details about the ocean model and reanalysis

configuration can be found in Yin et al. (2011).

The POI assimilation system used to create ocean initial

conditions for the V1_POI forecasts is based on a univar-

iate optimal interpolation system and only assimilates

in situ temperatures from the top 500 m of the ocean

(Smith et al. 1991); velocity fields are updated using the

geostrophic relation similar to Burgers et al. (2002). Sub-

surface salinity is allowed to evolve during the forecast but

is not updated or constrained during the assimilation,

resulting in a dynamically unbalanced state after the tem-

perature is updated in the assimilation. An accumulated

effect of this imbalance is the development of an unreal-

istic deep overturning circulations and a systematic bias in

Table 1 Details of ocean assimilation and ensemble perturbations from the two hindcast experiments

Experiment

name

Ocean initial

condition

Assimilated

observations

Updated variables Perturbation of initial condition

Ocean Atmos

V1_POI POI Temperature Temperature and currents (geostrophic adjustment) No Yes

V1_PEO PEODAS Temperature

and salinity

Temperature, salinity and currents using ensemble

cross covariances

Yes No
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the halocline of the central-western Pacific (Yin et al.

2011). In POI, surface salinity is constrained in the

assimilation cycle by the imposed surface flux of fresh-

water and with an additional relaxation to the climatology

from World Ocean Atlas 2001 (WOA2001, Stephens et al.

2002; Boyer et al. 2002) during the assimilation. However,

the relaxation is strong (3 days) and so limits depiction of

interannual variability at the surface (this impact will

become apparent in Sect. 5).

The PEODAS ocean assimilation system, which is used

to initialize V1_PEO forecasts, is an ensemble-based data

assimilation system that is computationally affordable and

easier to implement than a four-dimensional variational

method. It also yields an ensemble of ocean initial condi-

tions from which to generate an ensemble of seasonal

forecasts. We expect the ensemble of ocean states to span

the actual uncertainty in the estimate of the initial condi-

tions (Yin et al. 2011). In contrast to POI, both temperature

and salinity profiles are assimilated and, importantly,

temperature, salinity, and velocity fields are all updated at

all model levels using flow dependent, 3-dimensional error

cross-covariances. In addition, surface salinity is forced by

imposed observed freshwater fluxes with a slow relaxation

to climatology (1-year relaxation time). Therefore, PEO-

DAS provides more realistic depiction of salinity (both

mean and variability), and with better dynamical balance

between temperature and salinity and much larger (more

realistic) interannual variability of surface salinity than

POI. More details about those two systems can be found in

Yin et al. (2011) and Zhao et al. (2013).

3.2 Comparison of the ocean analyses

The improvement in the depiction of the upper ocean

salinity, currents and temperature variations from PEO-

DAS compared to POI is summarized below. In Fig. 1, we

plot the temporal anomaly correlation coefficient (ACC) of

the vertically averaged temperature and salinity in the

upper 300 m (T300 and S300) between the ENACT ana-

lysis based on the EN3 quality-controlled database (Ing-

leby and Huddleston 2007) and the PEODAS and POI

analyses respectively. Although the EN3 data used in the

ENACT analysis also went into both the POI and PEODAS

analyses, we compare to it here as ‘‘independent’’ because

the ENACT analysis of EN3 is not based on a model.

For T300 (Fig. 1a), PEODAS has a broad band (10�N–

10�S) of high correlation along the entire tropical Pacific,

whereas the POI has only relatively narrow bands of high

correlation confined to the western boundary (i.e., where

equatorial Rossby waves make a large contribution to the

variability) and in the eastern Pacific cold tongue (i.e.,

where equatorial Kelvin waves make a large contribution

to the variability). Higher correlation seen for the PEODAS

analysis is also seen in the eastern equatorial IO, where

Rossby waves stemming from reflected Kelvin waves

associated with IOD variability are prominent, and in the

south west tropical IO, where Rossby wave associated with

both the IOD and ENSO contribute to the variability. The

overall correlation in the IO is not as high as for the Pacific,

which suggests that the predictability of climate in the IO

region will be lower than for the Pacific. This lower

agreement of the assimilated state with the independent

analysis of the observations in the IO partly stems from the

paucity of in situ data especially prior to the ARGO-ERA.

Interestingly both systems have relatively high correlation

along the west coast of Australia, which reflects strong

variability driven by the oceanic teleconnection of ENSO

through the Indonesian throughflow and which is the basis

for extended range prediction of the Leeuwin current

(Hendon and Wang 2009).

Not surprisingly, PEODAS everywhere has higher cor-

relation for vertically integrated salinity to 300 m (S300)

than does POI since there is no update for salinity in the POI

(Fig. 1d, e). In the Pacific, there are especially large

improvements in the western and central Pacific from 0�S to

10�S, which coincides with where the largest increment to

temperature is made (Yin et al. 2011) so that neglecting the

compensating salinity increments for salinity in POI leads

to large errors in the analysis of salinity there (Zhao et al.

2013). The maximum mean state differences of salinity

between two analysis systems is also in this region (not

shown), but which can be seen in Fig. 5a from Yin et al.

(2011) and Fig. 2b from Zhao et al. (2013). The improved

depiction of subsurface salinity variations in this region

using PEODAS reflects that salinity largely co-varies with

temperature, so that vertical displacement of the thermo-

cline results in large variations of salinity in the halocline,

which are explicitly accounted for by PEODAS. Regions of

large improvement of PEODAS over POI are also seen in

the north and southeast IO. Along the equator, the

improvement in the IO is not nearly as dramatic as we see in

the Pacific. This is due to a much weaker halocline in the

tropical IO compared to the western Pacific so that incre-

menting temperature without adjusting salinity in POI has

less impact on salinity there. As for temperature, the overall

correlation of S300 in the IO is smaller than in the Pacific.

Yin et al. (2011) argued that PEODAS significantly

improved the analysis of zonal surface velocity and sea-

level (see their Figs. 13, 14), especially over the tropical

oceans where the main modes of climate variability on

interannual time scale (e.g., ENSO and the IOD) have large

impact. Because POI did not assimilate subsurface salinity,

a density imbalance in the subsurface developed as the

salinity field was not dynamically constrained when the

temperature was incremented, which ultimately degraded

the analysis of ocean currents and sea-level anomaly. Yin
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et al. (2011) showed that the analysis of surface currents

and sea level provided by POI was even worse than a

control assimilation of PEODAS that used no in situ data at

all (but was forced by the same observed surface

momentum, heat and freshwater fluxes). Note that in the

PEODAS control assimilation, the covariance of salinity

with temperature was naturally enforced by the model’s

variability but this co-variation is corrupted in POI when

temperature is incremented but salinity is not.

In summary, there is a marked improvement in the

analysis of both temperature and salinity throughout the

tropical Pacific and IO from PEODAS compared to POI.

The improvement is both in the depiction of the variability,

for which ENSO/IOD prediction will depend, and in the

depiction of the mean state, which affects the simulated

coupled climate variability in the model (e.g., Zhao et al.

2013). The focus of the rest of the paper is on assessment

of forecast improvement that derives from the improved

depiction of temperature and salinity variations in the ini-

tial conditions.

4 Comparison of seasonal forecast skills

By comparing metrics of forecast skill from the hindcasts

of V1_POI and V1_PEO, we can gauge the impact of the

new ocean analyses on the forecast skill. We do need to

keep in mind, however, that the ensemble generation

strategies are different from the two systems and so it too

can affect forecast performance, which we will highlight as

appropriate.

4.1 Niño3.4 and EIO SST skill

The two key questions to be addressed are ‘‘Do improved

ocean initial conditions lead to improved skill in predicting

ENSO and IOD?’’, and, if so, ‘‘Which aspects of the

improved ocean initial conditions matter most?’’ We begin

by looking at the traditional forecast metrics of ENSO

prediction: correlation and root mean square error (RMSE)

of the Niño3.4 SST index using the ensemble mean fore-

cast. Using all start months, the temporal anomaly

Fig. 1 Temporal correlation coefficient for anomalies of T300 from EN3 analyses with analyses from a PEODAS, and b POI. c, d For S300.

Correlation is based on analyses on the 1st of each month for the period 1982–2006
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correlation (ACC, Fig. 2a) and normalized root mean

square error (NRMSE, i.e., the root mean square error

normalized by the SD of the observed index; Fig. 2c),

clearly shows that the skill from V1_PEO has improved

over V1_POI. For lead times longer than 2 months, the

improvement in skill amounts to about 1 month increase in

lead time for the equivalent correlation or NRMSE in

V1_POI. We will show in Sect. 4.2 that this increase in

SST skill is accompanied by (or stems from) an increased

in forecast skill for subsurface temperature, which is the

heart of ENSO predictability.

We also assess forecast skill for the IO using the SST

index in the EIO region (Fig. 2b, d). Somewhat disap-

pointingly, there is no skill improvement from using the

V1_PEO with the improved PEODAS ocean initial con-

ditions compared to V1_POI using the older POI ocean

initial conditions. The skill over the WIO region is very

similar in the two models as well, but skill in the WIO

drops less sharply with lead time than for EIO (figure not

shown). For instance, the correlation skill for the WIO

remains above 0.4 for all lead times to 9 months (as does

the skill of the Niño3.4 index), but the skill for the EIO

drops quickly and is below 0.4 by 6 months. Zhao and

Hendon (2009) have interpreted this more rapid drop off in

skill in EIO compared to WIO to derive from the stronger

relationship of WIO SST to ENSO and the fact that a lot of

the variability of EIO SST is driven by local air-sea fluxes

(Hendon 2003) that are not a source of long lead predict-

ability. The overall lack of improvement in skill in the IO

probably is a reflection of the large model errors and biases

(e.g., Zhao and Hendon 2009), which prevent the coupled

model from exploiting any improvement provided by the

new ocean initial conditions, and, as we will discuss below,

the relatively weak relationship between variations in

Fig. 2 Correlation of

predictions of a the Niño3.4

SST index and b the east Indian

Ocean index (EIO) using

V1_POI and V1_PEO

hindcasts. The normalized root

mean square error (NRMSE,

solid curves) and spread

(NSPREAD, open squares) are

shown in c and d. This analysis

is based on all start months and

is shown as a function of

forecast lead month
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subsurface and surface temperatures as compared to the

Pacific so that any profound improvement in the initial

depiction of the subsurface variations in the IO are not

manifested by improvements in predictions for the surface.

The improvement in skill seen for Niño3.4 may also be

contributed to by different ensemble generation strategies

between the two systems, which might change the spread-

error relationship in the forecast. The forecast spread

(normalized by the observed SD of the indices,

NSPREAD) is shown in Fig. 2c (for Niño3.4) and Fig. 2d

(for EIO). The difference in spread between the old and

new systems is negligible, indicating that the reduced

NRMSE and increased correlation for the Niño3.4 index is

not a result of an improved spread-error relationship. We

note, however, that both forecast systems are under-dis-

persive (i.e., the NRMSE is greater than the NSPREAD)

and so the POAMA prediction system could further benefit

from an improved ensemble generation strategy that

increases forecast spread while decreasing forecast error.

4.2 Subsurface skill and relationship with surface skill

We now look at improvements in prediction skill of sub-

surface temperatures and salinity with the intent to deter-

mine if this is the source of improved prediction skill of

Niño3.4 index seen in Fig. 2. We firstly present spatial

correlation (SCOR) of T300 anomalies over the PO regions

(Fig. 3a). Here, the spatial correlation of forecast anomalies

is computed over each region (i.e., we get a single score for

each forecast) and then average this correlation over all

forecasts. For this analysis, we verify against the anomalies

from the PEODAS analysis. We also tried verifying against

the analyses from POI and from EN3 because there is no

common default ‘‘observation’’ data for the subsurface as

there is for SST. Although the subsurface skill is dependant

on which verification data we used, we show the verifica-

tion here using the PEODAS analysis, noting that the

results are very similar if we use the EN3 analysis. We feel

some what justified in using PEODAS because verification

against the initial conditions is a generally adopted method

by other prediction studies and the PEODAS analyses are

regarded as good quality (Xue et al. 2011).

As for Niño3.4 index, the forecast skill of subsurface

temperature using spatial correlation over the PO region is

much improved in V1_PEO over V1_POI (Fig. 3a). An

even more dramatic improvement in forecast skill is seen

for spatial correlation of subsurface salinity in the PO

region (Fig. 3c), which is not surprising given the huge

improvement in the initial condition of salinity as provided

by PEODAS over that from POI. We also compute the

spatial correlation for SST anomalies over the PO and IO

regions (Fig. 3e, f), which is complimentary to the tem-

poral correlation for Niño3.4 that we displayed in Fig. 2a.

In both approaches, V1_PEO is better than V1_POI for

lead times beyond 2 months.

Subsurface forecast skill of V1_PEO over V1_POI in

the IO region (Fig. 3b) is also increased, but, which we

noted above for correlation for EIO, is not reflected in

improved SST forecasts in the IO (Fig. 3f). Subsurface

forecast skill, as for surface skill, drops off much more

rapidly in the IO than in the Pacific, which might also help

explain why the improved prediction of the subsurface is

not evidenced by improved prediction at the surface:

forecast skill in the subsurface is not high enough to impact

prediction at the surface. This rapid drop off in skill

compared to the Pacific also reflects that predictability of

the coupled climate is much lower for the tropical IO than

for the Pacific (e.g., Zhao and Hendon 2009) but could also

reflect greater model error in the IO compared to the

Pacific. Predictive skill of subsurface salinity in the IO is

also much higher from V1_PEO than from V1_POI

(Fig. 3d), but, interestingly, the predictive skill of subsur-

face salinity in V1_POI is higher in the IO than in the

Pacific. We think this reflects a poorer representation of

salinity using POI in the Pacific than in the IO (Fig. 1d),

which comes about for the reasons we discussed previ-

ously: POI develops a more spurious depiction of salinity

in the Pacific because more increments are made to tem-

perature in the Pacific, which due to the lack of a corre-

sponding increment on salinity in POI in the presence of a

sharper halocline, results in a more degraded depiction of

salinity there compared to the IO.

4.3 Relationship with ENSO strength

One possible source of the skill improvement using

V1_PEO for prediction of Niño3.4 SST index is from

improved prediction of the large ENSO events. For

instance, Jin et al. (2008), using the DETEMER hindcast

set, found that strong ENSO’s were better predicted than

neutral-ENSOs, which presumably results from increased

signal to noise when ENSO variability is large. Because we

expect that the subsurface has a longer and stronger impact

on the surface during strong ENSO events, we may then

anticipate that improved subsurface initial conditions might

provide the most impact for prediction of the strong ENSO

events.

To address the relationship of forecast skill to ENSO

amplitude, we present the time series of anomaly spatial

correlation for predicted SST in the PO domain from the

V1_PEO forecasts (Fig. 4a) along with the time series of

observed Niño3.4 index so that the magnitude of the ENSO

variability can be assessed. High and long lasting skill in

predicting SST over the tropical Pacific domain occurs

during strong ENSO events (El Niño and La Niña),
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confirming the results of Jin et al. (2008). However, the

improvement in skill compared to V1_POI, which we show

in Fig. 4b as the difference in the anomaly spatial corre-

lation between V1_PEO and V1_POI, is seen to mainly

occur during periods of low-amplitude ENSO when the

skill for SST is relatively low (Fig. 4a).

We quantify this tendency for greater increase in skill to

occur for lower amplitude ENSO events in Table 2, where

we tabulate the number of occurrences when the increase in

SCOR exceeds 0.1 from Fig. 4b and bin according to the

amplitude of the observed Niño3.4 index. The distribution

of points is similar for other thresholds of skill improve-

ment. From Table 2 we see that at all lead times the

greatest number of points where an improvement is

achieved occurs for low amplitude ENSO episodes. We

seldom see any forecast improvement for ENSO events

(i.e. when Niño3.4 amplitude exceeds 1 �C). We also see

that the total number of improved forecasts for low

amplitude ENSO episodes increases with lead time.

Although overall skill is highest during large ENSO events,

the greatest improvement in skill especially at longer lead

times comes about from improved predictions during low-

amplitude ENSO episodes.

From an examination of the difference in skill of T300

(Fig. 4c), we see that the times of high improvement in

SST skill (Fig. 4b) correspond to times of high improve-

ment in subsurface skill. This is quantified by computing

the correlation of the difference in skill for SST (Fig. 4b)

with the difference in skill for T300 (Fig. 4c), which we

show in Fig. 5 (black curve) as a function of forecast lead

time. At short lead time, the SST skill difference is not

strongly associated with the skill differences in T300, but

the correlation becomes strong after about 3 month lead

time. This lagged development of the association of skill

difference at the surface and in the subsurface is consistent

with the notion that the Pacific climate is a coupled system

and that the adjustment time of the subsurface equatorial

Pacific Ocean is about 3 month (e.g., initial difference in

the subsurface in the western Pacific will take 2–3 months

to propagate into to the central and eastern Pacific where

they impact SST, see Figs. 5a and 6e in Zhao et al. 2013,

and we will discuss more in Sect. 5).

We also compute the difference in skill for upper ocean

salinity (S300), which is shown in Fig. 4d. Not surpris-

ingly, V1_PEO forecasts of S300 have systematically

higher skill relative to V1_POI and this difference is

Fig. 3 Spatial correlation of

predicted T300 anomalies over

a the PO region (120�E–90�W,

10�N–10�S), and b the IO

region (50�E–110�E, 10�N–

10�S). Forecasts are from

V1_PEO (red curves) and

V1_POI (black curves) and the

verification is PEODAS

analyses. The correlation is

computed using anomalies from

each forecast initialized every

month 1982–2006 and then

averaged over all forecasts. c,

d For S300 anomalies, and e,

f for SST anomalies
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immediately apparent at the shortest lead time. However,

the largest skill improvement at longer lead time also

appears to occur when ENSO amplitude is weaker. Fur-

thermore, there is a strong relationship between the varia-

tion of improved skill in SST and improved skill S300

(Fig. 5), that also does not appear until lead time

2–3 months.

Although the largest improvement in skill as measured

using correlation comes from the low-amplitude ENSO

periods, this does not mean that the forecast errors as

measured by RMSE are most improved then as well. To

address this, we show a similar set of plots as in Fig. 4a, b

Fig. 4 a Spatial correlation

(SCOR) over the PO region

from the V1_PEO hindcasts of

SST as a function of forecast

start time (each month

1982–2006) and lead time in

months (left hand y-axis). The

SCOR is shown at each lead

time for a constant verification

time (e.g., the SCOR shown for

lead time 1 month at 1 January

1982 used the forecast that was

initialized on 1 January 1982

and the SCOR shown for lead 9

at 1 January 1982 used the

forecast that was initialized on 1

May 1981). b The difference in

SCOR between predictions

from V1_PEO and V1_POI for

SST anomalies over the PO

region. c As in b except for the

difference in SCOR for T300.

d As in b except for the

difference in SCOR for S300.

The heavy black curve is the

time series of the observed

Niño3.4 index (units are �C on

right hand y-axis). The right

hand y-axis extends back to the

initial time, which for a signifies

that the SCOR was computed

using the PEODAS analyses of

SST against the Reynolds OI v2

analyses. In b–d the SCOR at

the initial time is computed

using the initial anomalies from

PEODAS and POI analyses

Table 2 The number of forecasts when the difference of SCOR

(V1_PEO minus V1_POI) for SST in PO exceeds 0.1, binned

according to the amplitude of the observed Niño3.4 index at each lead

time

Niño3.4 Lt1 Lt2 Lt3 Lt4 Lt5 Lt6 Lt7 Lt8 Lt9

0–0.5 32 20 31 39 38 35 36 46 44

0.5–1 11 13 24 23 33 24 21 19 22

1–1.5 0 2 4 7 6 8 5 8 5

1.5–2 0 0 2 1 1 2 3 3 2

2–2.5 0 0 0 0 0 0 1 0 1

[2.5 0 0 0 0 0 0 1 1 1
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but for RMSE (Fig. 6). Clearly, the RMSE of the SST

forecast increases with the lead time (Fig. 6a) but it also

increases with ENSO amplitude (i.e., the largest absolute

errors occur with the largest amplitude events).

Nonetheless, the greatest reduction in SST error (blue

colours in Fig. 6b) also occurs for times of weak ENSO

amplitude. A similar decrease in error is also seen for T300

(not shown). For S300 the reduction in RMSE for V1_PEO

compared to V1_POI is not as long lasting as for correla-

tion (Fig. 4d) and clearly is maximum at the initial time

and decays with forecast lead time (not shown). This

implies that reduced error in the initial salinity analysis

impacts forecast more through the phasing of the predicted

S300 anomalies (i.e., as reflected in improved spatial cor-

relation score) than through amplitude (i.e., reduced

RMSE).

4.4 Source of improved skill

The above results are suggestive that improved forecast

skill in V1_PEO compared to V1_POI for prediction of

ENSO primarily stems from improved prediction of sub-

surface temperatures and salinity. Maps of forecast skill for

V1_PEO and V1_POI of T300 and S300, as measured by

temporal correlation, are displayed in Fig. 7 for forecast

lead time 6 months. For reference, we also include the

maps of SST skill. Here we use the PEODAS analysis for

subsurface verification, and Reynolds et al. (2002) for SST

verification. Clearly forecast skill is higher in V1_PEO for

T300, especially in the regions where ocean memory has a

strong influence on the coupled climate (i.e., the equatorial

Pacific). We note that this improvement in skill for

V1_PEO relative to V1_POI is independent of the choice

of subsurface temperature verification data (e.g., a similar

improvement is seen if we verify with EN3; not shown).

There is also a large increase in T300 skill where ENSO is

Fig. 5 Correlation of the differences in SCOR for each forecast from

V1_PEO and V1_POI from SST and T300 (black curve) and from

SST and S300 (red curve) as a function of forecast lead time. The

SCOR was computed over the tropical Pacific region

Fig. 6 The same as Fig. 4a, b,

but for root mean square error

(RMSE)
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known to have large remote impacts, for instance on the

west coast of Australia, which is associated with the oce-

anic teleconnection through the Indonesian throughflow

(e.g. Hendon and Wang 2009), and on the north and south

American coasts where coastally trapped Kelvin waves

carry the signal of ENSO from the equator to high lati-

tudes. Notably skill is modestly improved in the equatorial

IO, including over the WIO and west of the Java–Sumatra,

presumably reflecting improved prediction of the subsur-

face evolution of the IOD in V1_PEO.

The improvement in predicting subsurface salinity

(S300) using V1_PEO compared to V1_POI is even moved

prominent (Fig. 7c, d). The regions of high skill for salinity

are located primarily south of the equator in both basins,

but the high skill regions for temperature are more centered

on the equator, where coupled interactions associated with

ENSO occur. Improvement in the prediction of salinity by

V1_PEO in the regions south of the equator in the Pacific

would not be expected to be expressed as an improvement

in forecasts of the coupled climate at least not until longer

lead time. This is because although subsurface salinity will

directly affect density, these density changes off of the

equator would have to get into the equatorial region to be

important for ENSO dynamics, and the time scale for off

equatorial density anomalies to get into the equatorial

region is long (many months; cf e.g., Zhao et al. 2013).

However, the near equatorial salinity improvements seen in

the central Pacific (Fig. 7c compared to 7d) can have a

more rapid impact on ENSO variability (Zhao et al. 2013).

The region of improved skill for SST in the Pacific

roughly coincides with the region of improved skill for

T300 (Fig. 7a, e). In contrast, although V1_PEO has better

skill than V1_PO for T300 in much of the IO, there is little

improvement for SST there. This highlights that coupling

between the subsurface and surface temperatures in the IO

is generally much weaker compared to in the equatorial

Pacific and where the coupling is strongest (south west

tropical IO and west of Java-Sumatra), the improvement in

prediction of T300 is relatively small (Fig. 7a, b).

To better highlight the key role of equatorial subsurface

anomalies of T and S for providing improved long lead

forecast skill of surface climate, we look at the forecast

Fig. 7 Correlation of predicted anomalies of T300 at lead time 6 months from a V1_PEO and b V1_POI. Verification is PEODAS analysis. c,

d Predictions of S300. e–f Predictions of SST and are verified with Reynolds OI v2 observational analyses
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skill as a function of depth along the equator for temper-

ature and salinity at lead time 6 months (Fig. 8). V1_PEO

shows higher skill for both temperature and salinity along

the equatorial Pacific thermocline, which is the region that

is actively involved in ENSO variability. V1_POI shows

similar forecast skill as V1_PEO for near surface salinity

but, as expected, little skill for subsurface salinity. Even

though there is a poor depiction of near-surface salinity

variations in the initial state of V1_POI, similar forecast

skills for V1_POI and V1_PEO at 6 month lead time

results because of the fast time scale of near surface salinity

to respond to the model’s surface fluxes and induced near-

surface currents even if the near-surface salinity is initial-

ized to climatology (as is the case for V1_POI).

In summary, subsurface forecast skill has clearly

improved in V1_PEO because of improved depiction of the

upper ocean at the initial time. Importantly, these

improvements in both temperature and salinity occur in

regions that provide the effective memory (predictability)

of the coupled atmosphere–ocean climate, thus promoting

improved predictions of ENSO from V1_PEO over

V1_POI at longer lead times.

5 Source of forecast differences

The preceding analysis has demonstrated that V1_PEO

provides improved predictions of SST variation associated

with ENSO, and that these improved predictions are tied to

improved prediction of subsurface temperature and salinity

variations in the near-equatorial region of the Pacific,

where subsurface variations are tightly coupled to sub-

sequent surface climate variations. It is an outstanding

question as to which differences in the depiction of the

Fig. 8 Correlation of predicted anomalies of temperature along equator (5�N–5�S) as function of depth (0–400 m) from a V1_PEO and

b V1_POI at the lead time 6 months. c, d For salinity. Verification is PEODAS analysis
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initial ocean state matter most for the differences in fore-

casts of surface climate (especially forecasts of equatorial

SST) in the two systems. To address this, we relate the

differences in prediction of the Niño3.4 SST index between

V1_PEO and V1_POI at different lead times to the dif-

ferences in the depiction of the initial sate of temperature

and salinity between the two ocean analyses. We explore

this by directly relating the differences in the initial state of

temperature and salinity to differences in the prediction of

Niño3.4 using multiple linear regression. That is, we use

the initial differences in temperature and salinity at each

grid point in the equatorial-depth plane as predictors for the

subsequent difference in Niño3.4 index at each lead time.

In developing the regression, we use multiple linear

regressions to account for temporal co-variation of the

differences in T and S at each grid point. However, we do

not account for any spatial co-variation of the initial tem-

perature and salinity differences. But, this method allows

us to get a direct measure of the total variance of the dif-

ference in the prediction of Niño3.4 that can be accounted

for by initial differences in T and S.

We display the regression coefficients in the equatorial-

depth plane as sensitivities of the differences in prediction

of the Niño3.4 SST index to the standardized differences in

initial temperature (Fig. 9a–d) and salinity (Fig. 9e–h).

That is, the units of the contoured quantities in Fig. 9 are �C

difference for prediction of Niño3.4 per SD difference of

the initial temperature and salinity differences. At short lead

time (1 month; Fig. 9a, e), differences in the prediction of

the Niño3.4 SST index derive primarily from differences in

the depiction of near-surface temperature in the vicinity of

the Niño3.4 region. This makes sense because at short lead

time, the only differences in the initial state that could

matter to variations of Niño3.4 SST will be near-surface

temperature in the vicinity of the Niño3.4 region. We do see

a modest sensitivity to near surface salinity (fresh) anomaly

at the eastern edge of the Pacific warm pool (*160�W),

which would go together with an eastward expanded warm

pool as depicted by the temperature differences in Fig. 9a.

As lead time increases, the sensitivity to the initial dif-

ferences moves down and westward into the halocline/

thermocline of the western Pacific and the sensitivity to the

initial salinity differences become as important as tem-

perature differences. We also see a modest sensitivity to

surface salinity differences at lead times 3 and 6 months,

indicative of an initially eastward expanded fresh pool

resulting in warmer Niño3.4 index. However, the largest

sensitivity is in the halocline/thermocline. This downward

and westward shift of the sensitivity with lead time makes

sense because the typical evolution of anomalies in the

subsurface that subsequently will affect the eastern Pacific

SST in the Niño3.4 region is from the western Pacific to the

eastern Pacific along the thermocline.

Interestingly, already by lead time 3 months (Fig. 9b, f),

differences in the prediction of Niño3.4 SST are more

sensitive to initial salinity differences in the halocline in

the western Pacific than they are to the initial temperature

differences in the thermocline. The sign of this sensitivity

makes sense: a positive difference in the prediction of the

Niño3.4 SST index will derive from a warmer thermocline

difference (negative density perturbation) in the western

Pacific 6–9 months earlier. But a negative salinity differ-

ence in the same region will also cause a negative density

difference that will also be carried to the eastern Pacific in

the form of a temperature perturbation (see for example

Zhao et al. 2013). Alternatively, a warmer thermocline in

the western Pacific can be viewed to be caused by adiabatic

downward displacement, and this downward displacement

will result in freshening above the halocline (the saltiest

water sits in the halocline which lies just above the

thermocline).

Zhao et al. (2013) showed that this region around the

thermocline in the equatorially western Pacific is where the

largest differences in the depiction of the mean state

salinity occur between PEODAS and POI. They showed

that the mean salinity bias in POI results in a density

anomaly that sets off a coupled response in the forecasts

akin to that at the onset of El Niño. The mean behavior of

El Niño is then affected by the subsequent changes in the

mean sate. The present study suggests that differences in

depiction of anomalies of salinity in this region are also a

source of differences in prediction of individual ENSO

events. Although this correlation/regression analysis,

which highlights patterns and regions of forecast sensitiv-

ity, does not differentiate between improved or degraded

forecast skill, it is suggestive that the improved depiction

of subsurface temperatures and, importantly and perhaps

unexpectedly, salinity in PEODAS in the tropical western

Pacific is a source of improved predictions of ENSO by

V1_PEO at longer lead times.

We quantify the relative contribution of the temperature

and salinity differences at the initial time to the total

explained variance of the predicted Niño3.4 differences

using analysis of variance. We calculate the total explained

variance of the predicted differences in Niño3.4 index by

the initial temperature and salinity differences at each grid

point and then break this down into the explained variance

resulting from the co-variation of the initial temperature

and salinity difference, and the explained variances by the

temperature differences that are independent of the salinity

differences, and by the salinity differences that are inde-

pendent of temperature. We show this for a lead time of

9 months (Fig. 10), where the contoured quantity is the

explained variance of the difference in predicted Niño3.4

index by the difference in the initial temperature and

salinity at each grid point. We see that the maximum total
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explained variance (*20 %) is located in the western

Pacific thermocline (Fig. 10a), and that around 8 % comes

from the independent temperature difference (Fig. 10c) and

12 % from the independent salinity differences (Fig. 10d).

There is little contribution from co-variance between initial

temperature and salinity differences (Fig. 10b).

In attempt to understand why the initial salinity differ-

ences have a larger impact on the predicted Niño3.4 index

Fig. 9 Multiple regression of the difference in prediction of the

Niño3.4 index at lead times 1 (a, e), 3 (b, f), 6 (c, g), and 9 (d,

h) months onto the initial differences in temperature (left panel) and

salinity (right panel) at each grid point in the equatorial-depth plane

(5�N–5�S). The regression coefficient is shaded at each grid point and

is expressed as a sensitivity of the difference in the predicted Niño3.4

index (�C) to a one SD difference in initial temperature (right panel)

and salinity (left panel)
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than do the initial temperature difference, we examine the

magnitude (SD) of the initial differences in temperature

(Fig. 11a) and salinity (Fig. 11b). Not surprisingly, the

maximum SD of the initial temperature differences aligns

along the thermocline, where the observed temperature

variability is greatest. The maximum SD of the difference

in salinity (Fig. 11b) is in the near surface in the western

Pacific, which too is not surprising because the observed

interannual SD of salinity is large there but the surface

salinity in the POI analyses is constrained to be climato-

logical (i.e., the neat surface SD of the differences in

salinity displayed in Fig. 11b looks nearly identical to the

SD directly from the PEO analyses). We do see, however,

that there is also a maximum of SD of the differences in

subsurface salinity in the vicinity of the thermocline in the

central and western Pacific.

The question is raised as to the relative importance of

these subsurface salinity differences (Fig. 11b) compared

to the temperature differences (Fig. 11a) in the central and

western Pacific. One way to answer this question is to

estimate the relative contribution of each of these initial

differences to the initial density differences. We compute

the relative contribution of the temperature and salinity

variations to the density using a linearized equation of state

(e.g., Gill 1982) and display the relative contribution to the

density difference as the ratio of the contribution of the

salinity differences to the contribution of the temperature

differences (Fig. 11c). Interestingly, we see that salinity

differences dominate in the near surface, but in the ther-

mocline region of the western Pacific where the sensitivity

of the predicted Niño3.4 index is greatest for salinity dif-

ferences (e.g., Fig. 10d), we see that the temperature

differences make a stronger contribution to the local den-

sity difference. The mean ratio in the western Pacific

thermocline is about 0.4–0.8 which indicates that the initial

temperature differences are associated with 50–75 %

greater density perturbations than are the salinity differ-

ences. So why does the predicted difference in Niño3.4

show a greater sensitivity to the initial salinity differences,

especially at longer lead times?

The answer to this question stems from the fact that the

initial salinity differences, although producing an initial

density difference that is roughly 50 % weaker than from

the initial temperature differences, results in sustained

temperature differences because the adjustment time for

salinity in the western Pacific is much longer than for

temperature (e.g., Zhao et al. 2013). We demonstrate this

by regressing the predicted difference in temperature at

each grid point onto the time series of area mean (160�E–

170�W, 142–218 m) difference in temperature and salinity

at the initial time (Fig. 12). To account for covariation of

the box-averaged differences of temperature and salinity at

the initial time, we use multiple regression. To be clear, our

two predictors are the box-averaged initial difference in

temperature and salinity and our predictand is the predicted

difference in temperature at every grid point. We display

the regression coefficients with units �C of predicted tem-

perature difference per SD of each predictor. For clarity,

we show regression at the initial time so that the initial

temperature differences are clear.

Concentrating first on the temperature response to an

initial temperature difference (left hand columns of

Fig. 12), we see that the initial temperature difference is

concentrated in the region where the temperature box was

Fig. 10 a The total explained

variance of the predicted

difference in Niño3.4 index at

lead time 9 months by the

multiple regression onto the

initial difference in temperature

and salinity at each grid point in

the equatorial-depth plane. The

total explained variance is

broken down into b the part that

is due to the covariation of the

initial temperature and salinity

differences and the part that is

due to c the initial temperature

variations that are independent

of the initial salinity variations,

and d the initial salinity

variations that are independent

of the initial temperature

variations
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defined (Fig. 12a) and this temperature anomaly then

propagates eastward along the thermocline, demonstrating

well known characteristics of Kelvin wave propagation.

The temperature signal surfaces in the eastern Pacific after

about 3 months, and then gradually weakens. In contrast,

the initial temperature anomaly associated with the box-

mean salinity difference is relatively weak locally, is

negatively signed (as explained above, an initial positive

salinity difference will cause a positive density difference

which is reflected by a negative temperature difference).

This initial cold anomaly then propagates eastward and

surfaces in the eastern Pacific (most prominently after

3 months but is even evident after 1 month). Locally in the

western Pacific, a warm anomaly develops in order to

counter the density perturbation cause by the initial salinity

difference (c.f., Zhao et al. 2013), and because the initial

salinity difference in the west is slow to adjust, the resul-

tant warm anomaly in the west and upward tilt of the

thermocline to the east is maintained through to 9 month

lead time (Fig. 12j). Hence, the impact of the initial salinity

difference on the subsequent surface temperature in the

east is greater than that from the initial temperature dif-

ferences even though the initial density difference resulting

from the initial temperature differences are greater than

those from the initial salinity differences.

6 Conclusions

We have assessed the impact of improved ocean initial

conditions for prediction of ENSO and IOD using the

Bureau of Meteorology’s POAMA forecast systems.

Improved ocean analyses are provided by the PEODAS

ocean analysis system, which uses an ensemble of analyses,

explicit estimates of state-dependent background error

covariance, and dynamically consistent, multivariate model

updates for both subsurface temperature and salinity.

PEODAS gives a clear improvement for depiction of the

initial state of key oceanographic variables, such as vertical

mean heat content (T300) and salinity content (S300), sea

level anomaly, and ocean currents, over the previous POI

system, which used static error covariances and was uni-

variate (temperature only), leading to dynamical inconsis-

tencies (Yin et al. 2011).

A pair of hindcast experiments from the POAMA sea-

sonal forecast system was examined for which the only

difference was initial conditions as provide by PEODAS

and the older POI. Hindcasts using initialized with PEO-

DAS lead to notable increases in the forecast skill after

about 2 months for SST and subsurface heat content (as

measured by T300) over the Pacific. This result is consis-

tent with previous studies (Kleeman et al. 1995; Ji and

Leetmaa 1997; Rosati et al. 1997; Wang et al. 2002;

Balmaseda et al. 2009; Stockdale et al. 2011) in which

more accurate data assimilation had a significant positive

impact in improving ENSO forecast skill. Specifically

focusing on the Niño3.4 SST index the hindcasts initialized

with PEODAS improved the prediction of Niño3.4 SST

index by *1 month lead time. We further showed that

most of the forecast improvement arose for prediction of

weaker ENSO events or neutral years, which makes sense

because improved initialization would provide the greatest

benefit for times of a smaller signal to noise.

We think that PEODAS provides better ocean initiali-

zation because the ocean subsurface is more dynamically

balanced and possibly represents more accurately low-

frequency variability in the ocean initial conditions which

are desirable for ENSO prediction. Zhao et al. (2013)

showed that systematic bias in subsurface salinity from POI

subsequently affected the simulated mean state temperature

and simulated ENSO variability and that this impact

developed rapidly but lasted at least 9 months (duration of

hindcast). The present results goes one step further and

indicates that increased forecast skill of SST anomalies

over the Pacific is linked to the increased forecast skill of

subsurface temperature and salinity anomalies, which

derive from improved depiction of subsurface temperature

and salinity variations at the initial time.

Fig. 11 The SD of the initial differences in a temperature (units �C)

and b salinity (units psu). c The relative contribution to the initial

difference in density expressed as a ratio of the salinity contribution to

the temperature contribution. Values greater than (less than) 1 mean

that the initial salinity differences (temperature differences) account

for a larger impact on density

2580 M. Zhao et al.

123



Although we see a pronounced improvement in predic-

tion of surface and subsurface temperatures in the Pacific

associated with ENSO, we do not see the same

improvement in prediction of the IOD. We do see a modest

improvement in the prediction of the subsurface tempera-

tures in the IO, but this does not translate into improvement

Fig. 12 Multiple-regression of

the predicted difference in

temperature at each grid point in

the equatorial-depth plane

(0–400 m averaged 5�N–5�S

along 140�E–80�W) onto the

initial differences in

temperature (left panel) and

salinity (right panel) averaged

in the box bounded by (160�E–

170�W, 142–218 m). The

predicted differences in

temperature (units of �C) are

scaled for one SD anomalies of

box-averaged initial differences

in temperature and salinity and

are shown at the initial time and

at lead times 1, 3, 6, and

9 months
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prediction at the surface (i.e., the IOD). This reflects that

there is less control of the subsurface temperature varia-

tions on the surface temperature variations in the IO than in

the Pacific (i.e., the predictability of the IO surface climate

due to ocean memory is lower than in the Pacific). Fur-

thermore, atmospheric noise associated with, for instance

the MJO, is stronger over the IO than the Pacific, and

systematic model error in the IO region (e.g. associated

with depiction of surface fluxes heat fluxes) also act to limit

the capability to exploit improved ocean initialization.

A sensitivity analysis of the difference in predicted

Niño3.4 SST anomaly to the differences in the depiction in

the initial state of temperature and salinity shows that

sensitivity shifts westward and downward into the Pacific

thermocline and halocline with increasing lead time, and

the relative sensitivity to the initial salinity differences

increases. After about lead time 3 months, the sensitivity

per SD of initial salinity difference is greater than per SD

of initial temperature difference, which suggests that errors

in the depiction of salinity variations are more important

than errors in the depiction of initial temperature varia-

tions. However, the errors in depiction of salinity in the

POI analyses in the western Pacific thermocline region are

larger than what can be achieved using a modern assimi-

lation system that accounts for the covariation of salinity

and temperature even in the absence of any in situ salinity

observations (Zhao et al. 2013) and so the errors in POI and

hence the differences between POI and PEODAS would

not be expected to be representative of typical analysis

errors in a well designed assimilation system (such as

PEODAS). However, our results emphasize that salinity

perturbations in the halocline/thermocline region of the

western equatorial Pacific can rapidly affect surface cli-

mate in the eastern Pacific and this impact is maintained for

a long time, thus, it should be considered a source of longer

lead predictability of ENSO. Thinking about longer lead

(i.e., decadal) predictions, a proper depiction of slower

variations of salinity in this thermocline region could

potentially be critical to make, for example, decadal pre-

dictions of ENSO activity.
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