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Abstract One of the main sources of uncertainty in

estimating climate projections affected by global warming

is the choice of the global climate model (GCM). The aim

of this study is to evaluate the skill of GCMs from CMIP3

and CMIP5 databases in the north-east Atlantic Ocean

region. It is well known that the seasonal and interannual

variability of surface inland variables (e.g. precipitation

and snow) and ocean variables (e.g. wave height and storm

surge) are linked to the atmospheric circulation patterns.

Thus, an automatic synoptic classification, based on

weather types, has been used to assess whether GCMs are

able to reproduce spatial patterns and climate variability.

Three important factors have been analyzed: the skill of

GCMs to reproduce the synoptic situations, the skill of

GCMs to reproduce the historical inter-annual variability

and the consistency of GCMs experiments during twenty-

first century projections. The results of this analysis indi-

cate that the most skilled GCMs in the study region

are UKMO-HadGEM2, ECHAM5/MPI-OM and MI-

ROC3.2(hires) for CMIP3 scenarios and ACCESS1.0, EC-

EARTH, HadGEM2-CC, HadGEM2-ES and CMCC-CM

for CMIP5 scenarios. These models are therefore recom-

mended for the estimation of future regional multi-model

projections of surface variables driven by the atmospheric

circulation in the north-east Atlantic Ocean region.

Keywords Downscaling � General circulation models �
Projections � Skill � Weather types

1 Introduction

Changes in the Earth’s climate throughout the twenty-first

century and their potential impacts have become a global

concern during the last years. In this context, the World

Meteorological Organization (WMO) and the United

Nations Environment Programme (UNEP) established the

Intergovernmental Panel on Climate Change (IPCC) in

1988. The IPCC has produced a series of reports which

show abundant evidence of changes in the global climate

system during the twenty-first century. Moreover, most of

these changes are larger than those observed during the

twentieth century (AR4, IPCC 2007).

The output of global climate models (GCMs) has been

one of the most important sources of information since the

first IPCC assessment in 1990. The outcomes from GCMs

are extensively used in many studies to understand changes

in climate dynamics and determine the affects of climate

change on a range of impacts. Furthermore, GCMs are used

as the basis for many dynamical and statistical downscaling

experiments, providing refined information on variables

that GCMs do not simulate directly, such as waves or storm

surge (e.g. Marcos et al. 2011) or do not simulate at enough

resolution (e.g. snow or precipitation). One of the main

challenges associated with using GCMs is model structural

uncertainty. Notwithstanding the uncertainty of the forc-

ings for the climate change scenarios, the skill of different

GCMs is determined by the different methods used to solve

the equations that describe atmospheric and oceanic

dynamics. A systematic evaluation of the performance of

the models is, therefore, required to provide greater con-

fidence in the use of GCMs.

One of the first opportunities for climate scientists to

compare the skill of a large group of GCMs was phase 3 of

the Coupled Model Intercomparison Project (CMIP3)
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(Meehl et al. 2007). The archived data, officially known as

WCRP-CMIP3 multi-model dataset, has been widely

studied. For example, analysis of temperature simulations

in Australia based on probability density functions (Perkins

et al. 2007; Maxino et al. 2008) or studies of precipitation

over the Iberian Peninsula (Nieto and Rodrı́guez-Puebla

2006; Errasti et al. 2011). In these studies, different sta-

tistical measures (e.g. RMSE, KS-test, BIAS, correlation

indices) are used for objective spatial and quantitative

comparison. There are even some studies that aggregate

several statistical measures to form a single metric (e.g.

Gleckler et al. 2008). Similar studies based on later coor-

dinated multi-model experiments have helped to the pro-

cess of ongoing improvement of the models. For example,

the analysis of the two generations of models used in

ENSEMBLES project (van der Linden and Mitchell 2009)

conducted by Brands et al. (2011). Recently, the efforts to

reduce model uncertainty have led to a new generation of

global climate models called Earth System Models as they

incorporate the capability to explicitly represent biogeo-

chemical processes that interact with the physical climate

(Flato 2011). These models are the basis of the fifth phase

of the Coupled Model Intercomparison Project (CMIP5,

Taylor et al. 2012) constituting the most current set of

coordinated climate model experiments. Several authors

have analyzed subsets of CMIP5 models obtaining differ-

ent rankings of models; e.g. Yin et al. (2012) studied the

precipitation over South America, Brands et al. (2013)

analyzed several variables in Europe and Africa and Su

et al. (2013) studied precipitation and temperature over the

Tibetan Plateau.

The main aim of this study is to define a methodology

for evaluating the quality of GCMs in a region. The method

can therefore assist GCM users in the choice of the most

appropriate model to study changes in climate dynamics, to

evaluate impacts or to downscale surface variables. A

common procedure to evaluate the ability of GCMs is to

compare outputs of model simulations against historical

reconstructions (reanalysis) or observations. This can be

achieved by analyzing differences between mean clima-

tologies or even the whole probability density functions.

Recent works have evaluated the skill of GCMs to repro-

duce synoptic climatology (e.g. Lorenzo et al. 2011; Bel-

leflamme et al. 2012) by using classification methods. The

circulation classification method has demonstrated to be a

useful and computational efficient tool for the validation of

GCMs (Huth 2000). The study of synoptic climatology

from circulation patterns or weather types takes into

account the natural climate variability and allows the

evaluation of spatial relations between different locations.

In this work, we characterize the synoptic patterns from

sea level pressure (SLP) fields. SLP provides information

of surface climate conditions and it has been found to be a

better predictor for downscaling purposes than other vari-

ables (e.g. von Storch et al. 1993; Busuioc et al. 2001; Frı́as

et al. 2006). Taking this into account, we have evaluated

the performance of a range of GCMs within the north-east

Atlantic Ocean region. The methodology, based on weather

types and statistical metrics, analyzes not only the skill of

the GCMs to reproduce mean climatologies but also the

interannual variability. Moreover, the consistency of future

simulations is also evaluated. This method has been applied

to 68 models from CMIP3 to CMIP5, providing useful

information about the quality of the GCMs over the

European region.

The rest of the paper is organized as follows. In Sect. 2,

the data from the model reanalysis databases used for

comparison and the analyzed GCMs are presented. Sec-

tion 3 explains the methodology that has been developed,

describing the analyzed region, the weather type classifi-

cation approach and the statistical analysis of the perfor-

mance of the GCMs. The study is completed with the

presentation of the results in Sect. 4, and the conclusions in

Sect. 5.

2 Data

2.1 Atmospheric reanalysis data

The evaluation of the performance of the GCMs requires

the comparison against historical observations. Atmo-

spheric reanalyses are long historical climate reconstruc-

tions that can be considered to be quasi-real data as they

integrate multiple instrumental measurements and have

been widely validated against independent observations.

Nowadays, there are several global atmospheric reanalysis

databases. In this work, we use 6-hourly SLP data obtained

from the three global reanalysis covering the most exten-

sive period of the twentieth century: NCEP/NCAR

Reanalysis I (NNR, Kalnay et al. 1996), ECMWF 40 year

Reanalysis (ERA-40, Uppala et al. 2005) and NOAA-

CIRES twentieth Century Reanalysis V2 (20CR, Compo

et al. 2011).

NNR (1948-present), created by the National Centers for

Environmental Prediction (NCEP) and National Center for

Atmospheric Research (NCAR) has been widely used by

the scientific community. This global reanalysis is gener-

ated by numerical simulation using models similar to those

used for weather forecasting, and includes a data assimi-

lation process. ERA-40 (1957–2002) was created by the

European Centre for Medium-Range Weather Forecasts

(ECMWF), with one version of the Integrated Forecasting

System (IFS). 20CR (1871–2010) has been created by the

NOAA ESRL/PSD (National Oceanic and Atmospheric

Administration Earth System Research Laboratory/
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Physical Sciences Division). In this reanalysis, pressure

observations have been combined with a short-term fore-

cast ensemble of an NCEP numerical weather prediction

model. In this study, NNR has been selected to characterize

the synoptic patterns of atmospheric circulation because it

has been widely validated by the scientific community,

covers a large historical period and is an up to date data-

base, nevertheless, ERA-40 and 20CR reanalyses have also

been compared with the GCMs.

2.2 Global climate models

In this study, the available information on daily sea level

pressure from 68 GCMs has been catalogued and subse-

quently stored. These models have been divided into two

groups depending on which generation of scenarios have

been simulated. One group includes 26 models from

CMIP3 and ENSEMBLES projects and the other one

includes 42 CMIP5 models. Tables 1 and 2 show the

names of the models that have been used as well as the

research centers and countries that they belong to, the

atmospheric resolution and the number of future simula-

tions analyzed (runs). Data from 1961 to 1990 (reference

period) have been used to characterize recent past condi-

tions and projections from 2010 to 2100 have been taken to

represent future conditions, as they are time periods

available from most models.

The simulations analyzed in the CMIP3 and ENSEM-

BLES models are called 20C3M (Twentieth Century Cli-

mate in Coupled Models) for recent past conditions and

SRES B1, SRES A1B and SRES A2 (Special Report on

Emission Scenarios, Nakicenovic et al. 2000) for future

scenarios. The three selected scenarios are generally taken

to represent low, medium and high CO2 concentrations,

respectively. A total of 44 20C3M simulations, 43 of A1B,

19 of A2 and 26 of B1 are studied. Eighteen models belong

to CMIP3 and eight models (CNRM-CM33, ECHAM5C/

MPI-OM, EGMAM, EGMAM2, IPSL-CM4v2, UKMO-

Table 1 Analyzed CMIP3 and ENSEMBLES GCMs names, institutions, countries, atmospheric resolutions and runs

Model Institution Country Atmospheric resolution

(lat 9 lon, number of layers)

Runs B1-

A1B-A2

BCCR-BCM2.0 Bjerknes Centre for Climate Research Norway 1.9� 9 1.9�, L31 1-1-1

CCSM3 National Center for Atmospheric Research USA 1.4� 9 1.4�, L26 2-2-2

CGCM3.1(T47) Canadian Centre for Climate Modelling and Analysis Canada 2.8� 9 2.8�, L31 0-3-0

CGCM3.1(T63) Canadian Centre for Climate Modelling and Analysis Canada 1.9� 9 1.9�, L31 1-1-0

CNRM-CM3 Centre National de Recherches Météorologiques France 2.8� 9 2.8�, L45 1-1-1

CNRM-CM33 Centre National de Recherches Météorologiques France 1.9� 9 1.9�, L19 0-1-0

CSIRO-MK3.0 CSIRO Atmospheric Research Australia 1.9� 9 1.9�, L18 1-1-1

CSIRO-MK3.5 CSIRO Atmospheric Research Australia 1.9� 9 1.9�, L18 1-1-1

ECHAM5/MPI-OM Max-Planck-Institute for Meteorology Germany 1.9� 9 1.9�, L31 3-4-3

ECHAM5C/MPI-OM Max-Planck-Institute for Meteorology Germany 3.75� 9 3.75�, L19 0-3-0

ECHO-G University of Bonn Germany 3.9� 9 3.9�, L19 1-1-1

EGMAM Freie Universitaet Berlin, Institute for Meteorology Germany 3.75� 9 3.75�, L39 3-3-3

EGMAM2 Freie Universitaet Berlin, Institute for Meteorology Germany 3.75� 9 3.75�, L39 0-1-0

FGOALS-g1.0 Institute of Atmospheric Physics China 2.8� 9 2.8�, L26 3-3-0

GFDL-CM2.0 Geophysical Fluid Dynamics Laboratory USA 2� 9 2.5�, L24 1-1-1

GISS-AOM Goddard Institute for Space Studies USA 3� 9 4�, L12 1-1-0

GISS-ER Goddard Institute for Space Studies USA 4� 9 5�, L20 1-1-1

INGV-SXG Istituto Nazionale di Geofisica e Vulcanologia Italy 1.12� 9 1.12�, L19 0-1-0

INM-CM3.0 Institute of Numerical Mathematics Russia 4� 9 5�, L21 1-1-1

IPSL-CM4 Institut Pierre Simon Laplace France 2.5� 9 3.75�, L19 1-1-1

IPSL-CM4v2 Institut Pierre Simon Laplace France 2.5� 9 3.75�, L19 0-3-0

MIROC3.2 (hires) Center for Climate System Research, NIES and RCGC Japan 1.12� 9 1.12�, L56 1-1-0

MRI-CGCM2.3.2 Meteorological Research Institute Japan 2.8� 9 2.8�, L30 1-1-1

PCM National Center for Atmospheric Research USA 2.8� 9 2.8�, L18 2-0-1

UKMO-HadCM3C Met Office Hadley Centre UK 2.5� 9 3.75�, L38 0-2-0

UKMO-HadGEM2 Met Office Hadley Centre UK 1.25� 9 1.9�, L38 0-3-0
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HadCM3C and UKMO-HadGEM2) belong to the

ENSEMBLES project. Data are obtained from the results

of the models sent to the Program for Climate Model

Diagnosis and Intercomparison (PCMDI) at the Lawrence

Livermore National Laboratory in the USA (http://www-

pcmdi.llnl.gov/ipcc/about_ipcc.php) and from the CERA

database of the World Data Center for Climate (WDCC) in

Hamburg (http://cera-www.dkrz.de/CERA/).

For the 42 CMIP5 models, the experiments analyzed are

called historical for recent past conditions and RCP2.6,

Table 2 Analyzed CMIP5 GCMs names, institutions, countries, atmospheric resolutions and runs

Model Institution Country Atmospheric
resolution
(lat 9 lon,
number of layers)

Runs RCP2.6—
RCP4.5—
RCP6.0—
RCP8.5-

ACCESS1.0 CSIRO-BOM Australia 1.25� 9 1.9�, L38 0-1-0-1

ACCESS1.3 CSIRO-BOM Australia 1.25� 9 1.9�, L38 0-1-0-1

BCC-CSM1.1 Beijing Climate Center China 2.8� 9 2.8�, L26 1-1-1-1

BCC-CSM1.1(m) Beijing Climate Center China 1.12� 9 1.12�, L26 1-1-1-1

BNU-ESM College of Global Change and Earth System Science China 2.8� 9 2.8�, L26 1-1-0-1

CanCM4 Canadian Centre for Climate Modelling and Analysis Canada 2.8� 9 2.8�, L35 0-10-0-0

CanESM2 Canadian Centre for Climate Modelling and Analysis Canada 2.8� 9 2.8�, L35 5-5-0-5

CCSM4 National Center for Atmospheric Research USA 0.94� 9 1.25�, L26 3-3-3-3

CESM1(BGC) Community Earth System Model Contributors USA 0.94� 9 1.25�, L26 0-1-0-1

CESM1(CAM5) Community Earth System Model Contributors USA 0.94� 9 1.25�, L26 1-1-1-1

CESM1(FASTCHEM) Community Earth System Model Contributors USA 0.94� 9 1.25�, L26 0-0-0-0

CMCC-CESM Centro Euro-Mediterraneo per I Cambiamenti Climatici Italy 3.71� 9 3.75�, L39 0-0-0-1

CMCC-CM Centro Euro-Mediterraneo per I Cambiamenti Climatici Italy 0.75� 9 0.75�, L31 0-1-0-1

CMCC-CMS Centro Euro-Mediterraneo per I Cambiamenti Climatici Italy 1.9� 9 1.9�, L95 0-1-0-1

CNRM-CM5 Centre National de Recherches Météorologiques France 1.4� 9 1.4�, L31 1-1-1-1

CSIRO-Mk3.6.0 CSIRO-QCCCE Australia 1.9� 9 1.9�, L18 10-10-10-10

EC-EARTH EC-EARTH consortium Various 1.1� 9 1.1�, L62 1-5-0-5

FGOALS-g2 LASG-CESS China 2.8� 9 2.8�, L26 1-1-0-1

FGOALS-s2 LASG-CESS China 1.7� 9 2.8�, L26 1-0-1-3

GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory USA 2� 9 2.5�, L48 1-0-1-1

GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory USA 2� 9 2.5�, L48 1-1-1-1

GFDL-ESM2 M NOAA Geophysical Fluid Dynamics Laboratory USA 2� 9 2.5�, L48 1-1-1-1

GISS-E2-H NASA Goddard Institute for Space Studies USA 2� 9 2.5�, L40 0-0-0-0

GISS-E2-R NASA Goddard Institute for Space Studies USA 2� 9 2.5�, L40 0-2-0-0

HadCM3 Met Office Hadley Centre UK 2.5� 9 3.75�, L19 0-10-0-0

HadGEM2-AO Met Office Hadley Centre UK 1.25� 9 1.9�, L38 1-1-1-0

HadGEM2-CC Met Office Hadley Centre UK 1.25� 9 1.9�, L60 0-1-0-3

HadGEM2-ES Met Office Hadley Centre UK 1.25� 9 1.9�, L38 4-4-4-3

INM-CM4 Institute for Numerical Mathematics Russia 1.5� 9 2�, L21 0-1-0-1

IPSL-CM5A-LR Institut Pierre-Simon Laplace France 1.9� 9 3.75�, L39 4-4-1-4

IPSL-CM5A-MR Institut Pierre-Simon Laplace France 1.25� 9 2.5�, L39 1-1-1-1

IPSL-CM5B-LR Institut Pierre-Simon Laplace France 1.9� 9 3.75�, L39 0-1-0-1

MIROC-ESM MIROC Japan 2.8� 9 2.8�, L80 1-1-1-1

MIROC-ESM-CHEM MIROC Japan 2.8� 9 2.8�, L80 1-1-1-1

MIROC4 h MIROC Japan 0.56� 9 0.56�, L56 0-3-0-0

MIROC5 MIROC Japan 1.4� 9 1.4�, L40 3-3-1-3

MPI-ESM-LR Max-Planck-Institut für Meteorologie Germany 1.9� 9 1.9�, L47 3-3-0-3

MPI-ESM-MR Max-Planck-Institut für Meteorologie Germany 1.9� 9 1.9�, L95 1-1-0-0

MPI-ESM-P Max-Planck-Institut für Meteorologie Germany 1.9� 9 1.9�, L47 0-0-0-0

MRI-CGCM3 Meteorological Research Institute Japan 1.1� 9 1.1�, L48 0-0-0-0

MRI-ESM1 Meteorological Research Institute Japan 1.1� 9 1.1�, L48 0-0-0-0

NorESM1-M Norwegian Climate Centre Norway 1.9� 9 2.5�, L26 0-0-0-0
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RCP4.5, RCP6.0 and RCP8.5 (Representative Concentra-

tion Pathways, Moss et al. 2010) for the future. The four

selected RCPs included one mitigation scenario leading to

a very low forcing level (RCP2.6), two medium stabiliza-

tion scenarios (RCP4.5/RCP6.0) and one very high base-

line emission scenario (RCP8.5) leading to high

greenhouse concentration levels (van Vuuren et al. 2011).

This makes a total of 136 historical simulations, 48 of

RCP2.6, 83 of RCP4.5, 31 of RCP6.0 and 63 of RCP8.5.

CMIP5 data are available through the Earth System Grid—

Center for Enabling Technologies (ESG-CET), on the page

(http://pcmdi9.llnl.gov/).

3 Methods

The methodology developed to study the skill of the GCMs

is summarized in a diagram in Fig. 1. Data from reanalysis

and GCMs are collected first. The study area is then defined

and SLP fields are preprocessed to the spatial domain in the

selected region (chart upper level). In order to get the

estimated indicators of the performance of the GCMs, a

weather type (WT) classification from the reanalysis data is

carried out. The occurrence rate of each synoptic situation

group is assessed from both the reanalysis data and the

GCMs for several time periods (chart middle level).

Finally, different statistical indices are computed to com-

pare the occurrence rates (chart bottom level). The com-

parison between the observed and simulated historical WT

frequency indicates the skill of the GCMs to simulate the

recent past climate. The results of this comparison are used

to analyze the similarity of the synoptic situations and the

ability of the GCMs to reproduce the interannual vari-

ability. On the other hand, the comparison between the

historical and future WT frequency from GCMs determine

the simulated rates of change. These rates of change are

used to analyze the consistency of future projections.

3.1 Study area

The domain of interest in this work is the North Atlantic.

This region is dominated by the North Atlantic Oscillation

(NAO), which is one of the most prominent climate fluc-

tuation patterns in the Northern Hemisphere (Hurrell et al.

2003). NAO is usually described with an index based on

the pressure difference between Iceland and the Azores and

it has important influence on climate from the United States

to Siberia, and from the subtropical Atlantic to the Arctic.

We have therefore selected an area in the north-east

Atlantic from 25�N to 65�N and from 52.5�W to 15�E. In

this region, many surface variables are highly correlated

with pressure fields, such as wind waves (Izaguirre et al.

2012), precipitation (Rodrı́guez-Puebla and Nieto 2010),

snow (Seager et al. 2010) and cereal production (Rodrı́-

guez-Puebla et al. 2007). Given the fact that data from

GCMs are provided in different spatial resolution grids, in

order to make a coherent comparison, all SLP data have

been interpolated by means of bilinear interpolation to a

grid of 2.5� latitude by 2.5� longitude, identical to the mesh

of the NNR results. The analyzed spatial domain and res-

olution is shown in Fig. 2.

3.2 Classification of weather types

Non-initialized simulations by GCMs aim to simulate long-

term statistics of observed weather rather than day-to-day

chronology. For this reason, mean climatologies from

GCMs are usually compared against reanalysis to evaluate

the ability of the GCMs. However, mean climatology

comparison ignores the climate variability of the atmo-

spheric circulation, which causes a wide variety of mete-

orological situations, even severe storm conditions. The

evaluation of GCMs throughout a classification of weather

types reduces this problem, since classification aims to

group similar meteorological situations minimizing the

variability within each group. Therefore, each group is

more or less homogeneous and distinct from other groups.

Many authors are aware of the importance of the models to

reproduce climate variability over a region and have used

atmospheric circulation type classifications; e.g. (Bellefl-

amme et al. 2012; Lee and Sheridan 2012; Pastor and

Casado 2012). Here, the circulation type classification is

developed by applying the non-hierarchical clustering

technique K-means (MacQueen 1967) over the SLP fields

in the study region. To do this, 3-daily averaged SLP fields,

SLP(x,t), from the NNR are analyzed. The 3 days time

scale is chosen to be able to capture mid- latitude cyclo-

genesis situations.

First, we process each 3-day averaged SLP field

anomaly, SLPAðx; tÞ ¼ SLPðx; tÞ � SLPðtÞ, where t repre-

sents each 3-days interval and SLPðtÞ is the mean SLP in

the 3-days interval in the spatial domain. So, two situations

with similar patterns but slightly different mean SLP can be

grouped together. Then, we apply principal components

analysis (PCA) to the processed 3-daily SLP fields of NNR

from 1950 to 1999. PCA helps the clustering technique

reduce dimensions whilst conserving the maximum data

variance. That is, the covariance of the SLP anomalies in

the study region is used to obtain uncorrelated principal

components. In this case, eleven components have

explained more than 95 % of variance. In order to get a set

of synoptic climatologies (weather types), the K-means

algorithm has been applied over these modes. The K-means

technique divides the data space into N classes, which are

represented by their centroids. Each class represents a
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group of atmospheric states of similar characteristics. We

force the K-means algorithm to start with dissimilarity-

based compound selection (Snarey et al. 1997) and the

number of classes has been set to N = 100. Tests with a

different number of classes revealed that this choice does

not impact our results in a significant manner. The selec-

tion of a hundred classes is made based on the compromise

between the best possible characterization of synoptic cli-

matologies, represented by the largest number of clusters

and including an average number of 40 data per group. A

proximity criterion is applied over the N = 100 obtained

WTs, and the centroids are visualized in a 10 9 10 lattice

(Fig. 3). The proximity criterion is based on minimizing

the sum of Euclidean distances between each centroid and

its neighbors. This organization helps to interpret results

since weather types of similar characteristics appear near to

one another. For example, the dominant winter pattern is

characterized by a low pressure center over the Azores

Islands, while a high pressure center dominates the summer

synoptic situation. The weather types located in the right

side of Fig. 3 are characterized by low pressures in Iceland

and high pressures in the Azores Islands, which is usually

associated with a positive phase of NAO.

3.3 Evaluation of the performance of GCMs

3.3.1 Similarity of synoptic situations

Here, the climate information obtained from the synoptic

classification of NNR has been used to evaluate the skill of

GCMs. First, the relative frequency of each of the one

hundred weather types has been calculated for NNR, as the

Fig. 1 Flowchart representing

the methodology

 60 ° W 

 40° W  20° W 

0
°

 20
°  E 

 20 ° N 

 40 ° N 

 60 °
N

Fig. 2 Spatial domain of the

study area
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reference pattern (Fig. 4). The relative frequencies are

estimated from the number of 3-day atmospheric states that

can be attributed to each WT, characterized by its centroid,

during the reference period of 30 years (from 1st January

1961 to the 31st of December 1990). The Euclidean dis-

tance in the reduced EOF-space has been used to assess

which centroid is the closest. Then, the ERA40, 20CR and

GCMs databases are projected onto the one hundred WTs

derived from NNR, and their relative frequencies for each

WT are estimated.

Objective indexes to measure the differences between

frequencies of the reference pattern and those for the

GCMs during the same period in the historical/20C3M

simulations have been applied. The scatter index and a

metric based on the relative entropy have been used for this

purpose. The scatter index (SI) is the root mean square

error normalized by the mean frequency:

SI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 ðpi � p0iÞ

2

N

s

,

PN
i¼1 ðpiÞ

N
ð1Þ

being pi the relative frequency of the ith weather type from

the reanalysis for the reference period, p0i the relative

frequency of the ith weather type from a GCM simulation

for the reference period and N the number of weather types.

This index has been used to compare the relative

frequencies of each simulation of each GCM with the

ones of the reanalysis during the reference period. The

metric based on the relative entropy (RE) is defined here as:

RE ¼
X

N

i¼1

pi log
pi

p
0
i

�

�

�

�

�

�

�

�

; ð2Þ

Lower values of SI and RE therefore indicate a high

degree of similarity and hence a better performing GCM.

The RE index has been used to analyze the skill of the

different GCMs to simulate weather types of low proba-

bility of occurrence. The analysis of these situations, which

could be associated to extreme events, requires a relative

index, such as RE since the scatter index analysis gives

more importance to commonly occurring situations.

However, RE can easily diverge if a model has zero

occurrences for one particular WT. In these cases, we

assume a minimum value of 0.5 occurrences.

This analysis has been done both for annual time-scale

as well as seasonal time-scales, considering the following

distribution: winter (December, January and February),

spring (March, April and May), summer (June, July and

August) and fall (September, October and November). An

example of the application of these indexes is shown in

Fig. 4. The reference pattern represents the relative fre-

quency of each characterized synoptic situation (weather

type) for the recent past conditions. NNR has been used to

derive this pattern although ERA-40 and 20CR show

similar characteristics.

The frequencies obtained from ECHAM5 (CMIP3) and

ACCESS1.0 (CMIP5), provide low SI and RE since the

most common and unusual situations are well reproduced.

These models show only small variations between

Fig. 3 The 100 weather types

represented by the SLP fields

(mbar). Right panels show the

most frequently occurring

weather types in winter and

summer
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occurrence of neighboring weather types which represent

near synoptic situations and probability of occurrence.

Alternatively, CNRM-CM3 (CMIP3) and FGOALS-g2

(CMIP5) show less similarity with the reanalysis reference

pattern and consequently larger SI and RE. These models

tend to overestimate the frequency of particular WT0s
associated to synoptic situations with weaker gradients

between low and high pressure centers. Note that here and

henceforth, SI and RE are interpreted in relative values (i.e.

lowest values versus highest values across the ensemble).

3.3.2 Interannual variability

The skill of a model to represent the climate state is the

most important test to evaluate its quality. It is for this

reason that mean climatologies over several decades are

often used to compare GCMs with observations. It is

however, important to note that the variance (i.e. interan-

nual variability) is also a requirement for good model

performance. We have analyzed the skill of GCMs to

represent interannual climate variability because it is an

indicator of their ability to respond to changing conditions.

The magnitude of the interannual variability has been

measured for each WT by assessing the standard deviation

of the 30 annual values of relative frequency over the

reference period (1961–1990). The comparison of the

variability values of the reanalysis with those that corre-

spond to each GCM is conducted by the scatter index of the

standard deviations of the N weather types (stdSI).

stdSI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 ðstdðpiÞ � stdðp0iÞÞ

2

N

s

,

PN
i¼1 ðstdðpiÞÞ

N

ð3Þ

The lower the stdSI the better the performance of the

GCM to simulate the interannual climate variability.

3.3.3 Consistency of future projections

We have evaluated the skill of GCMs to reproduce his-

torical climate and its variability. However, good model

performance evaluated from the present climate does not

necessarily guarantee reliable predictions of future climate

(Reichler and Kim 2008). This is mainly due to projections

consider future greenhouse gas forcings outside the used

range in the historical period of validation. Consequently,

the skill of GCMs to reproduce future climate projections

cannot be directly evaluated. However, multi-model

ensembles are often used to analyze future projections. In

order to provide information about uncertainty on the

ensembles, we have evaluated the consistency between

GCMs during future projections.

To assess the consistency between future projections of

GCMs, we have divided the twenty-first century in three

different periods: short term (2010–2039), mid-term

(2040–2069) and long-term (2070–2099), while evaluating

which models predict inconsistent variations in each of

these periods, i.e. magnitudes of change much larger or

much lower than those of most models. We assume the

stationary hypothesis over climate dynamics, that is, the

WT classification remains valid throughout the twenty-first

century. For every analyzed simulation and future time

period, we have calculated two metrics of the magnitude of

change towards the simulations in the reference period. The

magnitude of change in the frequency of synoptic situa-

tions has been evaluated through SI and the magnitude of

change in the interannual variability has been analyzed

through stdSI. The mean magnitude of change has been

used in case of several simulations of the same model. For

each scenario, future period and metric, we have computed

the quartiles of the magnitudes of change. The interquartile

range (IQR) is the difference between the upper quartile

(Q3, 75 percentile) and the lower quartile (Q1, 25

Fig. 4 Relative frequency of

the 100 weather types in the

reference period for NCEP-

NCAR reanalysis (quasi-

observations) and four GCMs.

The darker blue colors being

weather types with high

frequency and the lighter blue

the less frequent weather types
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percentile). IQR is a robust statistic to measure the dis-

persion of a set of data. In this study, models with mag-

nitudes of change lower than Q1 - 1.5(IQR) or higher

than Q3 ? 1.5(IQR) are considered outliers, i.e. GCMs of

a very different behavior compared with the rest of GCMs.

4 Results

4.1 Skill of GCMs to perform climatologies

The ability of the GCMs to represent the relative frequency

of synoptic situations in the reference period can be

assessed by direct comparison with the reference pattern.

Figure 5 summarizes the bias of the GCMs for the 20C3M

simulations (CMIP3 and ENSEMBLES) and the historical

simulations (CMIP5). Dots in the WTs indicate agreement

on the sign of the bias for more than 80 % of the models.

Small bias has been estimated on GCMs over all WTs,

indicating a good ability of the models to reproduce com-

mon synoptic situations, i.e. mean climatologies. The per-

formance of these ensembles has been measured using the

SI and RE indices. CMIP5 simulations (SI = 0.37,

RE = 0.07) show a general better agreement than CMIP3

(SI = 0.45, RE = 0.08). Some discrepancies, however, are

found on unusual events associated to deep low pressures

centered over different areas of the North Atlantic (right

hand side of the figure) and relatively stable atmospheric

states (WTs at the bottom of the figure). The former are

over-estimated, whilst the latter tend to be slightly under-

estimated. Note that the overestimated WTs might be

associated to extreme storm events during intense Northern

Annular Mode (NAM). This overestimation is in agree-

ment with previous studies. For instance, Gerber et al.

(2008) found that climate models vaguely capture the

NAM variability, over-estimating persistence on sub-sea-

sonal and seasonal timescales.

The results of individual GCMs are summarized in

Fig. 6 for 20C3M simulations and in Fig. 7 for historical

simulations. In both figures the models have been sorted

according to their SI and the number of simulations ana-

lyzed for each model is shown between brackets. The SI

score of the models with only one simulation is represented

by the small vertical black lines. When several simulations

are available these vertical black lines represent the mean

value of the SI while the horizontal ones represent the

range between the minimum and the maximum SI. The

mean RE is represented by a black dot. The SI and RE

scores have also been obtained for the reanalyses ERA-40

(SI = 0.16, RE = 0.10) and 20CR (SI = 0.26, RE = 0.14)

during the reference period. 20CR has also been analyzed

in 1901-1930 (SI = 0.30, RE = 0.18) and in 1931-1960

(SI = 0.30, RE = 0.19). The similar scores for different

periods of the twentieth century support the use of the same

synoptic classification in the twenty-first century. These

values provide an indicator of SI and RE values which

better represent the performance of GCMs. The SI scores of

the reanalyses have been represented in the figures by

vertical dotted lines. It can be observed that ERA-40 is

very similar to NNR whereas 20CR present larger differ-

ences. This was expected since 20CR only assimilates

surface pressure data.

The models that best reproduce the occurrence rate of

synoptic climatology for 20C3M simulations with SI lower

than 0.5 and RE lower than 0.3, are: UKMO-HadGEM2

(SI = 0.37, RE = 0.22), ECHAM5/MPI-OM (SI = 0.46,

RE = 0.26) and MIROC32HIRES (SI = 0.49, RE = 0.28).

Alternatively, the five models which have SI larger

than 1 and, therefore, have a lower simulation performance

with regard to the frequency of the different synoptic

situations, are: CCSM3, GISS-ER, FGOALS-g1.0,

CNRM-CM3 and CNRM-CM33. For CMIP5 models,

there are nine models with SI lower than 0.5. Three of

them: ACCESS1.0 (SI = 0.33, RE = 0.19), EC-EARTH

Fig. 5 Bias of 20C3M (left)

and historical (right) ensembles.

The small dots indicate

agreement on the sign for more

than 80 % of the models
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(SI = 0.36, RE = 0.21) and HadGEM2-CC (SI = 0.37,

RE = 0.21) have both SI and RE lower than the best model

for 20C3M simulations. The other six: HadGEM2-ES,

MPI-ESM-P, CMCC-CM, GFDL-CM3, MPI-ESM-LR and

CMCC-CMS have SI slightly larger but RE is still lower

than 0.3. Note that, only two CMIP5 models: IPSL-CM5B-

LR (SI = 1.03, RE = 0.57) and FGOALS-g2 (SI = 1.17,

RE = 0.60) show SI larger than one.

The differences between runs of a single model are one

order of magnitude lower than the differences between

models. This shows that the internal variability is well

taken into account by using a 30-year period. Moreover,

results are qualitatively similar for the two indicators (RE

and SI) that have been used to analyze the representation of

the synoptic situations, indicating that the model perfor-

mance is consistent across the two performance measures.

The mean values of both indexes reveal an improvement in

CMIP5 models (SI = 0.61, RE = 0.34) with respect to the

analyzed set of models from CMIP3 and ENSEMBLES

(SI = 0.76, RE = 0.41). In addition, the values of RE are

smaller for CMIP5 models than for CMIP3 models with

similar values of SI, indicating that CMIP5 models have

improved their capacity to detect synoptic situations with

low relative frequency.

4.2 Skill of GCMs to perform climate variability

The results of the diagnosis in each season are shown in

Figs. 8 and 9, with the models and simulations analyzed as

in Figs. 6 and 7, respectively. The SI scores for ERA40 and

20CR are very similar in fall (0.34 vs. 0.35, respectively)

and winter (0.34 vs. 0.39), being the differences slightly

larger in spring (0.30 vs. 0.40). The largest differences can

be found in summer (0.31 vs. 0.59). The RE scores cannot

be included because several WTs have zero occurrences in

some seasons.

For CMIP3 and ENSEMBLES models (Fig. 8) the

diagnosis in spring and fall is analogous to the annual one

except for minor differences. In both seasons, most models

show very similar performance with SI between 0.5 and 1.
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Fig. 6 GCMs of CMIP3 and ENSEMBLES sorted out by performance to model synoptic situations (the higher performance, the lower SI). The

mean RE is represented by a black dot
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Only three models in spring and seven models in fall show

noticeably larger SI. On the contrary, in winter and summer

the differences are larger. In winter some ENSEMBLES

models: EGMAM (SI = 0.76), EGMAM2 (SI = 0.71) and

UKMO-HADCM3C (SI = 0.80) perform as well as the

best models. FGOALS-g1.0 shows results of lower quality

(SI = 3.70) in summer and hence performs poorly on the

annual scale. On the other hand, CCSM3 and PCM only

show low SI in summer, and perform with lower quality in

the rest of the seasons. A similar observation occurs with

models from Commonwealth Scientific and Industrial

Research Organisation (CSIRO), with the SI of CSI-

ROmk35 and CSIROmk30, the first and third lowest on

this season. For CMIP5 models (Fig. 9) the seasons that

show larger discrepancies with respect to the global eval-

uation shown in Fig. 7 are also winter and summer, with

the diagnosis in spring and fall similar to the global eval-

uation. Interestingly, the CMIP5 models which provide the

worst diagnostic in winter (SI larger than 1.4), namely

CCSM4, CESM1(BGC), CESM1(FASTCHEM), BNU-

ESM and BCC-CSM1.1(m) are some of the best models in

summer. Note that the SI in summer of CCSM4 is 0.62,

only slightly larger than the one of 20CR. On the contrary

IPSL-CM5B-LR and FGOALS-g2 are the poorest per-

forming models at the annual scale and during summer

season but they perform well in winter. Curiously, the

model with the third largest SI in summer INM-CM4 is one

of the best models in the other seasons. The seasonal

analysis show that the performance of the models depends

on the season, especially in summer and winter, indicating

that, in some cases, the most adequate models depend on

the purposes.

The interannual variability analysis has been based on the

stdSI score described in Sect. 3.2. As shown in Fig. 10, in

which the order of GCMs of the previous figures has been

kept, the stdSI scores for ERA-40 (stdSI = 0.17) and 20CR

(stdSI = 0.21) are more similar than their SI. The results for

20C3 M simulations (Fig. 10a), show that UKMO-Had-

GEM2 (stdSI = 0.24) and ECHAM5/MPI-OM

(stdSI = 0.27) provide the highest quality results, with stdSI

lower than 0.3, while CNCM33 and GISS-ER are the ones

that provide results of lower quality with stdSI larger than

0 0.2 0.4 0.6 0.8 1 1.2 1.4

FGOALS−g2
IPSL−CM5B−LR
BCC−CSM1.1(m)

FGOALS−s2
MIROC−ESM−CHEM

MIROC−ESM
BNU−ESM

IPSL−CM5A−LR
MIROC5

CESM1(FASTCHEM)
CESM1(BGC)
MRI−CGCM3

CCSM4
BCC−CSM1.1

IPSL−CM5A−MR
GISS−E2−H
MRI−ESM1
GISS−E2−R

CMCC−CESM
NorESM1−M

CanCM4
CanESM2

INM−CM4
ACCESS1.3

CNRM−CM5
GFDL−ESM2G

HadCM3
MPI−ESM−MR
GFDL−ESM2M
CSIRO−Mk3.6.0

MIROC4h
CESM1(CAM5)

CMCC−CMS
MPI−ESM−LR

GFDL−CM3
CMCC−CM

MPI−ESM−P
HadGEM2−ES
HadGEM2−CC
HadGEM2−AO

EC−EARTH
ACCESS1.0

(2)
(1)

(3)
(3)

(1)
(3)

(1)
(6)

(5)
(3)

(1)
(5)
(3)

(3)
(3)

(2)
(1)

(3)
(1)
(3)

(10)
(5)

(1)
(1)

(10)
(1)

(10)
(3)

(1)
(10)

(3)
(1)
(1)
(3)

(5)
(1)

(2)
(5)

(3)
(1)
(6)

(1)

RE / Scatter Index

ERA−40 20CR
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0.6. For the historical simulations of the CMIP5 models

(Fig. 10b) the values of stdSI are slightly better than the ones

for 20C3M simulations. Five models ACCESS1.0, MPI-

ESM-P, EC-EARTH, HadGEM2-CC and HadGEM2-ES

have stdSI lower than 0.3. Furthermore, there are no models

with stdSI larger than 0.6 and only two models: IPSL-CM5B-

LR and FGOALS-g2 exceed 0.5. Results obtained for

interannual variability confirm those obtained from the

similarity of synoptic situations, with the models with the

highest and lowest performance the same for both analyses.

4.3 Consistency of future projections

Analysis of future projections is made in a different way to

the analysis of past climate. Historical simulations can be

compared with reanalysis data, but the future projections

can only be compared to each other. The analysis of future

projections can be used to detect models with anomalous

behavior but not to determine which models are best. The

results of the consistency of future projections have been

synthesized in Fig. 11 for the three SRES scenarios con-

sidered (B1, A1B and A2) and Fig. 12 for the four RCP

(RCP2.6, RCP4.5, RCP6.0 and RCP8.5). For each sce-

nario, the magnitudes of change of the frequency of the

synoptic situations and the magnitudes of change in the

interannual variability are shown for three future time

periods. On each box, the central mark is the median, the

edges of the box are the lower and upper quartiles and the

whiskers extend to the most extreme magnitudes of change

within the range defined by Q1 - 1.5(IQR) and

Q3 ? 1.5(IQR). The numbered red dots represent models

with magnitudes of change outside this range.

Fig. 8 GCMs of CMIP3 and ENSEMBLES performance to model

synoptic situations on each season 1 UKMO-HadGEM2; 2 ECHAM5/

MPI-OM; 3 MIROC3.2(hires); 4 MRI-CGCM2.3.2; 5 ECHAM5C/

MPI-OM; 6 CGCM3.1(T63); 7 INGV-SXG; 8 CSIRO-Mk3.5;

9 CGCM31T47; 10 CSIRO-Mk3.0; 11 ECHO-G; 12 EGMAM;

13 GFDL-CM2.0; 14 GISS-AOM; 15 IPSL-CM4; 16 EGMAM2;

17 UKMO-HadCM3C; 18 IPSL-CM4v2; 19 INM-CM3.0; 20 PCM;

21 BCCR-BCM2.0; 22 CCSM3; 23 GISS-ER; 24 FGOALS-g1.0;

25 CNRM-CM3; 26 CNRM-CM33
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For SRES scenarios (Fig. 11) only the mid-term and

long-term periods are shown because few simulations

cover the short term period. For these scenarios, INM-CM3

(19), GISS-ER (23) and CNRM-CM3 (25) show magni-

tudes of change notably high for some combinations of

scenario, indicator and time-period. For CMIP5 (Fig. 12)

short-term, mid-term and long-term can be shown because

information for the full twenty-first century is available. In

this case there are two different groups of models with

anomalous magnitudes of change. HadGEM2-AO (03),

GFDL-CM3 (08), IPSL-CM5A-MR (28), IPSL-CM5A-LR

(35), MIROC-ESM-CHEM (38), FGOALS-s2 (39) and

FGOALS-g2 (42), show in several cases high magnitudes

of change whereas MPI-ESM-MR (15), INM-CM4 (20),

MRI-CGCM3 (31) and BCC-CSM1.1(m) (40) show in

some cases low magnitudes of change. Results indicate that

the magnitudes of change and their spread are larger in the

long-term period than in the short-term period and for high-

emissions scenarios, e.g., A2 and RCP8.5, than for low-

emission scenarios. It is interesting to note the connection

between the ability of models to reproduce the present

climate (the higher the number, the worse the performance)

and the consistency of their future simulations. The models

with anomalous magnitudes of change mostly belong to the

group of models with low skill in the reference period.

Consequently, the spread is reduced when considering

models with high skill in the reference period. For instance,

a 30 % reduction in spread is obtained by considering only

the top half of the models; those with the best skill.

However, some of the models with anomalous magnitudes

of change perform reasonably well in the recent past. It

may indicate that these models are unable simulate the

Fig. 9 GCMs of CMIP5 performance to model synoptic situations on

each season 1 ACCESS1.0; 2 EC-EARTH; 3 HadGEM2-AO; 4

HadGEM2-CC; 5 HadGEM2-ES; 6 MPI-ESM-P; 7 CMCC-CM; 8

GFDL-CM3; 9 MPI-ESM-LR; 10 CMCC-CMS; 11 CESM1(CAM5);

12 MIROC4h; 13 CSIRO-Mk3.6.0; 14 GFDL-ESM2M; 15 MPI-

ESM-MR; 16 HadCM3; 17 GFDL-ESM2G; 18 CNRM-CM5; 19

ACCESS1.3; 20 INM-CM4; 21 CanESM2; 22 CanCM4; 23

NorESM1-M; 24 CMCC-CESM; 25 GISS-E2-R; 26 MRI-ESM1; 27

GISS-E2-H; 28 IPSL-CM5A-MR; 29 BCC-CSM1.1; 30 CCSM4; 31

MRI-CGCM3; 32 CESM1(BGC); 33 CESM1(FASTCHEM); 34

MIROC5; 35 IPSL-CM5A-LR; 36 BNU-ESM; 37 MIROC-ESM;

38 MIROC-ESM-CHEM; 39 FGOALS-s2; 40 BCC-CSM1.1(m); 41

IPSL-CM5B-LR; 42 FGOALS-g2
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Fig. 10 GCMs of CMIP3 and ENSEMBLES (a) and CMIP5 (b) performance to simulate interannual variability (the higher performance, the

lower SI)
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climate variability associated to larger changes in the

forcings during the twenty-first century.

Figure 13 shows in detail the long-term changes of

CMIP3 and CMIP5 ensembles for the scenarios RCP8.5

and A2, respectively. Dots in the WTs indicate agreement

on the sign of the change for more than 80 % of the

models. Note that both, CMIP3 and CMIP5, show a similar

pattern of change in the synoptic classification, with three

discernible changes: i) a frequency decrease of the WTs

(WTs in low right side) associated to slight positive NAO

situations (modest intensification of the high and low

pressure systems); ii) an increase of synoptic situations

with dominance of a high center of action, very often

during summer (top and middle WTs); and iii) a decrease

on WTs with a clear low pressure system in the mid-North

Atlantic basin (WTs in the left side). Furthermore, CMIP3

models under A2 scenario provide more homogeneous and

intense changes than CMIP5 models under RCP8.5.

5 Conclusions

A methodology to analyze the performance of GCMs based

on weather types (WTs) and statistical metrics has been

developed. The method analyzes the ability of the models

to reproduce three characteristics: the historical synoptic

climatologies, the interannual variations and the

consistency of future projections. The use of statistic

metrics based on the scatter index and the relative entropy

allow a quantitative estimation of the GCMs performance.

The method has been applied to the Northeast Atlantic

region. The three models that best simulate the recent past

climate conditions from the CMIP3 and ENSEMBLES

datasets are: UKMO-HadGEM2, ECHAM5/MPI-OM and

MIROC3.2 (hires). Furthermore, these models are consis-

tent during the twenty-first century for the SRES simula-

tions analyzed. For CMIP5, seven models perform above

the rest during the twentieth century: ACCESS1.0, EC-

EARTH, HadGEM2-AO, HadGEM2-CC, HadGEM2-ES,

MPI-ESM-P and CMCC-CM. During the twenty-first

century five of them are consistent but HadGEM-AO

overestimates the changes for RCP45 in the short term and

there are no future simulations for MPI-ESM-P.

These results are consistent with other studies of SLP in

the Northern Hemisphere. For example, Walsh et al. (2008)

evaluated 15 GCMs of CMIP3 over the Northern extra-

tropical domains focusing in Greenland and Alaska. They

found that ECHAM5/MPI-OM is one of the top-perform-

ing models. Errasti et al. (2011) found ECHAM5/MPI-OM

and MIROC3.2 (hires) as the best CMIP3 model in the

Iberian peninsula. Brands et al. (2011) found similar results

within ENSEMBLES models in the Northeast Atlantic

region for the two best models (UKMO-HadGEM2 and

ECHAM5/MPI-OM) and they also concluded that the two
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worst performing models are CNRM-CM3 and CNRM-

CM33. Brands et al. (2013) also obtained HadGEM2-ES

outperforming the remaining models in a group of seven

CMIP5 models.

These results are also fairly consistent with Cattiaux

et al. (2013) that choose the geopotential height at 500 mb

rather than SLP for depicting the large-scale circulation. It

is important to highlight, however, that an evaluation of the

quality of the GCMs depends on the study area and the

considered variable, showing different results to those

obtained for other variables or regions. Note that the

performance of the GCMs also varies depending on the

analyzed season. Therefore, the choice of the most ade-

quate models depends on the specific purposes (e.g. studies

focus on extreme wave heights during winter or ice melting

during summer). On the contrary, from the analysis carried

out the importance of the atmospheric resolution is not

clear. The models with the highest resolution are not

always performing the best.

The small differences in the skill indexes among runs of

the same model indicate that the methodology is robust

because it is not considerably affected by the natural
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Fig. 12 Box plots of the two

indicators of consistency for

scenarios RCP2.6, RCP4.5,

RCP6.0 and RCP8.5.

Numbering in accordance with

Fig. 9

Fig. 13 Changes of A2 (left)

and RCP8.5 (right) ensembles

in 2070–2099 towards the

reference period (20C3M,

historical). The small dots

indicate agreement on the sign

for more than 80 % of the

models
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variability of climate. In spite of this, notable differences

can be observed in future simulations, even among the best

rated models. Therefore, the use of ensembles or multi-

model groups is recommended since it diminishes the

effects of individual simulations allowing us to have

greater confidence on the results.
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