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Abstract We estimate area burned in southern California

at mid-century (2046–2065) for the Intergovernmental

Panel on Climate Change A1B scenario. We develop both

regressions and a parameterization to predict area burned in

three ecoregions, and apply present-day (1981–2000) and

future meteorology from the suite of general circulation

models to these fire prediction tools. The regressions

account for the impacts of both current and antecedent

meteorological factors on wildfire activity and explain

40–46 % of the variance in area burned during 1980–2009.

The parameterization yields area burned as a function of

temperature, precipitation, and relative humidity, and

includes the impact of Santa Ana wind and other geo-

graphical factors on wildfires. It explains 38 % of the

variance in area burned over southern California as a

whole, and 64 % of the variance in southwestern Califor-

nia. The parameterization also captures the seasonality of

wildfires in three ecoregions of southern California. Using

the regressions, we find that area burned likely doubles in

Southwestern California by midcentury, and increases by

35 % in the Sierra Nevada and 10 % in central western

California. The parameterization suggests a likely increase

of 40 % in area burned in southwestern California and

50 % in the Sierra Nevada by midcentury. It also predicts a

longer fire season in southwestern California due to warmer

and drier conditions on Santa Ana days in November. Our

method provides robust estimates of area burned at mid-

century, a key metric which can be used to calculate the

fire-related effects on air quality, human health, and the

associated costs.

Keywords Wildfire � Ensemble projection � Southern

California � Santa Ana wind

1 Introduction

Fires burned *25,000 km2 in California in the past decade,

an area almost 10 times that of the Yosemite National Park.

Large fires cause tremendous economic loss (http://www.

ncdc.noaa.gov/billions/) and threaten lives, especially in

southern California. Emissions from wildfires significantly

worsen air quality in local and downwind regions and

adversely affect human health (Mott et al. 2002; Hlavka et al.

2005; Kunzli et al. 2006; Pfister et al. 2008). Projection of

future wildfire activity in southern California is challenging,

not only because fires in this area are influenced by a mix of

factors including human activity, fuel load, topography, and

weather conditions (Syphard et al. 2008; Peterson et al.

2011), but also because the projected changes in meteorol-

ogy in this region are very uncertain (Christensen et al.

2007). In this study, we project future area burned in southern

California at midcentury (2046–2065). We examine the

factors contributing to area burned, and we develop two fire

tools, parameterization and regressions, to predict future area

burned with meteorological variables from a suite of general

circulation models (GCMs). Since area burned is required for
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calculation of fire emissions, our work represents the first

step toward estimating the environmental and health impacts

of wildfires in coming decades in this highly populated

region.

As a populous and mountainous state, California has a

unique set of geographic and meteorological parameters

associated with wildfires. Human activity has both positive

and negative influences on wildfires in California (Syphard

et al. 2007). People cause most fires in the state, and

ignitions are usually close to roads, trails, and populated

areas (Syphard et al. 2008). However, fires in the state are

more likely to spread when they are far from urban areas in

regions where fire suppression is not practiced (Syphard

et al. 2008). In addition, the rugged terrain of remote

regions makes access for firefighters difficult, while the

high fuel load in these regions increases fire severity. These

last two factors contribute to large area burned in remote

regions (Keeley et al. 2009).

Most of the extremely large wildfires in southern Cali-

fornia are associated with Santa Ana winds, strong offshore

winds characterized by low humidity (Schroeder et al.

1964; Moritz 1997; Keeley et al. 2009). These winds

develop as a consequence of a steep pressure gradient

between the Great Basin and the Los Angeles area

(Raphael 2003) and are strengthened as they channel

through the complex local topography (Jones et al. 2010).

The Santa Ana winds occur most frequently in winter but

have their greatest impact on wildfires in autumn, when air

temperatures are still high and vegetation has dried out

during the preceding summer (Westerling et al. 2004;

Keeley et al. 2009). Fire models that consider the impact of

Santa Anas significantly increase the predicted area burned

(Peterson et al. 2011), but the modeled fire-Santa Ana

relationship has not been well validated.

Projections of future wildfire activity in southern Cali-

fornia under global warming scenarios are few and they

show contradictory results. Westerling and Bryant (2008)

developed a statistical model for large fires in California by

taking into account the impacts of climate and topography.

Using simulated meteorological variables from two GCMs,

they predicted that the probability of large fires in southern

California will decrease by 29 % by 2100 using one GCM

but increase by 28 % with the other. Lenihan et al. (2008)

used the same GCM output to drive a dynamic global

vegetation model (DGVM) and found that the annual area

burned decreases more than 40 % along the southern coast

of California for one GCM but increases more than 50 %

for another by 2100, a result similar to Westerling and

Bryant (2008) but for the opposite GCMs. Westerling et al.

(2011) applied an approach similar to that in Westerling

and Bryant (2008) using output from 3 GCMs for 2 climate

scenarios. They calculated median increases of 20–40 % in

area burned for California by 2085, but the 3 GCMs

predicted opposing changes in area burned in the south of

the state. These studies used different fire schemes and

relied on the output from only 1–3 GCMs, which may

explain the inconclusive results. They also did not account

for the effects of the Santa Ana winds. The prediction of

Santa Anas in a future atmosphere is uncertain, as different

trends are projected depending on the climate model, sce-

nario, and the criteria used to identify Santa Ana events

(Miller and Schlegel 2006; Hughes et al. 2011).

In an earlier study, we projected future wildfire activity

in the western US using two fire prediction schemes and

output from 15 climate models (Yue et al. 2013, hereinafter

referred to as Y2013). We developed fire models by

regressing meteorological variables and fire indexes onto

observed area burned in each of six ecoregions with a

stepwise approach. We also developed a parameterization

that calculates daily area burned as a function of temper-

ature, relative humidity, and precipitation in each grid.

Both approaches performed well in forested regions but

poorly in southern California, even when we took into

account the impact of antecedent meteorological conditions

as suggested by some studies (e.g., Westerling et al. 2003;

Littell et al. 2009).

In this study, we build on the multi-model prediction

approach in Y2013 and project future area burned in

southern California with updated fire prediction schemes.

First, we divide the original area into three sub-regions and

use meteorological data with higher spatial resolution.

Second, we consider the influence of elevation, population,

and fuel load on wildfire activity. Third, we take into

account the impacts of Santa Ana winds to improve our fire

prediction tools. Our work is the first to validate the

modeled relationship between fires and Santa Ana winds

and apply it to simulated climate from multiple GCMs. In

Sect. 2, we describe the data we use, and in Sect. 3 we

develop and evaluate fire models for the present-day area

burned. We show the projections of future area burned in

Sect. 4 and discuss these results in the final section.

2 Data

2.1 Fire data

We use the interagency fire report data managed by the

National Wildfire Coordinating Group from the Fire and

Aviation Management Web Applications (FAMWEB,

http://fam.nwcg.gov/fam-web/weatherfirecd/, downloaded

on March 25th, 2011). The data are collected by five

agencies: the US Forest Service (USFS), Bureau of Land

Management (BLM), Bureau of Indian Affairs (BIA), Fish

and Wildlife Service (FWS), and National Park Service

(NPS). Each report gives the name, location (longitude and
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latitude), time (start and end), ignition source (lightning or

human) and area burned of an individual fire. Although the

USFS provides fire reports back to 1914, more than 90 %

of the records are for fires after 1980. The quality of pre-

1980 data is uncertain (Westerling et al. 2003), so we select

fires in 1980-2009. The same fire sometimes burns in land

managed by different agencies, so we filter the data for two

or more records reporting fires with the same name and

area burned that occur within 50 km of each other on the

same day. We compile fire records only for southern Cal-

ifornia, which we define to be south of the line linking

Lake Tahoe and San Francisco (Fig. 1a). All the fires in the

same month are aggregated into a 0.5� 9 0.5� grid.

We also use the annual fire reports from the National

Interagency Coordination Center (NICC, http://www.nifc.

gov/nicc/). The NICC manages fire reports from federal

agencies, states, and privately owned land, and as a result

has more complete datasets relative to the FAMWEB.

However, it provides only the annual total number and area

of fires back to 1994 in each of the 11 pre-defined geo-

graphic areas in the United States. The domain of southern

California defined in our study is consistent with that in the

NICC, so we use the latter as a check on our compilation

from the FAMWEB.

2.2 Geographic data

We obtain the topographic data ETOPO from the NOAA

National Geographic Data Center (http://www.ngdc.noaa.

gov/). It gives global topography with a resolution as high

as 2 min (*3 km). We download the gridded 1 km pop-

ulation map for the United States for 2000 from the NOAA

National Climatic Data Center (http://www.ncdc.noaa.gov/).

We use the fuel load database of the USFS, the Fuel

Characteristic Classification System (FCCS, http://www.fs.

fed.us/pnw/fera/fccs/, downloaded on May 12th, 2011)

(McKenzie et al. 2007; Ottmar et al. 2007). The

1 km 9 1 km fuelbed map for the US is derived from the

distribution of vegetation types from the Landscape Fire

and Resource Management Planning Tools (LANDFIRE,

http://www.landfire.gov/). We group the FCCS fuel cate-

gories into seven fuel types, including litter and light fuels,

medium fuels, heavy fuels, duff, grass, shrub, and canopy,

as in Spracklen et al. (2009). We use shrub load as a var-

iable to estimate fire distribution because we obtain a sta-

tistically significant relationship between fire probability

and shrub load. We aggregate population and fuel load data

onto the 20 9 20 grid of the topographic data.

2.3 Meteorological data

For the regressions, we use daily measurements at 361

FAMWEB weather sites in southern California, including

local noon temperature and relative humidity (RH) at 2

meters above ground level (AGL), wind speed and direc-

tion at 10 m AGL, as well as the daily total precipitation.

These variables are applied directly in the regressions, and

are used to calculate the fire indexes described below. An

earlier version of the FAMWEB weather data was used in

Spracklen et al. (2009). Y2013 relied on the daily meteo-

rological dataset from the Global Surface Summary of the

Day (GSOD), which at that time had somewhat better

temporal and spatial continuity than FAMWEB in the

western United States. However, the FAMWEB dataset has

recently been updated and is now more complete, with only

1–3 % of the days missing. We do not use the GSOD

dataset here as it has fewer sites in southern California than

FAMWEB, and it does not include wind direction, essen-

tial for definition of the Santa Ana winds.

We use daily gridded data from the North American

Regional Reanalysis (NARR, Mesinger et al. 2006) as

input for the parameterization. The daily NARR reanalyses

provide diurnally averaged meteorological fields, including

temperature and RH at 2 m AGL, precipitation, and sea

level pressure (SLP), with a resolution of 32 km. We

aggregate the data onto a 0.5� 9 0.5� grid. We do not use

the NARR for the regressions since the reanalysis under-

estimates wind speeds by *60 % in southern California on
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Fig. 1 a Incidence of fires in southern California during 1980–2009.

Both the relative size and the color of each point indicate the area of

fire. b Annual total area burned in southern California during

1980–2009. The red stars represent results from the NICC annual

reports, and the blue points are derived in this study from FAMWEB
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high wind days (Hughes and Hall 2010). The 32-km res-

olution is not fine enough to resolve the local complex

terrain, and as a result cannot capture the Santa Ana winds.

We compare the differences between FAMWEB and

NARR meteorology in section A of the supplemental

information.

2.4 Fire weather indexes

Following Flannigan et al. (2005), we use the fire indexes

from the Canadian Fire Weather Index system (CFWIS) as

predictors in the regression models (Van Wagner 1987).

The CFWIS consists of seven components, including three

fuel moisture codes and four fire behavior indexes (Table

S1). The fuel moisture codes indicate the moisture content

in different kinds of fuels, such as Fine Fuel Moisture Code

(FFMC) for litter/fine fuels, Duff Moisture Code (DMC)

for moderate duff/woody materials, and Drought Code

(DC) for heavy forest fuels. The Initial Spread Index (ISI),

Build-up Index (BUI), and Fire Weather Index (FWI)

describe fire behaviors, including the rate of fire spread,

fuel availability, and fire intensity. The Daily Severity

Rating (DSR) is calculated as an exponential function of

the FWI to reflect the difficulty in controlling fires and is a

strong function of wind speed.

We use the daily meteorological data from FAMWEB to

calculate CFWIS indexes. We first divide southern Cali-

fornia into three ecoregions based on Hickman (1993)

(Fig. 2a). Fires in these regions account for 94 % of the

total area burned, and we assume that similar fuel types,

weather conditions, and fire behaviors occur in each eco-

region. We calculate the daily average meteorological

fields for each ecoregion by aggregating the observations

from the sites located therein. Temperatures and RH at

each site are adjusted for elevation so that they represent

weather conditions at the average height of the ecoregion.

2.5 CMIP3 model archives

We use the meteorological output of 14 GCMs from the

World Climate Research Programme’s (WCRP) Coupled

Model Intercomparison Project phase 3 (CMIP3) multi-

model dataset (Meehl et al. 2007) (Table 1), including

daily mean and maximum surface temperature, wind speed,

SLP, and total precipitation. CMIP3 does not specify the

height AGL of the modeled surface variables, but we

account for possible discrepancies with observations

through bias-correction (Sect. 4). Daily surface RH is not

provided by CMIP3, so we calculate that variable as the

ratio of specific humidity to saturated humidity. We cal-

culate surface specific humidity at the grid level by

extrapolating from the value at the lowest model level,

while saturated humidity is derived from surface

temperature and pressure. The output is interpolated onto

the 0.5� 9 0.5� grid. We acknowledge that our approach

may not resolve the impacts of topography on meteoro-

logical variables as well as statistically downscaled GCM

data might. However, the downscaled GCM datasets either

lack important fire-weather variables like RH and wind

velocity (e.g., the Bias Corrected and Downscaled WCRP

CMIP3 Climate Projections, http://gdo-dcp.ucllnl.org/), or

use only a subset of the CMIP3 GCMs and so may be
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Fig. 2 a Spatial distribution of three fire regions examined in this

study: southwestern California (SW); central western California

(CW); and the Sierra Nevada (SN). b–d Seasonality of total fire

numbers (purple bars) and total area burned (red lines) in these

regions summed over the period 1980–2009
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biased for the ensemble projection (e.g., the North Amer-

ican Regional Climate Change Assessment Program, http://

www.narccap.ucar.edu/).

For the present-day simulation (1981–2000), we use

output from the 20C3M scenario, which includes the

observed trends of greenhouse gases in the twentieth cen-

tury. For the future (2046–2065), we use output from the

IPCC A1B scenario, which describes a world with mod-

erate growth in fossil fuel emissions in the first half of the

twenty-first century but a gradual decrease after 2050. The

CO2 concentration in this scenario reaches 522 ppm by

midcentury, a similar level as that for the A2 scenario,

which assumes no special actions to control CO2 emissions

during the twenty-first century (Solomon et al. 2007). To

remove the systematic biases in individual models, we use

long-term mean present-day (1980-2009) observations to

bias-correct the model output in both the 20C3M and the

A1B scenarios, as discussed in Sect. 4. We estimate the

significance level of the changes in meteorological vari-

ables, Santa Ana winds, and area burned using a Student’s

t test. We consider a change is significant if p \ 0.05,

unless otherwise stated.

3 Simulation of present-day area burned

3.1 Relationship of fires and weather in southern

California

Figure 1a shows the more than 55,000 fire incidents during

1980–2009. Most fires occur on mountains within

*120 km of the coastline or in the Sierra Nevada. Fires in

other parts of the state are scarce because of limited fuel

load or constraints from agriculture. The human impact is

made clear by the large number of fires along highways, as

indicated by the strings of blue dots radiating eastward

from southern California, and along the Colorado River,

indicated by the green dots at the border of California and

Arizona. Human ignitions accounted for more than 90 % of

wildfire incidents in southern California in 2000–2009

according to NICC reports, but meteorological conditions

strongly influence the size and interannual variability of

fires in this region (Schroeder et al. 1964; Westerling et al.

2004). Figure 1b shows the large interannual variability in

area burned, with large fires in 1985, 1996, 2003, and 2007

contributing more than 35 % of the total area burned dur-

ing 1980-2009. Comparison of the FAMWEB annual area

burned with the values from the NICC reports shows that

our compilation is reasonable (r = 0.98, Fig. 1b).

We focus on three ecoregions in southern California

(Fig. 2a). Two, southwestern (SW) California and central

western (CW) California, are located along the coast,

where shrub and grass provide the dominant fuels. Fires in

CW California occur closer to the ocean than in SW Cal-

ifornia, where urban areas line the coast. Large fires in SW

California are usually associated with the Santa Ana winds.

The third ecoregion, the Sierra Nevada, is a forested

mountainous area (elevation [1,500 m). There are fewer

large fires in this region (Fig. 1a).

The number of wildfires peaks in summer, with a

maximum in July, in all regions (Figs. 2b-d), as does area

burned in CW California and the Sierra Nevada. However,

in SW California, area burned peaks in October due to

extremely large fires in 2003 and 2007, and area burned is

largest here. The highest temperatures and the lowest

precipitation rates occur in summer in all three ecoregions

(Fig. S1), consistent with the maximum in area burned in

CW California and the Sierra Nevada. The peak values of

area burned in October in SW California are associated

with the Santa Ana winds and the still warm and dry

weather conditions of mid-autumn (Keeley et al. 2009).

3.2 Fire regressions

We develop relationships between the observed area

burned and FAMWEB meteorological variables and fire

indexes, using a stepwise regression method in each eco-

region. The method was first used by Flannigan et al.

(2005) to project future area burned in Canada under a

scenario with tripled CO2. Spracklen et al. (2009) applied a

similar method to project future area burned over the

western United States by the midcentury. Y2013 improved

on the approach of Spracklen et al. (2009) by adding an

independence test for selected terms, which checks for

Table 1 List of models whose output is utilized in the fire projections

for southern California

Model name Resolution Country

CCCMA-CGCM3.1 (T47) 3.75� 9 3.75� Canada

CCCMA-CGCM3.1 (T63) 2.8125� 9 2.8125� Canada

CNRM-CM3 2.8125� 9 2.8125� France

CSIRO-MK3.0 1.875� 9 1.875� Australia

CSIRO-MK3.5 1.875� 9 1.875� Australia

GFDL-CM2.0 2.5� 9 2.0� USA

GFDL-CM2.1 2.5� 9 2.0� USA

GISS-AOM 4.0� 9 3.0� USA

IAP-FGOALS1.0 2.8125� 9 3.0� China

INGV-ECHAM4 1.125� 9 1.125� Italy

IPSL-CM4 3.75� 9 2.5� France

MIUB-ECHOG 3.75� 9 3.75� Germany

MPI-ECHAM5 1.875� 9 1.875� Germany

MRI-CGCM2.3.2 2.8125� 9 2.8125� Japan

Three-dimensional fields from the models are provided at the same

fixed vertical levels for all models

Projection of wildfire activity in southern California 1977
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correlation among potential predictors. In addition, Y2013

took into account the impact of antecedent weather factors

on the current area burned, as suggested by Westerling

et al. (2003) and Littell et al. (2009). We follow the same

steps as Y2013 and develop regression models for area

burned during the fire season (May–October) in the three

ecoregions.

We derive monthly meteorological fields for mean

temperature, daily maximum temperature, precipitation,

and RH from the FAMWEB daily observations. These

variables are aggregated to calculate seasonal (spring,

summer, autumn, and winter), annual, and fire-season

averages in each ecoregion. The seven daily CFWIS

indexes are used to calculate mean and maximum values

during the fire season. These steps give 38 factors for the

current year. Including these factors from the previous

1–2 years gives 114 potential predictors for the stepwise

regression in each ecoregion.

Table 2 shows that both current and antecedent factors

are selected in the regressions. Current meteorological

factors dominate the fire-weather relationships in SW and

CW California, with larger area burned when temperature

is higher or RH is lower. However, weather conditions in

previous years play the dominant role in the Sierra Nevada,

where the area burned is anti-correlated with the autumn

mean maximum temperature 2 years earlier. The reasons

for this relationship are not clear, but may involve greater

soil moisture content being maintained at cooler tempera-

tures (Wu and Dickinson 2004), which enhances vegetation

growth in the following growing season. Figure 3 com-

pares annual observed and modeled area burned for

1980–2009 for each ecoregion. The regressions explain

40–46 % of the variance in area burned for three ecore-

gions and 59 % for the whole of southern California, a

large improvement on our result in Y2013, which yielded

R2 of only 0.25 for the entire region. The success of the

new regression in SW California derives in part from the

high quality of the FAMWEB data, which captures strong

wind events like the Santa Ana, and in part from inclusion

of the fire index DSR in the regression fit, which describes

the impact of strong winds on the spread rate of fires.

3.3 Fire parameterization model

In Y2013 we parameterized daily area burned over the

western United States as a function of temperature, RH,

and precipitation. We improve this approach for area

burned in southern California by taking into account the

impacts of elevation, population, and fuel load on the fire

probability, and the influence of the Santa Ana winds on

the fire size.

Table 2 Regression models for each ecoregion in southern

California

Ecoregion Regression modela R2

(%)b

SW California 3.0 9 104 T.FS ? 1.1 9 102 DMCmax

(-2) ? 1.2 9 103 DSRmax - 9.4 9 105
46

CW California -5.5 9 103 RH.ANN - 1.6 9 102 DC

(-2) ? 4.0 9 105
40

Sierra Nevada -6.2 9 103 Tmax.AUT(-2) ? 8.6 9 103

T.FS - 5.8 9 104
43

a T.FS: mean temperature during fire season; DMCmax(-2): maxi-

mum Duff Moisture Code during the fire season 2 years before;

DSRmax: maximum Daily Severity Rating index during fire season;

RH.ANN: annual mean relative humidity; DC(-2): average Drought

Code during the fire season 2 years before; Tmax.AUT(-2): autumn

mean daily maximum temperature 2 years before; T.FS: mean tem-

perature during fire season
b R2 represents the percentage of variance in area burned explained

by the regression

(a) Annual AB in SW

1980 1985 1990 1995 2000 2005 2010

Years

0

10

20

30

40

A
re

a 
bu

rn
ed

 (
10

4  h
a) Observed

Regressed
R2 = 0.46

(b) Annual AB in CW

1980 1985 1990 1995 2000 2005 2010

Years

0

6

12

18

24

A
re

a 
bu

rn
ed

 (
10

4  h
a) R2 = 0.40

(c) Annual AB in SN

1980 1985 1990 1995 2000 2005 2010

Years

0

2

4

6

8

10

A
re

a 
bu

rn
ed

 (
10

4  h
a) R2 = 0.43

Fig. 3 Time series of observed (red) and modeled (blue) total annual

area burned in three ecoregions of Southern California during

1980–2009. Modeled area burned is calculated with stepwise linear

regressions. Negative values are set to zero. The correlation r between

the observed and calculated area burned is shown in the right-upper

corner of each figure. All the correlations are significant at p \ 0.001.

Acronyms for the ecoregions are defined in Fig. 2
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3.3.1 Parameterization of fire probability

Fire probability quantifies the likelihood for a fire to occur

in a specific area during a specific period. It depends on the

sources of ignition, availability of fuel, and the combusti-

bility of the fuel (Schoennagel et al. 2004). These factors

are associated with the geographic characteristics of fire

locations, such as topography, population, and fuel load

(Syphard et al. 2008; Preisler et al. 2011). In southern

California there are mountains in the north, plains in the

center, and hills near the coast (Fig. 4a). One-fourth of the

region has elevation lower than 200 m, while nearly a third

is higher than 1 km (Fig. 4d). Fire probability was *0.03

fires km-2 in areas with elevations of 900–1,400 m, and

less at lower and higher altitudes in 1980–2009 (Fig. 4g).

Population density is highest in the Central Valley and

coastal regions, with few inhabitants in the mountains

(Fig. 4b). The probability of fires was almost constant for

areas with a population density of 1–1,000 km-2, but

tended toward zero beyond this range (Fig. 4 h). The fuel

load of shrub vegetation (Fig. 4c) has a similar distribution

to that of fire locations (Fig. 1a). Fire probability showed a

linear relationship with the fuel load (Fig. 4i).

Based on the relationships in Fig. 4g–i, we used least-

square regression to determine fire probability as functions

of elevation (z, km), population (p, persons km-2), and fuel

load (f, kg m-2):

f1 zð Þ ¼ 0:0247zþ 0:006 0� z\0:9
�0:0107zþ 0:039 0:9� z\3:6

�
ð1Þ

f2ðpÞ ¼ �0:004 log2
10ðpþ 0:1Þ

þ 0:011 log10ðpþ 0:1Þ þ 0:018
ð2Þ

f3ðf Þ ¼ 0:0475f þ 0:0136 ð3Þ

Any negative values predicted with Eqs. (1)–(3) are set

to zero. Fire probability considering all factors is calculated

as FP(x, y) = f1[z(x,y)] 9 f2[p(x,y)] 9 f3[f(x,y)], where

x and y are longitude and latitude. We normalize by
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Fig. 4 Spatial distributions of a elevation, b population, and c shrub

fuel load in southern California. d–f Show the observed probability

density functions (PDF) of these variables. The probability of fires

associated with these factors is shown in (g–i). For these panels we

first binned the observed number of fires per square kilometer during

1980–2009 by small, equal-sized increments across the range of each

factor. The red points in panels (g–i) represent the average number of

fires per square kilometer in each increment for this time period. The

dark dashed lines are calculated with Eqs. (1)–(3) and represent an

empirical fit to the fire probability data
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dividing by the maximum value of FP(x, y) for all of

southern California to estimate the relative fire probability.

Figure 5a shows the predicted normalized values of FP(x,

y) for 1980–2009 on the 20 9 20 grid. The distribution of

relative fire probabilities compares well with the observed

incidence of fires, with maxima along the west coast and in

the mountains (Fig. 1a). We interpolate the relative fire

probability onto a 0.5� 9 0.5� grid for the fire

parameterization (Fig. 5b).

3.3.2 Santa Ana winds and area burned

Santa Ana winds are strong and extremely dry offshore

winds that periodically blow across southern California.

They occur most frequently in winter, but also in autumn,

when they are strongly associated with fire weather con-

ditions (Schroeder et al. 1964). The Santa Ana winds result

from a combination of the large-scale circulation and the

complex local topography, as shown by Conil and Hall

(2006) who downscaled observed winds to 6 km resolution

in their analysis. The NARR, with resolution of 32 km,

significantly underestimates the Santa Ana wind speeds

(Hughes and Hall 2010). Since we use relatively coarse

resolution GCM output to predict future fires, we need to

parameterize the effects of Santa Ana winds using relevant

features of the large-scale circulation, which most climate

models can simulate successfully.

Observations indicate a link between Santa Ana winds

and the large-scale pressure gradient between the Great

Basin and the Los Angeles area (Raphael 2003). The strong

winds are heated and dried as they descend from the deserts

at high elevations to the low-level coastal region in

southern California, resulting in low RH and strong cold air

advection east of Los Angeles (Conil and Hall 2006). Many

studies used SLP gradient to diagnose the wind (e.g.,

Raphael 2003; Jones et al. 2010). However, Hughes and

Hall (2010) suggested that the cold air advection, rather

than the large-scale pressure gradient, is the dominant

driver for Santa Ana variability. In a recent study, Abat-

zoglou et al. (2013) successfully predicted Santa Ana

activity by constructing a two-parameter threshold model

with both the SLP gradient and 850 hPa temperature

advection. However, calculation of daily average temper-

ature advection requires sub-daily wind speed and tem-

perature, which are not available for most CMIP3 GCMs.

Since cold air advection is not available in the CMIP3

archive, SLP gradient and RH are likely the best available

large scale proxy for Santa Anas; for future work it would

be interesting to see if the fire parameterization could be

improved even more by inclusion of a more realistic rep-

resentation of Santa Ana activity.

We investigate the pattern of anomalous SLP and RH in

the NARR during the periods with strong winds, which we

define as [4.5 m s-1 averaged over the FAMWEB site

data in SW California in October. Figure 6a–d demonstrate

that strong winds are associated with moderately high

pressures over the Great Basin and anomalously low RH

along the west coast. Following the approach of Conil and

Hall (2006), we divide strong wind days into offshore,

onshore, and alongshore groups. Days with strong offshore

winds, typical of Santa Ana winds, are associated with

anomalously high SLP over the Great Basin, a strong

positive gradient in SLP between the Great Basin and Los

Angeles (Fig. 6b), and low RH in southern California

(Fig. 6e). In contrast, extremely low pressure anomalies

arise in the Great Basin on days with onshore winds

(Fig. 6c) that bring moist air inland, increasing RH

(Fig. 6f).

To quantify the relationship between Santa Ana winds

and large-scale meteorology, we use the daily differences

in SLP between the Great Basin and the Los Angeles

region as defined by the boxes in Fig. 6b. The SLP dif-

ference is positive for 95 % of days with offshore winds in

SW California in October, as shown in Fig. 7, and the
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Fig. 5 Predicted normalized

fire probability in southern

California as functions of

elevation, population, and fuel

load on a resolution of a 20 9 20

and b 0.5� 9 0.5�. The

probabilities are based on

observed fire number during

1980–2009. Those regions with

a probability of 1 have the

greatest likelihood of fires,

equivalent to 0.1 fires per square

kilometer during the 30-year

time period

1980 X. Yue et al.

123



pressure gradient correlates with offshore wind speed with

a significant correlation of r = 0.47. There is no significant

relationship between the SLP gradient and wind speed for

onshore or along shore winds. A similar relationship

between offshore winds and the pressure gradient is found

in November but not September (not shown).

Figures 6 and 7 suggest that local RH together with a

strong SLP gradient can be used as indicators of Santa Ana

winds. We select a RH box centered on San Diego, east of

Los Angeles, because it is on the path of Santa Anas (Conil

and Hall 2006; Hughes and Hall 2010). We do not select

the extremely low RH along the coastal areas as an indi-

cator, because climate models usually have difficulties

simulating the steep RH gradient from the ocean to dry

land. We find no significant correlation of RH as defined

here with the SLP gradient between the Great Basin and

Los Angeles: some days experience a strong SLP gradient

but moist weather. By using a combination of the SLP

gradient and RH, we better identify the dry, windy weather

typical of Santa Anas. In an approach similar to ours,

Abatzoglou et al. (2013) recently defined thresholds in SLP

gradients and 850 hPa temperature advection as way to

diagnose Santa Anas.

We define a day with Santa Ana winds if the daily SLP

gradient exceeds 7.5 hPa and the RH is\30 % within a box in

SW California (see Fig. 6e). The two threshold values were
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Fig. 6 Distribution of observed anomalous daily mean (a) sea level

pressure (SLP) and d surface relative humidity (RH) on those days

when the average wind speed in Southwestern California is larger

than 4.5 m s-1 in October. SLP and RH are from NARR reanalyses

and wind speed and direction are from the FAMWEB sites. b and

e are similar to (a) and (d) but show observations on days with strong,

offshore winds. c and f are similar to (a) and (d) but for strong,

onshore winds. An offshore wind day is defined when more than 50 %

of the available meteorological sites report a wind angle of 0�–135�,

relative to North. An onshore wind is defined when more than 50 %

of the available meteorological sites report a wind direction between

180� and 315�. The two yellow boxes in (b), the upper within the

Great Basin (40–43�N, 115–120�W) and the lower on Los Angeles

(32–35�N, 117–120�W), are used to calculate the pressure gradients

in Figs. 7 and 9. The box in (e) contains San Diego (33–35�N,

114–117�W), which is used to calculate relative humidity in the

definition of Santa Anas
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selected by trial-and-error so that the seasonality of the Santa

Ana winds predicted using SLP and RH from the NARR

matches that reported by previous studies (Fig. 8). These

studies used different definitions of Santa Ana events and

relied on different meteorological datasets. Figure 8 shows

that Santa Anas occur from September to April, with a range

of 0.2–3.7 Santa Ana days for these months in 1980–2009.

Our results are closest to those of Jones et al. (2010), who

diagnosed Santa Ana days by analyzing SLP and winds from

the NCEP-Department of Energy (DOE) reanalysis.

In Fig. 9 we further refine our definition of Santa Anas

by examining the relationships among the daily values for

the SLP gradient and RH as defined above, and the area

burned in SW California during autumn. In September,

large fires are more likely occur when RH is low, but the

size of fires does not depend on the SLP gradient. In

October, the fire size is significantly correlated with the

SLP gradient (r = 0.3) and is inversely correlated with RH

(r = -0.26). Similar results are found for November, but

the fires are much smaller than in October because of

damper weather. We find that over 75 % of the total area

burned in October and 50 % in November occurs on the

days when the SLP gradient exceeds 10 hPa and the RH is

less than 25 %, as shown by the dashed lines in Fig. 9. We

therefore define strong Santa Anas as those days charac-

terized by DSLP and RH beyond these thresholds. With this

definition, we find no strong Santa Ana days in September

in 1980–2009, consistent with the absence of large fires in

this month during that time frame (Fig. 9a). However,

unusually strong Santa Ana winds in late September 1970

resulted in an extremely large (1.1 9 105 ha) wildfire near

San Diego (http://www.wildfirelessons.net/documents/

Laguna_Fire_Analysis_1970.pdf). Figure 9 indicates that

though Santa Ana events increase the likelihood of large

wildfires, some large fires occur in the absence of Santa

Anas, a finding also reported by Moritz (1997).

Sep Oct Nov Dec Jan Feb Mar Apr

Month

0

1

2

3

4

5

6
D

ay
s/

m
on

th

This study

R2003

J2010

C2006

Fig. 8 Seasonality of Santa Ana winds as defined by this study and as

reported by others (R2003: Raphael 2003; J2010: Jones et al. 2010;
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of Santa Ana days per month over 1980–2009 (our study), 1968–2000
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(Conil and Hall 2006). Our results exhibit root-mean-square errors of

0.57 day with Raphael (2003), 0.48 day with Jones et al. (2010), and
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Fig. 9 Relationships between daily area burned ([10 ha) in south-

western California, sea level pressure gradient between the Great

Basin and Los Angeles, and the relative humidity close to San Diego

in a September, b October, and c November for the period

1980–2009. The two regions used to define the SLP gradient are

shown in Fig. 6b, and the region used to define RH is shown in

Fig. 6e. Positive values of DSLP mean that SLP is greater over the

Great Basin than over Los Angeles. Two dashed lines indicate the

thresholds for RH = 25 % and DSLP = 10 hPa. Each red point

indicates a fire occurrence, with the symbol size proportional to the

logarithmic area burned. The largest point (in October, 2003)

represents an area burned of *1,100 km2. The blue point in

(a) denotes the Laguna fire occurring on September 26th, 1970.

Meteorology for this fire alone is from the NCEP reanalysis since the

NARR reanalyses date back only to 1979

1982 X. Yue et al.
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3.3.3 Parameterization of area burned

In Y2013, we developed a parameterization for wildfire

area burned as follows:

ln ABð Þ ¼
a�T �ð1:0�RH=100Þ2

Tt � Rþ0:2ð Þ if T [ Tt and R\Rt

no fire otherwise

(
ð4Þ

where AB is area burned, T is temperature (�C), R is pre-

cipitation (mm day-1), and RH is RH (%). The threshold

values are Tt = 15.0 �C and Rt = 2.5 mm day-1. We

proposed the above functional form because our analyses

showed that the observed ln(AB) is linearly correlated with

T (1-RH/100)2, and (R ? 0.2)-1 in the western U.S. This

relationship also depends on the fire potential coefficient a,

which is a function of such factors as ignition, elevation,

and fuel load. In Y2013, this coefficient was determined a

posteriori, such that the long-term annual mean area burned

matched that observed in each ecoregion. Y2013 found that

simulations with Eq. (4) using the 1� 9 1� NARR meteo-

rology captured the seasonality and interannual variability

of area burned in most ecoregions in the West, but not for

those in southern California.

Here we aggregate the updated area burned and NARR

meteorology onto a 0.5� 9 0.5� grid. We demonstrate that

Eq. (4) still works reasonably well for the finer grid cells in

southern California (section B in the supplemental infor-

mation). We also include the relative fire probability in the

function by defining a = a0 9 FP(x, y), where a’ is a scaling

factor that forces the predicted mean area burned for 1980–

2009 to match the observations in each ecoregion. Finally,

we use daily SLP and RH from the reanalyses to diagnose

strong Santa Ana events in SW California as follows,

lnðAB�Þ ¼
lnðABÞ þ 2:3 if 1� day strong Santa Ana

lnðABÞ þ 5:3 if � 2 days strong Santa Ana

lnðABÞ otherwise

8<
:

ð5Þ

The value of ln(AB) is calculated from Eq. (4). The

constants 2.3 and 5.3 are determined empirically so that the

simulated area burned matches the observed during strong

Santa Anas. In this case, a one-day strong Santa Ana wind

increases the predicted area burned by a factor of 10. If the

Santa Ana event lasts two days or more, area burned in our

model increases by a factor of 200, consistent with the large

impact of strong Santa Ana events on wildfire activity as

shown in Fig. 9.

Figure 10 compares the simulated area burned with

observations. In SW California, the correlation r between the

simulated and observed annual area burned is 0.80 (and 0.92

for October, for which we determined the constants in Eq. 5).

The parameterization matches the largest area burned in 2003,

but underestimates that in 2007 by*50 %. In 2007, there was

a fire in October associated with Santa Ana winds, but the

temperatures and precipitation were relatively normal. If we

remove these 2 years, the correlation r drops to 0.59 but is still

significant. The simulation underestimates other relatively

high fire years, particularly 2006, but also 1996 and 2009, by

50–70 % (Fig. 10a). Area burned was highest in September in

2006 and in August in 2009, indicating that factors other than

Santa Ana winds were responsible at those times. For the

Sierra Nevada, the parameterization misses many large fire

years, but yields a significant correlation (r = 0.52, Fig. 10e).

The parameterization is not successful in CW California

(Fig. 10c). Our regression analysis shows that weather con-

ditions in previous years influence area burned in both these

regions (Table 2), a factor that the parameterization does not

take into account.

The parameterization captures the seasonality of area

burned in all three ecoregions, and in particular reproduces

the October peak in SW California (Fig. 10). In the other

regions, the parameterization captures the seasonality of

area burned because it is similar to that of temperature

(Fig. 2 and S1). Finally, using sensitivity tests, we dem-

onstrate that the finer spatial resolution and the inclusion of

relative fire probability and impacts of Santa Ana winds in

the parameterization help improve the predicative capa-

bility for area burned in southern California (see section C

in the supplemental information).

4 Projection of area burned at the midcentury

We apply the CMIP3 archived meteorology from 14 GCMs

to both the regression and parameterization models

(Table 1). We first validate our approach by examining the

results with present-day GCM meteorology. For the pro-

jections of area burned in the future, we assume that the

fire-weather relationships derived for the present day hold

in a future climate. We also do not consider the possible

impacts of changing population or fuel load. For the

regression models, we aggregate daily gridded data from

the GCMs in the three ecoregions. We bias-correct the

merged daily output with monthly mean observations for

1980–2009 from FAMWEB sites. Only the long-term

means of the GCM output are corrected, not their variance.

The bias-corrected daily values are then used to calculate

daily CFWIS indexes and to derive the monthly averages

that are used as input to the regressions in Table 2. For the

parameterization, we bias-correct the GCM output with

monthly mean NARR reanalyses in each 0.5� 9 0.5� grid

box. The bias-corrected meteorological fields, including

temperature, precipitation, RH, and SLP, are used to predict

area burned for the present day and at midcentury with

Eqs. 4 and 5. Since the parameterization has no predictive

capability in CW California, we do not use it there.

Projection of wildfire activity in southern California 1983
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4.1 Evaluation of present-day area burned

We find that seven GCMs predict an October peak in area

burned in SW California (Fig. 11), and yield a correlation of

r [ 0.9 with the observed monthly mean area burned. Six of

these GCMs predict area burned in October within a factor of

two of that observed, while the seventh significantly under-

estimates the area. The seven GCMs whose result best match

observations predict an average RH of 15–20 % in the San

Diego box area (Fig. 6e) during the Santa Ana days, while

the other GCMs predict average RH of 19–23 %, resulting in

fewer (by 27 % on average) strong Santa Ana events. We use

these seven best GCMs to compare projections with both

regressions and parameterization. We also show results for

all 14 GCMs for the regression approach.

We compare annual area burned predicted using GCM

output for 1981–2000 to observed (1980–2009) area

burned in Fig. 12. For regression models using output from

14 GCMs, the median ratios are 1.36 in SW California,

1.07 in CW California, and 0.95 in the Sierra Nevada

(Fig. 12a). Although we bias-correct the meteorological

variables with observations, biases in the predictions per-

sist in ecoregions that use CFWIS indexes as regression

terms (Table 3). For example, the GCM that gives double

the present-day area burned in SW California has the

greatest DSRmax among the seven models because it pre-

dicts *6 days with high winds ([6 m s-1) during every

fire season, compared with a median of 3.5 days in the

other GCMs. The predictions with 7 GCMs (Fig. 12b)

shows similar median ratios to those with 14 GCMs
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Fig. 10 Observed (red) and simulated (blue) area burned in three

ecoregions of Southern California during 1980–2009. a, c, and e show

the time series of total annual area burned; b, d, and f show the

average monthly mean values during this time period. In all panels,

the simulated area burned is calculated with the parameterization. The

correlation r between the observed and simulated area burned is

significant at p \ 0.001 in southwestern California and p \ 0.005 in

the Sierra Nevada, but is insignificant in central western California
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(Fig. 12a). For predictions with the parameterization, the

median ratios of calculated to observed area burned are

0.8-0.9 for SW California and the Sierra Nevada (Fig. 12c).

The two GCMs with the highest ratios of 1.7–2.0 predict

2–3 strong Santa Ana days per autumn, typical for this time

of year, but also yield 7–8 extremely hot and dry days

(T [ 35 �C and RH \ 20 %) during every fire season,

much more than the 1-4 similar days in the other GCMs.

4.2 Prediction of future area burned

4.2.1 Changes in meteorology by mid-century

(2046–2065)

Temperatures increase by 0.8–3.8 �C in summer in the 14

GCMs, with median changes 2.0–2.5 �C as shown in

Fig. 13a. These increases are significant in all GCMs in

each ecoregion. This is not the case for precipitation

(already low in summer) and RH, where the sign of the

change is uncertain, with small median changes (Fig. 13b,

c). Only 1-4 models predict significant changes in precip-

itation and RH, depending on the ecoregion. For all vari-

ables, the median values for the seven GCMs used with the

parameterization are similar to those for all 14 GCMs.

Three of seven GCMs predict increases of 0.15–0.25

strong Santa Ana days in September by midcentury relative

to present day, as shown in Fig. 14a, with similar results

for October but for different GCMs. The other GCMs

predict either no change or decreases. However, none of

the trends are significant even for p \ 0.1. Changes in the

number of strong Santa Ana days are more robust in

November, with all GCMs predicting increases of

0.1–0.65 days; changes are significant for four GCMs

(p \ 0.1). Our results are consistent with those of Miller

and Schlegel (2006) who found uncertain changes in Santa

Anas in September and October but consistent increases in

November and December in the late twenty-first century,

based on the pressure gradient simulated by two GCMs for

two scenarios. Over southwestern California, all seven

GCMs predict significant increases in temperature, with a

median warming of *2.5 �C in autumn (Fig. 14b). For

RH, 5–6 GCMs predict more moist air in September and

October while 5 project drier conditions in November

(Fig. 14c). Such changes are not significant except in

November for two GCMs.

4.2.2 Changes in area burned

Using the regressions, we find that the median area burned

increases in all three ecoregions by mid-century in

response to climate change (Fig. 15). The increases are

largest in SW California, with a median doubling of area

burned whether 7 or 14 GCMs are used; all increases are

significant (Fig. 15). For simulations with all 14 GCMs, the

median frequency of high fire years (annual area burned

[105 ha), increases from 2 to 12 in 2046–2065 (Fig. 16).

A similar increase in the high fire years is simulated with

the seven selected GCMs. Median increases of area burned

are smaller in CW California (10 %) and the Sierra Nevada

(35 %) (Fig. 15a), and these increases are significant only

for two and seven GCMs, respectively (Fig. 15d). We find

similar median changes projected with the seven selected

GCMs, except in CW California, where area burned

increases by 20 % (Fig. 15b). Only 2 GCMs predict sig-

nificant increases in the Sierra Nevada (Fig. 15e).

In SW California the increase in temperature drives the

increase in area burned (Table 3). The regression model

shows little change in DSRmax between midcentury and

present day (Table 3), likely because climate models have

difficulties in capturing the changes in surface wind speed

in complex topography. In the Sierra Nevada, temperature

also appears in the dominant regression terms (Table 3).

However, the two temperature terms offset each other in

Fig. 11 Observed (red) and predicted (blue) seasonality of present-

day area burned (104 ha) in southwestern California by 14 GCMs.

Each point represents the monthly mean averaged over 1981–2000 in

the 20C3 M scenario. All predictions are calculated using the

parameterization. We box the names of the 7 models whose monthly

mean area burned correlate with observations with r greater than 0.9

Projection of wildfire activity in southern California 1985
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the regression (Table 2), resulting in small insignificant

changes in area burned (Fig. 15e) in this region. In CW

California, changes in RH contribute more than those in the

drought code index; the small changes predicted in

hydrological variables lead to large uncertainty in future

fire activity.

The uncertainty in the projections of future area burned is

indicated by the spread of the symbols in Fig. 15a. The largest

spread is in SW California, with 6 of 14 models projecting

ratios of future to present-day area burned outside the ±20 %

range of the median ratio. The large spread follows that in

temperature (Fig. 13a). Two GCMs predict more than tripling

of area burned in this ecoregion, due to the anomalously low

area burned predicted by these two GCMs in the present day

(Fig. 12a). The smallest spread of projections is for the Sierra

Nevada, where the ratios from 13 GCMs are within ±20 % of

(a) (b) (c)

Fig. 12 Ratios of simulated to observed area burned for the present

day with regressions using output from a all 14 GCMs and b the 7

selected GCMs. c Shows the ratios calculated with the parameteri-

zation using output from the same 7 GCMs as in (b). Different

symbols represent results from different models, and are averages

over 1981 to 2000 for the present day. The short bold lines denote the

median ratio over each ecoregion. Acronyms for the ecoregions are

defined in Fig. 2

Table 3 Changes in calculated regression terms at midcentury, and their contributions to the changes in area burned predicted by the regression

models for the A1B scenario

Ecoregions Obs Mean Simulated median # of models

(p \ 0.05)a
Changes in Reg.

termsb
Percent

contributionc

1980–2009 1981–2000 2046–2065

SW California

T.FS (�C) 28.7 28.7 31.0 14 6.9 9 104 98

DMCmax(-2) 539.1 590.2 578.6 2 -0.1 9 104 2

DSRmax 58.3 72.3 72.6 1 0 0

CW California

RH.ANN (%) 43.2 42.7 42.1 2 3.5 9 103 81

DC(-2) 841.7 862.9 868.0 0 -0.8 9 103 19

Sierra Nevada

Tmax.AUT(-2) (�C) 21.0 21.1 25.3 14 -2.6 9 104 44

T.FS (�C) 24.1 24.0 27.9 14 3.3 9 104 56

Definitions of the regression terms are provided in Table 2
a Number out of 14 models that predict significant changes in meteorological variables in each ecoregion, as determined by a one-tailed

Student’s t test. If the median value of the change is positive, only those predicting a significant increase are counted and vice versa for a negative

change
b Shown are the changes in variables multiplied by the regression coefficients for the median model in each ecoregion. Here we define the

median model as that model which predicts the 7th maximum ratio of future to present-day area burned out of all 14 GCMs in each ecoregion

(Fig. 15a)
c Percent contributions of the absolute changes in individual regression terms to the sum of changes for the median model in each ecoregion

1986 X. Yue et al.
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the median. All climate models except one project ratios close

to 1.0 in CW California, and the exception predicts significant

increases in the local relative humidity at midcentury

(Fig. 13c). The uncertainty is smaller for projections with the

seven selected GCMs (Fig. 15b), because some extreme ratios

are excluded.

Using the parameterization approach, the median area

burned increases by 40 % in SW California (Fig. 15c). How-

ever, this increase is significant for only two of the seven

GCMs, those that predict the highest increases in the number of

strong Santa Ana days in autumn (30 and 40 %, Fig. 14a). In

contrast, one model predicts a decrease of 60 % in the number

of strong Santa Ana days in October, resulting in decreases of

area burned by 85 % in the same month (Fig. 17) and by 20 %

in the annual total (Fig. 15c). Because of the large variability of

modeled Santa Ana activity, none of the GCMs predict sig-

nificant changes in the number of strong Santa Ana days by

midcentury. As a result, the median frequency of extreme fire

years (annual area burned [105 ha) is at a level of once in

20 years for both present-day and future (Fig. 16). We find that

the spread of the predictions of area burned in this region is

related to that in the prediction of strong Santa Anas, especially

in October (Fig. 14a). For the Sierra Nevada, six GCMs predict

significant increases in area burned (Fig. 15f), resulting in a

median change of *50 % (Fig. 15c).

The parameterization gives predictions of monthly area

burned in addition to annual area burned. All seven GCMs

predict increases in area burned in summer in SW

(a) (b) (c)

Fig. 13 Predicted changes in a temperature, b precipitation, and

c relative humidity over three ecoregions in Southern California in the

boreal summer by midcentury for 14 climate models in the A1B

scenario, relative to the present day. Different symbols represent

results from different models. The dark bold lines denote the median

values from all 14 GCMs. The blue lines are the medians from the

seven GCMs which best represent Santa Ana events in southwestern

California (Sect. 4.1 of text). Acronyms for the ecoregions are defined

in Fig. 2

(a) (b) (c)

Fig. 14 Predicted changes in a strong Santa Ana days, b temperature,

and c relative humidity for three autumn months in Southwestern

California by midcentury, relative to the present day. Results are

shown for only the seven selected climate models which best

represent Santa Ana events. Different symbols denote results from

different models. The black bold lines are the median changes from

the seven GCMs
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California (Fig. 17). Five predict increases in autumn as

well, and these changes are 2.5–5 times those in summer

for four of them. Four GCMs predict larger area burned in

September, while two of these four and two others also

predict increases in October, the peak fire month in

1980-2009 (Fig. 17). In three GCMs, the peak fire month

shifts to September due to changes in the activity of strong

Santa Ana events (Fig. 14a), but these changes are not

significant even at p \ 0.1.

A more robust finding is that future wildfire activity in

SW California may extend to November. In the present-day

atmosphere, more Santa Ana days occur in November than

in October (Fig. 8), but the cool and wet weather in

November inhibits the spread of fires. By midcentury, the

GCMs predict that the frequency of strong Santa Ana

events increases by *0.4 days (130 %) in November

(Fig. 14a). The warmer and drier autumn climate, in turn,

leads to a median increase of 360 % in the average fire area

on each strong Santa Ana day in this month. Taken toge-

ther, these factors lead to an increase in the area burned in

November by factors of 2.4–7.6 by midcentury, which is

significant at the p \ 0.1 level for four GCMs.

5 Discussion and conclusions

We predicted future area burned by wildfires in three

ecoregions of southern California in midcentury with two

(a)

(d) (e) (f)

(b) (c)

Fig. 15 Predicted ratio of future area burned to present day area

burned in three southern California ecoregions with regressions using

output from a all 14 GCMs and b the 7 selected GCMs. c shows the

ratios calculated with the parameterization using output from the

same 7 GCMs as that in (b). The bottom panels show the number out

of d 14 or e, f 7 GCMs that predict significant changes with the same

sign as the medians. Different symbols represent results from different

models, and are averages over 1981–2000 for the present-day and

2046–2065 for the future. The short bold lines denote the median ratio

over each ecoregion. Acronyms for the ecoregions are defined in

Fig. 2
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Fig. 16 Prediction of number of years with annual area burned[105

ha out of the twenty-year period for SW California in present day and

midcentury. The panels represent results calculated with (left)

regressions using output from 14 GCMs, (middle) regressions using

output from 7 GCMs, and (right) the parameterization using output

from 7 GCMs. The predictions for present day (1981–2000) are

shown in the left column for each panel, while those for midcentury

(2046–2065) are shown in the right column. The blue box shows the

interquartile range of model predictions. The red lines within the box

indicate the medians. The annual area burned does not exceed 105 ha

for the other two southern California ecoregions with either approach
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fire prediction schemes and output from multiple CMIP3

GCMs. The regressions, which take into account the

impacts of current and antecedent meteorological variables

and fire indexes, capture 40–46 % of the variance of

observed area burned in three ecoregions during

1980–2009. The parameterization includes the dependence

of area burned on temperature, RH, and precipitation,

together with the influence of topography, population, and

fuel load on local fire probability. We also parameterized

the impact of the Santa Ana, a strong offshore and dry wind

that is responsible for many extremely large fires in autumn

in southern California (Keeley et al. 2009). With these

improvements, the parameterization explains 64 % of the

variance in observed annual area burned in SW California

and reproduces its seasonality reasonably well. It also

captures 27 % of the variance of area burned in the Sierra

Nevada. For all of southern California, the relationships for

the three sub-regions developed here give R2 of 0.59 for the

regressions and 0.38 for the parameterization. Our results

represent a major improvement over those in Y2013 for

California coastal shrubland, where our previous models

showed little or no predictive capability.

Using meteorology from the CMIP3 ensemble of 14

GCMs, the regressions project that median area burned will

double in SW California and increase by 35 % in the Sierra

Nevada and by 10 % in CW California by midcentury. The

spread of the predictions is largest in SW California, fol-

lowing the spread of temperature change. However,

increasing temperature is a robust result of all models for

this ecoregion, and drives the statistically significant

increases in area burned. Extreme fire years (annual area

burned [ 105 ha) increase in SW California from one per

decade in the present day to 6–7 per decade at midcentury.

In contrast, only half the GCMs predict significant

increases in future area burned in the Sierra Nevada and

only two do so in CW California, either due to little change

in the RH or the offset between two competing temperature

factors.

For the projection with parameterization, we focused on

output from the seven GCMs that successfully capture the

observed seasonality of area burned in SW California. With

these models, the median area burned is projected to

increase by 40 % in SW California and 50 % in the Sierra

Nevada by midcentury. For the Sierra Nevada, six GCMs

predict significant increases in annual area burned. For SW

California, the only GCMs that predict significant increases

are the two that show increases in Santa Ana days of 30 %

or more by midcentury. For this ecoregion, however, all

seven GCMs predict increases in area burned (140–660 %)

in November because of the combination of a greater fre-

quency of Santa Ana events and the warmer and drier fire

weather.

Taken together, these results suggest that wildfire

activity is likely to increase in SW California and the Sierra

Nevada in coming decades as a consequence of rising

surface temperatures. In SW California, the regressions

predict that area burned could double by midcentury, while

the parameterization projects a significantly longer fire

season extending into November. Our use of multiple

GCMs and two fire schemes allows us to make these pre-

dictions with greater confidence than earlier studies. Indi-

vidual GCMs can yield quite different trends, as seen

previously (e.g., Westerling and Bryant 2008; Lenihan

et al. 2008; Westerling et al. 2011). In our study, however,

the median values of the large ensemble of 14 GCMs

provide some certainty in our estimates for future area

Fig. 17 Predicted seasonality of area burned (104 ha) in the present

day (blue) and at midcentury (red) in southwestern California by the

seven selected GCMs which best capture Santa Ana events. Each

point represents the total area burned in each month, averaged over

1981–2000 for present day and 2046–2065 for midcentury

Projection of wildfire activity in southern California 1989

123



burned. Our study is also the first to consider the effect of

the Santa Anas, an important driver for the observed

interannual variability of local area burned in SW Cali-

fornia. Our definition of strong Santa Anas allows diag-

nosis of these events even in coarse-grid GCMs. We find

that the increase in modeled Santa Anas in November at

mid-century contributes to the significant enhancement in

area burned at that time of year.

Our approach does not consider climate-induced chan-

ges in fuel load (Lenihan et al. 2008) or changes in pop-

ulation (Safford 2007), both of which may influence the fire

frequency and regime (Syphard et al. 2007; Peterson et al.

2011). We also did not consider trends in human activity

which may influence wildfires, a factor included in West-

erling et al. (2011). Finally, we were unable to diagnose a

significant trend in wildfire activity in CW California. Few

GCMs in our ensemble simulate significant changes in the

hydrological variables in the 2050 s atmosphere in Cali-

fornia, and the large inter-model spread makes even the

sign of these changes uncertain (Fig. 13). Such uncertain-

ties result in low confidence in the projection of area

burned in CW California, where hydrological factors

dominate the fire-weather relationship.

A longer and more intense fire season in the 2050 s

atmosphere would threaten the safety of California resi-

dents and increase the expense of fire suppression, which

currently amounts to about one billion dollars annually

(Safford 2007). An expansion of fire area would increase

biomass burning emissions, seriously degrading both air

quality and visibility locally and downwind (Hlavka et al.

2005; Pfister et al. 2008). Increased exposure to smoke

would endanger human health and add to the economic

cost of fires (Kunzli et al. 2006; Hanninen et al. 2009;

Richardson et al. 2012). Quantification of these air quality

and health effects requires confidence in the projections of

future area burned, such as our multi-model study provides.
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