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Abstract The Twentieth Century Reanalysis (20CR)

holds the distinction of having the longest record length

(140-year; 1871–2010) of any existing global atmospheric

reanalysis. If the record can be shown to be homogenous,

then it would be the first reanalysis suitable for long-term

trend assessments, including those of the regional hydro-

logic cycle. On the other hand, if discontinuities exist,

then their detection and attribution—either to artificial

observational shocks or climate change—is critical to their

proper treatment. Previous research suggested that the

quintupling of 20CR’s assimilated observation counts over

the central United States was the primary cause of inho-

mogeneities for that region. The same work also revealed

that, depending on the season, the complete record could

be considered homogenous. In this study, we apply the

Bai-Perron structural change point test to extend these

analyses globally. A rigorous evaluation of 20CR’s

(in)homogeneity is performed, composed of detailed

quantitative analyses on regional, seasonal, inter-variable,

and intra-ensemble bases. The 20CR record is shown to be

homogenous (natural) for 69 (89) years at 50 % of land

grids, based on analysis of the July 2 m air temperature.

On average 54 % (41 %) of the grids between 60�S and

60�N are free from artificial inhomogenetites in their

February (July) time series. Of the more than 853,376

abrupt shifts detected in 26 variable fields over two

monthly time series, approximately 72 % are non-climate

in origin; 25 % exceed 1.8 standard deviations of the

preceding time series. The knock-on effect of inhomoge-

neities in 20CR’s boundary forcing and surface pressure

data inputs to its surface analysis fields is implicated. In

the future, reassessing these inhomogeneities will be

imperative to achieving a more definitive attribution of

20CR’s abrupt shifts.

Keywords Twentieth Century Reanalysis � Change

point detection � Climate trend analysis �
Observational shocks � Sparse data assimilation

1 Introduction

Understanding how the global hydrologic cycle has

responded to climate change (natural or anthropogenic) in

the past and will likely respond to climate change in the

future is imperative to ensuring the efficacy of adaptive

planning measures that aim to minimize the adverse socio-

economic and environmental impacts of climate change.

Increases in the frequency and severity of floods and

droughts (e.g., Sheffield and Wood 2008; Huntington

2006), heatwaves (e.g., Schar et al. 2004), wildfires (e.g.,

Westerling et al. 2006; Moritz et al. 2012), and strains on

water and food security (e.g., Lobell et al. 2008), have all

been linked to climate change. Without advanced warning
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or sufficient resources to mitigate their effects, even

modern societies risk destabilization as a consequence of

climate extremes (e.g., Hsiang et al. 2011).

In theory, observation-based global reanalyses such as

NASA’s Modern Era Retrospective-analysis for Research

and Applications (MERRA; Rienecker et al. 2011; Rie-

necker et al. 2008) provide a robust means for detecting

long-term trends and/or abrupt shifts in the hydrologic

cycle, and more importantly, enable attribution to their root

mechanisms. In practice, inhomogeneities caused by fore-

cast model biases and/or the observations they assimilate

limits their applicability for long-term trend assessment

(Thorne and Vose 2010; Dee et al. 2011b). Detecting and

correcting for observational biases is complicated by the

diversity of the observations (e.g., in source, coverage, and

record length). The challenge becomes how to distinguish

between real climate shifts and artificial observational

‘‘shocks.’’ From an operational perspective, diagnosing the

latter (e.g., sensor-related breakpoints) is critical to the

success of variational bias adjustment methods (Dee et al.

2011a).

So-called ‘‘climate quality’’ reanalyses of which the

Twentieth Century Reanalysis (20CR; Compo et al. 2011)

is the first, seek to ameliorate the issue of unphysical time-

varying biases through the assimilation of only those data

streams that are stable over long periods of time. For

example, 20CR assimilates only synoptic surface and sea-

level pressure observations that span a period of 140-years

(1871–2010). If shown to be homogenous, it would provide

the first comprehensive (i.e., multivariate, multi-level) and

consistent long-term climate record suitable for trend

assessment, including assessment of whether the hydro-

logic cycle is intensifying (Huntington 2006).

In a previous study (Ferguson and Villarini 2012), we

suggested that the fivefold increase of 20CR’s assimilated

observation counts in the 1940’s over the central U.S.

caused inhomogeneities during the same period. We also

showed that, depending on the season, the complete (140-

year) record could be considered homogenous. The pur-

pose of this paper is to provide a comprehensive global

follow-up to our previous work using a similar methodol-

ogy. Specifically, we address the following questions:

(1) Is the finding that inhomogeneities in 20CR are

linked to underlying observational density unique to the

central U.S., or globally-representative? If other artificial

(non-climate) inhomogeneities are detected, what is their

frequency relative to those that are naturally occurring

(as a product of climate variability)?

(2) For what fraction of the globe is 20CR homogeneous

over the period of record? And, for surface air temper-

ature and precipitation, how does this compare with

available global gridded in situ datasets?

(3) What is the size distribution of the discontinuities?

And how are they distributed in time?

and (4) How varied are inhomogeneity characteristics

among 20CR’s variable fields?

Our approach is to assess homogeneity on a global grid

point basis and summarize results regionally for a large

subset of variables. The overarching motivation for this

study, which is to use 20CR to identify the key processes,

feedback mechanisms, and hydrometeorological variables

that drive long-term changes in the hydrologic cycle at

regional scales (e.g., Troy et al. 2012), dictates that the

homogeneity assessment be conducted at seasonal time

step, but this is not always practical. In our case, we choose

to focus on the minimum and maximum months in the

seasonal cycle of global homogeneity.

The paper is organized as follows. Section 2 describes

the 20CR, comparison datasets, and the full methodology,

including the statistical test that we apply. Results for each

of the experiments are presented in Sect. 3. Section 4

includes a brief summary and conclusions.

2 Data and Methods

2.1 20CR

The 20CR is a global atmospheric reanalysis spanning the

140-year period from 1871 to 2010 at 2.0� spatial resolu-

tion and 6-hourly temporal resolution with 24 atmospheric

levels (Compo et al. 2011). It is remarkable not only

because it more than doubles the pre-existing reanalysis

record length but because only two surface observations

are used. Namely, six-hourly surface- and sea-level pres-

sure observations from the International Surface Pressure

Databank (ISPD v2.2.4) and monthly sea surface temper-

ature (SST) and sea-ice concentration fields from the

Hadley Centre Sea Ice and SST dataset (HadISST v1.1;

Rayner et al. 2003). The ISPD v2.2.4 contains millions of

observations from International Comprehensive Ocean–

Atmosphere DataSet (ICOADS) v2.2 (Worley et al. 2005)

as well as newly digitized data from land stations that have

never before been used. HadISST v1.1 (described in Sect.

2.2.3 below) incorporates many types of observations,

in situ as well as from satellites.

The 20CR employs a deterministic Ensemble Kalman

Filter (EKF) based on the ensemble square root filter

algorithm of Whitaker and Hamill (2002). Background

first guess fields are obtained from a short-term forecast

ensemble run in parallel, consisting of 56 9-hour inte-

grations of the April 2008 experimental version of the

U.S. National Centers for Environmental Prediction
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(NCEP) Global Forecast System (GFS; Kanamitsu et al.

1991; Moorthi et al. 2001; Saha et al. 2006)—each ini-

tiated using the previous 6-hour analysis. The GFS is

coupled with the four-layer NOAH v2.7 land surface

model (Ek et al. 2003) and run at a horizontal resolution

of T62 (192 9 94 Gaussian longitude/latitude) and

3-hourly time step with 28 hybrid sigma-pressure levels.

For each time-iteration of the assimilation (6-hourly) and

forecast (3-hourly) systems, the ensemble mean and

uncertainty estimate (i.e., ensemble spread) are recorded

for all variable fields. ISPD surface pressure and sea

level pressure observations are independently quality

controlled during the assimilation cycle (i.e., ISPD

quality controls were not used) through a multi-step

procedure that includes a basic check for meteorological

plausibility, comparisons with the first guess ensemble

and neighboring observations, and for the station (land)

pressure observations only, an adaptive time-varying

platform-by-platform bias correction scheme. The

scheme corrects for statistically significant differences

between the first guess and observational means over

60-day increments of the assimilation, which has the

effect of smoothing out any sudden shift in observations

over a period of a few months (Compo et al. 2011; their

Appendix 2). No bias correction was performed on the

marine and tropical cyclone ‘best track’ pressure

observations and reports. For maximum computational

efficiency, 5-year production streams (with 14-month

spin-up) were used, with the exception of a single 6-year

stream for the period 1946–1951, and the most modern

period 2001–2010.

We analyze the monthly or annual time-average of 26

variables in total: four analysis fields, 17 forecast first guess

fields, and 5 derived quantities (Table 1). We focus on the

ensemble mean fields, except in Appendix 1, where we

analyze the every-member (n = 56) data available at two

locations: Geneva, Switzerland (46.20�N, 6.15�E) and

Rondonia, Brazil (24.0�S, 51.0�W). The ensemble spread

fields are analyzed jointly in order to diagnose the nature of

the breakpoint (i.e., real or artificial). Note that the

ensemble spread is an estimate of the uncertainty in the

6-hourly analyses and the 3-hourly forecast values, not the

estimate of uncertainty in the monthly mean values them-

selves. Also important to note is that the uncertainty esti-

mates do not account for uncertainties in the SST, which

are considerable (Rayner et al. 2003; Kennedy et al. 2011a,

2011b).

The derived quantities were selected on the basis of their

relevance to studies of land–atmosphere interaction and the

global water and energy cycles (e.g., Ferguson and Wood

2011; Betts 2009; McVicar et al. 2008; Ferguson et al.

2012). They are: total column moisture convergence (C),

atmospheric-inferred evapotranspiration (E), 10 m wind

speed, convective triggering potential (CTP), low-level

humidity index (HI), and lifting condensation level (LCL).

To be clear, E is computed by:

E ¼ P� C þ dw

dt
; ð1Þ

where P is obtained from the forecast, C is calculated using

the analysis surface pressure and multi-level humidity and

wind fields, and dw/dt, the change in total column mois-

ture, is calculated by taking the difference between first of

the month (e.g., February 1 minus January 1) total column

precipitable water vapor/ice (PWV) analysis fields. The

CTP is a measure of departure from the moist adiabatic

temperature lapse rate from 100 to 300 hPa above ground

level (AGL). The HI is defined by the 50–150 hPa AGL

dew point depression. The LCL is computed from a parcel

originating at 2 m and lifted along a dry adiabat.

Table 1 The 26 variable subset of 20CR analyzed in this study and

their abbreviated names

Variable name Definition

Ta 2 m temperature

TMIN Minimum 2 m temperature

TMAX Maximum 2 m temperature

Q Total runoff

P Total precipitation

CP Convective precipitation

PWV Total column precipitable water vapor (*)

C Total column moisture convergence (*^)

E Atmospheric-inferred evapotranspiration (*^)

LH Latent heat flux

SH Sensible heat flux

G Ground heat flux

SW; Downward shortwave radiation flux

LW; Downward longwave radiation flux

SW: Upward shortwave radiation flux

LW: Upward longwave radiation flux

WSPD 10 m wind speed (^)

HPBL Planetary boundary layer height

CAPE Convective available potential energy (*)

CTP Convective triggering potential (*^)

CIN Convective inhibition (*)

HI Low-level humidity index (*^)

LCL Lifting condensation level (^)

Psurf Surface pressure (*)

SPFH 2 m specific humidity

PWVf Total column precipitable water vapor

All variables were taken from the forecast fields, unless noted by an *,

in which case the variables were taken from the analysis. Derived

quantities are denoted by an ^
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2.2 Comparison data

2.2.1 CRU

The Climate Research Unit (CRU) time series dataset

version 3.1 (TS3.1) is a 0.5� gridded record of monthly

land surface climate (precipitation, mean temperature,

diurnal temperature range, and other secondary variables)

for the period 1901–2009, derived entirely from daily

surface meteorological observations (Mitchell and Jones

2005; Mitchell et al. 2004; New et al. 2000). For this study,

we use the 2 m air temperature and corresponding station

count data only. TS3.1 fields are the product of an angular-

distance-weighted interpolation of monthly climate anom-

alies relative to the 1961–1990 mean, subsequently

recombined with an equivalent grid of normals for the

same baseline period (New et al. 1999). In estimating each

grid point, TS3.1 uses the eight nearest station records,

regardless of direction, within an empirically derived cor-

relation decay distance (CDD) of 1,200 km for temperature

(New et al. 2000). If a grid point lies beyond the CDD of

any stations, the grid is ‘relaxed’ to the 1961–1990 mean.

We found that an entire year (i.e., 12 consecutive months)

or longer is relaxed at some point (generally, earlier) in the

record at 45 % of the grids. Major sources of error in the

TS3.1 include instrumental measurement error, insufficient

station density, and interpolation errors (New et al. 2000).

The temperature database on which CRU TS is based

was assembled in the late 1990’s; only updates from the

Monthly Climatic Data for the World (MCDW), monthly

climatological data (CLIMAT), and various Bureau of

Meteorology (BOM) reports are routinely incorporated.

Unlike in previous versions of the TS (TS2.1; Mitchell and

Jones 2005), neither homogeneity assessment nor homog-

enization of the ingested data streams is performed in the

production of TS3.1. Nevertheless, a large number of its

data sources, including the Global Historical Climatology

Network (GHCN; Lawrimore et al. 2011), are received by

CRU in homogenized state.

2.2.2 GPCC

The Global Precipitation Climatology Centre (GPCC;

Becker et al. 2012, Schneider et al. 2013) produces a

monthly gauge-based precipitation reanalysis at 0.5� spatial

resolution that spans the twentieth century (1901–2010). It

is commonly referred to as the Full Data Reanalysis. In this

study, we use the latest release, version 6 (December

2011). It is based on the world’s largest and most com-

prehensive collection of precipitation gauge data. This

includes: data from over 190 national weather service

networks; daily surface synoptic observations (SYNOP)

and monthly CLIMAT messages transmitted via the World

Meteorological Organization (WMO) global telecommu-

nication system (GTS); global precipitation data collec-

tions from CRU, GHCN, and the Food and Agriculture

Organisation (FAO); in addition to numerous other regio-

nal datasets. Only stations with ten years of data or more

are included. After the gauge data (and/or metadata) are

received, they are subjected to rigorous comparative ana-

lysis (screening) against different sources of data relevant

for the same or neighboring stations, as well as a gridded

background anomaly. Once screened and (if necessary)

corrected, GPCC applies a modified version of the

SPHEREMAP method (Willmott et al. 1985) to spatially

interpolate station anomalies to grid anomalies, drawing

from the data of 16 nearby stations. In the present version

(v6), the normal fields are the product of observations from

approximately 67,200 stations. A count of contributing

gauges is provided for each estimate of P.

The Full Data Reanalysis was not designed to achieve

temporal homogeneity and is therefore not recommended

for climate trend analysis. An alternative GPCC analysis,

VASClimO, which includes only those stations with data

coverage for 90 % (45 years) of its record length, was

intended for this purpose. It covers, however, only a frac-

tion (1951–2000) of our period of interest and for that

reason it is not used in this study.

2.2.3 HadISST v1.1

The Met Office Hadley Centre’s globally complete

monthly sea ice concentration and SST dataset version 1.1

(HadISST v1.1; Rayner et al. 2003) covers the period from

1870–2010 at 1.0� spatial resolution. It uses gridded,

quality-controlled in situ observations for 1871–1981,

merged with night-time bias-adjusted National Oceanic

and Atmospheric Administration (NOAA) satellite-borne

Advanced Very High Resolution (AVHRR) observations

from January 1982 onwards. The gridded data for

1871–1941 were bias-adjusted to account for uncertainty in

sampling methods following Folland and Parker (1995). A

two-stage (global and inter-annual) reduced space optimal

interpolation (RSOI; Kaplan et al. 1997) procedure was

applied to reconstruct the complete (spatial and temporal)

SST fields. Quality-improved (homogenized for variance)

gridded data is blended with the reconstructed fields to

restore local (*500 km) variance attributes. HadISST v1.1

is of particular relevance to our work because it supplies

the boundary conditions for the 20CR (see Sect. 2.1).

2.2.4 HadSLP2

The Met Office Hadley Centre’s globally complete

monthly mean sea level pressure (SLP) dataset version 2

(HadSLP2; Allan and Ansell 2006) covers the period from
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1850 to 2004 at 5� spatial resolution. It is an RSOI

reconstruction (like HadISST v1.1) based on a blending of

monthly mean SLP observations from 2,228 land stations

with gridded marine SLP observations from ICOADS v2.2.

The marine component of the ISPD v2.2.4 used in the

20CR is extracted from ICOADS versions 2.4 and 2.5 for

the periods of 1952–2010 and 1871–1951, respectively.

Consequently, there is a high degree of overlap in the

observational content.

The HadSLP2 terrestrial data are subject to a large

number of quality control procedures including temporal

and spatial consistency checks and a Kolomogorov-Smir-

nov (K–S) test (Press et al. 1992) for inhomogeneities in

the seasonal mean. In the case of the marine data, the

Hadley Centre Marine Data System (MDS) version 2 was

applied. MDS includes climatology and near-neighbor

spatial consistency checks. Time series quality-cleared by

MDS were then subjected to further correction according to

procedures described in Ansell et al. (2006).

Along with SLP, the observation counts and uncertainty

estimates are also provided. Of course, uncertainty esti-

mates are only calculable for the month and grid point for

which data has been assimilated. For HadSLP2’s period of

overlap with 20CR (1871–2004), only 2.2 % (n = 60) of

grid points offer a continuous record of uncertainty.

HadSLP2 was extended from 2005 to present using

NCEP-National Center for Atmospheric Research (NCAR)

reanalysis (denoted as ‘‘R1’’; Kalnay et al. 1996; Kistler

et al. 2001). However, this more modern record, named

HadSLP2r, is not homogeneous with the earlier time series

(see http://www.metoffice.gov.uk/hadobs/hadslp2/). For

the above reasons, we use only HadSLP2 and its corre-

sponding observational count record.

2.2.5 COBE SST

The Japan Meteorological Agency’s globally complete

monthly sea ice concentration and SST dataset (COBE

SST; Ishii et al. 2005) covers the period from 1891 to

present at 1.0� spatial resolution. It uses quality-controlled

SSTs from ICOADS v2.0, the Japanese Kobe Collection,

the Canadian Marine Environmental Data Service (MEDS)

buoy dataset, as well as ship reports. As in HadISST v1.1,

biases in bucket observations before 1941 are removed

using the method of Folland and Parker (1995). The

objective analyses are based on optimum interpolation and

a monthly reconstruction with empirical orthogonal func-

tions intended to homogenize the data.

2.2.6 ERSST v3b

The NOAA Extended Reconstruction Sea Surface Tem-

perature version 3b (ERSST v3b; Smith and Reynolds

2003) is a globally complete monthly sea ice concentration

and SST dataset covering the period from 1854 to present

at 2� spatial resolution. It is based upon statistical inter-

polation of quality-controlled ICOADS v 2.4 data and does

not include satellite data due to a cold bias in the satellite-

derived SSTs that proved difficult to correct. The spatial

variance ratio of the SST is measurably less than that of

HadISST v1.1 because filtering of modes is applied to

reduce small-scale noise.

2.3 Methods

In this study, we rely exclusively on the results of the Bai-

Perron structural change point test (Bai and Perron 2003).

This test is well suited to our purpose for two reasons: it is

objective and it has the capability to detect multiple

breakpoints. Multiple breaks are the norm rather than the

exception in 20CR’s 140-year record (Ferguson and Vil-

larini 2012). Seventy-three percent of all grid locations

have more than one break in annual mean Ta (not shown).

The test must be objective because it needs to be auto-

matable for bulk application on a global grid basis

(n = 16,200 @ 2.0�). Finally, we found the Bai-Perron test

to be of comparable skill to the Pettitt test (Pettitt 1979) in

zero and single break cases; the Pettitt test corroborates

90 % of homogenous series and 73 % of single break dates

(not shown).

2.3.1 Bai-Perron test

The Bai-Perron test (Bai and Perron 2003) enables the

simultaneous estimation of multiple change points of

unknown timing. The data are assumed to come from a

distribution belonging to the exponential family (e.g.,

Gaussian, exponential, Poisson). The test represents an

extension of F statistical tests against a single-shift (e.g.,

Andrews 1993) for multiple break applications. It is based

on a standard linear regression model for which the null

hypothesis of structural stability is tested against the

alternative that at least one coefficient varies with time. We

use a constant as the regressor for our model. The mini-

mum permissible segment length (i.e., trimming parameter)

is set by the user. We chose to set this parameter, h, to 0.15

(default value in the package we used), which equates to

allowing up to five breaks in the 140-year (1871–2010)

20CR. Note this parameter also dictates the earliest and

latest possible break date. First, the number of breaks is

selected using BIC (Bayesian Information Criterion; Sch-

warz 1978). Then, dating of the change points is accom-

plished via a dynamic programming approach that

minimizes the objective function (RSS) (Bai and Perron

2003). The statistical confidence intervals corresponding to

each change point are computed using the distribution

An evaluation of the statistical homogeneity 2845
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function of Bai (1997), although in a limited number of

cases (\1.5 % in this study), errors preclude their estima-

tion (i.e., singular gradient). When calculable, we include

the 95 % confidence interval. Modifying the confidence

level affects only the length of the confidence interval(s),

not the number of change points detected. The Bai-Perron

test is non-optimal for cases in which the record length is

short, the break sizes are small, and/or the breaks are

clustered (Bai and Perron 2003). In addition to abrupt shifts

in the mean, changes in series variability or the presence of

gradual trends can also lead to breakpoint detection.

Our results were obtained using R 2.14.2 (R Develop-

ment CoreTeam 2008) with the packages strucchange

v1.4-6 (Zeileis and Kleiber 2005; Zeileis et al. 2003),

sandwich v2.2-9, and zoo v1.7-7.

2.3.2 Experimental design

We apply the Bai-Perron test on a 2� grid-by-grid basis to

the ensemble mean and uncertainty estimate fields of 26

variables (see Sect. 2.1, Table 1). We summarize the

results for the area of 60�S–60�N as well as 27 constituent

climatic regions of which 22 are over land and the rest are

over ocean (Fig. 1; Table 2). Whether a time series is in-

homogenous is case dependent. From a statistical per-

spective a time series may be considered inhomogenous if

it has any breakpoints while in a climate sense inhomog-

enous means affected by changes that are not of climate

origin. In this study, we will focus on inhomogeneities in

the second sense, although information on climate-related

breakpoints will be presented in figures.

We focus on Ta and P because of their prominent role in

global climate, but also because (along with surface pres-

sure) they are the most widely (and accurately) monitored

meteorological quantities. Due to high confidence in their

measurements (especially Ta), they commonly serve as

benchmarks in model performance. One of our objectives

is to inform users of their homogeneity characteristics so

that the fields are not applied inappropriately in some form

of climate model evaluation.

We focus on 20CR’s mean fields (i.e., official 20CR

product) because they are the most widely applied. How-

ever, we acknowledge that homogeneity will vary among

20CR’s 56 ensemble members and between ensemble

members and the ensemble mean. In Appendix 1, we

present results from our every-member analyses of Ta and

P for Geneva, Switzerland and Rondonia, Brazil. We found

that coincident discontinuities in as few as five ensemble

members could lead to a detectable shift in the ensemble

mean.

We define a non-climate (i.e., unphysical or artificial)

break as a breakpoint in the time series of the mean vari-

able field whose 95 % confidence interval overlaps (for any

number of years) with the 95 % confidence interval of a

breakpoint in the time series of the corresponding ensemble

spread (e.g., P and P spread). Substitute variable spread

fields are used for derived variables that have no associated

spread field. The meridional wind (vgrd) ensemble spread

is used to detect non-climate breaks in 10 m windspeed

(WSPD); the convective available potential energy (CAPE)

ensemble spread is used to detect non-climate breaks in

CTP; the 2 m minimum air temperature (TMIN) ensemble

CUSWUS EUS

NWC NEC

AMZ
EBR

SSA

SAH

WAF

CON

NEU

MED

NAS

CAS TIB

IND

AUS

SEA

EAS

SAF

EAF

North
Atlantic
Ocean

Indian
Ocean

North
Pacific
Ocean

Tropical Pacific 
Ocean

South Pacific 
Ocean

Fig. 1 Regions over which the analysis was conducted (n = 27; see

Table 2). The delineation over land is based on that of Giorgi and

Francisco (2000), but modified to better reflect the land–atmosphere

coupling and climatological wetness regimes shown by Ferguson

et al. (2012). Ocean domains are defined according to standard Japan

Meteorological Agency conventions
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spread is used to detect non-climate breaks in: C, E, HI,

and LCL. Our definition of non-climate breaks may be

sensitive to the size of confidence intervals in cases in

where the confidence intervals for both fields are relatively

wide. In the case of monthly Ta, confidence intervals range

from 3 to 84 years in length, with a median length of

18 years. For monthly spread in Ta the range is similar,

although the median length is substantially shorter

(11 years).

The underlying rationale for our non-climate definition

derives from the fact that the ensemble spread typically

varies as an inverse function of the assimilated observation

count (Ferguson and Villarini 2012; their Fig. 1). If break

dates are coincident between variable mean and spread

fields, then the logic follows that observational network

changes are likely the discontinuities source. However,

over ocean we found that the inverse relationship between

Ta spread and assimilated observation count is not always

upheld (i.e., Figs. 5b, h, i, 16). While one plausible

explanation is that the ensemble is tightly constrained to a

time invariant constant by the specified HadISST v1.1

field, it does not explain how there can still be variability in

the TMIN spread (Fig. 16). Because it’s time series appears

more realistic, we use TMIN spread in place of Ta spread.

3 Results

3.1 Homogenous fraction and seasonality

Since we first reported evidence of observational shocks in

20CR’s record over the central U.S. (Ferguson and Villa-

rini 2012), an open question has been: how pervasive are

such effects globally and how do they vary seasonally? In

Fig. 2, we present global maps of non-climate breakpoint

counts for each monthly time series of Ta. Consistent with

earlier work, we find a sizeable seasonal component to

20CR’s inhomogeneities (and their detectability), espe-

cially in the northern extratropics (Fig. 3). For the period

1871–2010, the global fraction of statistically homogenous

grids (grids with natural breaks-only) can be seen to range

from 10 % in July and August (28 % in May) to 21 % in

February (39 % in January; Fig. 3). Both climate and non-

climate inhomogeneities in 20CR’s other variable fields

track the same general seasonality (i.e., the homogenous

fraction peaks during northern hemisphere winter and dips

during the northern hemisphere summer; not shown).

Because February and July typically constitute the months

of maximum and minimum homogeneity, respectively, we

chose to focus the remainder of our analysis on them.

Relatively greater homogeneity observed in the northern

hemisphere (Figs. 2, 3, and S1) might have been antici-

pated from the hemispheric local anomaly correlation

results presented in Compo et al. (2006; their Figs. 7 and

10).

In Fig. 4, the February and July inter-variable and inter-

regional differences in the areal extent of non-climate

Table 2 Description of the regions used in this study and the num-

ber, n, of 2� grid cells they comprise

Region Acronym Latitude(�) Longitude(�) n

North America

Northwestern

Canada

NWC 50�N–66�N 170�W–100�W 203

Northeastern

Canada

NEC 50�N–66�N 100�W–56�W 131

Western United

States

WUS 22�N–50�N 128�W–100�W 143

Central United

States

CUS 22�N–50�N 100�W–86�W 78

Eastern United

States

EUS 22�N–50�N 86�W–60�W 85

South America

Amazon AMZ 20�S–22�N 108�W–48�W 273

Eastern Brazil EBR 24�S–EQ 48�W–34�W 60

Southern South

America

SSA 56�S–20�S 76�W–48�W 152

Africa

Sahara SAH 16�N–30�N 18�W–70�E 277

Western Africa WAF 4�N–16�N 20�W–34�E 148

Congo CON 12�S–4�N 6�E–34�E 92

Eastern Africa EAF 12�S–16�N 34�E–52�E 85

Southern Africa SAF 36�S–12�S 10�E–52�E 149

Europe

Northern Europe NEU 48�N–72�N 10�W–40�E 213

Mediterranean MED 30�N–48�N 10�W–40�E 179

Asia

Northern Asia NAS 50�N–66�N 40�E–180�E 488

Central Asia CAS 30�N–50�N 40�E–76�E 180

Tibetan Plateau TIB 30�N–50�N 76�E–100�E 120

Eastern Asia EAS 30�N–50�N 100�E–146�E 176

India IND 6�N–30�N 70�E–92�E 83

Southeast Asia SEA 18�S–30�N 92�E–156�E 230

Australia AUS 44�S–18�S 112�E–154�E 183

Ocean domains

North Atlantic

Ocean

NAO EQ–50�N 60�W–10�W 560

Indian Ocean IO 40�S–20�N 50�E–100�E 688

South Pacific

Ocean

SPO 40�S–20�S 170�E–100�W 450

North Pacific

Ocean

NPO 20�N–50�N 150�E–140�W 525

Tropical Pacific

Ocean

TPO 10�S–10�N 120�E–80�W 751

As per the shading in Fig. 1, only land grids are considered over the

continents; only ocean grids are considered over ocean domains
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Fig. 2 Global monthly non-

climate breakpoint count in

20CR Ta. For the total

breakpoint counts, including

both physical and non-physical

breaks, see Fig. S1
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(unphysical) changes are summarized for a 26 variable

subset (Table 1) of 20CR over 60�S–60�N in addition to 27

smaller regions (see Table 2). It shows that on-average

46–59 % (February-July) of grids between 60�S and 60�N

are affected by non-climate changes, which is less than that

for Ta (February: 0.59; July: 0.68) but more than that for

P (February: 0.33; July: 0.53). The upward longwave

radiation flux (LW:) and 10 m wind speed (WSPD) are the

least and most contaminated with artificial shocks,

respectively. Their 60�S–60�N affected coverage range

from 16 % (LW:) and 72 % (WSPD) in February to 22 %

(LW:) and 79 % (WSPD) in July. Overall, Fig. 4b, c can

serve as a valuable reference for users looking to isolate

regions where long-term trend assessment is currently

feasible (or not). Conversely, Fig. S2, which shows the

areal extent of climate-related changes is typically between

20 and 23 % of grid points, is valuable for further analysis

of climate variability.

According to the multivariate median, Northern Europe

(NEU) is the least affected by non-climate breaks, both in

February (\1 %) and July (31 %). In February, north-

western Canada (NWC), northeastern Canada (NEC),

western U.S. (WUS), central U.S. (CUS), eastern U.S.

(EUS), and Mediterranean (MED) are also relatively

unaffected. Eastern Africa (EAF; 0.78) and Sahara (SAH;

0.82) are the most affected domains in February and July,

respectively. February-July differences in the multivariate

median affected area fraction (Fig. 4b, c, bold black line)

average 21 %, but range between less than 1 % (Amazon:

AMZ; Indian Ocean: IO; and southern Africa: SAF) and as

much as 52 % (EUS). The February-July difference is less

than 10 % for the following regions: EBR, southern South

America (SSA), Congo (CON), EAF, SAF, southeast Asia

(SEA), and IO.

In general, these findings hold qualitatively for climate-

related changes as well (see Fig. S2). The areal extent of

climate- related breakpoints is highest in AMZ, EBR, and

Africa (except SAF). Remarkably little area (2–4 %) in

Australia (AUS) is affected by changes of climate origin

(Fig. S2b, c).

3.2 Breakpoint size distribution and detectability

Considering that 20CR is statistically inhomogenous at the

majority of grids (Fig. S1), a key question is: what is the

typical jump size associated with these breaks? In Fig. 5,

we provide a sampling of eight inhomogenous grid records

each for Ta and P from around the world. They are repre-

sentative of the array of detectable inhomogeneity, ranging

from instantaneous (e.g., Fig. 5a) to gradual (e.g., Fig. 5c),

and with varying jump sizes. For added reference, the

spread time series and breakpoint record in comparison

datasets, CRU Ta and GPCC P, are included. Although no

breakpoints were detected in GPCC P. Breakpoint sum-

maries for the full 26-variable subset of 20CR (Table 1) at

these same grid points are provided in Fig. S3. While the

breaks in Ta and P highlighted in Fig. 5 do pervade through

multiple (if not most) modeled variables, Fig. S3 shows

this is not the rule.

In several instances the abrupt shifts in variable mean

correspond with those in the variable ensemble spread

(Figs. 5 and S3). Such coincidences are strongly suggestive

of unphysical inhomogeneities (Ferguson and Villarini

2012). The fact that only one breakpoint in one location is

corroborated by a break (95 % confidence interval; not

shown) in CRU Ta (Fig. 5d) further supports this conclu-

sion. Finally, the ocean grids for which the Ta spread is

time invariant (Fig. 5b, h, i) are examples of why TMIN

spread is used instead for diagnosing non-climate break-

points (see Sect. 2.3.2).

In Fig. 6, the full distribution of detected breakpoints

(n = 853,376) for 26 variables and 2 months (February

and July) is summarized according to jump size. The jump
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sizes are normalized by the standard deviation of the pre-

ceding series segment to enable inter-variable comparison

(Fig. 6a). The variable frequency polygons are generally in

close agreement with regards to mean, spread, and skew.

There is remarkably strong consensus that the distribution

is positively skewed; 72 % of breaks exceed one standard

deviation in magnitude; 50 % of breaks exceed 1.3 stan-

dard deviations in magnitude; and 25 % of breaks exceed

1.8 standard deviations of the preceding time series. Fig-

ure 6b, c shows the absolute jump size distributions for Ta

and P, respectively. One-half of breaks are shown to

exceed 0.7 �C and 11.9 mm month-1, respectively.

In many applications, especially in an operational setting,

knowing the detectability limits is desirable. For the Bai-

Perron test, we recommend assuming a detectability limit of

0.7 standard deviations computed from the time series prior

to the change point, equivalent to the fifth percentile of

multivariate detected jump size (0.3 �C and

1.4 mm month-1 for Ta and P), globally (Fig. 6). It could be

the case that test sensitivity exceeds that which is required or

meaningful for the application at hand. For example, Figs. 7

and 8 illustrate the monthly global distribution of minimum

detected jump sizes in Ta and P, respectively. The smallest

shifts over the Tropics and coastal areas for Ta and deserts of

Africa for P might be inconsequential. Notably, we found no

substantial difference in the mean jump sizes of non-climate

breaks related to observational network changes (next sec-

tion) and natural breaks related to climate variability.

3.3 Non-climate breakpoints

Non-climate (unphysical) inhomogeneities are diagnosed

using the joint confidence intervals of breaks detected in the

variable and spread fields (Sect. 2.3.2). Their fraction of the

total February and July breakpoint counts is summarized in

Fig. 9. As before, a 26-variable subset of 20CR is considered

over 60�S–60�N (Fig. 9a) and 27 constituent climatic

regions (Fig. 9b, c). The multivariate mean non-climate

fraction for 60�S–60�N found to be approximately 0.72 (for

both February and July), which slightly exceeds that of Ta

(February: 0.70; July: 0.64) but not P (February: 0.80; July:

0.82). Non-climate breaks constitute the least proportion

(0.20) of breaks in surface upward longwave radiation

(LW:). Regionally, the largest non-climate fractions (0.95)
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Fig. 4 Bai-Perron test results

for February and July time

series of 26 20CR variables (see

Table 1 for variable name

definitions). a For 60�S–60�N,

the fraction of grid cells (land

and ocean combined, except for

Q and G, which are defined over

land only) that are affected by

non-climate breaks at some

point over the period of

availability (1871–2010). b and

c same as in (a) but on a

regional basis (see Fig. 1,

Table 2). In (a), the multivariate

median values for February

(gray) and July (black) are

marked by horizontal lines.

Results for Ta (red), P (blue),

and the multivariate median

(black) are highlighted in

(b) and (c). See Fig. S2 for the

complimentary figure (i.e., the

fraction of grid cells affected by

climate-related breaks)
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are reported for CAS (February) and Australia (AUS; Feb-

ruary and July). The smallest non-climate fraction (0.60) is

found for tropical Pacific Ocean (TPO; February) and North

Atlantic Ocean (NAO; July). Neither the 60�S–60�N results

nor the domain results exhibit seasonality in their multivar-

iate median non-climate fraction (Fig. 9b, c; except in the

case of CUS and EUS, for which the February breakpoint

population size was insufficient).
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Fig. 5 For selected grid points,

the time series of 20CR a–i Ta

and j–r P (in black) and their

respective ensemble spread (in

blue). Vertical dashed red lines

denote detected breaks in the

variable mean fields (confidence

intervals not shown). CRU Ta

and GPCC P records, available

over land points (c–e, g, and m–

q), were also evaluated for

breaks. Breaks detected in the

CRU Ta are denoted by vertical

cyan lines (confidence intervals

not shown); no breaks were

detected in GPCC P over the

selected grid points. The nearest

major city is noted, within

reason
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Figure 10 details the spatio-temporal distribution of

non-climate breaks. For 60�S–60�N, the inter-variable

range in median non-climate break dates is 1924–1959 for

February and 1936–1950 for July; the multivariate mean of

median non-climate break dates is 1947 and 1944 for

February and July, respectively (Fig. 10a). Ninety percent

of all non-climate breaks between 60�S and 60�N (both

February and July) are detected prior to 1979, when

modern satellite-era atmospheric reanalyses such as

MERRA and NCEP’s Climate Forecast System Reanalysis

(CFSR; Saha et al. 2010) begin. Figure 10b gives the

February and July multivariate median: 10th percentile,

mean and 90th percentile non-climate break date for each

of the 27 climatic regions considered. The means of these

values, taken over all domains, are: 1904, 1934/1939

(February/July), and 1967, respectively. In Fig. 10c, the

area-normalized multivariate median non-climate break-

point count is plotted. By multiplying this value by the

number of 2� grids in the domain (see Table 2), the actual

median count can be computed. Because the 60�S–60�N

non-climate fraction is insensitive to seasonality (Fig. 9a),

we expect the non-climate break count to scale linearly

with the count of all breaks, which it does. On average,

0.21 domain areas more non-climate breaks are detected in

July (mean = 0.82) as compared to February

(mean = 0.61) (Fig. 10c).

The box plots and bulk statistics of Figs. 9 and 10 can

only go so far towards isolating the inaccuracies of 20CR.

Using Fig. 11 it is possible to visually pin-down time

windows for each region that deserve greater scrutiny. It

illustrates the full 140-year time series of physical and non-

climate breaks in Ta for February or July- whichever is

least homogenous. Red shading indicates the times when

breaks are mostly of non-climate origin. Hollow black bars,

on the other hand, denote times when natural breaks

dominate. A great example of the robustness of our

approach is the 1976–1977 climate shift of the North

Pacific basin (e.g., Meehl et al. 2009; Powell and Xu 2011),

which is properly diagnosed as real (Fig. 11aa).

The results for CUS contrast-but do not completely

contradict- our previous assertion that the mid 1940’s

breakpoint is unphysical (Ferguson and Villarini, 2012). In

this study, a total of 21 breaks are detected in the 1940’s (of

which all occur in 1949) and only three are diagnosed as

non-climate (Fig. S4e). Accordingly, the mid-1940’s break

appears to have competing observational network and cli-

mate explanations. In more general terms, this case high-

lights sensitivity to the choice of statistical test. Recall that

previously we applied a hands-on segmented test to the

ensemble spread field while we are previously presently

applying an automated Bai-Perron test.

It is important to point out that the ratio of non-climate

breaks to total breaks in Fig. 11, as well as the absolute

count, is inconsistent with previous results (Fig. 10). That

is because a different accounting convention was applied.

In Fig. 11, breakpoints contribute to the tally in every year

of their 95 % confidence interval. For example, if the year

lies within the joint confidence interval of breakpoints in

both the Ta mean and TMIN spread, then the non-climate

breakpoint count is increased by one. Alternatively, if the

year lies within the confidence interval of a breakpoint in

Ta mean, but not for TMIN spread, then the physical

breakpoint count is increased by one. While it is true that

the breakpoint confidence intervals can be very wide (see

Sect. 2.3.2), accounting for their lengths is the only way to

achieve the true uncertainties inherent to the breakpoint
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Fig. 7 For 20CR Ta, the global

monthly distribution of

minimum detected jump sizes

(| �C|)
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Fig. 8 As in Fig. 6, for 20CR

P (|mm month-1|)
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detection. The convention of this study has been and

remains to be that of constraining all accounting to the year

of the central break date (see Fig. S4). The merit of Fig. 11

is that it informs the precise era of overlap between the

confidence intervals of the mean and ensemble spread

fields (see Fig. S5 for further details).

Break test results from comparison datasets are also

included in Fig. 11. Over land, physical breakpoint count

results from CRU Ta are plotted. Because there is no

equivalent spread field for CRU, breaks in its CDD con-

tributing station time series are used to diagnose non-cli-

mate effects. Over ocean, counts of triple coincidence

among breakpoint confidence intervals in HadISST v1.1,

ERSST, and COBE SST, are plotted as best estimate

physical breakpoint counts. Assuming 20CR is skillful, we

would expect its physical breaks (hollow black bars) to

correspond closely with those of the comparison series.

However, tight correspondence only really occurs for MED

(Fig. 11p) and NAO (Fig. 11x). The reality, as we shall

discuss in the next section, is that these datasets come with

their own uncertainties and artificial inhomogeneities, as

well.

3.4 Attributing 20CR’s breakpoints

The non-climate shifts identified in this study are more than

likely the lowest-hanging fruit per se. We believe that the

number of natural (non-climate) breaks is much lower
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Fig. 9 Fraction of all detected

breaks in the February and July

time series that can be attributed

to non-climate (i.e.,

observational network) sources.

a For 60�S–60�N (land and

ocean combined, except for

Q and G, which are defined over

land only), and for b, c each of

27 land- and ocean-only

climatic regions. The

multivariate regional medians

[bolded black line in (b) and (c)]

are computed from the set of all

single-variable values with

underlying sample sizes of 50 or

more non-climate breaks in the

specific region (denoted by a

circle)
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(higher) in reality due to remote (in time and/or space)

network effects that are not well captured by the local

variable spread upon which our diagnosis is entirely

dependent. The teleconnections that translate these signals

also carry important implications for homogenization.

Namely, that correcting for a single break can have

reverberating (and perhaps, unintended) consequences (i.e.,

either eliminating or giving rise to secondary breaks).

Potential sources of discontinuity include: climate

events (e.g., El Niño, severe and extended drought, vol-

canic eruptions, loss of permanent land/sea ice) and climate

change (natural or anthropogenic), model or observational

bias, discontinuities in other model data (e.g., specification

of greenhouse gas concentrations, volcanic aerosols, ozone,

land surface conditions), reanalysis production in multiple

streams, and technical mistakes in production. In the case

of 20CR, stream production (described in Sect. 2.1) has

been shown to affect the continuity of only slow-varying

parameters (i.e., integrated column soil water content) at

high latitudes (personal comm., Justin Sheffield 2012) that

are not the focus of this work.

A more definitive attribution of 20CR’s inhomogeneities

than we have provided here will require an immense effort

moving forward. But it is a necessary hurdle in the

development path towards a climate-quality reanalysis.

Specifically, the homogeneity of the observational base for

20CR, which includes HadISST v1.1 and synoptic sea level

pressure observations, will need to be reassessed. Long-

term independent in situ datasets, of which CRU Ta and

GPCC P are primary examples, can assist in verifying

realism. The difficulty is that each of the data products has

their own problems and uncertainties, which are not very

well understood. Ultimately, the objective, as depicted in

Fig. 12, is to maintain climate variability (Fig. 12a, c, e, g)

in the process of correcting for non-climate breaks

(Fig. 12b, d, f, h).

Figure 13 frames the inhomogeneity of HadISST v1.1,

HadSLP2, CRU Ta, and GPCC P into perspective with that

of 20CR’s (dataset descriptions in Sect. 2). It shows the

global breakpoint count map for each of the datasets at

their native spatial resolution, computed from their annual

mean series. For the purpose of inter-comparison, the total

break counts between 60�S and 60�N from the similar

analysis conducted at 2� resolution are denoted on each

subplot. An abundance of breakpoints are detected in CRU

Ta, HadSLP2, and HadISST v1.1, whereas GPCC P is

found to be relatively homogenous. GPCC P has a

homogenous fraction of 0.51 between 60�S and 60�N
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Fig. 10 Boxplot summary of

temporal patterns in non-climate

breakpoints for a 60�S–60�N

(land and ocean combined,

except for Q and G, which are

defined over land only) and b
for each of 27 land- and ocean-

only regions. c The area-

normalized (i.e., by the

contributing grid area, n,

provided in Table 2)

multivariate median non-

climate breakpoint count. In

(a) the boxplot whiskers bracket

the 10th and 90th percentiles;

the circled dot denotes the

median. In (b), the multivariate

regional median (cyan, orange)

and 10th and 90th percentiles

(gray, black) are all medians of

the set of like (i.e., median,

Q10, and Q90) single-variable

statistics supported by

underlying sample sizes of 50 or

more non-climate breaks in the

respective region. Thus, each

inclusive variable is given equal

weight
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(land-only), compared to only 0.19 for 20CR P. Moreover,

only 15 % of its coverage between 60�S and 60�N is

affected by multiple breakpoints. The same statistic is

46 % for 20CR P.

The fact that so many inhomogeneities persist without

definitive attribution, especially in the HadISST v1.1 and

HadSLP2, is reason for concern. These datasets constitute

critical elements of climate modeling. All model-based
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Fig. 11 For (a) global land

(excluding Greenland and

Antarctica) and (b-bb) each of

the 27 study regions (Table 2),

the (hollow black bars) grid

count within the 95 %

confidence interval (CI) of a

breakpoint in Ta, the (red

shaded area) grid count within

the 95 % CI’s of breakpoints in

both Ta and TMIN ensemble

spread, and in (x-bb), the

(secondary yellow y-axis) grid

count within the triple 95 % CI

of the following three SST

datasets: HadISST v1.1, ERSST

v3b, and COBE SST. In (a–w),

the number of grids within the

95 % CI of a physical break in

CRU Ta is plotted on the

secondary (blue) y-axis
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reanalyses as well as climate model integrations rely on

similar SST/sea ice estimates for boundary forcing. Surface

(sea-level) pressure observations inform time-variations in

the total mass of the atmospheric column, which the 20CR

has demonstrated is sufficient information for producing a

skillful reanalysis; they also comprise the earliest meteo-

rological records. The knock-on effect of inhomogeneities

in HadISST v1.1 and HadSLP2 to 20CR is apparent in
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FEBRUARY JULY
(a) Ta -climate variability (n=3260) (e) Ta -climate variability (n=5474)

(c) P -climate variability (n=1074) (g) P -climate variability (n=1619)

(b) Ta -non-climate breaks (n=7645) (f) Ta -non-climate breaks (n=9779)

(d) P -non-climate breaks (n=4420) (h) P -non-climate breaks (n=7222)

Fig. 12 Date of the most modern physical [(a, c, e), and (g)] and non-

climate [(b, d, f), and (h)] breaks detected in the February and July

time series of (a–d) Ta and (e–h) P. For each subplot, the total count

of all breaks (not only the most recent) detected over the region 60�S–

60�N (land and ocean) is annotated
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NA

(a) CRU Ta (n=6994 @ 2  ) (e) GPCC P (n=1858 @ 2  )

(b) 20CR Ta (n=20836 @ 2  ) (f) 20CR P (n=14857 @ 2  )

(c) 20CR Psurf (n=19215 @ 2  ) (g) HadISST v1.1 (n=15264 @ 2  )

(d) HadSLP2 (n=12266 @ 2  )

° °

°
°

°

°

°

Fig. 13 Global breakpoint count maps for the yearly mean a CRU Ta,

b 20CR Ta, c 20CR Psurf, d HadSLP2, e GPCC P, f 20CR P, and g
HadISST v1.1. The analyses were conducted at the native product

resolution for either 20CR’s period of availability (1871–2010) or the

datasets period of availability, whichever is shorter (i.e., CRU:

1901–2009; GPCC: 1901–2010; HadSLP2: 1871–2004; Had-

ISST v1.1: 1871–2010). Grids in white are homogenous (at the 5 %

significance level) for the period of record. Grids shaded in pink

generally denotes a coverage gap, however, it can also indicate

permanent sea ice cover in (g), and in (a), the fact that climatology

was imposed over a substantial portion of the record. The breakpoint

counts provided in each subplot title are the results of a similar

analysis (not shown) conducted over 60�S–60�N (land and ocean

girds) at a standard spatial resolution of 2� and thus can be directly

compared
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Fig. 14 Summary of the Bai-Perron test results for 20CR a Ta and b
P at Geneva, Switzerland. The horizontal magenta lines at the top of

each subpanel (where detected) are the change points and associated

95 % confidence intervals computed from the 20CR ensemble mean

field. The gray-filled area is the histogram of cumulative confidence

intervals summed over 20CR’s 56 ensemble members. Vertical

magenta bars show the number of ensemble members for which a

change point is detected, multiplied by three for emphasis. Results

from CRU Ta (blue) and GPCC P (orange) are also included (where

detected). Notice that no change points are detected for the latter.

Also, note that the vertical scale in (b) varies
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Fig. 15 As in Fig. 14 but for Rondonia, Brazil. The tripling of

cumulative change point counts for visual effect places the represen-

tative magenta bars outside plotting extents in May 1936 (38/56

ensemble members) for Ta and the following cases for P: January

1988 (26/56 ensemble members); February 1985 (38/56 ensemble

members); March 1951 (33/56 ensemble members) and 1973 (37/56

ensemble members); October 1972 (24/56 ensemble members);

November 1965 (19/56 ensemble members); December 1976 (36/56

ensemble members)
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Fig. 13. The weighted pattern (Pearson) correlation coef-

ficient between breakpoint count maps of 20CR Ta (Psurf)

and HadISST v1.1 (HadSLP2) is 0.51 (0.36). The bottom

line is that attributing inhomogeneities in these input

datasets is an essential prerequisite to attributing inhomo-

geneities in 20CR itself.

4 Summary and conclusions

Using the Bai-Perron test for structural breakpoints we

have shown that the 20CR is affected by artificial ‘‘shocks’’

to an extent that varies on a regional, seasonal, and

parameter basis. On a grid point basis, the occurrence of

multiple abrupt shifts over the 140-year (1871–2010)

record is common. Collectively, the scale order of these

abrupt shifts can appear overwhelming; 20,836 change

points were detected in 20CR’s yearly 2 m air temperature

record between 60�S and 60�N (Fig. 13).

The most important task is differentiating between

breaks due to natural climate variability and breaks that

are caused by observational network changes. We use the

joint confidence intervals of breaks detected in the variable

and spread fields to diagnose non-climate (unphysical)

shifts, which we demonstrate account for approximately

72 % of all breaks (Sect. 3.3). In reality, the proportion

could be even greater due to remote network effects (i.e.,

via teleconnections). The absolute jump size of the breaks

can be sizeable. Seventy-two percent of breakpoints

exceed one standard deviation of the preceding series

segment, 50 % of breaks exceed 1.3 standard deviations of

the preceding series segment, and 25 % of breaks exceed

1.8 standard deviations of the preceding series segment

(Sect. 3.2).

On a positive note, a significant fraction of points do

exist for which the full record is homogenous (Figs. 2, 3, 4,

S2). And of the inhomogeneous records, often the last

(most modern) homogenous segment extends back to a

very early date. For example, July 2 m air temperature is

statistically homogenous (free from non-climate breaks)

back to 1942 (1922) for half of all land grids (excluding

Greenland and Antarctica; not shown). In some cases, it is

possible for the record to be considered natural (or even

homogenous) over even longer intervals. This can occur

when the jump size of the detected shift is deemed

inconsequential to the application at hand (i.e., the change

point is disregarded). Accordingly, geographically- and

temporally-selective applications of the 20CR for long-

term trend analysis are feasible.

The longest pre-existing global atmospheric reanalysis,

NCEP-R1 (Kalnay et al. 1996; Kistler et al. 2001), does not

even begin until 1948. Hence, and this should be appreci-

ated, the 20CR constitutes a major improvement in series

continuity (spatially and temporally) relative to the status

quo. Relative to long-term in situ gridded datasets over

land that span the twentieth century, 20CR’s degree of

homogeneity is comparable to that of CRU 2 m air tem-

perature, but less than that of GPCC precipitation (Fig. 13).

The manifestation of 20CR’s inhomogeneities in time

and space, among variables and atmospheric levels, is

shown to be highly complex- much like the reanalysis

system from which they were generated (e.g., Fig. S3).

This makes attributing inhomogeneities to their sources a

challenge. Inhomogeneities in 20CR’s boundary forcing

(HadISST v1.1) and input data stream (represented by

HadSLP2), as well as the comparison datasets (CRU Ta and

GPCC P), make the process even more difficult. Specifi-

cally, we found that abrupt shifts in 2 m air temperature

and surface pressure are related to coincident shifts in

HadISST v1.1 and HadSLP2, respectively.

Currently, the presence of inhomogeneities confounds

the detection and attribution of possible regional climate

change signals in 20CR. Our hope is that the results of this

work will serve as a valuable resource to 20CR’s broad

user group as well as the developers of climate-quality

reanalyses such as the planned Sparse Input Reanalysis for

Climate Applications (SIRCA; Compo et al. 2012) to span

1850–2014. With sufficiently detailed metadata it is pos-

sible to track (to an extent) the propagation of artificial

(observational) shocks in the record using the Bai-Perron

test (as demonstrated herein) and subsequently correct the

affected time series. However, attributing abrupt shifts

away from their immediate source (i.e., teleconnections

from sea to land) remains a challenge and will require a

different approach than we have taken. Another difficulty is

diagnosing shifts for which there are competing observa-

tional network and climate explanations. The many chal-

lenges to attribution suggest that an automated procedure is

likely to be insufficient, while the sheer number of inho-

mogeneities all but necessitates one.
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Reanalysis/). Chesley McColl provided the 20CR assimilated obser-

vation count dataset. HadSLP2 was obtained from the Met Office

Hadley Centre for Climate Change (www.metoffice.gov.uk/hadobs/

hadslp2/). The CRU TS3.1 dataset was obtained in May 2011 from

the British Atmospheric Data Centre (BADC; http://badc.nerc.ac.uk).

The GPCC v6 Full Data Reanalysis was obtained from the Deutscher

Wetterdienst (DWD; gpcc.dwd.de), operated under the auspices of the

World Meteorological Organization (WMO). The COBE SST dataset

was obtained from the Japan Meteorological Agency Tokyo Climate

Center (http://ds.data.jma.go.jp/tcc/tcc/products/elnino/cobesst/cobe-

sst.html). ERSST v3b was obtained from the NOAA National Climate

Data Center (ftp://ftp.ncdc.noaa.gov/pub/data/cmb/ersst/v3b/netcdf).

Appendix 1: Every member analyses for Geneva

and Rondonia

In this section, we evaluate variability among the 56

ensemble members from which we assess only the

ensemble mean (i.e., official 20CR product) in our study.

We focus on two grid points: Geneva, Switzerland

(46.20�N, 6.15�E) and Rondonia, Brazil (24.0�S, 51.0�W).

The significance of these locations is the dichotomy of their

supporting observational record. The record at Geneva

benefits from a steady stream of approx. 300 observations

per month over the period of availability. In contrast, not a

single observation was ever assimilated at Rondonia.

Figures 14 and 15 present results of the Bai-Perron test

performed on the 56-member monthly Ta and P data at

Geneva and Rondonia, respectively. In general, but

particularly for Geneva, the confidence interval for the

ensemble mean change point encompasses much of the

cumulative 56-member confidence interval range. The

figures show that a change point in the ensemble mean

could be triggered by abrupt shifts in as few as five

ensemble members. On the other hand, there are cases in

which clusters of 20 ensemble member change points over

9 years (Fig. 15a, September) do not cause an equally

significant shift in the ensemble mean. At Geneva, most of

the variable-months are homogenous. This suggests, to us,

that if a climate shift did occur, it was weak. At Rondonia,

on the other hand, change points manifest in all variable-

months (except July for Ta), which we interpret as evidence

of a strong shift.

Figure 15 exposes limitations of the Bai-Perron detec-

tion algorithm. Specifically, evidence of competing models

(in a Bai-Perron sense) and detection limits can be seen

[e.g., Fig. 15a: April, October, and November; Fig. 15b:

October and December]. For example, at Rondonia, 17, 15,

and 16 members of the Ta ensemble had change points in

November 1962, 1969, and 1978, respectively. In other

words, three potential shifts were identified within a

17-year time period. Because of the imposed 21-year

minimum segment length (Sect. 2.3.2), only one change

point was resolved.

Appendix 2: Temperature spread fields over ocean

See Fig. 16.
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