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Abstract Currently, ensemble seasonal forecasts using a

single model with multiple perturbed initial conditions

generally suffer from an ‘‘overconfidence’’ problem, i.e.,

the ensemble evolves such that the spread among members

is small, compared to the magnitude of the mean error. This

has motivated the use of a multi-model ensemble (MME), a

technique that aims at sampling the structural uncertainty

in the forecasting system. Here we investigate how the

structural uncertainty in the ocean initial conditions

impacts the reliability in seasonal forecasts, by using a new

ensemble generation method to be referred to as the mul-

tiple-ocean analysis ensemble (MAE) initialization. In the

MAE method, multiple ocean analyses are used to build an

ensemble of ocean initial states, thus sampling structural

uncertainties in oceanic initial conditions (OIC) originating

from errors in the ocean model, the forcing flux, and the

measurements, especially in areas and times of insufficient

observations, as well as from the dependence on data

assimilation methods. The merit of MAE initialization is

demonstrated by the improved El Niño and the Southern

Oscillation (ENSO) forecasting reliability. In particular,

compared with the atmospheric perturbation or lagged

ensemble approaches, the MAE initialization more effec-

tively enhances ensemble dispersion in ENSO forecasting.

A quantitative probabilistic measure of reliability also

indicates that the MAE method performs better in fore-

casting all three (warm, neutral and cold) categories of

ENSO events. In addition to improving seasonal forecasts,

the MAE strategy may be used to identify the character-

istics of the current structural uncertainty and as guidance

for improving the observational network and assimilation

strategy. Moreover, although the MAE method is not

expected to totally correct the overconfidence of seasonal

forecasts, our results demonstrate that OIC uncertainty is

one of the major sources of forecast overconfidence, and

suggest that the MAE is an essential component of an

MME system.
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1 Introduction

Even though the ability of dynamical models to predict El

Niño and the Southern Oscillation (ENSO) has improved

significantly over the past few decades (e.g., Latif et al.

1998; Jin et al. 2008; Wang et al. 2010; and references
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therein), ENSO prediction is still far from perfect, using

both deterministic and probabilistic metrics. An example of

the latter is that current ensemble seasonal forecasts at

operational centers are generally found to have an apparent

‘‘overconfidence’’ problem, i.e., the ensemble perturbations

have limited growth relative to the amplitude of mean error

(Palmer et al. 2004; Vialard et al. 2005; Saha et al. 2006;

Weisheimer et al. 2009; also seen in Fig. 1). As a result,

events (e.g., warm ENSO events) occur more frequently in

the ensemble forecasts than the fraction of times such

events are observed (e.g., Weigel et al. 2009; Langford and

Hendon 2013). This means that the low ensemble spread

underestimates the forecast uncertainty and makes it less

reliable. The lack of reliability may seriously affect sub-

sequent applications of the forecasts.

Therefore, an important measure of ensemble forecast-

ing is whether the resulting probabilities are reliable, i.e.,

the forecast probabilities match the observed frequencies

(Johnson and Bowler 2009). Efforts have been made to

enhance the reliability of seasonal forecasts in different

ways. In general, the lack of reliability originates from an

inadequate sampling of the uncertainty associated with the

errors inherent in current forecast system. Seasonal sea

surface temperature anomaly (SSTA) forecasts are pri-

marily subject to three types of errors: (I) amplification of

errors in ocean initial conditions (OIC), (II) errors due to

the unpredictable nature of the synoptic atmospheric vari-

ability, and (III) coupled model errors. A good ensemble

forecast system is necessary to sample the effect of all

these error sources. Uncertainties of type (II) (i.e., atmo-

spheric perturbations, AP) have been considered in current

seasonal forecast systems, usually by using multiple

atmospheric initial conditions. Type (III) errors can be

sampled by employing the so-called stochastic physics

(Vialard et al. 2005), or by adopting a multi-model

ensemble approach (MME, see Palmer et al. 2004; Weis-

heimer et al. 2009; Kirtman and Min 2009). In addition, the

reduction of the systematic errors by some empirical cor-

rections may also improve ENSO predictions (Manganello

and Huang 2009; Pan et al. 2011; Magnusson et al. 2012).

Comparatively less attention has been paid to type

(I) errors in current initialization strategies, even though

adequately sampling the OIC uncertainty is vital for

ensemble seasonal forecasting (the MME approach

implicitly includes the sampling of different ocean initial

conditions, but this aspect is usually not highlighted in the

literature and, as far as we know, its effectiveness has yet to

be shown). Generally, single-model-based operational

seasonal forecast systems use relatively simple procedures

to produce perturbations in OIC. For instance, the Climate

Forecast System, version 2 (CFSv2), of the National

Centers for Environmental Predictions (NCEP) applies the

traditional lagged ensemble (LE) approach to generate

ensemble members in both atmospheric and oceanic initial

states (Saha et al. 2013). In this approach, the ensemble is

built by aggregating predictions from a succession of

neighboring initial states. In contrast, operational climate

predictions at the European Center for Medium-range

Weather Forecasts (ECMWF) are initialized with five

perturbed ocean states generated by random perturbations

inherent in its ocean data assimilation analysis (Molteni

et al. 2011; Balmaseda et al 2013). Neither method samples

the structural uncertainty associated with the data assimi-

lation system used in the production of the ocean analyses.

More sophisticated techniques have been adopted from the

successful practice in numerical weather prediction, such

as the singular vector (Palmer et al. 1994) and breeding

(Toth and Kalnay 1997) methods, in limited experimental

cases (Yang et al. 2008) or with simplified forecast systems

(e.g., the empirical singular vector by Kug et al. 2011).

However, possibly due to their intrinsic limitations (Kug

et al. 2010) for seasonal predictions and because the

complexity of CGCMs, such methods have not been

implemented in any CGCM-based operational ensemble

seasonal forecast systems.

The adequacy of the above ensemble generation strate-

gies in accounting for the OIC uncertainty has not been

fully tested. In comparison with an atmospheric initial

condition, the uncertainty of an OIC may be higher and

more dependent upon geographical locations because the

observational measurements are much fewer in number and

(a)

(b)

Fig. 1 a Ensemble spread and b RMSE of SSTA at the 4-month lead

from hindcast CFSRR with IC in April of 1982–2007. Contour

interval is 0.2�C, with above 0.4�C colored shading
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are more tightly clustered geographically in the ocean. This

source of uncertainty cannot be taken into account in the

initialization approaches discussed above, because they are

all based on their respective ocean analysis systems with

their individual ocean model and assimilation techniques.

The ocean analysis systems are generally based on differ-

ent ocean models forced by different atmospheric fluxes,

and apply different assimilation techniques to assimilate

slightly different ocean datasets (see Table 1 in the

‘‘Appendix’’ as an example). These differences have

resulted in substantial uncertainties in the estimated ocean

states (Zhu et al. 2012a; Xue et al. 2012; also see Figs. 5, 6

in ‘‘Appendix’’).

In a recent study, Zhu et al. (2012b) found that there was

a substantial difference in the ENSO prediction skill with

different ocean analyses. Moreover, the grand ensemble

mean of the predictions initialized from all available ocean

analyses, referred to as the multiple-ocean analysis

ensemble (MAE) initialization, gives prediction skill (or

accuracy) at least as good as the best set of forecasts

derived from an individual ocean analysis (Zhu et al.

2012b, 2013). It is known that deterministic measures of

skill cannot provide the information about prediction

uncertainties. In this study, we further explore the potential

of utilizing multiple analysis initialization for probabilistic

forecasting. Specifically, we examined the effect of the

MAE initialization on ENSO forecasting reliability by

analyzing groups of hindcasts generated using CFSv2. In

addition to comparing with hindcasts considering AP only,

we also compare MAE with the LE approach (i.e., hind-

casts from NCEP CFS Reanalysis and Reforecast (CFSRR)

Project using CFSv2). The paper is organized as follows.

The CGCM, the experimental design and datasets are

described in the next section. The results are presented in

Sect. 3. A summary and discussion are given in Sect. 4.

2 Model, hindcast experiments and datasets

The coupled model used in this study is the NCEP CFSv2

(Saha et al. 2013). CFSv2 has been the operational forecast

system for seasonal-to-interannual prediction at NCEP

since March 2011, replacing its predecessor, CFSv1. As a

national climate model, CFSv1 has been particularly suc-

cessful in seasonal-to-interannual climate forecasting, both

retrospectively and operationally (Saha et al. 2006). In

CFSv2, the ocean model is the GFDL MOM version 4

(Griffies et al. 2004), which is configured for the global

ocean with a horizontal grid of 0.5� 9 0.5� poleward of

30�S and 30�N and meridional resolution increasing

gradually to 0.25� between 10�S and 10�N. The vertical

coordinate is geopotential (z-) with 40 levels (27 of them in

the upper 400 m). The maximum depth is approximately

4.5 km. The atmospheric model is the global forecast

system (GFS), which has horizontal resolution at T126

(105-km grid spacing, a coarser resolution than is used for

the GFS operational weather forecast), and 64 vertical

levels in a hybrid sigma-pressure coordinate. The oceanic

and atmospheric components exchange surface momen-

tum, heat and freshwater fluxes, as well as SST, every 30

minutes. More details about CFSv2 can be found in Saha

et al. (2013).

The hindcasts initialized from multiple ocean analyses

have been described in Zhu et al. (2012b), where all

validations were based on the ensemble mean fields

using deterministic metrics. This group of hindcasts

starts from each April during 1979–2007, and lasts for

12 months. In the group of hindcasts, four ocean anal-

yses from the NCEP and ECMWF were used as OIC—

ECMWF COMBINE-NV (Balmaseda et al. 2010), EC-

MWF ORA-S3 (Balmaseda et al. 2008), NCEP Forecast

System Reanalysis (CFSR) (Saha et al. 2010), and NCEP

GODAS (Behringer 2005) (see the ‘‘Appendix’’ for more

details about these ocean analyses). For each OIC, four

atmospheric/land initial conditions (the atmospheric/land

instantaneous states at 00Z of the first four days in April

in the CFSR) were applied to represent the uncertainties

in the atmospheric/land initial states as in the LE

approach (see the ‘‘Appendix’’ for more details about the

hindcast experiment design). Thus, for hindcasts with

each OIC, AP is taken into account with four ensemble

members generated. These hindcasts are referred to as

hindcasts AP_cbn, AP_ora3, AP_cfsr, and AP_gds, cor-

responding to the above four OIC sources, respectively.

The four sets of hindcasts with different OICs are further

clustered together to generate a grand ensemble, which is

referred to as hindcast MAE with a total of 16 ensemble

members. In hindcast MAE, in addition to AP, the

uncertainties in OIC, a more important factor affecting

seasonal-interannual forecasting, are also sampled.

To validate the MAE method, we also analyzed the

retrospective forecasts from NCEP CFSRR, where the

LE approach is applied to generate ensembles. The

CFSRR hindcasts were produced by NCEP using CFSv2,

and cover predictions initialized from all calendar

months during Jan 1982 to Dec 2010, with each run

extending to around 9 months. For each year, 4 predic-

tions were produced every 5 days beginning on January

1st with ocean and atmosphere initial conditions (ICs)

from the NCEP CFSR (Saha et al. 2010). In this ana-

lysis, we used forecasts from 16 ICs in March and early

April to build our ensemble predictions starting from

each April during 1982–2007. Specifically, the 16 pre-

dictions are from ICs on Mar. 22, and 27, as well as

Apr. 1 and 6 at 00Z, 06Z, 12Z, and 18Z. This group of

hindcasts is referred to as hindcast CFSRR.
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In addition, the predictions initialized from different

days (i.e., Mar. 22, 27, Apr. 1 and 6) are also separately

combined to form four subsets to be referred to as hindcast

Mini-CFSRR, each with four ensemble members. In these

cases, the ensemble perturbations mainly reside in atmo-

spheric initial conditions (AIC), considering the longer

memory of the ocean.

The predicted SSTA is derived by subtracting a lead

time-dependent climatology from the total SST. The

observation-based monthly SST analysis used for valida-

tion is from the optimum interpolation analysis, version 2

(OIv2) SST dataset (Reynolds et al. 2002), which has a

resolution of 1.0� 9 1.0�.

3 Results

To validate the effectiveness of MAE, we first examine the

predicted SSTA spread in the tropical Pacific. In a reliable

forecasting system, it is required that a given forecast

member should have the same statistical properties as the

truth. In another words, the true state can be considered as a

member of the ensemble (Johnson and Bowler 2009). As a

necessary condition for reliability, the standard deviation

(spread) of the ensemble should be comparable to the root-

mean-square error (RMSE) of the ensemble-mean SSTA

forecast (Johnson and Bowler 2009). In practice, however,

the SSTA ensemble spread is substantially smaller than the

RMSE in all single-model ensembles (see Fig. 1 as an

example), which means the predictions tend to be ‘‘over-

confident’’ (Palmer et al. 2004; Vialard et al. 2005; Saha

et al. 2006; Weisheimer et al. 2009).

Figure 2 shows the spatial distributions of ensemble

spread versus ensemble-mean RMSE ratio for hindcast

SSTA at lead times of 2, 5, and 8 months. For the four AP

hindcasts (upper four rows of Fig. 2), the ratios are gen-

erally comparable: at the 2-month lead, all have two

regions where the forecasts are overconfident (regions with

minimum ratio)—the tropical mid-basin and far eastern

basin; at the 5- and 8-month leads, the mid-basin center is

less well-defined, but the minimum in the far eastern basin

is still apparent. The increasing difference in the spread/

RMSE ratio between the mid-basin and far eastern basin

centers with increasing lead time implies that the former

may be mainly related to the surface ocean processes with

shorter time scales, while the latter is mostly attributable to

the subsurface processes with longer time scales. In hind-

cast CFSRR, at all three lead times, the low ensemble

spread/RMSE ratios are mostly confined to the far eastern

basin, extending westward toward the mid-basin. It is clear

that CFSRR has a higher ratio than AP hindcasts in the

mid-basin, but the ratio is equivalent to the AP runs in the

far eastern basin.

In hindcast MAE, combining ensembles from the four

AP hindcasts, the ensemble spread/RMSE ratios are sig-

nificantly increased. Although the ratio in all AP hindcasts

is smaller than 0.6 over a large region of the tropical Pacific

at all three lead times, in hindcast MAE it is larger than 0.7

over most of the tropical Pacific. This improvement is also

apparent comparing hindcast MAE with hindcast CFSRR.

Particularly, in the far eastern basin, very few points in

hindcast MAE have a ratio less than 0.5, in contrast with

smaller ratios in AP hindcasts and hindcast CFSRR. In the

mid-basin at the 2-month lead, in contrast to the general

characteristics described above, the hindcast MAE is

slightly worse than the hindcast CFSRR, which will be

discussed below. It is also interesting to notice that the

ensemble spread/RMS ratio is larger than 1 for hindcast LE

and also for MAE in the Intertropical Convergence Zone

(ITCZ) and South Pacific Convergence Zone (SPCZ),

which may be a reflection of the relatively low potential

predictability of the forecast model in these regions.

Figure 3 shows the temporal evolution of ensemble

spread versus ensemble-mean RMSE ratio for the hindcast

NINO3.4 SSTA index (averaged over 5�S–5�N, 170�W–

120�W). At all lead times, the AP and Mini-CFSRR

hindcasts generally have comparable spread/RMSE ratios,

mostly lower than 0.6 for 0–9 months lead time, which is

lower than the desired value of 1. This indicates that

atmospheric initial perturbations only cannot generate

sufficient ensemble spread in the hindcasts. On the other

hand, both the MAE (combined from the four AP hind-

casts) and CFSRR (combined from the four Mini-CFSRR

hindcasts) have clearly increased spread/RMSE ratios at all

leading times, which demonstrate the improvement by

perturbing OIC.

Moreover, there is a clear distinction between the MAE

and CFSRR hindcasts. Comparing hindcast MAE with

hindcasts CFSRR, we found that the former has a higher

ratio than the latter for 0–9 months lead time as a whole

(0.68 vs. 0.59). In particular, hindcast MAE generates

significantly higher ensemble spread at long lead times

(longer than 2 months), with the spread/RMSE ratio larger

(smaller) than 0.7 in the MAE (CFSRR) at these leading

months. At lead times shorter than 2 months, a slightly

lower ensemble spread is achieved by the hindcast MAE.

This may be related to the fact that different ODAs depart

from each other more clearly below the surface than at the

surface (Figs. 5, 6), and it takes a couple of months to for

the SSTA spread to respond to the subsurface memory.

Meanwhile, in the tropics the subsurface differences

(Fig. 5b) among ODAs mainly reside in the off-equatorial

regions (larger than 0.2 �C), which, as a result of propa-

gating equatorial waves, further contributes to larger

spreads at longer lead times. In addition, there is a concern

about whether the improvement in hindcast MAE comes

2788 J. Zhu et al.
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simply from the increased number of ensemble members.

To examine this possibility, we computed the spread/

RMSE ratio for four Mini-MAEs (Fig. 3b), each of which

consists of four ensemble members with different OIC and

randomly chosen atmospheric initial conditions. It is clear

that the Mini-MAE generally produces a higher spread/

RMSE ratio than the Mini-CFSRR or the AP hindcasts,

confirming that the increase of spread/RMSE ratio in

hindcast MAE is mainly due to including the uncertainty in

different OICs, not enlarging the sample size.

It should be noted that the smaller spread in hindcast

MAE in mid-basin at short lead times may be related to a

weakness in the OIC generation, i.e., adopting monthly

mean data for the initial conditions rather than using

instantaneous fields, which are difficult to obtain. A set of

test runs showed that using the monthly mean fields as OIC

has little impact in deterministic terms (Zhu et al. 2012b).

However, this choice may have an effect on the probabi-

listic metrics, especially at short forecast leads. In fact,

high frequency features, which should enhance the

uncertainty in the OIC, especially near the surface, have

been greatly smoothed out by monthly averaging. For

example, tropical instability waves (TIW) provide a

potential source of the OIC uncertainty in this region.

Previous studies have demonstrated that TIW can induce

intensive air-sea feedback (Zhang and Busalacchi 2008).

Apparently, the monthly averaged oceanic state weakens

the TIW signal and its subsequent growth, consequently

reducing the departures among different OICs in MAE on

this time scale. On the other hand, these signals are

included in hindcast CFSRR, because the more frequent

instantaneous ocean analysis can detect the different tem-

poral phases of TIW, introducing extra variance in the OIC

(Wen et al. 2012). Thus, it is not surprising that hindcast

MAE using monthly mean data as OIC produces slightly

less SSTA variance at short lead times in the mid-tropical

Pacific basin, where TIW is active near the surface. This

suggests that the instantaneous fields should be used in the

future MAE forecast systems when such OIC become

available.

(a) (b) (c)

Fig. 2 Distribution of the ensemble spread-to-RMSE ratios for the

predicted SST anomalies in the tropical Pacific at a 2-, b 5-, and c 8-

month lead times with IC in April of 1982–2007. The results for

hindcasts AP_cbn, AP_ora3, AP_cfsr, AP_gds, CFSRR and MAE are

shown from the most upper row to the lowest row. Contour interval is

0.1, with above 0.4 colored shading
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We use the reliability diagram (Wilks 2006; Corti et al.

2012; Peng et al. 2012) to quantitatively examine the

reliability of ENSO forecasts, which compares the forecast

probabilities against the corresponding frequencies of

observed occurrence. If a forecast system is perfectly

reliable in probabilistic forecasts, the predicted probability

of an event occurrence should be equal to the observed

relative frequency, which is represented as a 1:1 diagonal

line in the diagram. To accumulate a large enough sample

of cases for this analysis, three measures are used in our

calculations: 1) a contingency table is calculated for each

grid point in the NINO3.4 area; 2) all forecasts during at

0–9 months lead time are used, which gives a bulk measure

for all lead times; and 3) a relatively small number of

probability bins is chosen: 0–20, 20–40, 40–60, 60–80 and

80–100%. We then assess the ability to predict three cat-

egories of ENSO events: warm (with SSTA larger than

0.43 �C), cold (SSTA less than -0.43 �C) and neutral

(SSTA falling in between). The value 0.43 is chosen is

because 43% of a standard deviation is the tertile threshold

for normally distributed data, and the standard deviation of

NINO3.4 index during the hindcast period is about 1 �C

(choosing instead a 0.5 �C threshold does not change the

results).

In Fig. 4, we show the reliability diagram for hindcasts

MAE and CFSRR, which both have the same number of

ensemble members (=16). In general, CFSv2 with both

ensemble generation methods produces ENSO forecasts

with relatively good reliability, even though the forecasts

are still somewhat overconfident, as found in CFSv1 by

Saha et al. (2006). The reliability lines in the hindcast MAE

are closer to the 1:1 diagonal line for all warm, cold and

neutral categories than the same for the hindcast CFSRR,

as objectively shown by the differences in their respective

slopes (the gray numbers in Fig. 4), despite a common

‘‘cold’’ forecast bias for the cold categories (blue curves in

Fig. 4) in both hindcasts. In addition, the difference

between MAE and CFSRR may be dependent upon the

probability range. For instance, the reliabilities are nearly

indistinguishable between the two sets of hindcasts when

the predicted probability is below 0.8. On the other hand,

CFSRR seems more likely to be overconfident in the

high probability range (0.8–1.0) for all three categories of

events. These results prove that MAE provides more reli-

able ENSO forecasts than CFSRR. The sharpness (three

inset histograms in Fig. 4) is similar between hindcast

MAE and hindcast CFSRR, with warm and cold (neutral)

categories having high (intermediate) confidence.

The above analyses indicate that MAE can effectively

reduce the ‘‘overconfidence’’ problem in single-model

ensembles, suggesting that uncertainty in different OICs

contributes to the reliability of the forecasts. However,

ensemble spread is still lower than RMSE even though

the MAE initialization is applied. This is possibly

because another error source, the coupled model error, is

not represented in our experiments. Therefore, to fully

cover all error sources, stochastic physics or MME

should be included, too. On the other hand, in the

(a) (b)

Fig. 3 Evolution of the

ensemble spread-to-RMSE

ratios for the predicted Niño-3.4

index during 1982–2007 with

respect to lead months. In a,

colored curves are for AP

hindcasts with four different

ocean analyses, and solid

(dashed) black curves are for

hindcast MAE (CFSRR). In b,

solid (dashed) black curves are

for four Mini-CFSRR (Mini-

MAE) hindcasts, each with four

ensemble members
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current MME framework, each model component is

commonly initialized from one single ocean analysis

system, which is usually based on its own ocean model.

Consequently, the uncertainty of OIC discussed in this

study is also underestimated in the current MME.

However, the MAE initialization can be easily applied in

the MME framework.

4 Conclusion and discussion

This study presented a new ensemble generation method

for seasonal forecasting, i.e., the multi-ocean analysis

ensemble (MAE). This method is intended to address the

apparent ‘‘overconfidence’’ problem in current ensemble

seasonal forecast systems with single models, evidenced by

the limited growth of ensemble perturbations with respect

to the amplitude of the mean error. In this method, ocean

initial conditions (OIC) are based on multiple ocean anal-

yses, which can sample structural uncertainties in OIC

originating from errors in the ocean model, forcing fluxes,

the analysis method, and the assimilated ocean datasets.

In this study, the merit of MAE is assessed by exam-

ining ENSO forecast reliability. In particular, we compared

the MAE method with methods that employ atmospheric

perturbations (AP), and the lagged ensemble (LE)

approach. The latter has been applied by operational cli-

mate prediction centers, such as NCEP. It is found that

MAE can effectively enhance ensemble spread. The

probabilistic reliability analysis indicates that the MAE

method has better forecast reliability for all ENSO warm,

neutral and cold categories. It is suggested that the MAE

method is an easy but effective way to sample various

kinds of uncertainties in OIC, and can be beneficial to

seasonal forecasting as a potentially useful component in a

multi-model ensemble (MME) framework. It is also sug-

gested that, in the future, the MAE method should be

applied using instantaneous OIC instead of monthly mean

fields, when available.

As pointed by Vialard et al. (2005), an apparent draw-

back of the LE approach is that it introduces a delay in the

forecast delivery date. For climate prediction, the long lag

required to generate a large enough ensemble with suffi-

cient oceanic perturbations aggravates this problem. For

Fig. 4 Reliability diagram of

forecast probabilities that

predicted SSTs over the Niño-

3.4 region fall in the upper

(warm; red curves), middle

(neutral; green curves), and

lower (cold; blue curves)

categories of the observed

climatology for the leading 0–9

months with IC in April of

1982–2007. The solid (dashed)

curves are for hindcast MAE

(CFSRR). The y=x diagonal line

(slope = 1.0) represents perfect

reliability. The probabilities are

binned as 0.2-wide intervals,

e.g., 0–0.2 (plotted at 0.1). The

inset histograms are the

frequency distributions for these

probability bins. Red colors

correspond to forecasts for the

upper (warm), green to the

middle (neutral), and blue to the

lower (cold) categories, with

filled (outlined) bar for hindcast

MAE (CFSRR). The gray

numbers in the right bottom

represent slopes of the indicated

reliability lines by regression fit
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example, the ensembles in CFSRR are generated every 5

days, so that 15 days to construct a fairly minimal

ensemble of 16 members. In addition to the delivery date

issue, the incorporation of the ensemble members with a

large time lag may also potentially degrade the value of

more recent ensemble members, because the earlier

members have larger model drift. On these aspects, the

MAE initialization may have an advantage over the LE

approach. On the other hand, LE has the potential of

sampling the different phases of high-frequency phenom-

ena such as TIW or the Madden-Julian Oscillation (MJO),

which may have strong effect on ENSO prediction (Wang

et al. 2011). In particular, intraseasonal variability may be

better sampled in CFSRR than in the MAE. How this can

affect the predictive skill can be tested by introducing the

LE approach along with the MAE strategy in future studies.

In addition, some ocean analyses, like COMBINE-NV

(Balmaseda et al. 2010) and ORA-S4 (Balmaseda et al.

2013), consist of an ensemble of OICs (5 members for

instance). Let us call this method the ocean perturbation

(OP) approach, where the same data assimilation system

has been used to produce the OIC (by perturbing winds,

observations or other aspects). The OP approach does not

sample the ‘‘structural’’ uncertainty, while the MAE

method does. It will be interesting to compare OP with

MAE in future work, exploring how much of the uncer-

tainty in the initial conditions sampled by MAE is

‘‘structural’’, i.e., how does the reliability of MAE compare

with the reliability obtained with multiple OIC from a

single reanalysis (for example, the 5 ensemble members of

COMBINE-NV). It will also be interesting to see a com-

parison between MAE and MME (for instance an ensemble

of ECWMF seasonal forecast system 4 and CFSRR).
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Appendix

Four ocean analyses used in hindcast AP/MAE

In hindcast MAE, four different ocean analyses were used

as OICs, with two from ECMWF and two from NCEP.

They are the ECMWF COMBINE-NV (Balmaseda et al.

2010), the ECMWF Ocean Reanalysis System 3 (ORA-S3;

Balmaseda et al. 2008), the NCEP Climate Forecast Sys-

tem Reanalysis (CFSR; Saha et al. 2010), and the NCEP

Global Ocean Data Assimilation System (GODAS; Beh-

ringer 2005). The GODAS and CFSR (ORA-S3) ocean

analyses have been used to initialize the operational sea-

sonal predictions made by NCEP (ECMWF). COMBINE-

NV, which is only slightly different from ECMWF Ocean

Reanalysis System 4 (ORA-S4), has been used to initialize

their decadal predictions at ECMWF. Table 1 briefly

summarizes the major characteristics of these ocean anal-

yses, including the models, resolutions, assimilation

methods, and the assimilated data. To show the systematic

differences among the four ocean analyses, Figs. 5 and 6

present the standard deviation of SST/HC300 systematic

differences among them and the signal versus noise ratio

maps, respectively. From Fig. 5, it can be seen that SST

Table 1 Brief summary of the used ocean analyses

System and

institution

(reference)

Model and resolution Method Input data

COMBINE-NV

ECMWF, EU

(Balmaseda et al.

2010)

NEMO 19(0.3–1), 42

Levels

3D-VAR EN3_v2a data set (including ocean station/CTD, XBT,

Buoys, profilers inWOD05, GTSPP and ARGO)

ORA-S3,

ECMWF, EU

(Balmaseda et al.

2008)

HOPE 19(0.3–1), 29

levels

3D OI with online bias

correction

Altimeter (sea level anomalies and global trends), SST,

T&S from XBT, CTD, Argo, TAO

CFSR, NCEP,

USA

(Saha et al. 2010)

NCEP CFS2 [MOM4

0.59(0.25–0.5), 40

levels]

Partially Coupled Data

Assimilation (3D-VAR for

OM)

SST, T&S profiles from XBT, CTD, Argo, TAO

GODAS, NCEP,

USA

(Behringer 2005)

MOM3 19(0.3–1), 40

levels

3D-VAR SST, T profiles from XBT, CTD, Argo, TAO
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shows little difference among them in the tropics expect for

the far eastern coastal regions. There is larger difference

among them in the subsurface as shown in Fig. 5b.

Particularly, in the off-equatorial regions the difference in

HC300 is larger than 0.2 �C, with less difference along the

equator. Figure 6 also indicates that SSTs have relatively

lower level of noises, while HC300s have larger level of

noises, particularly over the off-equatorial regions.

Experimental design for hindcast AP/MAE

For hindcast AP_cbn, AP_ora3, AP_cfsr, and AP_gds, the

atmosphere, land and sea ice initial states are specified in

the same way, using the instantaneous fields from the

CFSR. For each hindcast, four ensemble members are

generated that differ in their atmosphere/land surface

conditions, which are the instantaneous fields from 00Z of

the first four days in April in the CFSR, respectively. For

the OIC, to reduce the potentially negative effects of the

mean biases in ocean analyses and the forecast model, and

to make the predictions using OIC from different analyses

comparable, we applied an anomaly ocean initialization

strategy (e.g., Schneider et al. 1999) in these experiments.

For this purpose, a monthly climatology for the CFSv2

ocean component was derived from the last 20 years of a

30-year simulation starting from CFSR state on November

1, 1980. The monthly anomalies of all variables from the

ocean analyses are then calculated with respect to their own

climatologies and superimposed on the CFSv2 monthly

climatological states. The fields in March and April are

averaged to represent the oceanic states at the start of April.

Initializing the hindcasts using the monthly oceanic anal-

yses is different from the operational practice of using an

instantaneous analysis from the ocean data assimilation

(a)

(b)

Fig. 6 The global maps of the signal versus noise ratio of a SST and

b HC300 for 1982–2007 derived from the four ocean analyses (i.e.,

COMBINE-NV, ORA-S3, CFSR, GODAS). Contours 1, 2, 5, 10, 15

are shown. Here signal is defined as the interannual variance in the

ensemble mean of four datasets; noise is defined as the variance of the

difference between four individual datasets and their ensemble mean

(a)

(b)

Fig. 5 The standard deviation of the systematic differences in a SST

and b the upper 300 m mean ocean temperature (HC300) for

1982–2007 among the four ocean analyses used in the study (i.e.,

COMBINE-NV, ORA-S3, CFSR, GODAS). Contours 0.2, 0.4, 0.6, 1,

15 are shown. The systematic differences are calculated as the

difference between four individual datasets and their ensemble mean.

Unit: �C
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system. A set of test runs in Zhu et al. (2012b) showed that

using the monthly fields as OIC has little impact on the

deterministic forecasting skill (see Fig. S1 of the auxiliary

material in Zhu et al. (2012b)).
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