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Abstract Based on numerical experiments using the

NCAR CAM3-CLM3 models, this paper examines the

impact of soil moisture, vegetation, and sea surface tem-

perature (SST) on the inter-annual variability of climate

over land. For each element, two experiments are carried

out, with the inter-annual variability preserved in one

experiment and eliminated in the other. Differences in the

standard deviation of the precipitation and air temperature

at the inter-annual time scale are used to quantify the

impacts from soil moisture dynamics, vegetation dynamics,

and oceanic forcing. The impact of oceanic forcing is

mainly limited to the Tropics, with the strongest signal in

the equatorial zone, and moisture convergence is the key

linkage between SST forcing and tropical precipitation.

Soil moisture plays a significant role in climate variability

during the rainy seasons of all semi-arid regions (which is

consistent with many previous studies), and during the dry

seasons of the humid Amazon. Evapotranspiration is

identified as the main mechanism linking precipitation

variability to soil moisture. Amazon is the only region

where vegetation dynamics has a significant influence on

precipitation variability. However, the impact of vegetation

dynamics on temperature is strong over the US Great

Plains in all four seasons and in the Amazon region during

the dry and dry-to-wet transition seasons.

Keywords Climate variability � Soil moisture

feedback � Vegetation feedback � Land–atmosphere

interactions

1 Introduction

Predictions based on climate models indicate that the

twenty-first century will experience an increase in the

frequency and intensity of extreme events (e.g., Easterling

et al. 2000; Meehl et al. 2000; Salinger 2005). Extreme

events, including heat waves, heavy precipitation, and

droughts, can have major devastating impacts on the

human society. Studying the physical processes leading to

these extreme events is therefore important both scientifi-

cally and in practice. Using a statistical model, Katz and

Brown (1992) pointed out that the frequency of extreme

events is more closely related to climate variability than the

mean climate state.

Previous studies have pointed out that both terrestrial

and oceanic forcings are important factors in regulating

climate variability, based on both numerical experiments

(e.g., Trenberth et al. 1998; Koster et al. 2000, 2006; Wang

et al. 2007; Notar et al. 2011) and observation data analysis

(e.g., Rasmusson and Carpenter 1982; Trenberth et al.

1998; Liu et al. 2006; Notaro et al. 2006; Alessandri and

Navarra 2008). The oceanic impact is especially influential

in the tropics (e.g., Koster et al. 2000). Meanwhile, ter-

restrial conditions, mostly represented by soil moisture and

vegetation, influence the climate through modifying the

radiative properties and fluxes of the land surface in both

the tropics and extratropics (e.g., Notaro and Liu 2008;

Notar et al. 2011; Wang et al. 2011). Both numerical

experiments and statistical analysis have been used in

studying land–atmosphere interactions. One advantage of
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statistical analysis lies in its wider applicability. That is, it

is applicable to both model outputs and observational data.

Several statistical methods, which are originally used in the

study of ocean–atmosphere interaction, have recently been

introduced into studies of land–atmosphere interaction.

These methods include the Feedback Parameter method

(Liu et al. 2006; Notaro et al. 2008; Notaro and Liu 2008;

Zhang et al. 2008; Notaro 2008a, 2008b; Orlowsky and

Seneviratne 2010), the Generalized Equilibrium Feedback

Assessment (GEFA) method (Wang et al. 2012) and the

Coupled Manifold method (Alessandri and Navarra 2008).

In all these three methods, the impacts of vegetation/soil

moisture in the climate system are primarily determined by

the correlation between a terrestrial variable (e.g., soil

moisture, vegetation) and an atmospheric variable (e.g.,

precipitation, air temperature). However, even a significant

correlation does not guarantee a cause-and-effect rela-

tionship. Other factors, like the precipitation persistence,

soil moisture memory and oceanic forcing, might syn-

chronize the variations of both variables to arbitrarily

increase their correlation (e.g., Wei et al. 2008; Zhang et al.

2008; Zeng et al. 2010; Sun and Wang 2012). Researchers

who proposed new statistical methods to quantify land–

atmosphere interactions are cautious about this possible

overestimation. In order to alleviate this overestimation,

further endeavors include deciphering the ‘black box’ of

land–atmosphere interactions or categorizing different

events according to a certain physics-based standard. The

first type of studies focuses on breaking down the land–

atmosphere interactive processes into two or more rela-

tively independent steps (e.g., Dirmeyer 2006, 2011; Dir-

meyer et al. 2009; Zeng et al. 2010; Santanello et al. 2011)

and the second type of studies targets at grouping events

based on the strength of the external oceanic forcing (e.g.,

Mei and Wang 2011; Mei and Wang 2012). Physical

interpretations of results from statistical analysis are still

challenging and can be better accomplished through a

model framework, of which the physics are much better

understood and the parameterization of physical processes

can be manipulated to generate illustrative demonstrations

of the interactive processes (e.g., Sun and Wang 2012).

Global Land–Atmosphere Coupling Experiment

(GLACE) is an important community endeavor towards a

better understanding of soil moisture-precipitation interac-

tions (e.g., Koster et al. 2006; Guo et al. 2006; Seneviratne

et al. 2006; Wang et al. 2007), and involves a large number of

GCMs. For each GCM, the GLACE experiment includes two

ensembles, one in which soil moisture interacts with pre-

cipitation and the other specifying a prescribed soil moisture.

The strength of soil moisture-precipitation coupling is

quantified using the inter-ensemble difference in intra-

ensemble precipitation similarity (Koster et al. 2002, 2006).

Wang et al. (2007) proposed an alternative index to quantify

the land–atmosphere coupling strength, using the relative

difference between the intra-ensemble precipitation variance

of these two ensembles. The rationale is that the artificially

reduced soil moisture variations in the ensemble with pre-

scribed soil moisture are expected to decrease the precipi-

tation variations in regions where soil moisture has strong

control over precipitation. The changes of climate variability

have been frequently used in climate studies as an index to

quantify the impacts of different boundary conditions, for

example, on precipitation and/or temperature (e.g., Koster

et al. 2000; Dirmeyer 2001; Seneviratne et al. 2006).

Focusing on the inter-annual time scale, the current

study examines how the terrestrial and the oceanic forcings

influence the climate variability in all four seasons using

the National Center for Atmospheric Research (NCAR)

Community Atmosphere Model version 3 (CAM3) coupled

with the Community Land Model version 3 (CLM3)

(CAM3-CLM3). The idea is conceptually similar to

GLACE index in that the inter-annual variability of one

boundary condition for the atmosphere (soil moisture,

vegetation, or sea surface temperature) is muted in one

experiment compared with the control.

The rest of the paper is organized as follows. Section 2

presents the experimental design and methodology. Sec-

tion 3 describes the climate impacts from soil moisture, sea

surface temperatures (SSTs) and dynamic vegetation.

Section 4 presents the conclusions and discussion.

2 Experimental design and methodology

The numerical model used in this study is the NCAR

CAM3 coupled with CLM3 including the Dynamic Global

Vegetation Model (DGVM) (CAM3-CLM3-DGVM).

CAM3 simulates the atmospheric processes and provides

atmospheric forcing (e.g., precipitation, radiation, specific

humidity, wind) to the land model CLM3-DGVM; driven

with the atmospheric forcing from CAM3, CLM3-DGVM

simulates the land surface biogeophysical, physiological,

biogeochemical processes and ecosystem dynamics, pro-

viding the surface fluxes (sensible heat flux, latent heat flux

(or ET), and momentum flux) to CAM3 and updating the

vegetation structure and distribution. For CAM3, the

Eulerian spectral dynamical core is chosen with a T42

horizontal resolution (approximately 2.8� by 2.8�) and a

total of 26 levels in the vertical direction. Details of the

CAM3 model can be found in Collins et al. (2004). CAM3-

CLM3 has been used extensively in studying the impacts of

vegetation (e.g., Kim and Wang 2007b; Wang et al. 2011;

Sun and Wang 2011), soil moisture (e.g., Koster et al.

2006; Kim and Wang 2007a; Wang et al. 2007; Notaro

2008a, b; Sun and Wang 2012) and SSTs (e.g., Fu et al.

2001) in the climate system.
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Driven with the present day solar irradiance, the current

study used the coupled land–atmosphere model CAM3-

CLM3 in the five experiments, that is, DGVM_SST_Vary-

ing, NDGVM_SST_Varying, NDGVM_SST_Clim, Soil-

mr50P_SST_Varying and Soilmr50P_SST_Clim (Table 1).

These five experiments allow three paired comparisons, each

focusing on the contribution from interactive soil moisture

(NDGVM_SST_Clim.vs. Soilmr50P_SST_Clim), dynamic

vegetation (DGVM_SST_Varying.vs. NDGVM_SST_Var-

ying) or oceanic forcing (Soilmr50P_SST_Varying.vs.

Soilmr50P_SST_Clim).

The DGVM_SST_Varying experiment runs for

308 years, using the fully coupled model CAM3-CLM3

with dynamic vegetation model DGVM. The first

200 years of the simulation, with oceanic forcing cycling

through the 1901-2000 observed SST (Hurrell et al. 2008),

allows the global vegetation distribution to reach a quasi-

equilibrium state. The last 108 years of the simulation,

driven with the observed global SST during the period

1901–2008, models the soil moisture-precipitation inter-

actions under the most realistic oceanic forcing. Branched

from the 200th year of the DGMV_SST_Varying experi-

ment, the NDGVM_SST_Varying experiment continues

for another 108 years, with all the same experimental set-

tings as the last 108 years of the DGVM_SST_Varying

experiment except that vegetation distribution is kept static

from year to year. These two experiments have been used

to explore how vegetation dynamics enhances the multi-

decadal variability of precipitation in the Amazon region

(Wang et al. 2011). The focus here is on how the dynamic

vegetation will influence the variations of the precipitation

and air temperature with the SSTs acting as the external

forcing.

The NDGVM_SST_Clim simulation is 108-year long,

driven with climatological SST forcing and static vegeta-

tion, and vegetation is kept static at the quasi-equilibrium

state derived from the first 200 years of the

DGVM_SST_Varying simulation. Here the NDGVM_

SST_Clim experiment is used to simulate soil moisture-

precipitation interactions free of the low-frequency impacts

from SST inter-annual variations and vegetation dynamics

(Sun and Wang 2012).

Branched from the end of the NDGVM_SST_Clim

experiment, the coupled CAM3-CLM3 models continue

running for another 20 years, driven with monthly varying

climatological SST forcing and sharing the same static

vegetation distribution (which is also derived from the

quasi-equilibrium state at the end of the 200-year

DGVM_SST_Varying simulation). In each grid cell, soil

moisture is prescribed to be at its 50th percentile derived

from soil moisture simulated by the DGVM_SST_Varying

experiment. Soil moisture is a slow-varying variable and is

only prescribed at the beginning of each day instead of at

every time step. At the end of this 20-year experiment, two

50-year runs (Soilmr50P_SST_Varying and Soil-

mr50P_SST_Clim) are branched separately, with soil

moisture still being prescribed at its 50th percentile and

vegetation cover being kept the same as in the

NDGVM_SST_Clim experiments. The only difference

between these two experiments is that climatological SST

forcing is used in Soilmr50P_SST_Clim, and is replaced by

the observed monthly SSTs (from 1951 to 2000) in the

Soilmr50P_SST_Varying (Hurrell et al. 2008). The dif-

ferences in the simulated climates are attributable to the

impact of oceanic forcing. In consistency with referring to

the SST forcing with climatological seasonal cycle as

‘‘climatological SST’’, in the rest of this paper, ‘‘inter-

annually varying SSTs’’ will be used to refer to the

observed monthly SST forcing that include not only sea-

sonal but also inter-annual variations.

The differences in the standard deviations of precipita-

tion and 2-meter air temperature are used to represent the

changes in climate variability. Climate variability differ-

ences between the Soilmr50P_SST_Varying and Soil-

mr50P_SST_Clim experiments demonstrate the influence

from the inter-annually varying SST forcing free from the

Table 1 Summary of experiments

Experiment (simulation

length)

Model components

Land conditions SSTs forcing

DGVM_SST_Varying (308 years) CLM3-DGVM simulated vegetation cover;

Interactive soil moisture

Climatological SSTs in the first 200 years and

then inter-annually varying SSTs for 108 years

(1901–2008)

NDGVM_SST_Varying (108 years) Static vegetation cover; Interactive soil moisture Inter-annually varying SSTs (1901–2008)

NDGVM_SST_Clim (108 years) Static vegetation cover; Interactive soil moisture Climatological SSTs (1949–2001)

Soilmr50P_SST_Varying (50 years) Static vegetation cover; Soil moisture prescribed

to be at the 50th percentile value

Inter-annually varying SSTs (1951–2000)

Soilmr50P_SST_Clim (50 years) Static vegetation cover; Soil moisture prescribed

to be at the 50th percentile value

Climatological SSTs (1949–2001)
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terrestrial influences, and differences in the climate vari-

ability between the NDGVM_SST_Clim and Soil-

mr50P_SST_Clim experiments represent the impacts of

interactive soil moisture on the climate free from the low-

frequency influences of the oceanic and vegetation impacts.

Even though there are slight differences between the cli-

matology of soil moisture from the NDGVM_SST_Clim

experiment and the soil moisture specified in Soil-

mr50P_SST_Clim (at 50th percentile), these differences

have negligible impact on the results of this study. Climate

variability simulated by CAM3-CLM3 with prescribed soil

moisture shows a very low sensitivity to the level of this

prescribed soil moisture.

The difference between DGVM_SST_Varying and

NDGVM_SST_Varying experiments shows the influence

from the dynamic vegetation. Instead of prescribing soil

moisture and using climatological SSTs forcing, both

interactive soil moisture and inter-annually varying SSTs

are kept in these two experiments. Prescribing soil moisture

will reduce the vegetation dynamics, as the growth of veg-

etation is largely determined by the availability of soil

moisture, especially in semi-arid regions/seasons where the

vegetation growth is water-limited (e.g., Nemani et al. 2003;

Anyamba and Tucker 2005; Barbosa et al. 2006). In the

currently used CLM3-DGVM model, vegetation shows high

sensitivity to water availability not only in the semi-arid

regions but also in the humid tropics (Sun and Wang 2011).

Prescribing soil moisture will greatly dampen the vegetation

dynamics. Meanwhile, the land model is characteristic of

high bare-ground evaporation and low sensitivity of

evapotranspiration (ET) to vegetation cover changes. This

causes the relatively low sensitivity of precipitation to

vegetation cover changes when the climatological SSTs are

used as its external forcing (Sun and Wang 2011). Here the

observed monthly SST forcing (with both intra-annual and

inter-annual variations) is applied in DGVM_SST_Varying

and NDGVM_SST_Varying experiments.

In this study the difference in standard deviation

between different experiments is used to quantify the

impact of soil moisture feedback, vegetation feedback, and

oceanic dynamics. Compared to using the ratio of standard

deviation to quantify the impact of different processes

following the approach of Koster et al. (2000), the results

are similar in most regions. The difference in standard

deviation is chosen over the ratio in this study to avoid the

exaggeration of signals in places where the standard

deviation being compared to is extremely small.

3 Terrestrial and oceanic impacts on climate variability

In this study, the standard deviation (SD) of precipitation

and 2-m air temperature is used to represent the inter-

annual climate variability. Here the inter-annual SDs are

estimated based on seasonal averages of precipitation and

temperature for each season respectively: JJA (June–July–

August), SON (September–October-November), DJF

(December–January–February) and MAM (March–April–

May). It is important to note that due to the relatively short

time scale of soil moisture dynamics, the impact of inter-

active soil moisture on climate variability at sub-seasonal

time scale is likely to be stronger. In comparing the impact

of three different factors (interactive soil moisture, vege-

tation dynamics, and SSTs), the focus in this paper is on the

inter-annual time scale, a time scale that is relevant for all

three factors.

3.1 The impacts of interactive soil moisture

From the Soilmr50P_SST_Clim experiment to the

NDGVM_SST_Clim experiment, SD of precipitation

increases, which is attributable to the soil moisture

dynamics at the inter-annual time scale (Fig. 1). Values

lower than the 90 % confidence levels based on the Fish-

er’s F-test are set to missing value. In JJA, the strongest

increase occurs in North America (including Mesoamerica,

southern Great Plains, Southeast and a large portion of the

Northeast), South America (the northeastern border of the

Amazon region), Africa (the Sahel and the northern part of

the East Africa), and the northern part of Arabian Penin-

sula. During DJF season, regions of increased precipitation

variations are located in the west and southern boundaries

of the Amazon, the northern part of Patagonia and central

area in Australia. For JJA and DJF seasons, regions of

increased precipitation inter-annual variations correspond

well with the GLACE-based hot spots of soil moisture-

precipitation coupling in the same model identified by the

DU index, which quantifies the precipitation variability

caused by interactive soil moisture through comparing

precipitation intraensemble relative variance (Wang et al.

2007). This does not come as a surprise, as both the DU
index of Wang et al. (2007) and the increased SD here

focus on the variations of precipitation time series. Dis-

crepancies do exist, however, in the midlatitude Eurasia in

JJA and a relatively large area in East Asia, where DU
index demonstrates modest soil moisture-precipitation

coupling at the synoptic time scale (Wang et al. 2007),

while precipitation variability shows no detectable increase

at the inter-annual time scale.

In the SON season, compared with the JJA, the strong

increase of variability disappears in North America,

Amazon north borders and the Sahel region. Instead,

increase is found strong in the Amazon area which is in its

dry-to-wet transition season. The least increase in precip-

itation variation occurs in MAM, with only scattered areas

in the boundaries of the Amazon and areas close to the
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equator in the Africa demonstrating modest increase in

precipitation variability.

In order to identify the linkage between soil moisture

and precipitation variability, the differences in the vari-

ability of the ET (Fig. 2) and moisture convergence (MC,

which is calculated as precipitation minus evapotranspira-

tion since the changes of atmospheric storages are small at

the monthly time scale) are compared between the

NDGVM_SST_Clim experiment and the Soil-

mr50P_SST_Clim experiment. Compared with ET, MC

shows negligible changes in SD. Regions of increased ET

variability correspond well with those of precipitation

variability, indicating that ET is the media linking the

increased precipitation variability to soil moisture (e.g.,

Guo et al. 2006; Wang et al. 2007). Area of significant

increase in ET variability is much larger than that of pre-

cipitation. That is because a successful passing of the ET

perturbation to the precipitation still relies on some other

critical physical processes which occur in both the

boundary layer and the free atmosphere (e.g., Santanello

et al. 2011).

Figure 3 shows the difference in the SD of the 2-m air

temperature. Most regions showing significant increase are

also regions of increased ET variability in Fig. 2, since ET

influences the air temperature through its cooling effect.

Discrepancies are found in the high latitudes, where the

increase of temperature variability is not accompanied by

significant increase in ET variability. Figure 4 shows how

the ET and 2-m air temperature in four seasons are correlated

at the inter-annual time scale in the NDGVM_SST_clim

experiment. Compared with Figs. 2 and 3, regions showing

increased variability in both ET and temperature are located

in the areas where the ET and temperature are negatively

correlated. Previous studies indicate that the negative cor-

relation between ET and air temperature is attributable to the

fact that soil moisture controls both ET and temperature, and

ET cools the surface air (e.g., Notaro et al. 2006; Seneviratne

et al. 2006). When soil moisture is prescribed in Soil-

mr50P_SST_Clim experiments, the negative correlation’s

magnitude is mostly reduced and some even turns into

positive (results not shown).

3.2 The impacts of dynamic vegetation

Figure 5 shows the increase in the inter-annual variability

of precipitation from NDGVM_SST_Varying experiment

to DGVM_SST_Varying experiment. Globally, Amazon

region and some scattered areas in West Africa stands out

as the only places where dynamic vegetation enhances

inter-annual precipitation variability. The increase is

mainly attributable to ET variation (Fig. 6), even though

MC also shows an increase in variability in part of

Fig. 1 The differences of precipitation standard deviation (SD) between NDGVM_SST_Clim experiment and Soilmr50P_SST_Clim

experiment. According to the Fisher’s F-test, differences that are not significant at the 90 % confidence level are set as missing values
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Fig. 2 Differences of ET standard deviation (SD) between NDGVM_SST_Clim experiment and Soilmr50P_SST_Clim experiment that are

significant at the 90 % confidence level according to Fisher’s F-test

Fig. 3 Differences of standard deviation (SD) of 2-m air temperature between NDGVM_SST_Clim experiment and Soilmr50P_SST_Clim

experiment that are significant at the 90 % confidence level according to Fisher’s F-test
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Amazon, especially during the SON and MAM season (not

shown).

In addition to the Amazon region, areas of significant

increase in temperature variations expand to the US Great

Plains in four seasons (Fig. 7). In Amazon, the increase in

temperature variability is attributable to the enhanced ET

variations. In the US Great Plains, the enhanced tempera-

ture variability in SON is accompanied by a higher vari-

ability of net radiation. In the other three seasons, Bowen

ratio, which represents the partition of radiation between

the sensible and latent heat flux, demonstrates higher var-

iability when the dynamic vegetation is included. The

higher temperature variability could be caused by the

increased Bowen ratio variability when the vegetation

dynamics is included (e.g., Notar et al. 2011).

3.3 The impacts of the SSTs

Figure 8 shows the increase of precipitation variability in

the Soilmr50P_SST_Varying experiment compared with

the Soilmr50P_SST_Clim experiment, which is attribut-

able to the oceanic impacts. When the inter-annual varia-

tions of SSTs are included, significant increase of

precipitation variability are found only in several tropical

regions well known for their climate sensitivity to oceanic

forcings such as El Nino-Southern Oscillations (ENSO),

including the northern and southeastern Amazon in DJF

and MAM seasons (e.g., Fu et al. 2001), the Guinea Coast

in JJA season (e.g., Goddard and Graham 1999; Giannini

et al. 2003), the Indian Peninsula in JJA season (e.g.,

Cherchi et al. 2007), and in the Southeast Asia in all four

seasons (e.g., Juneng and Tangang 2005).

In several extratropical regions known for climate sensi-

tivity to ENSO (e.g., Pacific Northwest and U.S. Southeast),

the signal for the increase of precipitation variability is weak

and does not pass the significance test. However, the mean

climate difference between the composites of El Nino years

and La Nino years show very clear signal of ENSO impact

consistent with the known pattern of ENSO impact in those

regions. The lack of a strong signal for precipitation vari-

ability changes is partly related to the use of prescribed soil

moisture here. Given the impact of soil moisture feedback on

climate variability as shown in Sect. 3.1, interactive soil

moisture is expected to further enhance the climate vari-

ability induced by oceanic forcing, an effect found in several

previous studies (e.g., Schubert et al., 2004) and also sup-

ported by the comparison with the precipitation SD differ-

ence between the NDGVM_SST_Varying and

NDGVM_SST_Clim experiments in this study (results not

shown). What Fig. 8 presents is the impact of oceanic forcing

in the absence of the amplification effect by soil moisture

feedback.

Fig. 4 Seasonal variation of correlation between 2-m air temperature and ET in NDGVM_SST_Clim experiment. Correlations that are not

significant at the 90 % confidence level according to Student’s t test are set as missing values
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Fig. 5 Differences of precipitation standard deviation (SD) between DGVM_SST_Varying experiment and NDGVM_SST_Varying experiment

that are significant at the 90 % confidence level according to Fisher’s F-test

Fig. 6 Differences of ET standard deviation (SD) between DGVM_SST_Varying experiment and NDGVM_SST_Varying experiment that are

significant at the 90 % confidence level according to Fisher’s F-test
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Fig. 7 Differences of 2-m air temperature standard deviation (SD) between DGVM_SST_Varying experiment and NDGVM_SST_Varying

experiment that are significant at the 90 % confidence level according to Fisher’s F-test

Fig. 8 Differences of precipitation standard deviation (SD) between Soilmr50P_SST_Varying experiment and Soilmr50P_SST_Clim

experiment that are significant at the 90 % confidence level according to Fisher’s F-test
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Moisture convergence is the main contributor to the

SST-induced increase in precipitation variability (Fig. 9).

Globally, including the interannual variations of SSTs does

not have large impacts on the variability of the ET and the

2-m air temperature (result not shown). In the deep tropics

and outside of the dry seasons, ET is radiation-limited (e.g.,

Seneviratne et al. 2010; Sun and Wang 2012) and its var-

iability is caused by the radiation variability (result not

shown). Inter-annual variability of the oceanic forcing only

causes small increase (lower than 0.5 K) in temperature

variability in the Amazon, the Africa, the Indian Peninsula

and the Southeast Asia.

4 Summary and discussion

This study targeted at quantifying the terrestrial and oce-

anic impacts on land precipitation and near-surface tem-

perature at the inter-annual time scale in four seasons. In

order to quantify the influence of each element, an exper-

imental design similar to that of the GLACE studies was

adopted here. For each element, two experiments are car-

ried out, with the inter-annual variability preserved in one

experiment and suppressed in the other. Focusing on cli-

mate variability at the inter-annual time scale, the differ-

ences in the SD of the precipitation and air temperature are

used to demonstrate the impacts from soil moisture, veg-

etation cover, and SSTs.

Inter-annually, interactive soil moisture significantly

increases the precipitation variability in the rainy seasons

of the semi-arid regions and in the dry seasons of the humid

Amazon, and ET is identified as the main linkage between

soil moisture and precipitation variability. Inter-annually

varying oceanic forcing causes the largest inter-annual

precipitation variation in the deep tropics. Precipitation

variability in extratropical regions, including those known

for their climate sensitivity to ENSO, shows low sensitivity

to oceanic forcing when soil moisture is prescribed, despite

the response of model-simulated mean climate to ENSO in

those regions. This indicates that interactive soil moisture

plays a key role in enhancing the impact of oceanic forcing

on climate variability in those regions. Moisture conver-

gence is the linking factor between the SST forcing and the

tropical precipitation. Amazon region is the only place

where dynamic vegetation demonstrates significant influ-

ence on precipitation variability in four seasons.

In regions and seasons with strong increase of precipi-

tation variability caused by interactive soil moisture, the

variability of the 2-m air temperature is also enhanced by

interactive soil moisture. In addition, in the semi-arid US

Great Plains, US southeast and Patagonia, temperature in

the transition seasons also demonstrates significantly

Fig. 9 Differences of MC standard deviation (SD) between Soilmr50P_SST_Varying experiment and Soilmr50P_SST_Clim experiment that are

significant at the 90 % confidence level according to Fisher’s F-test
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increased variations attributable to soil moisture dynamics.

Increased ET variability is identified as the cause of

increased temperature variability. Dynamic vegetation is

found to enhance temperature variations in the US Great

Plains in all four seasons and in the Amazon region during

the dry and dry-to-wet transition seasons. In the Amazon

region, higher ET variability related to vegetation dynam-

ics plays the main role. In the US Great Plains in SON, the

increase in temperature variability is attributable to the

enhanced variability of net radiation. The increased varia-

tions of Bowen ratio could be the cause of the increased

temperature variability in JJA, DJF and MAM seasons.

Climate projections for the twenty-first century dem-

onstrate increased climate variability attributable to the

combined effects from global warming and oceanic influ-

ences (e.g., Salinger 2005), which will also trigger

increased variations over land including extreme soil

moisture conditions and vegetation fluctuations. Our results

suggest that the resulting soil moisture and vegetation

feedback could further reinforce the warming-triggered

increase of climate variability, making it harder for crops

and natural vegetation to survive. This has important

implications on drought mechanisms, for example the

1930s ‘‘dust bowl’’ over the U.S. Great Plains. Another

sensitive area is the Amazon, where warming- and drought-

induced forest dieback (e.g., Cox et al. 2000) may increase

the local climate variability thus further enhancing forest

degradation.

The current study complements previous work of land–

atmosphere coupling (e.g., Koster et al. 2006; Wang et al.

2007) by focusing on the impacts on inter-annual vari-

ability. Different than the GLACE experimental design,

which focuses on sub-seasonal and seasonal time scales

and needs a large number of ensemble experiments, only

two continuous experiments are required here to study the

impact of terrestrial or oceanic forcing. This approach can

be conveniently applied to any model, and therefore may

provide a useful tool for potential multi-model inter-com-

parison projects in the future.
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