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Abstract We analyzed the evolution of surface relative

humidity (RH) and specific humidity (q) in Spain, based on

complete records available from the State Meteorological

Agency of Spain. The surface RH records used span the

period 1920–2011, but because of spatial and temporal

constraints in the dataset we used a subset of the data,

covering the period 1961–2011. The subset contained 50

monthly series of RH, which were created through a pro-

cess of quality control, reconstruction and homogenization.

The data shows that there was a large decrease in RH over

mainland Spain from 1961 to 2011, which was greatest in

spring and summer. In contrast, there was no overall

change in the specific humidity in this period, except in

spring, when an increase was observed. The decrease in

RH affected the entire country, but the changes in specific

humidity were less homogeneous. For specific humidity

there was a general increase in the northern and eastern

parts of Spain, whereas negative trends dominated in the

central and southern areas, mainly during the summer

months. The results suggest that an increase in the water

holding capacity of the atmosphere as a consequence of

warming during recent decades has not been accompanied

by an increase in the surface water vapor content, probably

because the supply of water vapor from the main terrestrial

and oceanic areas has been constrained. We discuss the

implications of these findings for evapotranspiration pro-

cesses, precipitation and water management in Spain.
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1 Introduction

Water vapor is one of the most important greenhouse

gasses, and exceeds CO2 by several times in terms of its

greenhouse contribution (Trenberth et al. 2007). It affects

other climate elements via absorption of radiation and

through the formation and evolution of clouds. The release

of latent heat as a consequence of water vapor condensa-

tion has a major impact on the atmospheric circulation

system and the transport of heat from tropical to temperate

and cold regions (Gimeno et al. 2010a). Relative humidity

(RH) also plays a substantial role in the formation of

aerosols, which are formed (among various mechanisms) in

the atmosphere through nucleation of gas phase species

(Zhang et al. 2012). This process is highly dependent on

the levels of RH, as new particle formation takes place

preferentially at low RH (e.g. Hamed et al. 2011).

Atmospheric water vapor is also a very important

component of the water cycle because water vapor in the

lower troposphere is the main source of water for precip-

itation in all weather systems. For extratropical cyclones,

Trenberth (1999) estimated that an average of approxi-

mately 70 % of the precipitation comes from moisture that
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was already in the atmosphere at the time the storm

formed.

The quantity of water vapor that can be held in a volume

of air is defined by the Clausius–Clapeyron (C–C) rela-

tionship, whereby the amount of water vapor increases

exponentially with increasing temperature (Allan 2012).

Evidence for global warming has increased during the last

five decades (Hansen et al. 2010; Jones et al. 2012), and

various global scale studies have shown a marked increase

in the specific humidity (q), whereas RH has remained

constant or decreased slightly (Santer et al. 2007; Trenberth

et al. 2005; Dai 2006). In general, studies considering short

and recent time periods (from the 1970s to the 1990s) have

shown increases in water vapor, whereas those considering

longer periods (from prior to 1960 to the present) have

shown mixed results (Seidel et al. 2007). Based on a

quality controlled and homogenized global gridded dataset

for the period 1973–2003, Willett et al. (2007) found that

trends for RH were mostly not significant over the land,

giving support to the theory of constant RH over large

spatial and temporal scales under global warming condi-

tions. These findings are consistent with projections of

increased average precipitation and extreme events under a

warmer climate, as a consequence of an increase in the

availability of water in the atmospheric column (Meehl

et al. 2007). Nevertheless, Simmons et al. (2010) used a

recently updated observational dataset and Reanalysis data

to show that a widespread reduction in RH occurred over

terrestrial areas during the last decade. The study showed a

net drying (both q and RH) in areas including the western

United States, South America and Europe, and has trig-

gered a debate on how surface humidity might be reacting

to global warming processes; it also highlighted the

importance of undertaking studies based on high quality

observational datasets.

Regional studies in North America (e.g. Gaffen and

Ross 1999; Seidel et al. 2007; Brown and DeGaetano 2012;

van Wijngaarden and Vincent 2005) have shown a general

decrease in RH in recent decades. This has been confirmed

recently by Isaac and Van Wijngaarden (2012), who used

an updated analysis covering the period 1948–2010 to

demonstrate a reduction of 0.5 % decade-1 in RH, coupled

with an increase in q of approximately 0.04 g kg-1 de-

cade-1. A similar reduction in RH has been reported in

subregional studies of Europe, including in Poland (Wy-

pych 2010), the Czech Republic (Cahynová and Huth

2009; Brázdil et al. 2009), Northern Ireland (Butler and

Garcı́a-Suárez 2012), the Alpine region (Brunetti et al.

2009) and southern Spain (Espadafor et al. 2011). These

studies have typically involved analysis of data (sometimes

not quality controlled) from few stations, and have been

focused on small areas. Thus, how atmospheric humidity is

reacting to global warming processes remains unclear, and

this situation highlights the importance for research based

on high quality observational datasets.

The southern Europe/Mediterranean region is one of the

most important areas in the world in relation to the impact

of climate change processes, because it has a characteristic

transitional climate that results in high spatial and temporal

variability in precipitation. This variability has been

reported in numerous studies during recent decades

(Xoplaki et al. 2004; Norrant and Douguédroit 2006), and

there is a high level of uncertainty about future changes in

precipitation (Giorgi and Lionello 2008). However, there is

general agreement on future scenarios of increased tem-

perature during the twenty-first century (Solomon et al.

2007). Thus, given the implications of atmospheric

humidity for the hydrological cycle, including evapo-

transpiration (ET) (Allen et al. 1998; Liu and McVicar

2012), water availability, forest fire propagation (Flannigan

and Harrington 1988) and the severity of drought events

(Hoerling et al. 2012), studies of this atmospheric param-

eter are needed because of the low level of knowledge of:

(1) the behavior of atmospheric water vapor; and (2) how

atmospheric water vapor is affected by warming processes.

In this study we analyzed the evolution of surface

humidity in Spain over recent decades using quality con-

trolled and homogenized records, based on historical

information collected by the State Meteorological Agency

of Spain (AEMET). The objectives were to develop the

highest quality database of RH and q for Spain, and to

analyze the behavior of these factors in mainland Spain, in

the context of the evolution of the main sources of water

vapor and variations in atmospheric water holding capacity

produced by temperature changes. We provide evidence

potentially supporting hypotheses on physical mechanisms

that could drive the observed changes.

2 Methods

2.1 Relative humidity measurements

RH is defined as the ratio in percentage of the observed

vapor pressure to the saturation vapor pressure with respect

to water at the same temperature and pressure (WMO

2008). AEMET climatological records for this atmospheric

variable are measured using a standard psychrometer,

which is a meteorological device comprising a wet bulb

thermometer wrapped in an absorbent material (such as

thin muslin soaked in distilled water or ice) and a dry bulb

thermometer directly exposed to the air (Wexler 1965). Air

temperature is measured simultaneously by each ther-

mometer, and the difference between the temperatures is

recorded. To compute the RH the difference and the

ambient temperature displayed by the dry bulb
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thermometer are used. Standard psychrometers are housed

inside Stevenson screens to protect the instruments from

direct solar radiation, precipitation, wind and atmospheric

pollutants, and also to ensure natural ventilation. Accurate

measurements of RH are difficult to achieve and mostly

depend on the quality of the liquid-in-glass thermometer,

and the operation and maintenance of the psychrometers.

Although few metadata are available, AEMET ensures that

the thermometer pairs used for RH measurements are

accurately calibrated in air and are handled with care, and

the measurements based on the wet–dry method have

remained stable for years.

2.2 Dataset creation

We obtained the complete dataset of monthly average RH

from AEMET, consisting of data from 868 measurement

stations covering the entire Spanish territory excluding the

Canary Islands. The original monthly RH and temperature

series supplied by the AEMET are obtained from daily

mean data averaged from standard observations at 00, 07,

13 and 18 UTC. For mean daily RH and temperature

measurements, corresponding monthly mean values are

only computed for days with 3 or more observations and

for those months having at least 26 days of observations,

respectively: if not the whole day or month is excluded and

set as missing.

The spatial density of the series is very high (Fig. 1), but

the majority of stations have data for very few years.

Figure 2a shows the number of stations having data for

each month between January 1920 (1 station) and

December 2011 (656 stations). Prior to 1960 there was a

slow but progressive increase in the number of stations, but

in 1961 there was a large increase, from 40 stations in

December 1960 to 88 in January 1961. After 1961 the

number of stations increased slowly until 2006, during

which time almost 100 additional psychrometers were

installed. In 2007 the number of measurements again

increased with the installation of new hygrometers in

automatic weather stations. The current number of stations

measuring RH is approximately 600. This temporal evo-

lution partly explains why the majority of the available

series are of very short duration, and very few have 30 or

more years of data (Fig. 2b). We ensured that all the sta-

tions chosen for the study used standard psychrometers for

the entire time series.

To create a reliable dataset for analyzing the surface

humidity trends in Spain, we initially separated the total

recorded series into two subsets: the first contained series

from stations that had [25 years of records (candidate

stations), and the second contained series from stations that

had\25 years of data and were located\15 km from those

stations in the first subset.

As a first step we applied a linear regression approach to

add the data from the second subset to the nearest candidate

stations for a common period of at least 5 years between

the two series. In cases where the candidate and neigh-

boring stations had no common period, data were directly

assigned to the candidate series. The result of the recon-

struction process was a set of 93 series. Given that there

were few series available prior to 1961 (Fig. 2c), we

selected the period 1961–2011 for the analysis, and chose

Fig. 1 Spatial distribution of

the stations measuring RH in

Spain. The symbol size indicates

the number of years with

complete data (see legend). The

small map shows the spatial

distribution of the 50

reconstructed and homogenized

series of RH used in this study,

for the period 1961–2011
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those series having \15 % of monthly gaps during the

period: 52 series fulfilled this criterion. The resulting 52

series were quality controlled to identify anomalous or

questionable records in the series. For this purpose we

followed the procedure based on comparison of the rank of

each data record with the average rank of the data recorded

in adjacent observatories (see Vicente-Serrano et al. 2010a

for further details).

The approach followed in this study, which was based on

reconstruction of the series by combining two or more ori-

ginal series, can result in inhomogeneities (Lanzante 1996;

Peterson et al. 1998). Inhomogeneities can also be intro-

duced by changes in station location, alteration to the sur-

rounding environment, observer changes and instrument

replacement (Karl and Williams 1987). Thus, to check and

control the quality of the selected series, we analyzed the

relative homogeneity using the standard normal homoge-

neity test (SNHT; Alexandersson 1986). The creation of a

reference series involved selection of the most correlated

(first difference) series (Pearson r [ 0.70) from a minimum

number of five stations (Peterson and Easterling 1994). In

the two cases where it was not possible to create a reference

series following this criterion, the stations involved were

removed from the final dataset. As a consequence of the

length of some of the series it was possible that some short

periods of inhomogeneity could have been hidden, despite

the testing process. To avoid this problem a sequential

splitting procedure was applied after each 30 years of data

(Stepanek 2003), using AnClim software (Stepanek 2012).

Figure 3 shows an example of the identification of a sig-

nificant inhomogeneity, using the seasonal and annual series

of RH for the Cuenca station. Data identified as nonhomo-

geneous (21.4 % of the data) were corrected using monthly

coefficients (see Alexandersson 1986). Temporal gaps were

filled using linear regressions based on the respective ref-

erence series. In summary, the resulting dataset contained 50

stations with complete and homogeneous data for the period

1961 and 2011 (see Fig. 1).

2.3 Calculation of specific humidity: q

The parameter q is a measure of the mass of water vapor

present in a given mass of air. To evaluate q at each station

we used the monthly series of surface pressure (hPa) and

mean air temperature combined with the RH series (e.g.

Dai 2006; Willett et al. 2007). The pressure and mean

temperature data were also quality controlled and tested for

possible inhomogeneities following the procedure descri-

bed above for RH. Based on Oort (1983), q (g kg-1) was

calculated according to the expressions:
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Fig. 2 a Evolution of the number of stations measuring RH (1920–2011). b Absolute frequencies of the station data length. c Evolution of the

number of stations following the reconstruction process
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q ¼ 1; 000w

1; 001þ w
;

w ¼ RH� ws

100
; and

ws ¼
0:622es

Ps � es

;

where Ps is the surface air pressure (hPa), and es is the

saturation vapor pressure (hPa) calculated according to the

equation:

es ¼ 6:112e
17:67T

Tþ243:5;

where T is the monthly mean temperature.

Following Jones and Hulme (1996), from the homoge-

neous series of RH, q and mean temperature a single

regional series for mainland Spain was computed using the

weighted averages of monthly records for each station. The

weight factor was the ratio of the surface area represented

by each station to the total area of Spain, based on Thi-

essen’s polygon method.

2.4 Additional datasets

We used additional information to assess physical mecha-

nisms potentially contributing to the evolution of atmo-

spheric humidity from 1961 to 2011, including

temperature, precipitation and sea surface temperature

(SST). Monthly precipitation series related to the 50 sta-

tions having quality controlled RH data for the period 1961

to 2011 were obtained from the MOPREDAS dataset,

updated to 2011 (González-Hidalgo et al. 2011).

As the main source of surface humidity is related to the

supply of moisture by the oceans (Gimeno et al. 2010a), we

assessed the influence of SST on surface humidity trends in

Spain. For this purpose we used three datasets based on

observation and satellite imagery: the Hadley Centre Sea Ice
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and Sea Surface Temperature dataset (HadISST; Rayner

et al. 2003); the Extended Reconstructed Sea Surface Tem-

perature (ERSST.v3b) dataset of the National Climatic Data

Center of the NOAA (Smith et al. 2008); and the NOAA–

AVHRR satellite-derived SST dataset at a spatial resolution

of 1� (Reynolds et al. 2002). We used three datasets to

increase confidence in relation to the evolution of the SST in

the regions that constitute the main sources of atmospheric

humidity in the Iberian Peninsula (Gimeno et al. 2010b).

In addition to the ocean, an important source of

humidity is ET processes, as two-thirds of precipitation

over land areas returns to the atmosphere by this mecha-

nism (Wang and Dickinson 2012). ET is determined by

vegetation type and physiological mechanisms, but it is

highly constrained by the availability of soil moisture (Jung

et al. 2010), which is an important parameter determining

the magnitude of water supply from the land to the atmo-

sphere. As there are no reliable data on soil moisture for

Spain covering the study period, we have used an indirect

approximation to estimate this parameter. As a surrogate

indicator we calculated a drought index, the Standardized

Precipitation Evapotranspiration Index (SPEI; Vicente-

Serrano et al. 2010b), which is based on a normalized

climate balance model [precipitation minus potential

evapotranspiration (PET)], and the reduction of precipita-

tion and increase of PET can be considered as a plausible

indicator of reduction in soil moisture. In a recent global

study that compared drought indices, the SPEI was shown

to best reproduce the temporal variability of soil moisture

across various climate domains (Vicente-Serrano et al.

2012a). The SPEI was obtained from the series of precip-

itation and PET, which was derived using the empirical

Hargreaves’s equation (Hargreaves and Samani 1985).

2.5 Data analysis

Trends in the annual and seasonal series of RH and q were

calculated using the Kendall tau rank correlation coeffi-

cient (Kendall and Gibbons 1990). This is more robust than

parametric tests, and does not assume normality of the data

series (Lanzante 1996). Significant trends were defined as

those below the threshold p \ 0.05. To identify the rates of

change we used a regression analysis between the series of

time (independent variable) and the series of RH and

q (dependent variable).

3 Results and discussion

3.1 Temporal changes

There was a large decrease in the RH in Spain between

1961 and 2011 (Fig. 4). At an annual scale, the decrease

was 1 % per decade, which implies a decrease of 5.1 %

during the analysis period. Although the same pattern was

observed at a seasonal scale, there were differences in the

magnitude of the change. Between 1961 and 2011, major

decreases in RH occurred in summer (7.8 %) and spring

(5.1 %), while smaller decreases were evident in winter

and autumn (3.3 and 4.2 %, respectively). The minimum

values in the annual series were recorded in 2005 (60.3 %)

and 2009 (60.2 %). This pattern is consistent with the

global patterns reported by Simmons et al. (2010), who

showed that an abrupt decrease in RH occurred over land

areas in the last decade. In Europe, Butler and Garcı́a-

Suárez (2012) showed a large decrease in the annual RH in

Northern Ireland between 1965 and 2008, although (in

contrast to our observations for Spain) they reported a

greater decrease in winter and autumn. For the great Alpine

region, Brunetti et al. (2009) reported a large decrease in

RH over the last 30–40 years; this was mainly associated

with a decrease in summer months, which is consistent

with the trend observed in Spain. A similar reduction in RH

has been reported in Poland (Wypych 2010), Serbia (Gocic

and Trajkovic 2013), and the Czech Republic (Cahynová

and Huth 2009; Brázdil et al. 2009). Therefore, our results

showing an abrupt decrease in RH for Spain are consistent

with observations made in other regions of Europe over the

last decade.

The pattern observed for q was quite different (Fig. 5).

Although various studies have shown a large increase in

q coinciding with global warming (e.g. Trenberth et al.

2005; Dai 2006), which is expected because of the expo-

nential C–C relationship between temperature and atmo-

spheric water vapor (Allan 2012), for Spain we did not find

major changes in q between 1961 and 2011 at an annual

scale. However, for spring and summer we observed an

increase and a decrease, respectively, in the value of q, but

the trends were not statistically significant. Willet et al.

(2007) showed a significant global-scale increase in surface

q between 1975 and 2002, which was attributed to human-

induced rising temperatures while RH remained approxi-

mately constant. We observed an increase in q in Spain

between 1973 and 2003 (0.11 g kg-1 decade-1), but no

significant increase was observed with respect to the entire

1961–2011 period. Consistent with Simmons et al. (2010),

the evolution of q over the last decade indicates a decrease

in this parameter has occurred, mainly in the summer and

annual series.

The spatial distribution of trends in RH and q is shown

in Fig. 6. For RH, most stations showed negative and

significant trends on both annual and seasonal bases.

Annually, all series showed a negative trend, and only for

four series was the trend not statistically significant

(Table 1). Negative trends also dominated in winter, but

the majority of stations near the Mediterranean Sea did not
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show significant trends, and four stations showed positive

coefficients. In spring and summer there were no spatial

differences, with all stations showing negative or negative

and significant trends. Negative trends also dominated in

autumn, but this pattern was mainly evident in the eastern

part of Spain, whereas the stations located in the central

and western parts of Spain tended to show nonsignificant

trends. Trends in q showed a more complex pattern.

Positive trends were more common on an annual basis,

with 35 stations showing positive coefficients and only 15

showing negative trends. Nevertheless, few stations (12)

recorded positive and significant trends. With respect to

spatial trends, the stations located in the north, close to the

Atlantic Ocean and the Mediterranean coastline, tended to

show more positive and significant trends than those

located in inland areas. On a seasonal basis there were

marked differences. In winter and autumn, nonsignificant

changes dominated across Spain, but in spring only four

stations showed negative trends, whereas the remaining 46

stations showed positive trends (22 of which were statis-

tically significant). Spatial differences were very clear in

spring, with positive and significant trends dominating in

the northern and eastern parts of Spain, whereas in the

central and southern regions the stations tended to show

nonsignificant or even negative trends. For summer the

spatial patterns were much more complex, although the

stations in the north of Spain, located near the Atlantic

Ocean, showed dominant positive and significant trends.

Figure 7 shows the spatial distribution of the changes in

magnitude of RH and q between 1961 and 2011. The

changes in RH showed great spatial homogeneity, although

greater changes occurred in summer in southern Spain than

in northern areas. In general, the changes during summer

oscillated between decreases of 1–2.5 % decade-1, and

there was no marked difference between coastal and inland

stations. There was a marked decrease in q in the inland

areas of southern Spain in summer. This could explain the

contrasts observed at an annual scale between the stations

located in central and southern Spain, where q decreased at

a rate of 0.10–0.15 g kg-1 decade-1, and the northern

stations, which showed a rate of increase in q of

0.05–0.10 g kg-1 decade-1.
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Fig. 6 Spatial distribution of seasonal and annual trends in relative and specific humidity in Spain (1961–2011)

2662 S. M. Vicente-Serrano et al.

123



3.2 Possible physical mechanisms

The factors causing declines in RH across Europe have

been hypothetically related to changes in wind direction in

Ireland (Butler and Garcı́a-Suárez 2012) and atmospheric

circulation processes in the Czech Republic (Cahynová

and Huth 2009). On the contrary, In the Alpine region,

Brunetti et al. (2009) pointed out a reduction of RH given

vapour pressure increase (approximately 0.8 hPa), but not

enough to balance the temperature increase of more than

1 �C. Saturation deficit by evaporation constraints is also

pointed out by Wypych (2010) in Poland to explain gen-

eral RH reduction since the observed increase in temper-

ature is not matched by the vapour pressure variability.

Here, we have analysed the connection with temperature

variability and trends and the terrestrial and oceanic

sources of moisture that supply atmospheric humidity to

Spain.

3.2.1 Surface temperature

The importance of the warmer seasons in controlling the

trends observed in both RH and q at the annual scale was

probably determined by the evolution of air temperature in

Table 1 Number of stations having positive and negative trends in

seasonal and annual relative and specific humidity, and temperature

(1961–2011)

Positive

(sig.)

Positive

(no sig.)

Negative

(no sig.)

Negative

(sig.)

Relative humidity

Winter 0 4 25 21

Spring 0 0 21 29

Summer 0 0 4 46

Autumn 0 1 18 31

Annual 0 0 4 46

Specific humidity

Winter 1 42 7 0

Spring 22 24 3 1

Summer 6 17 23 4

Autumn 0 23 26 1

Annual 12 23 14 1

Temperature

Winter 25 25 0 0

Spring 50 0 0 0

Summer 50 0 0 0

Autumn 35 15 0 0

Annual 50 0 0 0

Fig. 7 Spatial distribution of seasonal and annual changes in the magnitude of relative and specific humidity in Spain (1961–2011)
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Spain between 1961 and 2011, which in recent studies has

been shown to have increased (e.g. Brunet et al. 2007; El

Kenawy et al. 2012). For all 50 stations in the study we

showed that in summer and spring, and at the annual scale,

there was a positive and significant trend in the mean

temperature (Table 1). A positive increase in temperature

in winter and autumn was recorded at all stations, although

the trend was not significant at every station. Based on a

regional series for all of Spain, a large increase in both

seasonal and annual temperature is evident (Fig. 8). Dai

(2006) indicated that the general increase in q observed in

the decades of 1980 and 1990 was mainly attributable to a

large increase in temperature over a short time period,

which was consistent with the expected C–C relationship.

Nevertheless, Simmons et al. (2010) noted a marked

decrease in RH but not in q since 1999 (see also Willett

et al. 2012) in agreement with increased temperature (See

also Jones et al. 2010; Hansen et al. 2010). A recent model

ensemble study carried out by Ruosteenoja and Räisänen

(2013) has showed that RH will drop by 8–12 % in the

southern European inland in summer by 2070–2099 (under

the A1B scenario) as a response to global warming. We

have observed this pattern for Spain between 1961 and

2011. Thus, the observed decrease in RH was consistent

with a major increase in the surface air temperature. The

mean annual temperature increased at a rate of

0.3 �C decade-1 between 1961 and 2011, with the increase

being greater in summer (0.43 �C decade-1) and spring

(0.37 �C decade-1); this could explain why a greater

decrease in RH was observed in these two seasons.

Because the temperature has increased by 1.5 �C

annually and 2.15 �C in summer during the last five dec-

ades, based on the C–C relationship q should have

increased at a rate of approximately 6.8 % �C-1 (Allan

2012). Nevertheless, we found no change in q, and the

commonly assumed small changes in RH (Soden and Held

2006) have not been sustained in Spain. If q remains

constant under conditions of major temperature increase,

this probably indicates that water supply to the atmosphere

has not been sufficient to maintain constant RH, indepen-

dently of the temperature. The behavior of the sources of

water supply to the atmosphere may be determining this

pattern, suggesting that attention needs to be placed not just

on how much moisture the atmosphere can hold (driven by

the C–C relationship), but also on how moisture is supplied

to the atmosphere (Jones et al. 2010).
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3.2.2 Sources of moisture

The sources of atmospheric moisture are both oceanic and

terrestrial (Gimeno et al. 2012). The former constitutes the

main source of moisture in terrestrial areas, through

atmospheric transport (advection) even from very distant

areas (Gimeno et al. 2010a). Nevertheless, terrestrial

sources may also be important at regional (mesoscalar) and

local scales, and seasonally may constitute a large pro-

portion of the atmospheric supply through recycling pro-

cesses (Dirmeyer and Brubaker 2007; Millán et al. 2005a).

Gimeno et al. (2010a) reported that there are two important

source regions of atmospheric moisture in Spain: (1) a

tropical–subtropical North Atlantic corridor that extends

from the Gulf of Mexico to the Iberian Peninsula; and (2)

the Iberian Peninsula itself and the surrounding western

Mediterranean basin. The former dominates during colder

periods and the latter during warmer periods, because of

the dominant atmospheric circulation patterns.

3.2.2.1 Terrestrial sources Soil moisture and recycling

processes driven by ET are very active sources during

summer (Eltahir 1998; Juang et al. 2007). The atmosphere

in Spain is stable in summer, but convective processes

mainly driven by barocline mesoscale boundaries (e.g. sea

breeze fronts; Azorin-Molina et al. 2009) supply moisture,

along with the terrestrial water stored in the form of soil

moisture. The level of soil moisture is highly dependent on

antecedent precipitation. Although changes in precipitation

in Spain in recent decades have been less than the changes

in temperature, at the annual scale the trend in precipitation

has been negative (-18.7 mm decade-1) and statistically

significant (p \ 0.05; Fig. 9). Thus, mean annual precipi-

tation decreased by 16 % over the past five decades, from

600.7 mm in 1961 to 507.1 mm in 2011. This decrease has

paralleled a decrease in cloud cover over Spain since the

1960s (Sanchez-Lorenzo et al. 2009, 2012). As a conse-

quence of marked interannual variability in precipitation

the decrease in precipitation in winter and summer over the

last 50 years has not been statistically significant, but

nonetheless has been substantial: a 25 % decrease in winter

(from 194.3 to 145.8 mm) and a 24 % decrease in summer

(from 77.5 to 58.8 mm).

There is a positive (negative) relationship between the

temporal variability of RH and precipitation (temperature)

in Spain. Figure 10 shows the relationship of annual pre-

cipitation and annual temperature to the annual RH

obtained from the regional series for all of Spain. The
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analysis included direct correlation of the series, but also a

correlation among the de-trended series (removing the

linear trend for the period 1961–2011), to determine

whether temporal anomalies in precipitation and tempera-

ture could be affecting RH anomalies independently of the

observed trends in the three variables. For the original

series, temperature showed a greater correlation than pre-

cipitation, but for the de-trended series the correlation

decreased markedly, which suggests that the temporal

anomalies in RH were highly determined by precipitation.

However, the strong negative trend in RH identified at the

annual scale was mostly driven by the evolution of tem-

perature. This pattern was also observed for the stations

individually. Figure 11 shows box plots representing the

statistical distribution of correlations among precipitation,

temperature and RH for the stations involved in the study.

The patterns are similar to the pattern for the regional

series. In spring, summer, autumn and annually, the cor-

relations between temperature and RH decreased when the

de-trended series were used in the analysis, suggesting that

the RH anomalies were mostly driven by precipitation

variability than by temperature, but the trends were driven

by temperature increase. Winter was the exception, as the

correlations between the de-trended series of temperature

and RH were positive. In general, winter is a humid period

in Spain; this could explain the positive correlation

between RH and temperature, as there are no constraints on

the supply of moisture to the atmosphere from terrestrial

and oceanic sources. This pattern (together with the small

temperature increase in winter between 1961 and 2011, and

the low temperatures that favor small variations in RH)

indicates that the evolution of RH during winter was more

constant than in other seasons and was mainly driven by

temperature (i.e. by the capacity of the atmosphere to hold

water). The box plots showing correlations between q and

the original and de-trended series show clearly that there

was no substantial difference in correlation between the

original and the de-trended series (Fig. 12). This indicates

that despite the interannual anomalies of q being heavily

influenced by temperature variability, the observed trend in

q was not driven by the temporal evolution of temperature;

rather, constraints on water supply to the atmosphere from

various sources probably had a strong influence on the

evolution of q.

Although in many areas of Spain winter precipitation

does not provide the greatest seasonal contribution (de Luis

et al. 2010), winter precipitation is crucial for soil moisture

recharge because it is a period of very low ET, and a high
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percentage of the precipitation is stored in the soil; this is

of great importance for the levels of soil moisture and

vegetation activity in the following spring and summer

(Austin et al. 1998). This is one of the likely reasons for the

positive trend in q during spring. The same general

behavior occurred in autumn, which is the only season in

which in recent decades there has been increased precipi-

tation in at least in some areas of Spain, particularly the

northwest (González-Hidalgo et al. 2011). Moreover, pre-

cipitation in the form of storms that develop over the

mountain ridges is very important during the summer

(Álvarez et al. 2011). Thus, the decrease in precipitation is

likely to be reducing the moisture available for transfer to

the atmosphere. The precipitation decrease observed in

warm season probably had a marked impact on the supply

of water to the atmosphere when the greatest increase in

temperature and the greatest decrease in RH were recorded.

The evolution of the SPEI shows that severe drought events

dominated mainland Spain in the 1990s and the 2000s

(Fig. 13), consistent with the pattern already observed in

most of the Mediterranean basin (Hoerling et al. 2012).

Stronger climate drought events are directly propagated to

the hydrological cycle and reduce the availability of soil

moisture, as recently demonstrated by modeling experi-

ments (Van Loon et al. 2012).

An indirect indicator of a decrease in the supply of

moisture from terrestrial areas to the atmosphere may be

the decrease in ET that has occurred over land areas since

1998 (Jung et al. 2010). This was probably related to

reduced soil moisture availability, and could be contribut-

ing to the recent decrease in RH, reported at the global

scale by Simmons et al. (2010). We have no information on

real ET in Spain, but the evolution of both precipitation and

the SPEI suggests that ET is probably decreasing because

of reduced availability of soil moisture, as opposed to

increased PET (Espadafor et al. 2011). In addition, Spain is

affected by complex land cover change processes in recent

decades (Stellmes et al. 2013; Hill et al. 2008; Lasanta and

Vicente-Serrano 2012), being the most relevant the crea-

tion of new irrigated lands (González-Ferrando 2003;

Grindlay et al. 2011) and the increased forest coverage in

mountain areas as a consequence of land margination and

rural abandonment (Lasanta et al. 2005; Lasanta 2007).

Therefore, it would be expected that new irrigated lands

and forests may contribute to supply more humidity to the

atmosphere given higher ET rates than previous coverages

(dry land agricultural areas and pastures). Irrigated lands

have increased by 48 % between 1961 and 2011. Never-

theless, the irrigated surface is low in comparison to the

total surface in Spain (7 %); it is only relevant for ET

during summer months; and it is also affected by water

restrictions in drought years (Quiroga et al. 2011). In

addition, increased forest lands combined with less pre-

cipitation may have an effect on a faster decline of soil

water storage and contribute to ET and vegetation water

stress. Thus, an indirect indicator of reduced moisture

availability (and consequently a reduced supply of mois-

ture to the atmosphere) may be increased water stress in the

vegetation in natural areas. This vegetation has undergone

a marked decline in growth and activity, particularly in

areas affected by limiting environmental conditions

(including aridity, low water field capacity, southern

slopes) (Sánchez-Salguero et al. 2012; Carnicer et al. 2011;

Vicente-Serrano et al. 2010a).

Other indirect evidence for a decrease in the terrestrial

water supply is the decrease in the number of summer

precipitation events with examples in the east (Millán et al.

2005b) and northeast Spain (López-Moreno et al. 2010),

which are driven by convective processes and require high

levels of RH to be generated (Martı́n et al. 2006). Gallego

et al. (2011) reported for Spain an increase in light pre-

cipitation events but a decrease affecting intense precipi-

tation cases, which could explain the stationary q values at

the surface. Thus, Millán et al. (2005a) suggested that the

summer climate in Spain may be changing from an open

monsoon-type regime with frequent summer storms to one

dominated by closed vertical recirculation, where feedback

mechanisms favor a reduction in storms because of the lack

of moisture supply. Rowell and Jones (2006) showed that

this mechanism may be enhanced in the future and generate

a positive feedback mechanism in summer, whereby

reduced rainfall results in further drying of the soil,

reducing convective activity. Therefore, although the

atmosphere may be holding more moisture because of

increased temperature, a reduction in terrestrial water

supply in Spain could in part explain the observed trend in

RH and stationary q evolution.

3.2.2.2 Oceanic sources The atmospheric supply of

water from the ocean could also be reduced by changes in

the magnitude of the warming processes between terrestrial

and oceanic areas. Simmons et al. (2010) argued that while
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the average temperature over the land has continued to rise

in recent years, the temperature of the sea surface has not.

Therefore, along with terrestrial processes, the decline in

RH over the land could be favored by the absence of an

increase in supply of water from the ocean. Thus, Fig. 14

shows the evolution of the SST (based on the three datasets

indicated in Sect. 2.2) in the two main areas (Gimeno et al.

2010b) that supply atmospheric humidity to the Iberian

Peninsula. The results are very similar, irrespective of the

dataset used. In both the tropical–subtropical North

Atlantic corridor (Zone 1 in Fig. 15) and the surrounding

Mediterranean (Zone 2 in Fig. 15) there was an increase in

SST at both the annual and seasonal scales between 1961

and 2011. Nevertheless, the magnitude of the SST increase

was much lower than that observed for land temperatures.

Moreover, at the annual and seasonal scales the SST did

not increase in either area after 1995. Figure 15 also shows

that between 1981 and 2011 the spatial distribution of

changes in SST in the region were minor in magnitude.

Only in summer and in areas close to the Iberian Peninsula

were the changes statistically significant. Therefore, the

higher maximum summer temperature of the land surface

relative to the ocean might in part explain the observed

decline in maximum RH values at high temperatures. This

is because the presence of a saturated parcel of static air

over the ocean could reduce the flow of humid air from

oceanic areas to the landmass of Spain, which could con-

tribute to sub-saturation of the air over the warmer land

surface. This highlights the limitations of using present day

scaling relationships based solely on land surface temper-

atures and the C–C relationship, without regard to moisture

availability and its generation in the source regions.

4 Environmental and social implications

The observed decrease in RH over Spain may have large

implications for the availability of water resources, crop

production and ecosystems. RH is important in explaining

anomalies in PET, which is essentially dependent on four

meteorological variables: air temperature, solar radiation,

RH and wind speed (Allen et al. 1998; Liu and McVicar

2012). Thus, some studies have showed that PET anoma-

lies are mostly driven by solar radiation and RH, and less

so by temperature (Hidalgo et al. 2005; Wang et al. 2010).

In a sensitivity study in the Yangtze River catchment in

China, Xu et al. (2006) showed that changes in RH con-

tributed significantly to explaining relative changes in PET,

and Espadafor et al. (2011) showed similar results in

southern Spain. The increasing water demand by the
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atmosphere over Spain is causing a decrease in forest

growth rates both in semiarid sites (Vicente-Serrano et al.

2010c; Carnicer et al. 2011) and humid forests (Galiano

et al. 2010; Camarero et al. 2011; Sánchez-Salguero et al.

2012; Linares and Camarero 2012), and some aridification

of climate, which is triggering local desertification pro-

cesses in vulnerable semiarid Mediterranean environments

(Vicente-Serrano et al. 2012b). RH is also a determinant of

ablation processes in glacier environments (Strasser et al.

2004), with implications for the survival of the last vestiges

of glacial masses located in the Pyrenees (Chueca Cı́a et al.

2005).

Reduced levels of RH may also exacerbate the severity

of drought events. The evolution of the SPEI in Spain

clearly shows recent intensification in the severity of

droughts, and the observed trend in RH is probably rein-

forcing the negative effects of droughts on vegetation. This

is because the surface humidity affects the wetness of plant

leaf surfaces (Klemm et al. 2002) and the duration of leaf

wetness, which is a key parameter in agricultural meteo-

rology; it is related to disease in many important crops

because it controls pathogen infection and development

rates (Sentelhas et al. 2008).

Surface humidity is also important in explaining varia-

tions in pollutant concentrations in Spain. Castell et al.

(2008) showed that in eastern Spain there is an inverse

relationship between RH and the concentration of tropo-

spheric ozone. Water vapor in the atmosphere may enhance

the removal of highly reactive radicals, which are precur-

sors of ozone formation. Thus, a generalized decrease in

RH in Spain could be associated with more frequent pol-

lution episodes affecting human health. Several studies in

Spain have shown that the level of surface humidity has an

influence on human mortality and the incidence of a

number of diseases. Alberdi et al. (1998) showed that high

RH during summer was negatively correlated to mortality

in central Spain between 1986 and 1992. Paradoxically, a

decrease in RH in Spain may also have positive conse-

quences for health. For example, Oliveira et al. (2009)

reported that in the western Iberian Peninsula there was a

positive correlation between potentially allergenic spring–

autumn spores and the RH. In addition, decreased RH has

been associated with decreased pain and rigidity in arthritis

sufferers (Aikman 1997), lower respiratory virus activity

(Hervás et al. 2012), and decreased mortality among

elderly people resulting from cardiovascular, respiratory

and digestive causes in winter in central Spain (Fernández-

Raga et al. 2010). Beyond health effects, the marked

negative agricultural, hydrological and environmental

impacts of decreased RH outweigh the possible advanta-

ges. Forest fire is one of the main natural hazards affecting

Spain (Martı́nez et al. 2009), and RH is a significant

parameter affecting the development and spatial propaga-

tion of forest fires, which are favored by low rates of RH

(e.g. Flannigan and Harrington 1988). Thus, the most

severe forest fires in Spain in recent years have coincided

with conditions of low soil moisture, drought and low

levels of RH (Pausas 2004), and these factors are clearly

contributing to the increased area affected (Pausas and

Fernández-Muñoz 2012).

5 Summary and conclusion

This study has analysed the evolution of RH and q in

Spain by means of complete available records from the

Spanish National Meteorological Agency. A careful

Fig. 15 Evolution of the sea surface temperature between 1981 and

2011, based on the NOAA–AVHRR dataset. The changes were

determined using least square regression analysis. Lines frame areas

having significant trends, according to the Mann–Kendall tau statistic
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quality control and homogeneity protocol has allowed

having 50 series across Spain that allowed to analyse

recent surface humidity variability and trends. We have

shown that a large decrease in RH occurred in Spain

between 1961 and 2011. This has been associated with a

marked increase in temperature during the same period

but, in contrast, no change in specific humidity. Our results

suggest that the evolution of surface humidity in the last

five decades was not uniquely driven by the Clausius–

Clapeyron relationship, which determines how much

moisture the atmosphere can hold. We found constraints

on the supply of moisture to the atmosphere from the main

terrestrial and oceanic sources, specifically a reduction in

precipitation and soil moisture in the case of terrestrial

sources, and stable sea surface temperatures that could be

reducing the flow of atmospheric moisture to mainland

Spain.
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Valente MA (2011) Trends in frequency indices of daily

precipitation over the Iberian Peninsula during the last century.

J Geophys Res D: Atmos 116(2):D02109

Gimeno L, Drumond A, Nieto R, Trigo RM, Stohl A (2010a) On the

origin of continental precipitation. Geophys Res Lett 37. doi:10.

1029/2010GL043712

Gimeno L, Nieto R, Trigo RM, Vicente-Serrano SM, López-Moreno
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