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Abstract Based on a novel design of coupled model

simulations where sea surface temperature (SST) variabil-

ity in the equatorial tropical Pacific was constrained to

follow the observed El Niño—Southern Oscillation

(ENSO) variability, while rest of the global oceans were

free to evolve, the ENSO response in SSTs over the other

ocean basins was analyzed. Conceptually the experimental

setup was similar to discerning the contribution of ENSO

variability to interannual variations in atmospheric anom-

alies. A unique feature of the analysis was that it was not

constrained by a priori assumptions on the nature of the

teleconnected response in SSTs. The analysis demonstrated

that the time lag between ENSO SST and SSTs in other

ocean basins was about 6 months. A signal-to-noise anal-

ysis indicated that between 25 and 50 % of monthly mean

SST variance over certain ocean basins can be attributed to

SST variability over the equatorial tropical Pacific. The

experimental setup provides a basis for (a) attribution of

SST variability in global oceans to ENSO variability, (b) a

method for separating the ENSO influence in SST varia-

tions, and (c) understanding the contribution from other

external factors responsible for variations in SSTs, for

example, changes in atmospheric composition, volcanic

aerosols, etc.

1 Introduction

Attribution of climate anomalies is an important aspect of

improving our understanding of causes for climate vari-

ability with potential for improving long-range predictions.

Indeed, it was the discovery of global atmospheric telecon-

nections related to the tropical Pacific sea surface tempera-

ture (SST) variability associated with the El Niño—Southern

Oscillation (ENSO) (Horel and Wallace 1981) that bolstered

the justification for the seasonal prediction efforts. Identifi-

cation of the importance of ENSO SST variability on global

climate was the primary impetus for the establishment of

Tropical Atmosphere Global Atmosphere (TOGA) program

to better understand and predict ENSO variability, culmi-

nating in the deployment of TAO/TRITON array in the

equatorial tropical Pacific (McPhaden et al. 2010) and

development of dynamical seasonal prediction systems

(Ji et al. 1994; Stockdale et al. 1998).

Extensive work followed the initial analysis of Horel and

Wallace (1981) to develop theoretical underpinnings for

global teleconnections related to the ENSO SST variability,

and to better understand various nuances of this relationship,

e.g., non-linearity (Hoerling et al. 1997), delayed atmo-

spheric response (Kumar and Hoerling 2003), and response

to different favors of ENSO, etc. (Trenberth et al. 1998;

Kumar and Hoerling 1997). To overcome sampling issues

due to the limited observational record, much of the latter

advancements relied on ensembles of atmospheric general

circulation model simulations forced with the evolution of

the observed SSTs (the so called AMIP simulations).

Availability of ensemble of AGCM simulations provided a

unique methodology to identify the atmospheric response

patterns associated with the interannual SST variability.

Subsequent research efforts also revealed that ENSO

SST variability not only affects the atmospheric climate
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variability but also the SST variability in the other ocean

basins (Jones 1988; Klein et al. 1999; Kumar and Hoerling

2003; Chiang and Lintner 2005; Chang et al. 2006). This

connection between the SST variability in the equatorial

tropical Pacific and other oceans is mediated via the

atmospheric bridge (Lau and Nath 1996; Alexander et al.

2002) as the time scale of oceanic pathways is much longer

than the time-scale of ENSO variability, except over the

region of Indonesian through flow (England and Huang

2005). However, to identify to what extent the interannual

SST variability in ocean basins other than equatorial

tropical Pacific can be attributed to ENSO SST variability

remains an area of ongoing research, particularly for

determining the possible influence of various simplifying

assumptions on conclusions as discussed below.

The simplest approach to identify the teleconnected

variability between ENSO-related SST and SSTs in other

ocean basins is based on linear analysis where an index of

ENSO SST (for example, Niño 3.4 SST index (Barnston

et al. 1997) or the principal component of the leading EOF

of SST variability in the tropical Pacific related to ENSO)

is regressed against the global SST variability. This anal-

ysis can easily be done based on the historical SST data

(Lanzante 1996; Klein et al. 1999). The next step in

complexity of the analysis, which is not constrained by the

assumption of linearity, is to develop simultaneous com-

posites of global SST anomalies related to warm and cold

phases of ENSO. These analyses led to the identification of

the horseshoe pattern of opposite sign SST anomalies

straddling the primary ENSO-related SST in the equatorial

Pacific (Lanzante 1996); a signal in SST anomalies in the

extratropical Pacific that projects on the spatial structure of

the SST related to the Pacific decadal oscillation (PDO)

(Newman et al. 2003); and in phase SST anomalies in the

tropical Indian and Atlantic basins (Barnston 1994; God-

dard and Graham 1999; Chang et al. 2006).

One of the shortcomings of linear, or of the compositing

approach, however is that as the SST response in global

oceans to ENSO SST tends to be delayed by several

months because of thermal inertia of the oceans (with lag

varying from one ocean basin to another) (Klein et al.

1999; Kumar and Hoerling 2003), this response cannot be

well captured by aforementioned techniques. Various sta-

tistical approaches have been developed to account for this

lagged relationship (Chen et al. 2008; Compo and Sard-

eshmukh 2010), but these methods are still variants of

linear approaches and cannot take into account potential

non-linearity in the SST response.

A full understanding of the relationship between ENSO

SST and SST variability in other ocean basins that takes

into account the delayed response, and other potential non-

linear aspects in the response, is important in several

contexts. For example, on the interannual time-scale, the

variability of surface and tropospheric temperatures is

highly constrained by the ENSO variability (Kumar et al.

2004). From the perspective of understanding and attrib-

uting temperature and precipitation trends due to the

anthropogenic causes, removal of ENSO related signal is

desired (Kelly and Jones 1996; Kumar et al. 2004). In

another example, ENSO related SST variability in other

ocean basins also represents a predictable component of

SSTs due to ENSO (to the extent ENSO SST variability

itself can be predicted), and therefore, identification of this

signal represents the predictability of SST that is poten-

tially predictable, and needs to be correctly simulated in

climate models.

In this analysis, we report on an ensemble based approach

where, in a coupled model simulation, the SST variability in

the equatorial tropical Pacific is constrained to follow the

observed variability, while the SSTs in other ocean basins are

free to evolve. The design of model simulation with a fully

coupled ocean–atmosphere evolution in ocean basins other

than equatorial tropical Pacific extends on simulations done

with ocean mixed layer models (Alexander and Scott 2002;

Lau and Nath 2003), or experiments for a specific case of

ENSO (Elliott et al. 2001), or with coupling over the region

of interest, for example, Indian Ocean (Huang and Shukla

2007) or Atlantic Ocean (Huang 2004) but with observed

SSTs specified over all other ocean basins.

Based on the analysis of the ensemble mean of simula-

tions we infer the ENSO-related SST signal in other ocean

basins. The approach follows the analysis of variance

method for the seasonal atmospheric variability forced by

SSTs and has been widely used (Kumar and Hoerling 1995;

Rowell 1998; Peng et al. 2000). Further, the analysis

approach is not constrained by any a priori assumption (for

example, linearity or specifying the time lag for the delayed

response); however, results could be influenced by the biases

in the coupled model used in our simulations.

The paper describes the design of the coupled model

simulations (Sect. 2). The analysis approach follows

decomposing the variability of SST into one component

related to ensemble mean (and is due to ENSO), and one

that related to the departure from the ensemble mean (i.e.,

due to internal variations (Sect. 3). The paper concludes

with a summary and assessment of SST predictability

related to ENSO (Sect. 4).

2 Data and coupled model simulation

The coupled model used in this study is the early version of

the Climate Forecast System (CFS; Saha et al. 2006) that

was implemented for operational seasonal forecast at the

National Centers for Environmental Prediction (NCEP)

during 2004–2012. The atmospheric, oceanic, and land
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components of the coupled model are the NCEP Global

Forecast System (GFS) version 1 (Moorthi et al. 2001), the

Geophysical Fluid Dynamics Laboratory (GFDL) Modular

Ocean Model version 3 (MOM3; Pacanowski and Griffies

1998), and the Oregon State University (OSU) land surface

model (LSM; Pan and Mahrt 1987), respectively.

The atmospheric GFS has T62 horizontal resolution and

64 vertical levels. The GFDL MOM3 covers global oceans

from 74�S to 64�N, with horizontal resolutions of 1� (lon-

gitude) by 1/3� (latitude) between 10�S and 10�N, and

increasing to 1� (latitude) poleward of 30�S and 30�N. The

MOM3 has 40 layers from 5 m below sea level to 4,479 m,

with a 10-m resolution in the upper 240 m. The OSU LSM

has two soil layers: 0–10 cm and 10–190 cm. More detailed

descriptions of the CFS are given in Saha et al. (2006).

To constrain the coupled model responses to realistic

ENSO variability, tropical Pacific SSTs in the coupled

simulations are relaxed to the observed daily SST. This is

done by replacing the model predicted SST in the tropical

Pacific domain (10�S–10�N, 140�E–75�W) with new SST

after each 1-day integration of the coupled model. The new

SST (SSTNEW) is a combination of the coupled model

predicted SST (SSTMOM3) and the observed daily SST

(SSTOBS) interpolated from the weekly OISST based on

the following equation:

SSTNEW ¼ 1� wð ÞSSTMOM3 þ wSSTOBS;

where w is a weighting coefficient, which is set to 1/3 in the

tropical Pacific domain (10�S–10�N, 140�E–75�W) and is

linearly reduced to 0 on the border of an extended domain

(15�S–15�N, 130�E–65�W). The value of 1/3, equivalent to

nudging the model SST to the observed SST with a

restoring timescale of 3.3 days, effectively constrains

monthly mean SSTNEW in the tropical Pacific to the

observations and thus ensures the realistic ENSO vari-

ability in the CFS. In the rest of global oceans w = 0, and

the atmosphere and ocean remain fully coupled.

The modified CFS with relaxation of the model pre-

dicted SST to the observed SST in the tropical Pacific

(indicated by TPCF in the figures) was integrated over the

31-year period (1981–2011) starting with one ocean initial

condition but nine different atmospheric initial conditions.

The ocean model was initialized with 1 January 1981

condition obtained from the NCEP Global Ocean Data

Assimilation System (GODAS; Behringer and Xue 2004).

The atmospheric model was initialized with 28 December

1980 to 5 January 1981 conditions, each one day apart,

obtained from the NCEP/Department of Energy (DOE)

Global Reanalysis 2 (R2; Kanamitsu et al. 2002). This

procedure results in an ensemble of nine member simula-

tions in which the SST variability in equatorial tropical

Pacific follows the observed evolution, while SST vari-

ability in other ocean basins is a combination of internal

variability and external variability forced by ENSO. The

model simulations for the 1983–2010 period are used in the

analysis. Results from these simulations have been reported

in Chen et al. (2012).

For the observed SST variability over the global oceans,

we used observation-based monthly mean analyses: version

2 of the optimum interpolation (OIv2) SST (Reynolds et al.

2002) at 2.5 9 2.5 degree grid.

3 Results

A comparison of monthly mean SST variability between

observations and model simulation is shown in Fig. 1. This

(a)

(b)

(c)

Fig. 1 Variance of monthly mean SSTs for a observations, b model

simulations (TPCF), and c difference between model simulated and

observed variance. Units are in �K2. For model simulations variance

is obtained for each run and then averaged over estimates from nine

runs. The box in the equatorial tropical Pacific indicates the spatial

domain over which the predicted SSTs are merged with the observed

evolution of SSTs
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analysis provides a basic assessment of realism of SST

variability in the model simulations. For the model, SST

variability is first computed over individual simulations in

the ensemble, and then averaged over nine simulations. For

both observations and the model, results are shown aver-

aged over all months.

For model simulations, the SST variability over the

oceans where they are free to evolve has realistic ampli-

tudes. The largest discrepancy in the tropical latitude

occurs immediately to the west of Indonesia (a region

corresponding to the eastern node of the Indian Ocean

Dipole) where SST variability is overestimated. In the

extratropics the largest errors are over the Gulf Stream

(likely due to a coarse model resolution), and near the sea

ice edges in the northern and southern hemisphere.

We next evaluate the component of the simultaneous

monthly mean SST variability in the ocean basins other

than the tropical Pacific that is linearly related to the ENSO

variability. The first assessment is based on the regression

with the Niño 3.4 SST index and results are shown in

Fig. 2 (top row). Once again, for the models regression is

computed for individual model simulations, and the aver-

age of nine regression maps is shown.

The spatial pattern of the regression map is consistent

with the well documented influence of ENSO variability in

the tropical Pacific on the other ocean basins: a horseshoe

pattern of opposite sign SST anomalies extending into

extratropical latitudes; a spatial pattern in the North Pacific

ocean that is similar to the SST fingerprint associated with

the PDO; a tendency for positive SST regressions over the

equatorial Indian and Atlantic Oceans signifying an in-

phase relationship with the evolution of ENSO variability.

There is very good spatial resemblance between observa-

tion and model simulation. The regression pattern also

reveals the regions where SST variability is related to the

remote ENSO SST variability via the atmospheric bridge

mechanism (Lau and Nath 1996; Alexander et al. 2002).

An additional point to note is that the amplitude of the

regression is also well simulated, and although there were

discrepancies in the absolute value of the monthly mean SST

(a) (b)

(c) (d)

Fig. 2 (Top row) Spatial pattern of regression between monthly mean

SST variability and Niño 3.4 SST index for a observations, and

b model simulations. Units are in �K. For model simulations,

regression is obtained for each run and then averaged over estimates

from nine runs. (Bottom row) Ratio of reconstructed monthly mean

variance of SST and total variance for c observations, and d model

simulations. The reconstruction is based on respective Niño 3.4

regression maps in the top row. The box in the equatorial tropical

Pacific indicates the spatial domain over which the predicted SSTs are

merged with the observed evolution of SSTs. Dashed boxes in top

right panels are the spatial domains over which SSTs are averaged to

analyze regional features
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variability (Fig. 1), the relative amplitude of the fraction of

variability related to ENSO has a very good match.

The signal-to-noise ratio (SNR) that can be linearly asso-

ciated with the Niño 3.4 SST index variability is also shown in

Fig. 2 (bottom panels). The SNR is computed as follows:

(a) respective regression patterns in Fig. 2 (top panels) are

used to first reconstruct the SST component that is linearly

related to the Niño 3.4 SST index. This results in a monthly

mean SST time series over the analysis period that is linearly

related to ENSO; (b) variance of the reconstructed SST time-

series then provides the component (or the signal) that is lin-

early related to the Niño 3.4 SST index; and finally (c) ratio of

variance of the reconstructed SST to the variance of original

SST (in Fig. 1) is defined as the SNR and is indicative of

fraction of variance linearly explained by the variability in the

Niño 3.4 SST index. SNR of 1 (0) means that entire (none of)

the variability of SST can be related to Niño 3.4 SST index.

Both for the observation and for the model, the fraction

of monthly mean SST variability linearly related to the

Niño 3.4 SST index is around 15–20 % with some regions

exceeding 25 % (e.g., north of equator in western Pacific).

Once again, there is a good correspondence both in the

spatial pattern and the magnitude of the SNR between

observation and the model.

The estimate of SNR shown in Fig. 2 is based on a

simultaneous analysis, and further, is constrained by the

assumption of linearity. For observations, because of the

limited data record, a better estimate that can account for

non-linear influences, or a delay in the oceanic response to

ENSO variability, is confounded by sampling issues and is

not feasible (Kumar and Hoerling 1997, 2000). Availability

of ensemble of model simulations, however, allows us to

explore the SNR beyond the assumption of linearity, and

although the model based estimate cannot be validated

directly against the observations, the resemblance for the

case of the analysis under the assumption of linearity

(a)

(b)

Fig. 3 a Variance of monthly mean SSTs for the ensemble average

of model simulations. Units are in �K2. b Ratio of variance of

ensemble averaged monthly mean SSTs and total variance for model

simulations. The box in the equatorial tropical Pacific indicates the

spatial domain over which the predicted SSTs are merged with the

observed evolution of SSTs

(a)

(b)

Fig. 4 Anomaly correlation between monthly mean observed SSTs

and model simulated SSTs for a when model simulated SST is based

on ensemble mean, and b when model simulated SST is based on

reconstruction using the regression pattern
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(Fig. 2) between observation and model provides us with

the confidence to pursue the model based approach further.

The analysis of SNR based on the ensemble of model

simulations follows the approach similar to that for the

traditional analysis for the atmospheric variability (Kumar

and Hoerling 1995). Following this approach, variability in

SST due to ENSO SST is computed based on the ensemble

mean (a procedure that reduces the contribution of random

component in the individual model runs towards the vari-

ability of ensemble mean). The variance of the ensemble

mean of SST, together with the SNR is shown in Fig. 3.

The variance of the ensemble mean can also be compared

with the variance of linear reconstruction of SST based on

the Niño 3.4 SST index.

The variance of ensemble mean SST (Fig. 3, top panel)

that is due to the influence of ENSO on other ocean basins

and this estimate, not constrained by the assumption of

linearity and simultaneity, is generally larger than that

based on the linear construction (not shown), indicating

that a larger fraction of SST variability can be attributed to

the SST variability in the tropical eastern Pacific. This is

reflected further in the SNR (Fig. 3, bottom panel) that has

larger positive SNR values than its linear counterpart

(Fig. 2, bottom right).

The amplitude of the SNR is directly proportional to the

skill of ensemble mean as the prediction (Kumar and

Hoerling 2000) with higher (lower) SNR having higher

(lower) prediction skill. For example, as measured by the

anomaly correlation (AC), the skill of the SST prediction

based on the ensemble mean (with higher SNR) should be

better than the skill based on the linearly regressed SST

signal related to the Niño 3.4 SST index. This comparison

also provides a check in that if the SNR estimate based on

ensemble of model simulations is high but the AC is not, it

points to possible bias in model’s simulation (and estimate)

of the SNR.

The AC for SST forecasts based on ensemble mean and

based on the reconstructed signal is shown in Fig. 4. The

skill of SST forecast based on ensemble mean (Fig. 4, top

panel) is generally better than the skill based on linearly

reconstructed SST signal (Fig. 4, bottom panel). This is

particularly true over the tropical Indian and Atlantic

Oceans. This need not be the case if the SST signal based

on the ensemble mean of the simulation is erroneous and

does not reflect observed SST evolution. One such example

is associated with the variability over the Gulf Stream

where although the SNR estimate is very high, AC in

negative, and in fact, is worse than for the regressed SST as

prediction. Barring few exceptions, a combination of a

higher SNR accompanied by higher skill is an indication

that the SST signal computed based on ensemble of runs is

realistic and that the linear response to ENSO is an

underestimation of the ENSO related signal in other ocean

basins.

We next analyze the monthly variability in the observed

SST in tropical ocean basins other than the Pacific. The

global tropical mean of SSTs averaged between the 20�S–

20�N latitude band is shown in Fig. 5 (top panel). To see

what fraction of observed variability is explained by the

ENSO variability, the average of SST anomaly based on

the ensemble average of the model simulations (i.e., the

ENSO related signal) is also shown.

Consistent with earlier analysis (Kumar et al. 2004),

there is a clear indication that the interannual variability in

observed SSTs has a signature of the ENSO variability

(which is shown as time series of Niño 3.4 SST index,

Fig. 5, bottom panel) with a mean warming (cooling) in

(a)

(b)

(c)

Fig. 5 a Time evolution of tropical average of observed SSTs (red

curve) and model simulated SSTs (blue curve). Domain of spatial

average is from 20�S to 20�N and excludes the region where observed

SST variability was specified. b Difference between observed and

model simulated SSTs in the top panel. c Time evolution of observed

Niño 3.4 SST Index. Units are in �K
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tropical ocean basins following El Niño (La Niña) events.

The time-series of ensemble mean SST variability in the

model simulation (with a few exceptions discussed later)

closely follows the observed variability and indicates the

control of tropical Pacific SST on the interannual vari-

ability in other ocean basins. From a comparison of the

different time series—in the bottom panel for Niño 3.4 SST

index, and top panel for the observations and ensemble

mean simulated SST—it is apparent that the ENSO related

SST signal in the other tropical oceans also lags the ENSO

variability by several months. For different tropical and

extratropical ocean basins, this aspect of lagged response

will be discussed later.

The difference between the observed and model simu-

lated SST time series (Fig. 5, middle panel) illustrates

some notable discrepancies. One is a marked cooling in the

observed SST time-series starting around 1982 and then

again in 1992. This cooling is not replicated as an ensemble

mean response to ENSO SSTs and is related to a general

cooling of tropical ocean basins due to volcanic eruptions

(Stenchikov et al. 2009; Xue et al. 2012)—El Chichon in

1982 and Mount Pinotubo in 1991.

The other notable discrepancy is a slow rise in the

observed temperature that is not replicated in the ensemble

mean SST time series. This is related to the possibility that

the warming in the other ocean basins is due to the changes in

atmospheric composition—increases in the greenhouse

gases (GHGs)—and is not related to the ENSO. It has been

documented that although SSTs in other ocean basins have

been getting warmer, SSTs in the tropical eastern Pacific

have not experienced a similar trend (Kumar et al. 2010;

L’Heureux et al. 2013). Therefore, due to lack of warming

trends in specified SSTs in the equatorial Pacific, and the fact

that model simulations are done with a fixed CO2, a trend in

SST response in other ocean basins also does not exist.

We note that although the design of model simulations

was to infer the ENSO related SST variability in different

ocean basins, it is encouraging to see that influence of other

(a) (b)

(c) (d)

(e) (f)

Fig. 6 Time evolution of observed (blue curve) and model simulated

(red curve) SST anomalies area averaged over different spatial

domains: a Indian Ocean (IO); b Atlantic (ATL); c Western Pacific

(WP); d Southern Oceans (SO); e North Pacific (NP), and f tropical

oceans (TROP). In all panels green curve is the Niño 3.4 SST index

multiplied by factor 0.5. Panel f repeats the analysis shown in Fig. 5.

Units are in �K. Areas covered by different boxes are indicated in

Fig. 2
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extraneous causes (e.g., volcanoes, or changes in the

GHGs), and their signal on SST variability, can also be

gleaned. Further, the method of removal of ENSO time

series is not constrained by any a priori assumptions (e.g.,

linearity, or what is the time lag for the SST response),

however, the analysis could be influenced by model biases

that may affect the SST response to ENSO in other ocean

basins.

We next analyze the interannual variations in the SST in

different ocean basins, and to the extent observed varia-

tions are linked to ENSO variability. Time series of the

observed and the ensemble mean SST evolution for model

simulations, area averaged over different oceanic regions,

is shown in Fig. 6, and the respective ocean basins are

marked by boxes in Fig. 2. Specific regions for area

averages are chosen where an ENSO response based on

linear regression occurs. For each panel in Fig. 6, to

visually assess temporal delay in response in local SST to

the ENSO variability, time evolution of Niño 3.4 SST

index is also shown.

Over the Indian Ocean the interannual variability in

observed SSTs has a large contribution from the ENSO

variability as is evidenced by good phase relationship

between the observed and model simulated ensemble mean

SST anomaly. The sign of response is also in phase with

the sign of ENSO SST with warm (cold) ENSO events

leading to a warming (cooling) in the Indian Ocean SSTs.

The phase relationship, however, has a distinct delay with

SST anomalies in the Indian Ocean lagging behind the

ENSO variability in the tropical Pacific.

Over the western and North Pacific the phasing of

ENSO related SST response is opposite to that over the

Indian Ocean, and warm (cold) ENSO events result in cold

(warm) SST anomalies. Further, the interannual SST var-

iability is also not as tightly constrained by the ENSO as it

was over the Indian Ocean, and this is likely because of the

larger contribution from the atmospheric variability to the

SST variability in extratropical ocean basins. There is also

a delay in the response to the SST over the North Pacific

relative to ENSO variability, but less so over the western

(a) (b)

Fig. 7 Lead–lag correlation between Niño3.4 SST index and a observed SSTs, and b model simulated SSTs. Rows from bottom to top are for

Niño 3.4 SST index lagging (with months indicated by negative integers) or leading (with months indicated by positive integers)
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Pacific where variations seem almost in phase with the

Niño 3.4 SST index.

Over the Atlantic and Southern Oceans, the phasing of

the ENSO related SST variability becomes similar to that

over the Indian Ocean with warm (cold) ENSO events

leading to a warming (cooling) over the respective ocean

basins. Similar to the other ocean basins, a delay in

response in SST is also evident. Finally, for completeness,

the time series of observed SST and model simulated SST

for the tropical ocean basins are also shown in Fig. 6

(bottom right), and repeats what is shown in Fig. 5.

The delay in ENSO response in SST over the different

ocean basins is further analyzed based on lead/lag corre-

lations with the Niño 3.4 SST index, and results, both for

observations and for the model simulation are shown in

Fig. 7. Correlation for the model simulations are computed

for individual members and then averaged over all nine

runs.

Consistent with the delay in response seen in various

time series in Fig. 6, correlations in other ocean basins

generally maximize with ENSO leading SST variability in

other ocean basins. The spatial pattern of the response for

observations and for the model simulation is remarkably

similar with a horseshoe pattern of negative correlation

surrounding the positive correlation in the ENSO region of

the equatorial tropical Pacific. This is likely because the

atmospheric ENSO teleconnection pattern simulated by the

model that mediates responses in SST in remote ocean

basins to ENSO resembles well its observational counter-

parts (not shown). Positive correlations exist for Indian and

Atlantic Ocean basins, and reach their peak amplitude after

the peak phase of the ENSO.

(a) (b)

(c) (d)

(e) (f)

Fig. 8 Lead–lag correlation between the SSTs area averaged over

different ocean basins and Niño 3.4 SST index. a Indian Ocean;

b Atlantic; c Western Pacific; d Southern Oceans; e North Pacific, and

f tropical oceans. Y axis is for correlation and x axis is for lead/lag in

months. Niño 3.4 SST index lagging (leading) corresponds to

negative (positive) integers. Thick blue line is correlation for

observations; thin black lines are correlations for individual model

simulations; thick red line is for correlation with ensemble mean
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(a) (b)

(c) (d)

Fig. 9 (Top row) Maximum

positive correlation between

local SSTs and Niño 3.4 SST

index for a observations, and

b model simulations. (Bottom

row) Same as for the top row

but for minimum negative

correlation. Maximum and

minimum correlations are

obtained based on lead–lag

correlation at each grid point.

Regions where the absolute

value of minimum or maximum

correlation is \0.3 are not

shown

(a) (b)

(c) (d)

Fig. 10 (Top row) Number of

months at which the correlation

between local SSTs and Niño

3.4 SST index is maximum

positive for a observations, and

b model simulations. (Bottom

row) Number of months at

which the correlation between

local SSTs and Nino 3.4 SST

index is minimum negative for

a observations, and b model

simulations. Positive (negative)

values indicate Niño 3.4 SST

index leading (lagging) local

SST variability
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The phase lag in the SST response in various ocean

basins is quantified as lead/lag correlation between Niño

3.4 SST index and area averaged SST anomaly over the

different boxes (Fig. 8). Lead/lag correlations are shown

for observations (blue line), individual model simulations

(thin black lines), and ensemble mean (red line). For all

ocean basins, except in the western Pacific, the correlation

maximizes with Nino 3.4 SST index leading by

3–4 months, and as discussed earlier the correlation is

positive for area averages over the boxes in the Indian,

Atlantic, and southern oceans, as well as for the tropics as a

whole. The correlation is negative for the box averaged

SST over the North Pacific. Overall the timing and the

maximum amplitude of lead/lag correlation in the model

simulation match well with those of the observations.

Based on the lead/lag correlations done on a data set

with monthly resolution (Fig. 7), the maximum (or the

minimum) value of correlation at each grid point is shown

in Fig. 9. Similarly, the number of months of lead or lag

at which correlations maximize is plotted in Fig. 10.

Results are only shown over the regions where the

absolute value of minimum or maximum correlation

exceeds 0.3. The largest value of both maximum and

minimum correlation is *0.6, and for all these regions

Niño 3.4 SST variability leads the SST variability in other

ocean basins (Fig. 10). The general feature of ENSO SST

variability leading is evident by the dominance of regions

with red shading in Fig. 10 that correspond to ENSO SST

leading. The analysis also provides a convenient way to

summarize the time scale at which SSTs in other basins

follow the ENSO SST variations, and confirms the results

of Chen et al. (2008).

The physical reasons for the SST response in other

ocean basins to ENSO variability in equatorial basins have

been studied extensively. Given the slow time scale asso-

ciated with oceanic pathways, the fundamental underpin-

ning of the teleconnected response is via the atmospheric

bridge, although the actual physics over different oceanic

basins may differ. Various possibilities include a response

in surface wind leading to a dynamical oceanic adjustment

or via a thermodynamic adjustment due to changes in the

latent heat (Lau and Nath 1996; Klein et al. 1999); remote

response in precipitation (and associated cloudiness) via

changes in the ascending and descending branches of the

Hadley and Walker circulations leading to changes in the

shortwave flux at the ocean surface (Fu et al. 1996);

communication of ENSO SST anomalies via tropical

atmospheric wave adjustment that leads to responses in

tropical tropospheric temperature and surface specific

humidity (Chiang and Sobel 2002) and their subsequent

influence on the latent and sensible heat flux and SSTs

(Klein et al. 1999).

4 Summary and discussion

Based on a novel design of coupled model simulations

where SST variability in the equatorial tropical Pacific was

constrained to follow the observed ENSO variability, and

rest of the global oceans were free to evolve, ENSO

responses in SSTs over the other ocean basins was ana-

lyzed. The unique features of the present analysis are

summarized as follows.

• The analysis was not constrained by any a priori

assumption, for example, linearity or assumptions

fixing the lead/lag time scales between the telecon-

nected response.

• Because of the ensemble design of the model simula-

tions, the analysis included signal-to-noise separation

of SST variability. In the context of the SNR analysis,

signal was due to the common ENSO variability that

was included in all the simulations, and noise was the

component that is internal to the coupled system and

may be caused either by the internal variations in the

oceans or variations in atmospheric variability leading

to changes in the ocean.

• The analysis allowed us to discern the time scale of the

oceanic response of SSTs in other ocean basins.

In a manner similar to the analysis of atmospheric cli-

mate variability forced because of ENSO, the present

analysis followed the same approach but for SST variations

in remote ocean basins. The design of experiments, and

approach outlined herein, can also be utilized in attributing

and understanding SST variability in different ocean basins

to ENSO, and to quantify what fraction of variance in SST

variability could be related to ENSO. The approach can

also be utilized to remove the ENSO signal in surface

temperature variations over the globe, and bring forth the

contribution of other factors, such as changes in atmo-

spheric composition and volcanic aerosols.

References

Alexander MA, Scott JD (2002) The influence of ENSO on air–sea

interaction in the Atlantic. Geophys Res Lett 29. doi:

10.1029/2001GL014347
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