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Abstract Regression-based statistical downscaling model

(SDSM) is an appropriate method which broadly uses to

resolve the coarse spatial resolution of general circulation

models (GCMs). Nevertheless, the assessment of uncertainty

propagation linked with climatic variables is essential to any

climate change impact study. This study presents a procedure

to characterize uncertainty analysis of two GCM models link

with Long Ashton Research Station Weather Generator

(LARS-WG) and SDSM in one of the most vulnerable

international wetland, namely ‘‘Shadegan’’ in an arid region

of Southwest Iran. In the case of daily temperature, uncer-

tainty is estimated by comparing monthly mean and variance

of downscaled and observed daily data at a 95 % confidence

level. Uncertainties were then evaluated from comparing

monthly mean dry and wet spell lengths and their 95 % CI in

daily precipitation downscaling using 1987–2005 interval.

The uncertainty results indicated that the LARS-WG is the

most proficient model at reproducing various statistical

characteristics of observed data at a 95 % uncertainty bounds

while the SDSM model is the least capable in this respect.

The results indicated a sequences uncertainty analysis at

three different climate stations and produce signifi-

cantly different climate change responses at 95 % CI.

Finally the range of plausible climate change projections

suggested a need for the decision makers to augment their

long-term wetland management plans to reduce its vulner-

ability to climate change impacts.

Keywords Climate change � Regression-based statistical

downscaling model � Uncertainty analysis � Wetland

management � Arid region

1 Introduction

Climate appears to be generally changeable precipitation

and temperature during the last half of the tewntieth cen-

tury particularly in arid regions. Regions with arid climates

could be sensitive even to insignificant changes in climatic

characteristics (Samadi et al. 2013b). Climate change

impacts on inland aquatic ecosystems will be caused by the

direct effects of rising temperatures and rising CO2 con-

centrations to indirect effects caused by changes in the

regional or global precipitation and the melting of glaciers

and ice cover (see IPCC 2007; Bates et al. 2008). Conse-

quently future temperature changes in an arid region may

have more influences on wetlands hydrology by increasing

evapotranspiration rate even without significant changing

in precipitation amount.

The mathematical models used to simulate the present

climate and project future climate with forcing by green-

house gases and aerosols are generally referred to as global

climate models (GCMs). Because the spatial resolution of

GCMs remains quite coarse and it has no accurate for
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climate change impact studies, therefore the use of suitable

downscaling methods can make climate change study more

reliable. Reliable climatic data series corresponding to

future climate scenarios can be derived from GCM outputs

using the ‘‘downscaling techniques’’. A diverse range of

empirical/statistical downscaling techniques have been

developed over the past few years and each method gen-

erally lies in one of the three major categories, namely

regression (transfer function) methods, stochastic weather

generators and weather typing schemes. This analysis focus

on the two most widely used downscaling methods, as

called regression downscaling techniques and stochastic

weather generators. This two types of statistical (a stochastic

and a regression based) downscaling techniques generated

the possible future values of local meteorological variables

in the study area (Maroon-Jarrahi watershed near biggest

international wetland namely Shadegan in south Iran). The

first one implements a regression based method and is

referred to statistical down-scaling model or SDSM (see

Wilby and Wigley 2000; Beersma and Buishand 2003; Huth

2005; Prudhomme and Davies 2009; Zhang et al. 2011;

Samadi et al. 2011). While the second is a stochastic weather

generator called Long Ashton Research Station Weather

Generator or LARS-WG (Semenov et al. 1998). These tools

are used to downscale the GCM outputs for the Maroon-

Jarrahi watershed where Shadegan wetland is located.

This present research was studied in the biggest inter-

national wetland in the Middle East. Literature reviews

stressed that changes in global climate will have significant

impact on local and regional wetlands hydrological con-

ditions (see Aires et al. 2013; Keith and Tushar 2010;

among others), which will in turn affect ecological, social

and economical systems. According to the Intergovern-

mental Panel on Climate Change (IPCC) report in 2001,

confirmed in 1995, the global average temperature will rise

by about 3.6 �C, with a range of 1.5–4.5 �C, depending on

the model used (IPCC 2001).These results are still uncer-

tain, due to the natural temperature variability from place-

to place, day-to-day, and season-to-season, as well as the

modeling uncertainties. Nevertheless an increasing tem-

perature tendency from climatic projections was identified,

but there is less confidence in the future pattern of pre-

cipitation because of uncertainty associated to this abnor-

mal climatic variable.

Studies have been shown that it is important to address

the effects of climate change on wetlands and lakes (see

Aires et al. 2013; Keith and Tushar 2010) since they

exhibit extensive biodiversity habitat, function as filters for

pollutants, and are important for carbon sequestration and

emissions. The changing climate may also affect the water

balance and wetland hydrology in the future. Furthermore

transform of aquatic thermal regimes, density stratification

of water bodies, reduction of dissolved oxygen and

variation in biogeochemical processes could occur (Ham-

ilton 2010) in the future which can effect on wetland bio-

diversity and habitat Comparisons of worst case

developments regarding agricultural intensification and

greenhouse gas concentrations showed stronger impact of

climate change than of water abstractions on the wetland

hydrology and vegetation distribution (Milzow et al. 2010).

To a large extent, the analysis of uncertainty is based on

statistics and statistical thinking (Samadi et al. 2013b). In

theory, the problem of choosing an appropriate model is

satisfied by performing a ‘‘validation’’ study, in which the

goodness of-fit of the model is assessed by comparing the

results of the model with data (Samadi et al. 2013b). Readers

of downscaling uncertainty literature should be warned that

there are inconsistent and varying methods associated with

uncertainty analysis of downscaling methods. In fact SDSMs

have been profitably used in different studies and recent

literature on uncertainty associated of downscaling methods

is voluminous both in the context of observations and pro-

jections (see e.g., Semenov et al. 1998; Qian et al. 2004;

Prudhomme and Davies 2009; Zhang et al. 2011; Babaeian

and Kwon 2005; Lawless and Semenov 2005; Samadi et al.

2013a; among others). Abbaspour et al. (2009) downscaled

climatic variables in 37 climate stations in 2010–2040 and

2070–2100 periods. They found that in general, wet regions

of the country will receive more rainfall, while dry regions

will receive less rainfall in the future. Little study has spe-

cifically focused on assessing uncertainty in downscaling

results due to different SDSMs. Prudhomme and Davies

(2009) as well as Wilby and Harris (2006) and Chen et al.

(2013) studied uncertainties associated to several GCM

models, downscaling techniques and hydrological models

respectively. They demonstrated that GCMs exhibited the

most and downscaling methods showed the least uncertain-

ties during prediction interval. A study by Ho et al. (2012)

showed that two downscaling approaches, change factor and

bias correction approaches, gave substantial difference

results in spatial warming patterns over Europe. Zhang et al.

(2011) expressed that uncertainties in integrated downscal-

ing models were primarily derived from the choice of RCM,

and were then amplified through the incorporation of dif-

ferent weather generators models. Each combination of

RCM and weather generator constituted a plausible solution

of projecting future climate at regional scale, but none of

them was superior to others. Therefore, results of any impact

study based on only one RCM and one weather generator

should be interpreted with caution, and the multi-model

framework should be advised for generating a comprehen-

sive vision of the future climate. Samadi et al. (2013b)

studied the uncertainty analysis of linear and non-linear

downscaling methods using parametric and non-parametric

approaches over a semi-arid catchment in West Iran. Their

results revealed that linear downscaling techniques (SDSM)
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were the most proficient model at reproducing various sta-

tistical characteristics of observed data at a 95 % confidence

level while the non-linear method (artificial neural network)

showed to be the least capable in their analysis.

In this present research HadCM3 Hadley Centre Cou-

pled Model with the resolution of 50,000 km2 and ECHO-

G (ECHO-G (ECHAM4(ECMWF? Hamburg)/HOPE-G

(Hamburg Ocean Primitive Equation model))) global

climate model of approximately 350 km horizontal reso-

lution (Min et al. 2005) were used as GCMs models, since

the certainty of these GCMs demonstrated upon previous

studied on different climatic conditions in Iran (see

Babaeian and Kwon 2005; Abbaspour et al. 2009; Samadi

et al. 2013a, 2013b). Generally, GCMs are considered to be

the largest source of uncertainty for quantifying the

impacts of climate change. However, the uncertainty

related to the downscaling and bias correction methods

must be taken into account for better estimation of the

impact of climate change (Quintana Segui et al. 2010).

Moreover, although some studies attempted to investigate

the uncertainty related to downscaling techniques, but

better method may use multi-downscaling techniques

(more than one) for quantifying their uncertainty propa-

gation in any climate change impact study. Therefore the

goal of this research is to compare two statistical down-

scaling models namely SDSM, LARS-WG with two dif-

ferent GCM models by quantifying uncertainties associated

in their downscaled results using non-parametric tech-

niques and estimate the differences in two downscaling

methods. The uncertainty assessment includes both down-

scaling models results and the corresponding observations

incorporating to appropriate uncertainty techniques. The

most commonly used statistical methods for assessing

model uncertainty includes analyzing 95 % CI for the

estimates of means and variances of model results (Caruso

1999). Therefore this paper proposes an approach that

generates the downscaled climatic data (e.g., temperature

and precipitation data) which reflect both local weather

variability and regional trends projected by GCM models.

In fact this approach relies on a methodology that combines

predictions from individual GCMs into a 95 % CI for a

given climate station using different criteria.

2 Study area and data sources

Jarrahi basin is one of the major river in south Iran and

Shadegan Wetland lies at the downstream reach of this

basin at the head of Persian Gulf (30�000–31�000N and

48�200–49�200E). The area of Jarrahi basin is approxi-

mately 24,310 km2 and it is characterized by a Mediter-

ranean climate condition consisting of hot and dry

summers and mild and rainy winters. Jarrahi river network

consists of two large reservoirs (Maroon and Jarrehi) which

are the main freshwater supplier of Shadegan Wetland

especially during dry periods.

Shadegan is the largest international wetland of Iran and

the 34th largest of the 1,201 designated Ramsar sites in the

world. According to Pandam Consulting Engineers (PCE

2002) and UNEP (2001) reports, Shadegan gradually

became the largest wetland in the Middle East even as

upstream developments in much of the Mesopotamian

marshlands reduced its overall size. Figures 1 and 2 exhib-

ited the location of Shadegan wetland in Maroon-Jarrahi

basin. This wetland covers around 4,000 Km2 and created a

suitable habitat for a number of migrating waterfowls, which

fly to this area from north Europe, Canada and Siberia in

autumn. The region includes 110 plant species, 40 species of

mammals, three species of amphibians, eight species of

reptiles, 90 species of fish, and 174 species of birds. Thirteen

globally endangered species of birds and one endemic spe-

cies, namely the Iraqi balber (Turdoides altirostris), have

been recorded in this wetland (Pandam Consulting Engineer

2002; Kaffashi et al. 2012) as well.

Figure 3 showed the geology map of Maroon-Jarrahi

basin, sedimentation yield of both Maroon and Jarrahi

rivers are significantly considerable because of wide

erodible geological formations in this basin. Consequently

it caused increasing wetland sedimentation during recent

decades and this situation reveals a necessity of soil and

water conservation and practice in upper basin, livestock

grazing control, providing replacing fuelwood for local

people and increasing general awareness as well. The soil

of wetland is laminated with intermittent layers compose of

soft condensed sand and silt. In some place there are

concentration of lime and chalk in soil profile with poor

drainage and heavy textured surface layer. Totally there are

two distinct soil groups in Shadegan wetland; hydromor-

phic and salty soil (Pandam Consulting Engineer 2002) and

they effect on wetland water quality and biodiversity sig-

nificantly. Because of varying tidal effects, various vege-

tations have been characteristically formed in Shadegan

wetland that has created unique biodiversity environment.

Figure 4 shows land cover map of shadegan wetland. The

vegetation species of Halodule wrightii, Halophila ovalis

and Nitraria retusa, based on IUCN standards have known

as threatened species in class of critical species, further-

more the vegetation species of Oenanthe aquatic, Nymphae

alba and Alisma lanceolatum have recognized as threa-

tened species in class of vulnerable species (VU) (Pandam

Consulting Engineer 2002).

The different datasets which have been used in this work

are summarized in Table 1. In this study, observed data

collected, from three meteorological stations namely

Ramhormoz (R), Mashahr harbor (M), Behbahan (B), since

they have sufficient record lengths which are required by
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LARS-WG model. Acording to climate data analysis, up to

80 % of the mean annual rainfall occurs between December

to March and total annual rainfalls are 214, 327 and

335 mm in M, B and R stations respectively. The daily

rainfall and temperatures data for R and M stations are

available in 1987–2005 (20 years). The observed data was

obtained from Iranian Meteorological Organization (

www.irimet.net) on 17th January 2011 and associated

information regarding every station information exhibited

in Table 2. Daily precipitations (Prec) as well as daily

Fig. 1 Location of Maroon-

Jarrahi basinin Iran

Fig. 2 Location of Shadegan Wetland in Maroon-Jarrahi basin
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maximum temperature (Tmax) and minimum temperature

(Tmin) data represented as predictant for the downscaling

experiments and National Center for Environment Predic-

tion (NCEP) large scale variables indicated predictors.

Climatic variables corresponding to climate change sce-

nario for the study area are extracted from the ECHO-G

GCM output for downscaling LARS-WG model—A2

emission scenariowith 2/8 * 2/8 degree of resolution

(300 * 300 km at a grid point) and HadCM3 output applied

to downscale the climate change based on SDSM model

with A2 emission scenarios. The A2 emission scenario

selected due to its position at the higher end of the SRES

emissions scenarios which can facilitate the impacts and

adaptation studies as well. The story line of the A2 emission

is characterized by heterogeneity, also self-reliance and

local identities are emphasized (IPCC 2007). Population

increases continuously, economic development is region-

ally oriented, and economic and technological improve-

ments are relatively slow compared to the other story lines

(Nakicenovic et al. 2000). The pressure of human activity

on Shadegan wetland such as the construction of Maroon

dam consequently as well as petroleum activities reduces

water quality and changed natural and hydrological

conditions in this vulnerable habitat. On the other hands, the

entrance of waste water from sugar cone factories, upstream

irrigation development projects, the entrance of oil pollu-

tion, land use change and construction of gas power plant

sites have severity damaged to the environment of this

international wetland which caused severity damages the

wetland biodiversity. Accordingly it is expected decreasing

the entrance of migratory bird in Shadegan wetland in the

future with current pollution and climate change impact

overall (Pandam Consulting Engineer 2002; Kaffashi et al.

2011; Davodi et al. 2011; Kaffashi et al. 2012).

3 Methods and material

3.1 Stochastic weather generators

LARS-WG is one of well-known statistical downscaling

tools which widely uses for current and future climatic

variables projections and it is based on the series weather

generator. Readers of this model are referred to Semenov

et al. (1998) for more information regarding the model

setup and downscaling procedures.

Fig. 3 Geology map of Shadegan Wetland (Pandam Consulting Engineer 2002)
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3.2 Downscaling technique of LARS-WGS model

In this study, LARS-WG utilizes semi-empirical distribu-

tions for the lengths of wet and dry series, daily precipitation

and daily solar radiation respectively. The semi-empirical

distribution Emp = {a0, ai; hi, i = 1,.…,10} is a histogram

with ten intervals, (ai-1, ai), where ai-1\ai, and hi denotes

the number of events from the observed data in the i-th

interval ram with ten intervals. Daily observed precipitation

for each month analyzed in LARS-WG model using a first

order Markov Chain or spell-length approach, and observed

data applied to obtain statistical characteristics such as the

mean and distribution of the daily precipitation as well as the

number of dry/wet days for each month of every year. The

simulation of precipitation occurrence is modeled as alter-

nate wet and dry series, where a wet day is defined to be a day

with precipitation [0.0 mm. The length of each series is

chosen randomly from the wet or dry semi-empirical distri-

bution for the month in which the series start. In determining

the distributions, observed series are also allocated to the

month in which they start. For a wet day, the precipitation

value is generated from the semi-empirical precipitation

distribution for the particular month independent of the

length of the wet series or the amount of precipitation on

previous days (Racsko et al. 1991). LARS-WG utilizes

separated semi-empirical distributions for minimum and

maximum temperatures and the solar radiation respectively.

The temperature is assumed to have a normal distribution,

with the mean and SD varying daily according to a finite

Fourier series. For the minimum and maximum tempera-

tures, time auto-correlations are assumed to be constant

throughout the year for a particular site. For solar radiation,

semi-empirical distributions with equal interval sizes are

used (Semenov et al. 1998) in this model.

Fig. 4 Land cover of Shadegan wetland (Pandam Consulting Engineer 2002)

Table 1 A summary of associated dataset in this study

No. Dataset Period

1 Observed (precipitation, minimum and

maximum temperature)

1987–2005(B.M

and R)

[3 station: Behbahan(B),

BandarMahshahr(B.M),

Ramhormoz(R) (IRMO dataset)]

1993–2005(B)

2 NCEP predictors 1961–2001

3 HadCM3 predictors 1961–2099

4 ECHO-G 1961–2099
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Climate data corresponding to future scenarios were

provided using the daily GCM data for both current and

future time periods. To incorporate the change in climate

condition, one needs to calculate the relative change in

monthly mean precipitation and monthly mean wet and dry

series lengths from the GCM output of the baseline and

future time-period accurately. Similarly, relative change in

mean temperature and standard deviation for each month is

calculated from GCM outputs. All these values are calcu-

lated from the parameter files generated during the site

analysis of the corresponding climate variables (GCM

outputs) for the base and future time periods. This infor-

mation is then applied to construct the climate change

scenario file which LARS-WG uses to determine how the

weather generator parameter values (obtained from the

observed precipitation and temperature data) should be

perturbed to generate regional climate scenario. That

means, the relative changes observed in the GCM outputs

are the forcing to LARS-WG based on which it generates

the daily weather data representing future climate at a

given site.

3.3 Statistical downscaling method

Statistical downscaling method calculates statistical rela-

tionships, based on multiple linear regression techniques,

between large-scale and local climate variables. The

downscaling models are calibrated using National Centers

for Environmental Prediction (NCEP) reanalysis as large-

scale predictors (Semenov 2007). Observed predictors

variables extracted from NCEP data centre. This data is

used for extracting the relationships between large scale

and regional variables. Table 3 shows the list of predictors

in NCEP data centre. Since, all NCEP variables can have

different relationships with predictant, therefore the best

variable should represent the following characteristics, first

it supposed to fit the trend of downscaled data (precipita-

tion and temperature) and second, GCM model should be

able to simulate this variable in observed period accurately

(Samadi et al. 2013a). Predictors are also provided for a

number of GCMs, including HadCM3. SDSM is a two-step

conditional resampling methodology. This multi-site

method first downscales area-averaged precipitation using

a combination of regression-based methods and a

stochastic weather generator approach. Secondly, precipi-

tation and temperature at individual sites are resampled

from their distributions dependent on the downscaled area-

average precipitation. Full technical details of the SDSM

and an evaluation of the conditional resampling method are

provided by Wilby et al. (2002).

Statistical relationships of SDSM developed using

observed weather data and, assuming that these relation-

ships remain valid in the future and they can be used to

obtain downscaled local information for some future time

periods by driving the relationships with GCM-derived

predictors. The parameters of the regression equation

are estimated using the efficient dual simplex algorithm

(Karamouz et al. 2007). The model is structured as monthly

model for both daily precipitation and temperature down-

scaling processes, in which case, twelve regression equa-

tions are derived for 12 months using different regression

parameters. In this research the model was calculated for

daily precipitation and daily temperatures using 30 years

(1987–2005) as base interval. Since the distribution of the

daily precipitation is highly skewed, in this current research

a fourth root transformation was applied to the original

precipitation before fitting the transfer function (Wilby and

Dawson 2007). Mean and variance of downscaled daily

precipitation and daily temperature are adjusted by bias

correction and variance inflation factor to force model

replicate the observed data accurately. Bias correction

compensates for any tendency to over- or under-estimate

the mean of downscaled variables. Finally twenty ensem-

bles of downscaled daily precipitation and daily tempera-

ture have been generated to date; the downscaling

algorithm of SDSM has been applied to a host of meteo-

rological stations.

3.4 Model evaluation techniques

In this study the reliability of downscaled climatic data

assessed using five different criteria in each station. These

criteria are mean absolutely error (MAE), the coefficient of

determination (R2), root mean square error (RMSE), Nash–

Sutcliffe coefficient (NSE) and percent bias (PBIAS). Each

of the criteria is briefly described here:

MAE ¼ 1=n
Xn

i¼1
Si � Oið Þ ð1Þ

Table 2 Characteristics of meteorological stations

Station Current period Geographical characteristic Station type

Elevation Latitude Longitude

Behbahan 1991–2005 313/0 36.300N 14.500E SYNOPTIC

Ramhormoz 1986–2005 5/105 16.310N 36.490E SYNOPTIC

Mahshahr 1986–2005 6/2 30.330N 9.490E SYNOPTIC
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R2 ¼
1
n

Pn

m¼1

Si � �Sð Þ Oi � �Oð Þ

rS � rO

2
664

3
775

2

ð2Þ

RMSE ¼ 1

N

XN

i¼1
Si � Oið Þ2

� �1=2

ð3Þ

NSE ¼ 1�
PN

t¼1 Oi � Sið Þ2
PN

t¼1 Oi � �Oð Þ2
ð4Þ

PBIAS ¼
Pn

i¼1 Oi � Sið Þ � 100Pn
i¼1 ðOiÞ

� �
ð5Þ

where N represents the number of observations in the time

series, Si is the simulated values, Oi is the corresponding

observed values, r is the variance and �O and S are the

observation and simulation averages respectively. The

coefficient of determination measures the tendency of the

simulated and observed values to vary together linearly and

ranges from 0 to 1, with higher values indicating less error

variance, and typically values greater than 0.5 are consid-

ered acceptable (Van Liew and Garbrecht 2003). NSE

ranges between -? and 1.0, with NSE = 1 being the

optimal value. Values between 0.0 and 1.0 are generally

viewed as acceptable levels of performance, whereas values

\0.0 indicates that the mean observed value is a better

predictor than the simulated value and reflects a poor

model fit as well. The optimal value of PBIAS is 0.0, with

low-magnitude values indicating accurate model simula-

tion. Positive values indicate model underestimation bias,

and negative values indicate model overestimation bias

(Gupta et al. 1999). RMSE varies from the optimal value of

0 to a large positive value, which zero RMSE indicates

perfect model simulation. The least RMSE and MAE show

the strange relationship, so the lower value indicates the

better simulation performance. Results of SDSM and

LARS-WG-WG validation presented in Table 4 and 5 for

monthly temperature and precipitation of three climate

stations respectively. The results of statistical parameters

analyses indicated a good prediction for temperature rather

than precipitation because the relatively low Rsq for daily

rainfall in an arid region can be acceptable in global

standards overly. Overall the sequence of both downscaling

projections and their outputs can be found in Etemadi et al.

2012, so we do not discuss on downscaling projections

here, instead this paper is trying to build a proper con-

nection between downscaling outputs and uncertainty

analysis, in which the statistical methods can be a basis for

uncertainty propagation of traditional downscaling models

in an arid climate condition.

3.5 Uncertainty assessment in downscaled results

Recently much attention has been moved to uncertainty

issues in downscaling models due to their great effects on

climate prediction and further on decision making. In view

of this, it is suggested to evaluate the results when the data

are downscaled from more than one statistical model

(Samadi et al. 2013b). The uncertainty analysis here

includes daily precipitation as well as minimum and

maximum temperatures at three different climate stations

using appropriate downscaling techniques. In case of daily

temperature data, because of their nearly normal distribu-

tion, the uncertainty has been assessed with comparison of

means of downscaled temperature data with observed ones.

In that comparison, deviations (referred to as model errors)

between downscaled and observed monthly means and

variances of daily Tmax and Tmin have been evaluated at

95 % confidence level moreover, 95 % CI in the estimates

of means of downscaled temperature in each month have

been compared with observed CIs to assess whether the

downscaling models can reproduce uncertainty as found in

Table 3 NCEP and HadCM3

predictors which used in SDSM

downscaling method

Predictor variable Abbreviation Predictor variable Abbreviation

Mean sea level pressure ncepmslp 500 hPa geopotential ncepp500

500 hPa wind speed ncepp5_f 850 hPa geopotential ncepp850

500 hPa U-component ncepp5_u 1,000 hPa wind speed ncepp_f

500 hPa V-component ncepp5_v 1,000 hPa U-component ncepp_u

500 hPa vorticity ncepp5_z 1,000 hPa V-component ncepp_v

500 hPa wind direction ncepp5th 1,000 hPa vorticity ncepp_z

500 hPa divergence ncepp5zh 1,000 hPa wind direction ncepp_th

850 hPa wind speed ncepp8_f 1,000 hPa divergence ncepp_zh

850 hPa U-component ncepp8_u 500 hPa relative humidity ncepr500

850 hPa V-component ncepp8_v 850 hPa relative Humidity ncepr850

850 hPa vorticity ncepp8_z 1,000 hPa relative humidity nceprhum

850 hPa wind direction ncepp8th 1,000 hPa specific humidity ncepshum

850 hPa divergence ncepp8zh Temperature at 2 m nceptemp
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the observed data or not. In uncertainty assessment of

downscaled daily precipitation data, comparison of means

values should not be enough because of non-normality

distribution of daily precipitation data and also because of

mixed distribution of wet and dry days in a daily precipi-

tation series. Therefore, in assessment of uncertainty in

downscaled daily precipitation, in addition to comparing

means, monthly mean dry-spell and wet-spell statistics and

their CIs, distribution of monthly mean of daily precipita-

tion, and distributions of monthly wet and dry days have

been compared. In this study, the most commonly used

non-parametric technique, bootstrapping has been used for

finding the CIs of means and variances. The idea of boot-

strapping is to resample a large number of new data sets

with replacement from the original data set. In this study,

using the bootstrap CIs for the estimated means and vari-

ances have been calculated for daily precipitation, daily

maximum and minimum temperatures for each month at

three climate stations. Then 1000 new samples, each of the

same size as the observed data, are drawn with replacement

from the observed data. The 1000 resamples are drawn

according to Khan et al. 2006. Figure 5 exhibited sequence

steps of this research study.

4 Result

4.1 Validation of downscaling methods

Monthly validation results of each downscaling method

based on five different criteria were presented in Tables 4

and 5. Nash–Sutcliffe coefficient for temperatures in both

downscaling methods indicated very fairly relationship

between observed and downscaled datasets at all three

stations. Overall, both of downscaling methods presented

closely predictions to measured data.

The results of rainfall statistical parameters analysis

indicated that LARS-WG output is more reliable with

Nash–Sutcliffe coefficient equals to 0.909 (NSE = 0.909)

while SDSM downscaled precipitation data do not have a

good match to observed data based on five criteria.

However it can be conclude that the relatively low RSQ

value for daily precipitation in an arid region is satisfy

for global standards. Besides SDSM has a large com-

ponent of uncertainty, so we would not expect the model

to replicate the exact daily sequences found in observa-

tions exactly. Also the level of predictability of site-level

precipitation from regional-scale predictors is invariably

low.

4.2 Uncertainty analysis of mean minimum

and maximum temperatures and precipitation

4.2.1 Minimum temperature

The result of monthly Tmin based on bootstrap techniques

exhibited in Figs. 6, 7 and 8 for 1987–2000 and 1993–2000

periods respectively. Figure 6 exhibited the uncertainty

associated to LARS-WG method in daily Tmin down-

scaling approach. According to this figure model down-

scaled climate data quite well in all months except

September in Behbahan station and it indicated that model

Table 4 Modelled monthly temperature and precipitation of LARS-WG in validation period

Statistical factor Behbahan Bandar Mahshahr Ramhormoz

Tmin Tmax Prcp Tmin Tmax Prec Tmin Tmax Prcp

PBIAS 0.569 0.371 7.373 0.716 0.308 1.492 0.185 0.380 2.795

MAE -0.097 -0.119 -0.068 -0.132 -0.100 -0.009 -0.036 -0.124 -0.026

RMSE 0.368 0.465 0.309 0.412 0.470 0.189 0.710 0.844 0.148

NSE 0.998 0.998 0.915 0.997 0.998 0.909 0.992 0.993 0.981

RSQ 0.998 0.998 0.920 0.997 0.998 0.914 0.992 0.995 0.986

Table 5 SDSM validation results for monthly temperature and precipitation dataset

Statistical factor Behbahan Bandar Mahshahr Ramhormoz

Tmin Tmax Prec Tmin Tmax Prec Tmin Tmax Prec

PBIAS -1.037 2.210 22.885 -2.225 1.555 -27.958 -0.207 1.783 25.743

MAE 0.177 -0.711 -0.213 0.411 -0.505 0.163 0.040 -0.583 0.115

RMSE 1.366 1.320 0.597 1.645 1.433 0.319 1.530 1.492 0.825

NSE 0.967 0.983 0.682 0.947 0.980 0.741 0.962 0.979 0.867

RSQ 0.972 0.991 0.799 0.956 0.983 0.844 0.967 0.984 0.879
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overestimated climatic variables in a given period. Also

SDSM downscaled Tmin as closely as to observed data in

summer and beginning of autumn seasons (June, July,

August and September) but over-predicted in the end of

autumn and winter seasons, respectively. Furthermore

SDSM model under-predicted Tmin in spring season (April

and May) in all three stations. LARS-WG downscalled

Tmin pretty close to observed data and these results indi-

cated that the LARS-WG downscaled data and observed

data are similar at 95 % significance level in most of the

months, therefore LARS-WG model is more reliable than

SDSM to reproduce observed Tmin in Shadegan wetland as

well. It is worth to mention that an important reason for

precipitation reduction in downscaled outputs is related to

passage of Mediterranean anticyclone crosses during cold

season in this area which affects regional climate condi-

tions (see Samadi et al. 2013a). Also, the important winds

of the area consist of the Western winds that transfer the

relative humidity of the Atlantic Ocean and Mediterranean

to the territory of this area in the winter causing some

rainfall events (Samadi et al. 2013a). Furthermore the

Northern wind that blows in the frontier zone makes the

climate very hot and intolerable in summers and also

causing damages which all these natural events are disre-

garded in GCM projections (see Samadi et al. 2013a).

4.2.2 Maximum temperature

The uncertainty of model and observed Tmax at 95 % CI

presented in Figs. 9, 10 and 11. In the case of monthly

maximum temperature, the graphical comparison of

monthly observed and model datasets indicated that the

SDSM model variability is closely enough with the

observed variability except in May at Behbahan station

where model under-predicted maximum temperature, while

the LARS-WG model produced Tmax data as closely as

the observed one in all months except in February at

Ramhormoz station as well. Overall this result indicated a

high capability of LARS-WG model to estimate Tmax

values in the future.

4.2.3 Uncertainty of maximum and minimum temperatures

in the 2,025 period

Table 6 represented the outputs of monthly mean Tmin

using SDSM and LARG-WG models for 2010–2039

ECHO-G Observed data (local data) 

Model calibration 

Downscale daily climatic data (1961-1990) 

Generation of Synthetic Weather 
Data – GENERATOR 

(Long Ashton Research Station Weather Generator)

GCMs 
Outputs

(Sraristical downscaling model)

HadCM3 

NCEP 

Weather 
GENERATOR 

Scenario 
GENERATOR 

Model calibration 

Model validation  

Downscale future daily climatic data (2010-2039)

Uncertainty Analysis 

Fig. 5 Schematic illustrating of uncertainty analysis of statistical downscaling approach in this research
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interval based on bootstrap analysis. According to this

result, SDSM model predicted distinct warming trend in

Tmin in cold months (January, February, March, Novem-

ber and December) at all tree stations. In fact it predicted

maximum increasing of ?7.3 �C at B station in November

while predicted maximum reduction of -5.48 �C in M

station in August respectively. In the other hands, SDSM

estimated that Tmin will increase up to ?3.3, ?1.4 and

?3.1 �C in winter and ?3.9, ?1.6 and ?4.2 �C in autumn

at M, R and B stations, respectively. Furthermore Tmin

will decrease up to -1.8, -1.7 and -2.4 �C in spring at M,

R and B stations, and in summer Tmin will decrease up to

-0.16 and -1.5 �C in M and R stations respectively.

Overall SDSM predicted increasing range of Tmin between

?1.4 and ?3.9 �C for cold seasons and reducing of Tmin

between (-0.16) and (-2.4) �C for warm seasons at all

climate stations which revealed that future winter seasons

precipitate less rainfall and warm periods are going to be

cooler and it potentially reduces the evapotranspiration rate

in the future period. LARS-WG Model similar to SDSM

model predicted increasing and decreasing trends for Tmin

in cold and warm months respectively, but range of

Fig. 6 Monthly bootstrap means of observed and modeled Tmin at 95 % CI in SDSM (a) and LARS-WGS (b) model in Mahshahr station

respectively

Fig. 7 Monthly bootstrap means of observed and modeled Tmin at 95 % CI in SDSM (a) and LARS-WGS (b) model in Ramhormoz station

respectively

Fig. 8 Monthly bootstrap means of observed and modeled Tmin at 95 % CI in SDSM (a) and LARS-WGS (b) model in Behbahan station

respectively
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increasing and decreasing values generated by LARS-WG

was less than SDSM model additionally. Maximum

increasing (?2.9 �C) has been observed at B station in

February while maximum reduction of -1.21 was hap-

pened in R station in October. Downscaling result of Tmin

using LARS-WG method indicated that future Tmin will

raise ?0.56, ?0.45 and ?1.4 �C in the winter at M, R and

B stations respectively. Moreover it increases up to ?0.24

and ?0.12 �C in autumn at R and B stations, also future

spring and summer Tmin will reduce up to -0.17, -0.37,

-0.3, -0.3, -0.31 and -0.25 �C in all stations respec-

tively. Generated Tmin with LARS-WG model increased

between ?0.12 and ?1.4 �C in cold season and decreased

between -0.17 and -0.37 �C in warm season totally. Both

downscaling methods suggested increasing in Tmin for

cold season and decreasing for warm season in 2010–2039

Fig. 9 Monthly bootstrap means of observed and modeled Tmax at 95 % CI in SDSM (a) and LARS-WGS (b) model in Mahshahr station

respectively

Fig. 10 Monthly bootstrap means of observed and modeled Tmax at 95 % CI in SDSM (a) and LARS-WGS (b) model in Ramhormoz station

respectively

Fig. 11 Monthly bootstrap means of observed and modeled Tmax at 95 % CI in SDSM (a) and LARS-WGS (b) model in Behbahan station

respectively
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periods respectively. Totally the magnitude of the Tmin

changes varies in each model, ranging between ?0.12 and

?3.9 �C and between -0.16 and -2.4� C in cold and

warm seasons respectively.

Comparison between monthly bootstrap means daily

Tmax of observed and future downscaled scenario using

SDSM and LARS-WG is presented in Table 7. SDSM

model predicted distinct warming trend in Tmax in Janu-

ary, February, March, November and December and

cooling trend in the rest of year (April to October at all tree

stations). In fact Tmax will rise up to ?1.5, ?4.2 and

?1.9 �C in winter, and ?2.0, ?1.2 and ?1.2 �C in autumn

at M, R and B stations respectively. Beside Tmax will

decrease up to -1.6, -1.1 and -5.3 �C in spring and Tmax

will reduce up to -5.4, -7.3 and -1.9 �C in summer at all

locations respectively. Increasing and decreasing Tmax in

cold season and warm season varies ranging between ?1.2

to ?4.2 �C and -1.1 to -7.3 �C overall. Future climate

projection using LARS-WG model indicated that Tmax

will reduce in April, May, Jun, July, August, September

and October at all three stations and the rest of year will

raise in the future period. Maximum increasing is up to

?1.5 �C in January at B station and maximum decreasing

is up to -5.7 �C in September at R station additionally.

Future spring and summer Tmax reduce up to -0.42,

-0.67 and -0.45 and up to -0.46, -5.53, -0.20 �C at

three stations respectively. Also Tmax will rise up to

?0.73, ?0.67 and ?0.70 �C in winter at all stations, it also

increases up to ?0.01 and ?0.18 �C in autumn at M and R

stations. A comparison of two downscaling methods

demonstrated that in both models Tmax rises in cold sea-

sons and reduces in warm seasons in 2010–2039 period and

overall the major changes varies in each month/model/

station respectively, furthermore Tmin ranges between

?0.01 and ?4.2 �C for cold seasons and between -1.1 and

-7.3� C for warm season in the future period.

4.2.4 Precipitation

Review of literature stressed on abnormal distribution of

precipitation especially in low precipitation region, like

arid and semi-arid areas (see Samadi et al. 2013b). In fact,

precipitation is mostly distributed uneven and known as

non-normal variable particularly in an arid climate with

less and spare rainfall events. Beside precipitation is rela-

ted to some local factors like topography which was dis-

regarded in GCM simulation, so it may enter uncertainty

during prediction processes. Also this reveals the inability

of the GCM model to resolve sub-grid scale atmospheric

processes (Samadi et al. 2013a) such as uncertainty asso-

ciated of GCMs models in the boundaries as well as

uncertainty propagation of the area between GCM and at-

mosphereic ocean general circulation model (AOGCM)

like this study area where is close to Persian Gulf, in such a

location uncertainty associated to GCM models and pre-

diction can raise as a sequence. The bootstrap means result

of observed and modeled precipitation data sets at 95 % CI

presented in Figs. 12, 13 and 14. Monthly bootstrap means

of observed and LARS-WG precipitation datasets were

precisely at CI 95 % baseline period, except in March for R

station, where model underestimated precipitation values.

Model also over predicted and under predicted precipita-

tion data for January and February in Behbahan station

respectively.

Overall uncertainty analysis of observed and down-

scaled daily precipitation indicated that LARS-WG model

is most profit to predict precipitation data in this arid basin.

In fact uncertainty analysis of SDSM presented that

Table 6 Monthly bootstrap means daily Tmin of observed and future (2010–2039) scenario using SDSM and LARS models

Station Mahshahr Ramhormoz Behbahan

Month OBS SDSM LARS OBS SDSM LARS OBS SDSM LARS

January 8.12 13.07 8.738 8.369 10.25 8.473 7.034 12.42 7.871

February 9.413 10.10 10.38 9.451 10.03 9.481 7.565 11.92 10.49

March 13.32 17.73 13.42 12.93 14.80 14.17 10.68 10.41 11.12

April 18.95 15.58 18.28 18.43 14.84 18.32 16.36 15.53 15.82

May 23.45 19.88 23.04 24.28 22.00 23.26 21.77 17.24 21.38

June 25.83 27.32 26.38 27.74 28.30 27.76 25.42 23.42 25.43

July 28.41 32.16 27.6 30.24 29.86 29.71 28.20 27.84 27.52

August 27.84 22.36 27.01 29.77 26.12 29.12 27.32 31.17 26.69

September 23.48 24.70 24.2 25.95 25.24 26.18 22.52 26.05 23.07

October 19.62 22.25 19.13 21.47 22.21 20.26 17.71 22.00 17.63

November 13.38 17.97 13.98 14.62 16.50 14.86 12.07 19.37 12.03

December 9.644 14.18 9.365 10.35 12.53 12.06 8.538 9.61 9.027
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uncertainty and error associated to daily precipitation is

high in the most of a year (January, February, April, May,

Jun, November and December) with high probable rate of

precipitation amount. In the other hands, uncertainty

associated with downscaled climatic variables is depicted

as a uniform distribution in LARS-WG model, while

SDSM outputs are not quantified at the 95 % CI compar-

atively. Consequently it can be concluded that, the LARS-

WG method is the most proficient model at reproducing

various statistical characteristics of observed data at a 95 %

confidence level while the SDSM model is the least

capable in this respect.

Table 7 Monthly bootstrap means daily Tmax of observed and future (2010–2039) scenario using SDSM and LARS models

Station Mahshahr Ramhormoz Behbahan

Month OBS SDSM LARS OBS SDSM LARS OBS SDSM LARS

January 17.11 20.31 18.47 17.09 21.17 17.62 17.27 20.99 18.82

February 20.12 19.12 20.89 19.84 23.84 19.73 19.77 21.47 20.39

March 24.83 27.18 24.90 24.4 29.16 26 23.9 24.47 23.85

April 32.05 32.03 31.55 31.89 32.01 31.45 31.56 27.79 31.36

May 39.22 36.53 38.71 39.44 37.69 38.27 38.48 30.92 38.01

June 43.78 41.40 43.51 44.31 42.36 43.91 43.43 39.07 42.75

July 45.19 40.31 44.58 45.98 41.15 45.73 44.77 39.26 44.75

August 44.6 40.80 44.11 45.61 38.31 45.03 44.62 43.62 44.02

September 41.33 33.53 41.03 41.96 31.93 26.18 40.99 41.62 41

October 35.35 33.77 35.35 35.72 33.48 33.99 35.17 35.76 34.82

November 26.49 29.27 27.03 26.56 28.73 26.71 26 29.92 26.14

December 19.65 24.53 19.15 19.78 23.69 21.92 19.84 19.15 19.94

Fig. 13 Monthly bootstrap means of observed and downscaled precipitation data at 95 % CI using SDSM (a) and LARS-WGS (b) models in

Ramhormoz station

Fig. 12 Monthly bootstrap means of observed and downscaled precipitation data at 95 % CI using SDSM (a) and LARS-WGS (b) models in

Behbahan station
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4.2.5 Monthly dry and wet days

A wet day is defined as a day with rainfall more than

0.3 mm (Khan et al. 2006), so in this research we consid-

ered a day with more than 0.3 mm rainfall amount as a wet

day. Figures 15, 16 and 17 exhibited the monthly means

dry and wet spells of both models and observed data based

on bootstrap analysis at three stations respectively. It was

found that the LARS-WG model estimated dry-spell days

closer to the observed data except in September and

November in Mahshahr station. Besides LARS-WG model

under predicted dry spells in September at Behbahan sta-

tion. Also the LARS-WG model overestimated in April at

both Behbahan and Ramhormoz stations and over pre-

dicted in May at Ramhormoz station as well. Overall, the

LARS-WG model showed that it is capable to predict wet-

spell days closely to the observed data for the most of a

year at three stations. Nevertheless downscaled dry and wet

spell by SDSM model overestimated/underestimated in the

most of a year at all stations totally. Estimation of dry

spells is a significant indicator in an arid region especially

in wetland hydrology studies and it indicated how many

days this area will experience dry stress in the future.

4.3 Uncertainty analysis of variance for daily

minimum and maximum temperatures and daily

precipitation

Uncertainty can also be estimate by evaluating CI for

variance. In this study the non-parametric bootstrap tech-

nique has been used in estimating 95 % CI for modeled and

observed variances. Minimum and maximum temperatures

and precipitation presented in Figs. 18, 19, 20, 21, 22, 23,

24, 25 and 26 for all stations. Larger CIs bands demon-

strated higher uncertainty and the smaller bands showed

less uncertainty as well. In the case of Tmin, comparison of

monthly observed and modeled variances indicates that the

LARS-WG model variability is close to the observed data

in 8 months in all stations. But the variance represented by

SDSM model, either overestimated or underestimated in

January, February, April, June, November and December at

three locations respectively. In addition these results indi-

cated a high capability of LARS-WG model to predict the

exact sequence of observed data in minimum or Tmax but

not at a same level for precipitation data furthermore.

Figures 21, 22 and 23 exhibited uncertainty associated to

Tmax variance at 95 % CI in LARS-WG model. It also

Fig. 14 Monthly bootstrap means of observed and downscaled precipitation data at 95 % CI using SDSM (a) and LARS-WGS (b) models in

Mahshahr station

Fig. 15 Comparison of monthly bootstrap means of (a) Dry spell and (b) Wet spell for precipitation downscaled data using SDSM, LARS and

observe datasets in Mahshahr station
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revealed that the least uncertainty for most of a year in

Behbahan, Mahshahr and Ramhormoz stations while the

SDSM model represented the least uncertainty for overall

6, 4, 2 months of a year in Behbahan, Mahshahr and

Ramhormoz stations respectively. This result indicated that

uncertainty propagation to LARS-WG method is signifi-

cant at 95 % prediction bounds in most of a year.

Figures 24, 25 and 26 exhibited the uncertainty bounds for

precipitation variance at 95 % CI, LARS-WG model also

presented the least uncertainty at Ramhormoz and Mah-

shahr stations while exhibited more uncertainty propaga-

tion in 10 months at Behbahan station overall. Beside the

SDSM model represented the least uncertainty for

7 months (April, June, July, August, September, October

and November), 4 months (May, July, August and

December) and 3 months (July, August, September) of a

Fig. 16 Comparison of monthly bootstrap means of (a) Dry spell and (b) wet spell for precipitation downscaled data using SDSM, LARS and

observe datasets in Ramhormoz station

Fig. 17 Comparison of monthly bootstrap means of (a) Dry spell and (b) wet spell for precipitation downscaled data using SDSM, LARS and

observe datasets in Behbahan station

Fig. 18 Monthly bootstrap variance of observed and downscaled Tmin data at 95 % CI using SDSM (a) and LARS-WGS (b) model in

Behbahan station
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year in Behbahan, Ramhormoz and Mahshahr stations

respectively. Finally by comparing variance of monthly

precipitation for each month, the LARS-WG errors were

significant for most of a year at a 95 % confidence level,

but the SDSM model errors found to be insignificant for

most of the months in a year, they were significant in some

months and insignificant in the rest of a year as well.

5 Summery and discussion

Wetlands are one of the most important ecosystems with

the highest ecological value in the world. Nowadays, there

is growing concern about the importance of wetland eco-

systems and the broad diversity of goods and services

provided by them for instance biodiversity and freshwater

Fig. 19 Monthly bootstrap variance of observed and downscaled Tmin data at 95 % CI using SDSM (a) and LARS-WGS (b) model in

Ramhormoz station

Fig. 20 Monthly bootstrap variance of observed and downscaled Tmin data at 95 % CI using SDSM (a) and LARS-WGS (b) model in

Mahshahr station

Fig. 21 Monthly bootstrap variance of observed and downscaled Tmax data at 95 % CI using SDSM (a) and LARS-WGS (b) model in

Behbahan station
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in human welfare (Ramsar convention bureau 2010). In this

research, HadCM3 model data used to downscale climatic

variables by a regression based method called SDSM

model and ECHO-G model data applied in a stochastic

weather generator method called LARS-WG model to

investigate the uncertainty and errors associated with

downscaled data at 95 % CI in an international wetland.

The downscaling methods initially validated based on five

different criteria recommended for goodness of fit evalua-

tion and analysis worldwide. Overall the results of vali-

dation models presented that, predicted climatic variables

by both downscaling methods are very close to the

observed data except in downscaled precipitation by SDSM

model which the downscaling outputs wasn’t satisfied at

95 % CI level. In the other hands, the results of this

research indicated that the uncertainty and error based on

Fig. 22 Monthly bootstrap variance of observed and downscaled Tmax data at 95 % CI using SDSM (a) and LARS-WGS (b) model in

Ramhormoz station

Fig. 23 Monthly bootstrap variance of observed and downscaled Tmax data at 95 % CI using SDSM (a) and LARS-WGS (b) model in

Mahshahr station

Fig. 24 Monthly bootstrap variance of observed and downscaled precipitation data at 95 % CI using SDSM (a) and LARS-WGS (b) model in

Behbahan station
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LARS-WG downscaling method is significant at 95 % CI

in all three stations as well.

As a result, LARS-WG model showed a superlative

reliability than SDSM model in downscaling of Tmin and

Tmax in an aquatic ecosystem. Downscaled Tmin using

SDSM overestimated in cold months (January, February,

November and December) while LARS-WG uncertainty

and error were significant at 95 % CI in Tmin downscaling

results. Results indicated that LARS-WG has high capa-

bility to estimate Tmax in the future and the downscaled

data can be use with reliability for future ecohydrological

studies of this arid region. SDSM uncertainty and errors

associated with downscaled climatic data over an aquatic

ecosystem is high in compare with outputs from LARS-

WG model. In the other hands, the SDSM is capable to

reproduce statistical characteristics of the observed data in

its downscaled minimum and Tmax values but not at the

same level as the LARS-WG model.

In this study, LARS-WG was the sophistic method to

estimate monthly bootstrap means of precipitation and wet-

dry spell lengths for base period as closely as to observed

data. Furthermore SDSM approach showed high uncer-

tainty propagation in this research. This study suggested

that future climate change impact studies follows by the

results of LARS-WG method than multi-linear regression

method in this arid area. It is worth to note that GCM

model is unable to predict climate data as same as observed

sequence and replicate the exact daily sequences found in

observations particularly in an arid area where data are too

sparse and climate condition is affected by high tempera-

ture values. Moreover large scale data for regions between

GCM and AOGCM contribute more uncertainty and error

propagations in their prediction processes. Therefore this

complexity needs to be addressed in the future studies and

more accurate GCMs or regional circulation model should

apply for this type of regions.

According to the output of this research, climate change is

going to affect on Iranian international wetland according to

LARS-WG model analysis and this impact are predicted to

become more noticeable in coming decade significantly.

Indeed, with drier future conditions, the wetland will shrink

and loss without proper conservation practice. In order to

conserve the biodiversity value of these wetlands, special

efforts should be undertaken to protect the most affected

areas and ecoregions of the wetlands. This study presented a

basis for uncertainty analysis of different downscaling

techniques in an arid area with emphasis on wetland climate

change study. However the focus of most literatures are on

the uncertainty of GCMs models and other sources of

uncertainty, such as the choice of downscaling method on

Fig. 25 Monthly bootstrap variance of observed and downscaled precipitation data at 95 % CI using SDSM (a) and LARS-WGS (b) model in

Ramhormoz station

Fig. 26 Monthly bootstrap variance of observed and downscaled precipitation data at 95 % CI using SDSM (a) and LARS-WGS (b) model in

Mahshahr station
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river hydrology and study the uncertainty associated to

downscaling techniques on wetland climate condition have

been given much less attention before. Therefore this study

provided a basis for future uncertainty analysis associated

with traditional SDSMs over an international aquatic eco-

system in south Iran. The study area characterized as an arid

region where the climate is under serious drought stress even

without climate change consideration. Shadegan wetland is

participated as an aquatic portion of this region; therefore

climate change studies and indeed uncertainty analysis of

downscaling methods are vital to address the water stress and

any water resource management and planning of this

stressful ecological habitat in the future.

Consistent with previous studies (see LARS-WGon

1995; Poiani and Johnson 1991; Withey and Kooten 2011),

wetlands are more sensitive to temperature changes rather

than precipitation. However it is quite obviously that the

selection of a downscaling method is critical for any cli-

mate change impact study on the wetland water quantity.

But in such cases, LARS-WG based approaches may be

more successful in resolving extremes events with high dry

spells and high temperature dataset. This would especially

be the case for arid and semi-arid areas where the selection

of a downscaling method and uncertainty associated to

downscaled data is very significant for future water

resource studies, therefore one or more downscaling and

uncertainty methods should apply and evaluate with

respect to the sensitivity of this type of region and indeed

goals and objectives of climate change impact projects.

Finally this study predicted a reduction in precipitation

amount in the future; therefore reductions in river flow and

water table are largely in proportion to changes in precip-

itation value. These may also be influenced by rising

temperatures through changes in potential evapotranspira-

tion rate actively. As the former mention, changes in pre-

cipitation will alter water level, and in contrast wetland

ecosystems depend on water levels, precipitation changing

and variability during a year, is likely to have a significant

impact on habitat species like marble duck (Marmaronetta

angustirostris). In the other hands, according to future

climate condition in this area, the biggest marble duck

habitat would shift under a drier climate scenario in the

future (see Etemadi et al. 2012). The majority of this

wetland in these areas has already been drained. Restora-

tion and protection of these habitats is a priority as insur-

ance for biodiversity against the effects of climate change.

Consequently understanding the relationships among the

climate variables, and anthropogenic effects are important

for the sustainable management of environmental resources

in these regions. Finally the findings of this study can be

benefit for assessment of long-term events such as drought

and drought stress on the wetlands, aquatic habitat and

agriculture sector as well.

6 Conclusion and future work

Wetlands and aquatic ecosystems will be highly vulnerable

to climate variability and change and this research outputs

addressed the susceptible to this change. In this study, the

climate change assisted using two downscaling models and

their uncertainty analysis in predictions processes at 95 %

CI. This research indicated that uncertainty analysis of

downscaling techniques is an important step in climate

change impact studies. Furthermore uncertainty associate

with precipitation prediction is more than temperature data.

Since in the future Shadegan wetland will be under

water stress, therefore local flow reducing actions could be

minimized to avoid water shortage in the wetland. Besides

upstream agricultural water abstractions can also be miti-

gated by the installation of efficient modern irrigation

schemes. Such efforts could be coupled with international

measures of subsidizing adaptation to climate change, and

payments for ecological services such as the contribution

of the Shadegan wetland to the global biodiversity data-

base. Also the pressure of human activity on Shadegan

wetland like the construction of Maroon dam as well as

petroleum activities reduce water quality and quantity, and

therefore change natural and hydrological regime. On the

other hands, the entrance of waste water from sugar cone

factories, changing in land use and construction of gas

powerplant sites have severity damaged to the environment

of this international wetland, so appropriate management

and plan can reduce enforceable climate change impacts to

Shadegan ecosystem. However Department of Environ-

ment of Iran has been unable to resist major development

projects, or control destructive activities outside protected

areas’ boundaries (Pandam Consulting Engineer 2002). But

where the country failed to conserve it, some foreign aids

and potential grantor such as NGOs can help to better

conservation of vulnerable area.
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