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Abstract Diagnostic evaluations of the relative perfor-

mances of CFSv1 and CFSv2 in prediction of monthly

anomalies of the ENSO-related Nino3.4 SST index are

conducted using the common hindcast period of

1982–2009 for lead times of up to 9 months. CFSv2 out-

performs CFSv1 in temporal correlation skill for predic-

tions at moderate to long lead times that traverse the

northern spring ENSO predictability barrier (e.g., a forecast

for July made in February). However, for predictions

during less challenging times of the year (e.g., a forecast

for January made in August), CFSv1 has higher correla-

tions than CFSv2. This seeming retrogression is caused by

a cold bias in CFSv2 predictions for Nino3.4 SST during

1982–1998, and a warm bias during 1999–2009. Work by

others has related this time-conditional bias to changes in

the observing system in late 1998 that affected the ocean

reanalysis serving as initial conditions for CFSv2. A pos-

teriori correction of these differing biases, and of a similar

(but lesser) situation affecting CFSv1, allows for a more

realistic evaluation of the relative performances of the two

CFS versions. After the dual bias corrections, CFSv2 has

slightly better correlation skill than CFSv1 for most months

and lead times, with approximately equal skills for fore-

casts not traversing the ENSO predictability barrier and

better skills for most (particularly long-lead) predictions

traversing the barrier. The overall difference in correlation

skill is not statistically field significant. However, CFSv2

has statistically significantly improved amplitude bias, and

visibly better probabilistic reliability, and lacks target

month slippage as compared with CFSv1. Together, all of

the above improvements result in a highly significantly

reduced overall RMSE—the metric most indicative of final

accuracy.
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1 Introduction

The first version of the Climate Forecast System coupled

model (CFSv1; Saha et al. 2006) was run operationally by

NOAA’s Climate Prediction Center (CPC) between 2004

and 2011.1 In April 2011 the second version, CFSv2 (Saha

et al. 2013), was implemented and used operationally. In

both model versions, an ensemble of forecasts is run from

each start time, each starting from a different initial anal-

ysis, and each resulting in a different realization of the

predicted seasonal mean, together defining a predicted

This paper is a contribution to the Topical Collection on Climate

Forecast System Version 2 (CFSv2). CFSv2 is a coupled global

climate model and was implemented by National Centers for
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probability distribution. Some basic characteristics of the

CFSv1 and CFSv2 model versions are shown in Table 1.

The CFSv2 represents an improved version of CFS in

many respects. Additional to changes in the model

dynamics and an enhancement in forecast resolution and

ensemble size, notable differences in CFSv1 and CFSv2

include, first, that the CO2 concentration in CFSv2

evolves over time with the initial CO2 concentration

prescribed as the global mean observed CO2 value at the

beginning of the forecast, while for CFSv1 the CO2 value

is fixed at the observed 1988 concentration. A second

difference between CFSv1 and CFSv2 is in the initial

conditions: In CFSv2, initial conditions come from the

Climate Forecast System Reanalysis (CFSR; Saha et al.

2010), while in CFSv1 they come from NCEP/DOE

Reanalysis-2 (R-2; Kanamitsu et al. 2002). It is docu-

mented by Saha et al. (2010) that the atmospheric analysis

(and hence the initial conditions) based on the CFSR is

more realistic than for the R-2.

Given the improvements in CFSv2 compared with

CFSv1, one would expect relatively better predictive skill

in CFSv2 in most fields and over many regions of the

globe. However, a discontinuity at year 1999 in the CFSR,

related to a change in the atmospheric observing system,

induced a change in the characteristics of the SST used for

the initial conditions for the CFSv2 integrations beginning

that year—especially those in the tropical Pacific (Xue

et al. 2011; Kumar et al. 2012; Xue et al. 2013). Here we

compare the skill of predictions of Nino3.4 SST in the

tropical Pacific by CFSv2 to those of CFSv1, and examine

which features of the skill differences may be related to

CFS model improvement, and/or to the 1999 discontinuity

in the initial conditions due to the CFSR. More background

about the 1999 discontinuity will be provided in the context

of the initial presentation of results below, in Sect. 3.1.

The Nino3.4 region is selected as the focus of this study

because it is closely associated with the ENSO state

(Barnston et al. 1997), which influences seasonal climate

through well known teleconnections (e.g., Ropelewski and

Halpert 1987; Mason and Goddard 2001; Hoerling and

Kumar 2002; among many others). We focus on prediction

of the Nino3.4 index, and examine the significant perfor-

mance differences between CFSv1 and CFSv2, and

between each model version with and without corrections

for their discontinuous climatologies.2 The ultimate interest

is in model version comparisons following the corrections.

The significance of the discontinuities themselves is

assessed, given the 28-year hindcast records. The data and

methods are described in Sect. 2, followed by results in

Sect. 3 and a discussion and some conclusions in Sect. 4.

2 Data and methods

The retrospective forecasts (i.e., hindcasts) of CFSv1 and

CFSv2 were initialized from their respective Reanalysis

data, producing ensembles run on a time-staggered sche-

dule within each month (e.g., 4 members at 5-day inter-

vals for CFSv2). The hindcasts of both versions begin in

1982, and are run 9 months into the future (Table 1).

Here, for simplicity the lead time is defined by the lead

month order of the hindcast, ranging from 1 to 9, despite

that lead time is often defined to be one less. The CFSR

Reanalysis from which CFSv2 runs are initialized is at

T382 (*38 km) horizontal resolution, while that for

CFSv1, the NCEP/DOE Reanalysis (Kanamitsu et al.

2002), is at T62 (*2�).

The observed SST data against which the CFS hindcasts

are verified are the monthly mean of the optimum inter-

polation version 2 (OIv2; Reynolds et al. 2002), at 1�
resolution. Here we use the mean SST over the Nino3.4

region (5�N–5�S, 120�–170�W), and use 1-month averages

for both predictions and observations.

For the deterministic verifications, only the ensemble

mean of the model predictions is used, and treated as a

single best guess forecast. For the probabilistic reliability

analysis the distribution of the individual ensemble mem-

bers are used to define the model forecast probabilities for

the tercile-based categories. Those categories are defined

with respect to the model’s climatological distribution,

using individual members, which varies as a function of the

start time and lead time. Tercile-based categories are also

defined for the observations.

The verification measures include basic performance

diagnostics for deterministic forecasts: temporal correla-

tion with observations for a given season and lead time,

root mean squared error (RMSE), ratio of interannual

standard deviation of model predictions to those observed,

and a lesser known measure called target month slippage.

The latter is an indication of biases in the timing of the

predictions, such as that in which predictions verify better

on target months occurring earlier than the intended month

(Tippett et al. 2012; Barnston et al. 2012). A final deter-

ministic diagnostic is a comparison of linear trends in the

model predictions to that observed. Prediction bias is not

examined in the usual manner, because the bias in the

Nino3.4 SST predictions of both models changes abruptly

around a specific year within the hindcast history, and

corrective measures are taken that largely eliminate model

bias. Specifically, the differing biases observed over two

portions of the hindcast period are removed individually

2 A discontinuity in CFSv1 is found also noted for Nino3.4 forecasts,

but it is smaller in magnitude than that of CFSv2 and has a different

cause.
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using the two sub-period climatologies, so that each portion

becomes bias-free.

A probabilistic verification analysis—reliability analysis

(Murphy 1973; Wilks 2006)—is used to detect probabi-

listic confidence levels as described by the distribution of

the models’ ensemble members associated with each pre-

diction, and probabilistic biases. Reliability is a measure of

the correspondence between the forecast probabilities and

their subsequent observed relative frequencies, spanning

the full range of issued forecast probabilities. Model

probability forecasts are defined on the basis of the pro-

portion of ensemble members falling into each of the three

defined climatologically equiprobable categories. Perfect

reliability would be achieved if, for example, the above

normal Nino3.4 SST category were assigned a probability

of 40 % in 20 instances over all of the issued forecasts, and

the later observed seasonal mean anomalies were in the

above normal category in exactly 8 (i.e., 40 %) of those

instances. Here we analyze reliability for the 6-month lead

forecasts, representing a moderate to long lead time.

Because our sample size of predictions is small, we com-

bine all target months, and form eleven 10 %-wide forecast

probability bins centered on 0, 10, …, 90 and 100 %

probability. Then there are (28) (12) = 336 predictions,

resulting in an average of about 31 predictions per proba-

bility bin. However, as will be discussed in Sect. 3.1, the

336 predictions are not independent cases, because the

ENSO state changes slowly so that forecasts of adjacent

start times or adjacent lead times are strongly mutually

correlated. The reliability analysis will be described further

in the context of its application, in Sect. 3.6.

To help provide statistical support for the reality of the

two separate bias periods for each CFS model version,

t-tests for the mean difference are applied. Additionally,

differences in skill between Nino3.4 predictions of CFSv1

and CFSv2, stratified by season and lead time, are assessed

statistically under several arrangements of bias correction

status. Comparisons when both model versions are cor-

rected are of greatest interest. Given that there are 12

seasons and 9 lead times, collective (or field) significance

tests (Livezey and Chen 1983) for the overall skill differ-

ence for the entire matrix of 108 skill differences are

conducted to determine the likelihood that the individually

significant cells in the matrix are significant by chance.

Determining field significance requires accounting for the

effective number of statistically independent cases in the

data set. Here we estimate this number—the statistical

degrees of freedom—based on the autocorrelation structure

in the forecast and observed SST data.

3 Results

The comparative performance diagnostics for CFSv1 and

CFSv2 are given first using deterministic verification

measures in Sects. 3.1–3.5, followed by a probabilistic

diagnostic measure (reliability analysis) in Sect. 3.6.

3.1 Anomaly correlation

The anomaly correlations between predictions and obser-

vations of Nino3.4 SST are shown in the left column of

Fig. 1 as a function of target month and lead time for

CFSv1 and CFSv2. The most noticeable skill difference is

found in forecasts for northern late spring/summer at

medium to long lead times, where CFSv1 has relatively

low skill (correlations of 0.5 or lower) while CFSv2 shows

higher skill (0.6–0.7). These forecasts are for target months

Table 1 Some basic specifications for CFSv1 and CFSv2

CFSv1 CFSv2

Horizontal resolution T62 (*2�) T126 (*1�)

Vertical resolution 64 levels 64 levels

Atmospheric model GFS from 2003 GFS from 2009

Ocean model MOM3 MOM4

No. ensemble members/month 15 24

Initial conditions for 0.5 month outlook

(example shown is for a seasonal mean

forecast for DJF)

R2 and GODAS: five initial conditions each

from near the 1st and 11th of Nov., and 21st

of Oct.

CFSR: four initial conditions each from the

17th, 12th, 7th, 2nd of Nov., and 27th of

Oct.

Climatological base period 1982–2004 1982–2004

Maximum forecast lead time 9 months 9 months

Source of initial condition data (horizontal

resolution)

NCEP/DOE reanalysis (T62) Climate Forecast System Reanalysis, or

CFSR (T382)

Sea ice Climatology Predicted

Carbon dioxide concentration setting Fixed at 1988 level Evolving with time
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beyond the northern spring ENSO predictability barrier

that are made much earlier than that barrier—the condition

known to present a large challenge (e.g., Jin et al. 2008).

Another conditional skill difference, in the opposite

direction, is found for predictions for times near the mature

stage of an ENSO episode made from start times after the

onset of the episode (e.g., a forecast for February made in

July). These ‘‘easier’’ predictions are better made by

CFSv1 than CFSv2. Why would this be the case for a

model that outperforms its predecessor under more difficult

prediction circumstances?

Figure 2 shows the error of CFSv1 and CFSv2 pre-

dictions as a function of start time for all seasons and

leads through the 28 year hindcast period. A discontinuity

in the CFSv1 errors appears near 1991, and a larger one is

seen in CFSv2 errors near 1999. Such discontinuities

would be expected to degrade all verification measures

relative to discontinuity-free errors, including temporal

correlation. The source of the 1991 change in CFSv1

error has been attributed to a problem in the use of

bathythermograph (XBT) measurements prior to 1991

(Berringer and Xue 2004), and is not examined closely
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Fig. 1 Temporal correlation between a CFSv1 and c CFSv2 predic-

tions of Nino3.4 SST and verifying observations over the 1982–2009

period. The target month is indicated on the horizontal axis, and lead

time on the vertical axis. A lead time of 1 month implies a prediction

made at the very beginning of the target month using data up to the

end of the previous month. Right column shows temporal correlation

for CFSv1 (b) and CFSv2 (d) following elimination of discontinuities

in the predictions of each model by using two separate climatologies

(see text)

1618 A. G. Barnston, M. K. Tippett

123



here. The CFSv2 error discontinuity, on the other hand,

has been related to a discontinuity at year 1999 in the

CFSR reanalysis data (Saha et al. 2010) that induced a

change in the characteristics of the SST—particularly in

the tropical Pacific (Kumar et al. 2012; Xue et al. 2013).

This SST change has been attributed to the introduction

Fig. 2 Error (�C) in Nino3.4

SST predictions of CFSv1 (top)

and CFSv2 (bottom) for start

times (indicated on horizontal

axis) over the course of the

1982–2009 period. Errors for

predictions at all lead times are

shown. Vertical lines are drawn

at the beginning of 1991 (for

CFSv1) and 1999 (for CFSv2)

to highlight the points of error

discontinuity

(a)
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Fig. 3 Difference in squared correlation (of predictions vs. observa-

tions) of CFSv2 and CFSv1. a without treatment for discontinuities

and b following treatment using dual climatologies for each model

version (right). Negative sign is retained upon squaring. The target

months and lead times are as described above in caption of Fig. 1
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of the ATOVS3 radiance data in the atmospheric assim-

ilation beginning in late 1998 (Zhang et al. 2012), due to

forcing from the atmospheric to the oceanic aspects of

the Reanalysis (Xue et al. 2011). The positive change in

central tropical Pacific SST in 1999 does not coincide

with observed SST trends documented in other studies,

which have been slightly downward (e.g., Kumar et al.

2010, 2012; Deser et al. 2010; Lyon and DeWitt 2012;

Lyon et al. 2013), and is therefore seen as spurious. A

change in tropical Pacific SST behavior around 1999, if

real, would be important because of the implied ENSO

state, with its known remote teleconnections to seasonal

climate (Hoerling and Kumar 2002; among many others).

A change in the climatology of reanalyzed tropical

Pacific SST in 1999 implies a change in the initial

conditions used to begin a prediction run of CFSv2.

Changes beginning in 1999 in the CFSv2 predictions

have indeed been noted in SST and related oceanic and

atmospheric fields (e.g., subsurface ocean temperature,

low-level zonal winds, and precipitation), and appear

most strongly in the general vicinity of the tropical

Pacific (Wang et al. 2011; Chelliah et al. 2011; Ebisuzaki

and Zhang 2011). Kumar et al. (2012) found that these

changes are not replicated when using independent oce-

anic initialization data, such as the NCEP global ocean

data assimilation system (GODAS) (Behringer and Xue

2004) or the National Oceanographic Data Ceter (NODC)

(Levitus et al. 2009). It will be shown below that the

impact of the 1999 discontinuity on the predictions of

Nino3.4 SST is evident from the shortest lead time,

propagates to longer lead times, and exhibits seasonal

dependence.

Table 2 Significance category for discontinuity in CFSv1 bias (for 1982–1990 vs. 1991–2009) as a function of target month and lead time

Lead (months) Target month—CFSv1

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

9 1 1 5

8 1 1

7 5 1 5

6 1 5

5 5

4

3

2

1

Entries of ‘‘5’’ denote 2-sided significance at the 5 % level, and ‘‘1’’ likewise but at the 1 % level. Changes from the earlier to later period are

negative for all cells. Field significance for a downward discontinuity over the set of 108 cells is p = 0.05 with a 2-sided test

Table 3 Significance category for discontinuity in CFSv2 bias (for 1982–1998 vs. 1999–2009) as a function of target month and lead time

Lead (months) Target month—CFSv2

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

9 1 1 1 1 1 5 5 5 5 5

8 5 5 1 1 5 5 5 5 5 1

7 5 1 1 5 5 5 5 5 1 5

6 5 5 5 5 5 5 5 1 5

5 5 5 5 5 5 5 5 5

4 5 5 5

3 5 5

2 – 1 1 5

1 – – – 5 1 5

Entries of ‘‘5’’ denote 2-sided significance at the 5 % level, and ‘‘1’’ likewise but at the 1 % level. Changes from the earlier to later period are

positive for all cells except where noted by minus sign. Field significance for an upward discontinuity over the set of 108 cells is p = 0.002 with

a 2-sided test

3 ATOVS refers to the Advanced Television and Infrared Observa-

tion Satellite (TIROS) Operational Vertical Sounder radiation data

system.
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To free the evaluation from the effects of discontinuities

in both CFS versions, dual climatologies from which to form

anomalies are developed (1982–1990 and 1991–2009 for

CFSv1; 1982–1998 and 1999–2009 for CFSv2), and the

evaluations are repeated. Results following this modifica-

tion (to be called ‘‘correction’’ or ‘‘adjustment’’) are shown

in the right column of Fig. 1. Improvements are noted in the

cases of both model versions, but are more substantial in

CFSv2. In CFSv2, higher correlations are seen in most

seasons and leads, but most notably for predictions for late

northern autumn and winter made during summer or later—

forecasts considered least challenging, but less skillful than

those of CFSv1 before the correction. The correlation dif-

ferences between CFSv2 and CFSv1 before and after the

discontinuity corrections for both models are shown in

Fig. 3 in terms of the difference in squared correlation

(where negative signs are retained upon squaring). The

relative superiority of CFSv2 for long lead predictions

through the northern spring predictability barrier is present

with or without the correction, but with the correction

CFSv2 no longer falls short of CFSv1 for moderate and long

lead predictions for northern winter made from earlier

within the same ENSO cycle. It is noted, however, that even

following the correction CFSv1 performs about as well for

these predictions as CFSv2. Following the correction, the

equal or better performance of CFSv2 applies to most sea-

sons and leads, although an exception is noted for moderate

to long lead predictions for northern summer/fall, made

from March or April through the northern spring barrier.

The brevity of the 28-year hindcast record, and partic-

ularly of the subperiods that define the dual climatologies,

raises questions about the statistical significance of the skill

differences between the model versions before and after the

climatology correction, and even of the existence of the

forecast discontinuities themselves. Statistical assessments

are carried out to address these issues. First, t-tests are

conducted for the differences between the means of the

prediction errors before and after the discontinuities for

each start time and lead time (i.e., the lines in Fig. 2).

Significance results are shown in Tables 2, 3 for the errors

of CFSv1 and CFSv2, respectively. The downward step in

CFSv1 bias beginning in 1991 is statistically significant

only at moderate to long lead times for months in the

second half of the year. The significance of the upward step

in CFSv2 bias beginning in 1999 is more pervasive and

appears from the very shortest leads for forecasts starting in

the latter half of the calendar year, suggesting an associated

discontinuity in the initial conditions provided by the

CFSR during those months. This seasonal preference for

the initial condition discontinuity was noted by Kumar

et al. (2012).

Because some month/lead combinations are expected to

be statistically significant by chance when a multiplicity of

tests are conducted, we assess the field significance of the

set of 108 cells collectively, each having its own ‘‘local’’

significance. One approach to evaluating field significance,

and the one used here, is to estimate the number of

effective degree of freedom, or statistically independent

forecast cases, that exists within the full 108-cell matrix.

This estimate is based on the interplay of the autocorrela-

tion as a function of temporal lag time between the Nino3.4

observations and predictions. Within the predictions there

is autocorrelation both with respect to time for any fixed

lead time (forming one row in the skill matrix such as that

shown in Fig. 1), and with respect to lead time for fixed

target month (a column in the skill matrix). Using the

autocorrelation structure spanning the first n lags (within

which autocorrelations are beyond those mainly associated

with sampling variability), the effective time required to

gain one additional degree of freedom is determined.

Within one dimension (months for a fixed lead, or lead for

a fixed target month) the effective time t is estimated using

s ¼ 1þ 2
Xn

lag¼1

autocor1lag

� �
autocor2lag

� �
ð1Þ

where autocor1 is the autocorrelation at a given lag time

for a first variable, autocor2 is that of the second variable

and the lag time spans up to a chosen stopping value n

beyond which autocorrelations become insignificant. For

example, for a statistical test involving CFSv2 predictions

against observations, those would be the two variables.

Equation (1) was used by Davis (1976) and later used in

Chen (1982) and Livezey and Chen (1983) in the context of

independent sampling times for climate variables whose

anomalies have long decay times. The larger the sum of the

cross-products of the autocorrelations over the included lag

times, the longer the effective time t, and the fewer the

resulting statistical degrees of freedom (i.e., sample size) to

be used in statistical tests.

Applying (1) to the observed and predicted Nino3.4 SST

data, we first note that the autocorrelation in both model

and observed data at 1 year lag is near zero. This result,

independently confirmed elsewhere for many ENSO-rela-

ted variables, implies that for any single month/lead-time

combination, the full 28 years can be used as the effective

sample size. For lags smaller than 12 months, autocorre-

lations for the monthly observations during 1982–2009 are

roughly 0.95, 0.87, 0.76, 0.65, 0.53, 0.40 and 0.29 for lags

of 1 through 7 months, respectively. These autocorrelations

are influenced equally by all times of the year, including

times of relatively low or high autocorrelation. Autocor-

relations in CFSv1 and CFSv2 for fixed lead times, while

not identical to those of the observations, are approxi-

mately equivalent when aggregated over all lead times.

Application of (1) to these autocorrelations for either
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model version versus observations, or a model version

versus itself before and after correction, yields 1 temporal

degree of freedom per 7.4 months, resulting in 1.60

degrees of freedom per year. Application of the same

approach to the lead dimension pertains to autocorrelations

between model predictions for fixed targets, where lag now

represents differences in lead time. The result is identical

for autocorrelations for the observations, but slightly

stronger model autocorrelations in the lead dimension for

fixed target than in the time dimension for fixed lead. The

outcome is 1 degree of freedom per 9.8 months, and con-

sequently the 9 lead times yield 1.82 degrees of freedom

per forecast integration. Because the months within a year

and the leads for forecasts for a given targeted month

represent two separate dimensions, the entire matrix of

108 months/lead-time cells produces (1.60) (1.82) = 2.91

degrees of freedom per year of predictions over the

12 months and 9 lead times. Thus, while a single cell in the

matrix provides 28 degrees of freedom over the 28 year

period, the matrix of 108 time series, with 28 forecast-

observation pairs each, supplies about 81 (2.91 times 28).

With an estimate of 81 effective degrees of freedom for

all target months and leads over the 28 year period, a field

significance test for the model bias discontinuities is

applied to the average t-statistic across over the 108 target-

month/lead combinations for CFSv1 (Table 2) and CFSv2

(Table 3). Although the physical underpinnings of both

discontinuities have been identified (an XBT issue for

CFSv1, and an ATOVS impact for CFSv2), and these

causes may provide expectations of the directions of dis-

continuity in the case of each model version, we use a

2-sided test to be cautious. The result is a significance

p value of 0.05 for CFSv1, and 0.002 for CFSv2. Although

the discontinuity in the bias of CFSv1 is significant, it has

not been a major issue in CFSv1 research. For example,

while the performance of CFSv1 is examined in detail in

Jin and Kinter (2009), the discontinuity is not discussed. In

the case of CFSv2 the discontinuity is more widely rec-

ognized (Wang et al. 2011; Xue et al. 2011, 2013; Zhang

et al. 2012; Kumar et al. 2012).

The correlation skill differences between CFSv1 and

CFSv2, or between either CFS version before and after

correction for the changing bias, are similarly tested for

statistical significance. The Fisher r-to-Z transformation

(Hayes 1973) is used for significance tests of differences

between two correlations. Although we do not show sig-

nificance results for individual target-month/lead combi-

nations, we assess the field significance of the matrix of skill

differences as a whole. Field significance of the set of

correlation differences are tested for (1) CFSv1 versus

CFSv2, (2) CFSv1 before versus after correction, (3) CFSv2

before versus after correction, (4) CFSv1 versus corrected

CFSv2, and (5) corrected CFSv1 versus corrected CFSv2.

One-tailed significance tests are used for all comparisons,

because one expects a priori for CFSv2 to be more skillful

than its CFSv1 predecessor and for corrected models to be

more skillful than uncorrected ones. Results of these field

significance tests, and the percentages of individual cells

showing improvements or degradations (and correlation

differences that are significant), are provided in Table 4.

Among the five comparisons, the only one having field

significance is the CFSv2 versus corrected CVSv2 corre-

lation set, meaning that the re-definition of anomalies using

the dual climatology in CFSv2 significantly increases the

correlation skill. Skill differences between CFSv1 and

CFSv2 fail to achieve significance in a collective sense over

all months and leads, even when the corrected CFSv2 is

compared with the uncorrected CFSv1. It is noted that when

neither model version is corrected, CFSv2 has slightly

lower overall skill then CFSv1 (top row of Table 4), as

noted also in Xue et al. (2013). With corrections, this

ranking is reversed.

While the above results may seem discouraging, one

must keep in mind that they may reflect the modest sample

size more than a lack of real incremental improvements in

model quality between CFSv1 and CFSv2. Additionally, the

tests weight all cells in the matrix equally, regardless of lead

time and season. Such equal weighting ignores the exis-

tence of features considered of relatively greater impor-

tance, such as performance in predictions traversing the

northern spring predictability barrier that suggests mostly

higher skill in CFSv2.

3.2 RMSE

A similar skill comparison is conducted for RMSE using

standardized anomalies,4 with results shown in Fig. 4. The

results for RMSE differ noticeably in pattern from those of

correlation because biases in both mean and in amplitude

contribute to RMSE but not to correlation. RMSE scores

are greatly reduced with the dual climatology correction for

both model versions, indicating the importance of the

changing sub-period biases that can greatly exacerbate the

squares of the largest errors in the direction of the bias—

especially at short to medium leads for early northern

autumn when large errors already occur in predicting new

ENSO events. Correction substantially improves these

prediction errors, particularly for late northern summer

target months made early in the calendar year.

The statistical significance of differences between

RMSE for the model versions, and for each version before

4 Here the RMSE is standardized for each season individually to

scale it so that climatology forecasts (zero anomaly) would result in

the same RMSE-based skill (of zero) for all seasons, and all seasons’

RMSE would contribute equally to a seasonally combined RMSE.
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and after the climate adjustment, is determined using the F

test for each of the month/lead combinations. A summary

of the outcome of the significance tests is shown in

Table 5, along with field significance for overall differ-

ences between the two versions being compared. Local and

field significance for reductions of RMSE with the dual

climatology correction are strong for both model versions,

and exceed those for the corresponding correlation skill

improvements (Table 4), indicating that RMSE is particu-

larly strongly impacted by the changing model biases.

Overall differences in RMSE between CFSv1 and CFSv2

are not statistically significant when the predictions of

neither model are corrected by the dual climatology, but

are significant when they both are corrected. This signifi-

cance, and a much larger degree of significance when

CFSv1 is not corrected and CFSv2 is corrected, did not

appear in the same tests for correlation skill differences.

3.3 Standard deviation ratio

Figure 5 shows the ratio of the interannual standard devi-

ation of the model ensemble mean predictions to that of the

corresponding observations for each model version for

each target month and lead time, both before and after

correcting biases by forming two climatologies in place of

a single discontinuous one. Ideally the ratio would be no

higher than unity throughout all seasons and leads, and

lower to the extent that predictive skill is imperfect (in

theory, the ratio should equal the square root of the fraction

of the observed variance explained by the forecasts).

The climatology correction results in small changes in

the ratios for CFSv1, but a noticeable decrease toward

unity is found in the case of CFSv2 for short to interme-

diate lead times for target months in the second half of the

year. More importantly, the ratio of CFSv1 is noted to be

too high ([1.5) even following the correction for inter-

mediate lead predictions for northern spring season when

the observed standard deviation is near its seasonal mini-

mum. CFSv2 lacks this weakness and, following the bias

correction, shows ratios fairly close to unity throughout

many seasons and leads. In keeping with the lower skill

expected for forecasts traversing the northern spring pre-

dictability barrier, ratios of less than unity are noted in

CFSv2 for predictions for June–October made at medium

and long leads.

Significance and field significance test results for the

standard deviation ratios are shown in Table 6 (Here,

counts of individual matrix cell increases and decreases are

not shown because decreases in ratios initially less than

unity may or may not be desirable). In contrast with sig-

nificance results for correlation and RMSE skills, here the

differences between CFSv1 and CFSv2 are field significant

regardless of the climatology correction status of the

models, while differences related to the dual climatology

corrections themselves are not field significant. The con-

clusion is that the standard deviation ratio is an attribute in

which CFSv2 shows better performance than CFSv1—

namely, the predictions of CFSv1 have higher amplitude

than warranted, while those of CFSv2 are substantially

more in keeping with realistic signal to noise ratios. This

Table 4 Local and field significance evaluation for various correlation skill comparisons involving uncorrected and corrected versions of CFSv1

and/or CFSv2

Model versions for

comparison, and their overall

correlation over 12 seasons and

9 leads (‘‘adj’’ = dual climatol.)

% Cells with increased

(significantly increased)

correlation

% Cells with decreased

(significantly decreased)

correlation

108-Cell field

significance:

z-statistic

108-Cell field significance:

1-sided p value for

improvement

CFSv1–CFSv2

0.833–0.775

26 (5) 74 (15) -1.00 0.84

CFSv1–CFSv1 (adj)

0.833–0.870

99 (0) 1 (0) 0.81 0.21

CFSv2–CFSv2 (adj)

0.775–0.880

100 (33) 0 (0) 2.06 0.02

CFSv1–CFSv2 (adj)

0.833–0.880

85 (6) 15 (0) 1.06 0.15

CFSv1 (adj)–CFSv2 (adj)

0.870–0.880

54 (5) 46 (0) 0.25 0.40

A one-sided test is used for field significance shown in last column. The p = 0.05 level (one-sided) is used to count significantly changed

individual cells for the percentages shown in parentheses in the first two columns
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characteristic will be corroborated below in a probabilistic

reliability analysis.

3.4 Target month slippage

‘‘Target month slippage’’ occurs when predictions verify

with higher skill for target months earlier or later than those

intended, such as a 4-month lead prediction intended for

July verifying better using observations of May or June

instead of July. Slippage typically occurs when predictions

are late in reproducing observed changes, such as onsets or

endings of ENSO episodes. In an extreme case, a predic-

tion for a new event may not be made until the event is

already present in the initial conditions. Slippage cannot be

diagnosed by comparing forecasts with the verifying

observations only for the intended target time. Although

slippage is a systematic error, it is indistinguishable from a

random error when forecasts at different leads are evalu-

ated independently. It is most likely to occur when pre-

diction is most difficult, such a prediction made in March

for targets of July and beyond.

Slippage is expressed in plots of skill as a function of the

lag time between the measured target period and the

intended one. Typically, due to sampling considerations,

the diagnosis is made for all seasons together. In the

absence of slippage, correlation skill maximizes for the

intended target (lag = 0), and drops off with increasing

positive or negative lags. When slippage exists, skill is

greatest for a nonzero lag time such as one or more months

earlier than the intended month. To the extent that slippage

is systematic, it can be corrected using statistical methods,

such as multiple regression, that define optimum shifts of
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Fig. 4 Root mean squared error

of predicted versus observed

standardized anomalies of

a CFSv1 and c CFSv2 without

treatment for discontinuities and

b, d following treatment using

dual climatologies for each

model version. In the absence of

any skill, RMSE of 1.41 is

expected. The target months and

lead times are as described

above in caption of Fig. 1
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the model’s forecasts to targets different from those orig-

inally intended (Tippett et al. 2012). Here we apply such a

multiple regression-based correction to the forecasts of

CFSv1 and CFSv2, to increase a skill metric based on the

mean squared error (MSE):

MSEskill ¼ 1� MSE

SD2
obs

ð2Þ

In (2), constant forecasts for the climatological mean

results in a score of 0. Figures 6, 7 show slippage and skill

results using (2) for CFSv1 and CFSv2, respectively,

before and after the regression correction. Slippage is seen

in CFSv1 (top left panel of Fig. 6), and it increases with

increasing lead times to about 3 months for 9-month lead

predictions. The MSE-based skill score (bottom left panel)

indicates sub-zero skill for long-lead CFSv1 forecasts for

northern summer. After the regression correction (right

panels) slippage is decreased and the skill of the long-lead

summer forecasts is improved. The same diagnostics for

CFSv2 (Fig. 7) indicate little original slippage, and the

multiple regression correction does little to improve the

already good performance. Reduction of slippage may be a

way that the performance of CFSv1 could have been

improved in addition to the improvements related to the

dual climatology correction (Figs. 1, 4; Tables 4, 5).

3.5 Trend bias and its seasonality

The time-conditional biases in the CFSv1 and CFSv2

predictions (Fig. 2) create trend biases in the sense that a

linear trend fit to the predictions exhibits slopes that do not

appear in the observations. However, each model also

exhibits more gradual trends within each of its sub-peri-

ods—particularly CFSv2, and notably for start months

around northern late summer and autumn. Figure 8 shows

Nino3.4 predictions for the first month from each model

version, along with the corresponding observations, for

start times of 1 August, 1 September and 1 October for

each year of the hindcast period. As expected from earlier

analyses, CFSv1 exhibits a positive bias before 1991 and

negative bias from 1991 onward, while CFSv2 shows

negative bias before 1999 and positive bias from 1999

onward. Additionally, the magnitude of the negative biases

in CFSv2 appears to decrease with time up to 1999, and

positive biases to increase with time from 1999 forward.

At the earliest lead time, predictions are influenced

heavily by the initial conditions (Kumar et al. 2012; Xue

et al. 2013). The systematic discrepancies between the

short-lead predictions and the observations shown in Fig. 8

are thus mainly indicative of biases in the SST initial

conditions in the case of CFSv2, and here these are most

prominent for the August, September and October start

times. Figure 9 shows biases in the slope of the least-

squares linear trend for predictions of CFSv1 and CFSv2

for each target month and lead time. The bias profile for

CFSv2 (right panel) resembles the inter-period difference

in forecast climatology shown in Kumar et al. (see their

Fig. 2c), as would be expected. The positive trend biases in

CFSv2 for the shortest lead predictions of August, Sep-

tember and October are noted in the bottom row of cells in

Fig. 9b; these northern autumn biases amplify as they

propagate to predictions for later target months with

Table 5 Local and field significance evaluation for various RMSE skill comparisons involving uncorrected and corrected versions of CFSv1

and/or CFSv2

Model versions for comparison, and

their overall RMSE over 12 seasons

and 9 leads (‘‘adj’’ = dual climatol.)

% Cells with decreased

(significantly

decreased) RMSE

% Cells with increased

(significantly

increased) RMSE

108-Cell field

significance: average

MSE ratio for F-test

108-Cell field

significance status

(significant means

p \ 0.05)

CFSv1–CFSv2

1.14–1.09

44 (18) 56 (24) 1.14 Not significant

CFSv1–CFSv1 (adj)

1.14–0.58

86 (68) 14 (0) 3.97 Significant p \ 0.001

CFSv2–CFSv2 (adj)

1.09–0.49

100 (90) 0 (0) 5.60 Significant p � 0.001

CFSv1–CFSv2 (adj)

1.14–0.49

89 (72) 11 (1) 5.96 Significant p � 0.001

CFSv1 (adj)–CFSv2 (adj)

0.58–0.49

64 (31) 36 (3) 1.72 Significant p \ 0.01

A one-sided test is used for field significance shown in last column. The p = 0.05 level (one-sided) is used to count significantly changed

individual cells for the percentages shown in the first two columns
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increasing lead times. This initial condition bias is thus

suggested to be partly responsible for the initially noted

lower skills of CFSv2 than CFSv1 for predictions made

during the less challenging seasons of the year if the data

are not corrected by using two separate climatologies.

A reason for a remaining gradual positive trend in

CFSv2 predictions relative to observations even after the

discontinuity correction using dual climatologies is

unknown. A problem involving radiation balance may be a

candidate explanation, but additional study is required to

explore such a hypothesis.

The trend bias in CFSv1 is negative for most months and

leads, partly because of the discontinuity in 1991 but also

due to gradual trends within the sub-periods. In contrast to

CFSv2, trend biases in CFSv1 do not appear at short leads,

indicating a likely lack of major biases in initial conditions.

However, CFSv1 has the disadvantage of a non-evolving

CO2 concentration setting, which could result in the slowly

declining Nino3.4 SST predictions relative to observed SST.

Significance and field significance test results for the

linear trend biases relative to trends in the observations are

shown in Table 7. A Fisher Z test is applied to the differ-

ences between the observations and the model predictions

in their SST-versus-time correlation (which directly

determines the slope of the linear trend for standardized

data), where the observational data (usually having a near-

zero correlation, or trend) is treated as a population so that

a 1-sample test is conducted. Results indicate field signif-

icance in the downward (upward) temporal trends in

CFSv1 (CFSv2), and trends are sufficiently pervasive in

CFSv2 that 82 % of the cells in the month/lead-time matrix

are individually significant.
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Fig. 5 Ratio of interannual

standard deviation of predicted

vs. observed anomalies of

a CFSv1 and c CFSv2 without

treatment for discontinuities and

b, d following treatment using

dual climatologies for each

model version. Ideally, the ratio

is unity or less. The target

months and lead times are as

described above in caption of

Fig. 1
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3.6 Reliability analysis

We assess the reliability and sharpness of the probabilistic

predictions of Nino3.4 SST from the two CFS versions. For

any prediction, probabilities for the below-, near- and

above-normal categories are defined by counting the pro-

portion of ensemble members whose predictions are in

each respective category. The three categories are defined

such that each has a one-third probability of occurring

during the 28-year hindcast period (i.e., tercile cutoffs are

used). For the models, terciles are defined using the indi-

vidual ensemble members over the study period. The

observations are also categorized. The categories may be

thought to loosely represent El Nino, neutral and La Nina,

although many ENSO classification systems are not tercile-

based. Reliability analysis is carried out for each forecast

category separately, but plotted together. For simplicity,

here we focus only on the 6-month lead predictions. Fur-

thermore, we ignore the near-normal category, which has

been demonstrated to have weak performance (Van den

Dool and Toth 1991).

As mentioned in Sect. 2, reliability analysis examines

the correspondence between the forecast probabilities and

their corresponding later observed relative frequencies.

Ideally, the two should match. Over- and under-forecasting

of the probability for a given category are specific forms of

imperfect reliability. Forecast probability biases may

depend on the probability level itself, or may be fairly

constant over all forecast probabilities. The reliability

diagram permits examination of such attributes of the set of

probability forecasts. Because the forecast probabilities for

Table 6 Local and field significance evaluation of various standard

deviation ratio comparisons involving uncorrected and corrected

versions of CFSv1 and/or CFSv2

Model versions for

comparison, and their

overall SD ratio over

12 seasons and 9 leads

(‘‘adj’’ = dual climatol.)

108-Cell field

significance:

avg variance

ratio for F-test

108-Cell field

significance status

(significant means

p \ 0.05)

CFSv1–CFSv2

1.21–1.03

1.51 Significant p \ 0.05

CFSv1–CFSv1 (adj)

1.21–1.18

1.07 Not significant

CFSv2–CFSv2 (adj)

1.03–0.97

1.13 Not significant

CFSv1–CFSv2 (adj)

1.21–0.97

1.66 Significant p \ 0.05

CFSv1 (adj)–CFSv2 (adj)

1.18–0.97

1.56 Significant p \ 0.05

A one-sided test is used for field significance shown in last column
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Fig. 6 Target period slippage,

and its correction, in CFSv1:

(top) Correlation between

predictions and observations as

a function of lag time between

verified target month and

intended target month, for leads

of 1, 3, 5, 7 and 9 months before

(left) and after (right) a MOS

correction for slippage based on

multiple regression. Predictions

free of slippage should have

maximum correlation at zero

lag. The hollow circles in the

right figure show the correlation

at zero lag prior to the

correction. (bottom) Mean

squared error skill score as a

function of target month and

lead time before (left) and after

(right) the MOS correction
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each of the categories are binned into an array of proba-

bility intervals, reliability analysis requires a large sample

of forecasts for each bin to be populated sufficiently for

statistical robustness. Here we combine all target months,

and form eleven 10 %-wide forecast probability bins cen-

tered on 0, 10, …, 90 and 100 % probability, to average

about 31 predictions per probability bin, or (28) (12) /11.

As indicated in Sect. 2 and discussed in Sect. 3.1, lack of

independence among the forecasts results in far fewer than

336 independent forecast cases, so that the results are

expected to paint a largely qualitative picture—a ‘‘sanity

check’’ for probabilistic reliability.

The reliability diagrams for the above and below normal

categories are shown for the two CFS model versions, with

uncorrected climatologies, in Fig. 10 as the red and blue

curves, respectively. For each category, forecasts are bin-

ned for increasing forecast probability intervals (x-axis),

and are compared to their corresponding observed relative

frequencies of occurrence (y-axis). The diagonal line

(y = x) represents perfectly reliable forecasts. The plot

insets below the main panel show the percentage of fore-

casts having probabilities in each of the probability bins.

For CFSv1 (Fig. 10a), positive skill is evidenced by the

fact that predictions with increasing probabilities for both

below and above normal SST tend to be associated with

increasing observed relative frequencies of occurrence. The

curves are not smooth because of sampling variability, but

the average slope of both curves is seen to be somewhat

less than unity. Thus, forecasts are ‘‘overconfident’’, as

very low (high) probabilities are not matched by compa-

rably low (high) frequencies of observed occurrence.

Overconfidence is particularly noticeable for probabilities

between 0.7 and 0.9 for both categories, and for probabil-

ities of 0.0 for above normal predictions. The inset plot at

the bottom shows that the lowest bin (0–0.05) is by far the

most frequently issued probability, followed by the highest

bin (0.95–1.00) and the second lowest bin (0.05–0.15). The

U-shaped curve described by the histogram bars indicates

high forecast sharpness (i.e., probabilities deviating

strongly and frequently from climatology), and the fact that

the slope of the lines is \1 indicates that this degree of

sharpness is not warranted, given the level of predictive

skill achieved at the 6-month lead time.

The reliability result for the uncorrected CFSv2

(Fig. 10b) is somewhat similar to that of CFSv1, except

that overconfidence appears milder, as the curves have

slope closer (but still less than) unity, with smaller devia-

tions below the ideal reliability (45�) line for bins for 0.50
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Fig. 7 As in Fig. 6, except for CFSv2 slippage and its correction
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and higher probability. Similarly, the lower inset shows

that zero-probability predictions for above normal SST that

are issued more than 41 % of the time by CFSv1 are issued

33 % of the time by CFSv2, indicating a greater expressed

forecast uncertainty.

The somewhat more reliable probabilistic predictions

seen in CFSv2 than in CFSv1 are attributable to a

combination of its generally higher skill (Figs. 1, 3) and its

slightly less sharp, more conservative probabilities that

better reflect the true level of uncertainty in the ocean–

atmosphere system. This outcome is consistent with the

greater inflation above unity of the standard deviation ratio

of the ensemble mean forecasts in CFSv1 than CFSv2

noted above (although high model variance, per se, would

Fig. 8 Shortest-lead Nino3.4

SST anomaly predictions of

CFSv1 (blue) and CFSv2

(green) and corresponding

observations (red) for start

times at beginning of (top)

August, (middle) September,

and (bottom) October over the

1982–2009 period
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1982–2009 (�C per 27 year)

period for Nino3.4 predictions
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function of target month and

lead time
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also contribute), especially at medium to long lead times

(left panels of Fig. 5). Aside from model improvement, one

reason for the better probabilistic forecast performance of

CFSv2 than CFSv1 is the larger ensemble size of CFSv2

than CFSv1 (24 vs. 15 members), given that smaller

ensemble sizes are associated with larger sampling vari-

ability in the ensemble mean and the ensemble distribution

leading to the probability assignments.

Elimination of the discontinuity in the climatology of

the predictions slightly helps to remedy the inflated stan-

dard deviation ratio of CFSv2 (lower right panel of Fig. 5).

To determine the effect of the correction on CFSv2 reli-

ability, the analysis is repeated using dual climatologies for

the tercile boundary definitions for the model prediction

category. Results (Fig. 10c) indeed indicate a slope closer

to unity, and the observed relative frequencies for forecasts

of zero probability become \2 %, suggesting that now

such sharply low probabilities are justified in the absence

of the spurious change in the forecast climatology within

the hindcast period. Similarly, forecasts with 100 %

probability are met with correctly verifying observations in

about 95 % of cases when using the dual climatologies, but

only about 80 % (90 %) for the above (below) normal

category without the climatology adjustment. All told, the

correction appears to improve probabilistic reliability for

CFSv2. However, the small effective sample size of fore-

casts and observations must be noted. While results are

suggestive, and consistent with findings shown earlier for

the deterministic verifications, they are not likely to be

statistically significant on their own, and are presented for

qualitative interest.

4 Discussion and conclusion

Given the time and resources invested toward improve-

ment, one would expect higher predictive skill in CFSv2

than in CFSv1. Here we examine skill differences between

CFSv1 and CFSv2 in predictions of the ENSO state, as

represented by the Nino3.4 SST anomaly.

Initial examination shows that CFSv2 is better able to

predict the ENSO state than CFSv1 at long lead through the

northern spring predictability barrier, the time of year when

there is most need for improvement. By contrast, CFSv2

appears to fall short of CFSv1 in predictions for northern

late summer and autumn start times—times for which

ENSO prediction is known to be least challenging. Com-

bining all times of year and all lead times, CFSv2 fails to

show net improvement over CFSv1. However, CFSv2 is

found to have a significant discontinuity in initial condition

climatology near 1999 associated with discontinuities in the

oceanic part of the Reanalysis observations generated using

the high resolution CFSv2 (the CFSR). The size and impact

of this discontinuity is most prominent in the tropical

Pacific, in the form of an step-like increase in ENSO-related

SST and associated changes in other tropical Pacific con-

ditions around 1999, as described in Kumar et al. (2012),

Xue et al. (2013), and other recent studies. This disconti-

nuity is spurious, as it is not reflected in the observations.

Here, we examine the consequences of the discontinuity for

the performance of model predictions of the Nino3.4 SST

anomaly. In identifying and removing those components of

the differences in specific skill metrics likely related to the

discontinuity, we aim to assess performance differences

related to true model improvement (or lack thereof).

The initial condition discontinuity acts to diminish

CFSv2’s net skill in ENSO prediction, and masks some

aspects of its standing relative to CFSv1 in predicting

Nino3.4 SST. This diminishing effect is most noticeable

for northern autumn start times when skill is highest and

when CFSv1 is already quite skillful. The impact of the

discontinuity on skill is evaluated by comparing skill with

and without correction of the discontinuity by using two

separate climatologies from which to form anomalies. The

main results are summarized in Table 8. Without the cli-

matology correction, CFSv2 is still seen to outperform

CFSv1 in terms of (1) standard deviation ratio with respect

to the observations, and (2) probabilistic reliability, due to

its lesser degree of amplitude inflation and probabilistic

overconfidence, respectively, than seen in CFSv1. A third

Table 7 Local and field significance evaluation for linear trend bias with respect to the observed trend in the Nino3.4 SST during 1982-2009

Model version % Cells with negative trend

bias (significantly negative)

% Cells with positive trend

bias (significantly positive)

108-Cell field

significance: average

z-statistic

108-Cell field significance

status (significant means

p \ 0.05)

CFSv1 86 (31) 14 (0) -1.05 Significant

p \ 0.04

CFSv2 0 (0) 100 (82) 2.25 Significant

p � 0.001

Here, model data are not corrected using the dual climatology approach. The p = 0.05 level (one-sided) is used to count individual cells with

significant trend biases for the percentages shown in the first two columns, and a one-sided test is used for field significance shown in last column
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attribute in which CFSv2 outperforms CFSv1 without a

climatology correction is lack of ‘‘target month slip-

page’’—i.e., CFSv2 does not tend to verify better on target

times earlier than those intended due to slowness in

reproducing transitions in the ENSO state.

After discontinuity corrections, including correction of

CFSv1’s less severe discontinuity, performance of CFSv2

is found to exceed that of CFSv1 at most times of the year

in anomaly correlation (although the difference is not sta-

tistically field significant) and RMSE (with a highly sig-

nificant difference), the two most basic and commonly used

deterministic skill metrics. After correction, improvement

in performance of CFSv2 over CFSv1 is also more strongly

field significant in standard deviation ratio with respect to

the observations, as CFSv2 lacks the forecast amplitude

inflation of CFSv1 to a greater extent. While not confirmed

statistically, CFSv2 also appears further improved in

probabilistic reliability (Fig. 10).

A constant bias, correctable with a single adjustment,

does not degrade measures such as the anomaly correlation

or the confidence-indicating slope of the reliability curves. A

changing bias, by contrast, is equivalent to a nonsystematic

error, uncorrectable unless the problem is identified (e.g., by

inspecting Fig. 2) and treated with a combination of human

intervention and automation in choosing the point of dis-

continuity and the correction parameters. The timing of the

discontinuity in CFSv2 has been linked to the advent of

ATOVS radiance measurements in late 1998, and the lesser

discontinuity in CFSv1 to issues with XBT measurements

before 1991. Knowledge of the likely causes justifies iden-

tification of the temporal break points in the hindcast time

series, reducing concern that they are subjectively based.

CFSv2 is shown to have a larger upward trend in

Nino3.4 SST than that observed, apart from the 1999 dis-

continuity. This appears despite the specification of real-

istic time-evolving CO2 concentrations—an improvement

over CFSv1, which had a fixed and outdated CO2 con-

centration, and a possibly related negative trend bias with

respect to observations. The positive trend bias in CFSv2,

with currently unknown cause, may indicate potential for

improvement in a future version of CFS.

In summary, based on Nino3.4 SST prediction skill

results after adjustment for discontinuities in the clima-

tologies of CFSv1 and CFSv2, we can conclude:

1. CFSv2 makes more skillful long-lead predictions than

CFSv1 from early in the calendar year, through the

northern spring predictability barrier. But its shorter

lead forecasts through the barrier (e.g., from March

start time) remain no more skillful than those of CFSv1

at short and medium lead times. For predictions that

do not traverse the barrier, skills of the two model

versions are comparable. Overall differences in
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Fig. 10 Reliability diagrams for a uncorrected CFSv1, b uncorrected

CFSv2, and c CFSv2 using dual prediction climatology predictions of

Nino3.4 SST at 6-month lead time. Red (blue) curve indicates reliability

for above (below) normal SST predictions. The black diagonal (45�) line

represents the ideal perfect reliability. Probability bins are 10 % wide

(e.g., 0.35–0.45), except for the top and bottom ones, which are 5 %

wide. The histograms in the insets below the main panel show the

frequency distribution for predictions among the probability bins
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correlation skill between CFSv1 and CFSv2, while

favoring CFSv2, are insufficient for statistical field

significance over the 28-year hindcast period.

2. CFSv2 predictions have more realistic (i.e., lower)

amplitude, and correspondingly more reliable proba-

bilistic forecasts, than CFSv1, especially during sea-

sons and leads when predictability is relatively low.

This significant improvement in calibration, combined

with the slight overall improvement in correlation,

leads to a highly statistically significant overall

improvement in RMSE.

Although the discontinuity has clearly discernible

effects on CFSv2 predictions of ENSO-related SST, they

are not large enough to materially degrade the model’s

predictions of climate across much of the globe, including

those involving many of the ENSO-related climate tele-

connections. Performance in climate predictions has been

found significantly better than that of CFSv1 in many

instances, including in the United States during winter

when ENSO is a major governing factor (Peng et al. 2013),

and in reproduction of the MJO (Weaver et al. 2011). The

skill of CFSv2 is even found competitive with that of

ECMWF system 4 for winter climate predictions over

North America, despite its relative shortcomings in pre-

dictions of ENSO and the globally averaged tropical cli-

mate (Kim et al. 2012). A better CFSv2 than CFSv1 is

expected on the basis of the factors shown in Table 1,

including finer horizontal resolution, a more recent version

of the GFS atmospheric model component, a more recent

ocean model component, a larger ensemble size, more

accurate (predicted) sea-ice, and evolving CO2 concentra-

tion. Last but not least, CFSv2 is initialized from a more

realistic Reanalysis—except for the 1999 discontinuity

whose correction using the dual-climatology approach has

been demonstrated necessary to recognize some critical

aspects of the improved performance.
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