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Abstract Subseasonal forecast skills and biases of global

summer monsoons are diagnosed using daily data from the

hindcasts of 45-day integrations by the NCEP Climate

Forecast System version 2. Predictions for subseasonal

variability of zonal wind and precipitation are generally

more skillful over the Asian and Australian monsoon

regions than other monsoon regions. Climatologically,

forecasts for the variations of dynamical monsoon indices

have high skills at leads of about 2 weeks. However,

apparent interannual differences exist, with high skills up

to 5 weeks in exceptional cases. Comparisons for the

relationships of monsoon indices with atmospheric circu-

lation and precipitation patterns between skillful and

unskillful forecasts indicate that skills for subseasonal

variability of a monsoon index depend partially on the

degree to which the observed variability of the index

attributes to the variation of large-scale circulation. Thus,

predictions are often more skillful when the index is clo-

sely linked to atmospheric circulation over a broad region

than over a regional and narrow range. It is also revealed

that, the subseasonal variations of biases of winds, pre-

cipitation, and surface temperature over various monsoon

regions are captured by a first mode with seasonally

independent biases and a second mode with apparent phase

transition of biases during summer. The first mode indi-

cates the dominance of overall weaker-than-observed

summer monsoons over major monsoon regions. However,

at certain stages of monsoon evolution, these underesti-

mations are regionally offset or intensified by the time

evolving biases portrayed by the second mode. This feature

may be partially related to factors such as the shifts of

subtropical highs and intertropical convergence zones, the

reversal of biases of surface temperature over some mon-

soon regions, and the transition of regional circulation

system. The significant geographical differences in bias

growth with increasing lead time reflect the distinctions of

initial memory capability of the climate system over dif-

ferent monsoon regions.

Keywords Global monsoons � Subseasonal prediction

biases � Subseasonal prediction skill � NCEP CFSv2

1 Introduction

Monsoon as a key element of the global climate system is

closely related to many prominent weather and climate

phenomena. It strongly affects human activities and eco-

nomic wellbeing of the world. Due to its complex vari-

ability and enormous social and economic impacts,

monsoon prediction has long been an important but chal-

lenging task.

In the past decades, dynamical prediction has advanced

significantly and become an indispensable approach in

monsoon research and forecast operations. Based on the
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hypothesis that seasonal atmospheric predictability origi-

nates from the boundary forcing at the earth’s surface

(Charney and Shukla 1981), predictions with two-tier

approach, which are made by atmosphere-alone models

forced by prescribed sea surface temperature, provide

reasonable skills to a certain extent (Kang et al. 2002;

Moron et al. 2004; Zhou et al. 2009; Xue et al. 2010).

Nevertheless, two-tier predictions for monsoons, especially

the Asian-Australian monsoon, show apparent deficiencies

due to unrealistic air-sea interaction (Wang et al. 2004,

2005; Kumar et al. 2005; Misra 2008). On the other hand,

monsoon prediction with coupled atmosphere–ocean-land

models is more promising and has potential for improve-

ments with enhancement of model resolutions and initial

conditions (Pope and Stratton 2002; Yang et al. 2009; Wen

et al. 2012), improvement of model physics (Yhang and

Hong 2008; Yang et al. 2011), and application of multi-

model ensemble methods (Krishnamurti et al. 2006; Wang

et al. 2008), among others.

However, monsoon prediction with coupled models

suffers from apparent biases, which affect accurate simu-

lation and forecast of monsoon variability and its rela-

tionship with other climate systems (e.g., Chen et al. 2000;

Turner et al. 2005; Lee et al. 2010). Also, climate models

tend to underestimate the variance of monsoon variability

although they are able to reproduce the dominant modes

(Wang et al. 2008; Xue et al. 2010). They can predict large-

scale monsoon features related to strong oceanic-atmo-

spheric events such as El Niño–Southern Oscillation

(ENSO) and the Indian Ocean Dipole, in contrast to the

unskillful performance in simulating more regional char-

acteristics (Yang et al. 2008a; Drbohlav and Krishnamur-

thy 2010). Predictions are also not skillful for limited

representation of subseasonal variability (Higgins et al.

2008; Yang et al. 2008b; Fu et al. 2009; Pegion and

Sardeshmukh 2011). For a comprehensive understanding of

the above limitations and improvement of monsoon pre-

diction accuracy, assessing the skills and diagnosing biases

of dynamical monsoon prediction have become an impor-

tant subject in both academic and operational communities.

The National Centers for Environmental Prediction

(NCEP) implemented the first version (Saha et al. 2006)

and the second version of Climate Forecast System (CFS)

to provide operational monthly-seasonal predictions in

August 2004 and March 2011, respectively. Based on

comprehensive retrospective forecasts, previous studies

have demonstrated that the CFS is able to capture the

variations of the Asian monsoon (e.g., Yang et al. 2008a;

Liang et al. 2009; Drbohlav and Krishnamurthy 2010; Li

and Yang 2010; Lee et al. 2011), the South American

summer monsoon (e.g., Misra and Zhang 2007; Jones et al.

2012), the North American summer monsoon (e.g., Higgins

et al. 2008; Yang et al. 2009), the West African summer

monsoon (e.g., Xue et al. 2010), among others. These

studies have shown encouraging results, although monsoon

predictability, especially on subseasonal time scale, has not

been fully addressed. Moreover, improvement of forecast

skills in monthly and intraseasonal climate variability due

to upgrade of models (e.g., Yuan et al. 2011; Weaver et al.

2011) may promise a better prospect for monsoon

prediction.

Therefore, in this study, we explore the forecast skills of

subseasonal variability of global summer monsoons in the

NCEP CFS (CFSv2), including the South Asian monsoon

(SAM), the Southeast Asian monsoon (SEAM), the West

African monsoon (WAFM), the North American monsoon

(NAMM), the South American monsoon (SAMM), and the

Australian monsoon (AUM). The following questions are

addressed: What are the subseasonal forecast skills of

global summer monsoons in the CFSv2? How do subsea-

sonal prediction skills change on interannual scale? How

different are the biases during the different stages of

monsoon evolution and as a function of lead time? What

are the atmospheric and oceanic processes related to these

differences?

In Sect. 2, a brief overview of the model output and data

analyzed is provided. In Sects. 3–5, we analyze the multi-

year mean features of first-month forecasts, subseasonal

prediction skill of summer monsoons, and subseasonal

variations of biases with lead time, respectively. Summary

and discussions are given in Sect. 6. It should be noted that,

the bias diagnostics in Sect. 5 is presented after the anal-

yses of prediction skill in Sect. 4 because Sects. 3 and 4

provide analyses from a global point of view while Sect. 5

only concerns regional features. In addition, the former

provides a foundation on the choices of monsoon regions

and lead time and the understanding of some features

discussed in the later section.

2 Model output and observational data

The CFSv2 is a coupled atmosphere–ocean-land-sea ice

dynamical seasonal prediction system. The atmospheric

component is the NCEP Atmospheric Global Forecast

System with a T126 horizontal resolution and 64 sigma

layers in the vertical. The oceanic component is the Geo-

physical Fluid Dynamics Laboratory Modular Ocean

Model version 4 coupled with a two-layer sea ice model,

and the land model is the NCEP, OSU, Air Force, and

Hydrologic Research Laboratory model. The different

components are coupled without any flux correction. The

initial conditions are obtained from the Climate Forecast

System Reanalysis (CFSR; Saha et al. 2010).

The retrospective forecasts from the CFSv2 are utilized

in this study. They are 45-day integrations initiated from
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every 0, 6, 12, and 18 UTC cycle from 1999 to 2010. The

observations used for model verification include atmo-

spheric variables and surface temperature from the CFSR

and the global CMORPH precipitation data from Climate

Prediction Center (Joyce et al. 2004). In this work, the

CFSR and CMORPH with high temporal and spatial res-

olutions are all interpolated to daily-average data with a

same horizontal resolution with CFSv2.

In our study, for a specific predicted target month (or

pentad), lead 0 is defined as the forecasts initialized on the

first day of the month (or pentad), lead 1 denotes the

forecasts initialized on the last day of the previous month

(or pentad), lead 2 for the model runs initialized 2 days

ahead to the last day of the target, and so on. Each pre-

diction of a lead is an ensemble mean of four members.

3 Model drift in first forecast month

To explore the model drift in first forecast month, ensemble

means of predictions with leads of 0–5 days for the next

target months in boreal summer (May–September) and

austral summer (November–March) during 1999–2010 are

examined. Although the CFSv2 captures the major features

of northern and southern summer monsoons, apparent

biases are found over various monsoon regions. Figures 1

and 2 show the predicted 12-year means for precipitation

and 850-hPa winds and their biases averaged over boreal

summer and austral summer, respectively.

For the Asian summer monsoon, a cyclonic wind bias

dominates over the northwestern Pacific, associated with a

dry bias over the western edge of WPSH and a wet bias

associated with the cyclonic wind bias. Easterly wind bias

occurs over South Asia and westerly wind bias appears

over the equatorial Indian Ocean, along with extraordi-

narily lack of precipitation over India and the Bay of

Bengal and overestimated precipitation over the eastern

Arabian Sea and the central-eastern equatorial Indian

Ocean. Besides, weaker-than-observed meridional wind

and precipitation are seen over the South China Sea. In

contrast to the dry biases over the Bay of Bengal and the

South China Sea, wet biases appear over the southern flank

of the Tibetan Plateau and the west coast of the Indo-China

Peninsula in the CFSv2, a problem in the CFS version 1

(Yang et al. 2008a; Drbohlav and Krishnamurthy 2010)

and some multi-model ensembles of the DEMETER and

ENSEMBLES EU projects (Lee et al. 2010; Li et al. 2012;

Rajeevan et al. 2012) as well. These features suggest some

common deficiencies in current climate models. Over the

African summer monsoon region, an underestimation of

precipitation, as a response to a westerly wind bias over the

equatorial area and a cyclonic wind bias over the Sahara

Desert, indicating a weaker ITCZ, appears over most of

West Africa. Also, apparent northwesterly wind bias and

dry bias over southwestern North America exist in boreal

summer, meaning that the predicted NAMM is often

weaker than observed.

For the southern summer monsoons (Fig. 2), the pre-

dicted AUM is often featured by a conspicuous southerly

wind bias over northern Australia and a stronger-than-

observed wind convergence near the equator, as well as a

dry bias over northern Australia and a wet bias over the

equatorial area owing to the farther north position of model

ITCZ than observed. Except over the Andes Mountains and

the northern edge of the Amazon Basin, most of South

America is dominated by an apparent dry bias in austral

summer, along with southerly wind bias to the north of

Amazon and anticyclonic wind bias over eastern Brazil.

We further plot the differences in 12-year mean surface

temperature between the model and observations (Fig. 3).

During boreal summer (Fig. 3a), conspicuous warm biases

extend from the Sahara Desert to most of the Tibetan

Plateau, with amplitude of more than 2 �C in many places.

Conversely, to the south of the warm biases, equally

apparent cold biases are found from West Africa to the

Ethiopian Highland. Over the Asian monsoon region, as a

possible response to the dry bias over the western edge of

WPSH and the cyclonic wind bias over the northwestern

Pacific, the warmer water in the tropical western Pacific

and the colder water in the subtropical North Pacific exist

in summer. Also, the warmer water over the South China

Sea and the colder land over the Indo-China Peninsula and

South China persist in summer, and opposite-sign biases

are found to the north and the south of the Indian Penin-

sula. In addition, apparent cold biases appear over most of

North America except near the Gulf of California and over

the Rocky Mountains, while warm biases often occur over

the northeastern Pacific and the Gulf of Mexico.

During austral summer (Fig. 3b), most of South Amer-

ica, except the northwestern Amazon Basin, is often

dominated by apparent cold biases, while the adjacent

southeastern Pacific is occupied by warm biases. Over the

AUM region, warm biases persist over most tropical areas

except the Maritime Continent.

4 Subseasonal prediction skills

In this section, we discuss the subseasonal prediction of

monsoons as a function of lead time, focusing on the pre-

diction skills in winds, precipitation, and monsoon indices.

The subseasonal variations in boreal summer and austral

summer are examined for pentad means, i.e., Julian pentads

25–54 from May to September and pentads 61–72 and

1–18 from November to March, respectively. The predic-

tions for a target pentad are divided into 14 groups

NCEP Climate Forecast System 1489

123



according to the length of lead time, i.e. 0–2, 3–5, and

every 3 days to 39–40 days. Most of these pentad predic-

tions are ensemble means of 12 members within 3 days,

except that the last prediction is an ensemble average of 8

members within 2 days. For different leads of time, and for

each pentad in a certain year, the pentad-mean anomalies

Fig. 1 Twelve-year means of

precipitation (shadings, units

mm/day) and 850-hPa winds

(vectors, units m/s) for a first-

month forecasts, b observations,

and c biases (predictions minus

observations) averaged from

May to September

Fig. 2 Same as Fig. 1 but for

features averaged from

November to March
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are computed by subtracting the corresponding pentad

climatologies from 1999 to 2010.

4.1 Standard deviations and forecast errors of winds

and precipitation

The top two panels of Fig. 4 show the observed and pre-

dicted standard deviations of pentad variations of 850-hPa

zonal wind and precipitation in boreal summer. The pre-

dictions with the shortest leads (0–2 days) agree well with

observations in many major centers, especially over the

northern Pacific, the northern Atlantic, and southern Asia

with large zonal wind variability, and over the eastern

tropical Pacific, the eastern equatorial Atlantic, and Asian

tropical oceans with large precipitation variability. How-

ever, the magnitude of predicted variability is often weaker

than observed, which may be partially due to underesti-

mation by the model or smoothing by the ensemble aver-

aging process. With increasing lead time, the standard

deviations of zonal wind and rainfall show clearly a

decreasing tendency owing to the gradual domination of

forecast signals from slowly varying components of the

climate system (figure not shown).

The root-mean-square errors (RMSE) of predicted zonal

wind and precipitation are further depicted by the other

panels of Fig. 4. Distribution features similar to the above-

discussed standard deviation features are found for most

predictions, indicating the concurrence of significant error

growth and strong climate variability, whereas the errors

show apparent variation with lead time. The errors of zonal

wind exhibit a very small magnitude at the shortest leads

(figure not shown), followed by a gradual increase to a

persistent state with the advance of lead time as shown in

Figs. 4c–f. Error growth is mainly concentrated in the leads

up to 2 weeks for zonal wind in most areas, except over

southern Asia. In contrast with zonal wind, the errors of

precipitation (Fig. 4i–l) show more rapid development,

resulting in large amplitude at the minimum lead time, and

major growth is almost confined to the leads up to 1 week.

This feature implies that precipitation bias rapidly evolves

towards its asymptotic value and precipitation attains its

upper limit of actual predictability in the model, although

the atmospheric circulation still has growing errors and is

with considerable skills at that time. Besides, it should be

noted that the precipitation over some regions, especially

the subtropical Asian continent and the areas from tropical

eastern Pacific to tropical West Africa, suffers from an

initial shock featured by a large error at the shortest leads

with a subsequent reduction.

The features of standard deviations and forecast errors

in austral summer are presented in Fig. 5. The large

errors, associated with strong subseasonal variability, are

mainly distributed around the ITCZ, South America, the

South Pacific, and the South Indian Ocean. Likewise, the

error growth is mainly concentrated for leads \2 weeks

for zonal wind as compared to 1 week for precipitation.

To some extent, the enduring slower increase in RMSE of

zonal wind to the north of Australia implies a larger

predictability of the AUM low-level circulation in the

model.

Fig. 3 Differences between

first-month forecasts and

observations for 12-year mean

surface temperatures (units �C)

averaged from a May to

September and b November to

March
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4.2 Forecast skills of monsoon indices

For the observed and predicted time sequences of pentad

anomalies (30 pentads in boreal or austral summer) in each

year, temporal correlations between observations and pre-

dictions of different leads are calculated to evaluate the

skills in forecasting the temporal variability of winds and

precipitation over the entire monsoon season. Multi-year

mean skill for 850-hPa zonal wind in boreal summer and

austral summer are shown in Fig. 6. The model skillfully

captures the subseasonal variation of zonal wind over most

areas for 1-week lead forecasts. It exhibits a rapid and

remarkable loss of skill as lead time increases to about

2 weeks, although significant skills can still be found over

some equatorial areas, including the southern South China

Sea, the equatorial Atlantic, and the western Indian Ocean

in boreal summer, as well as most equatorial regions except

the eastern Pacific in austral summer. At the leads of about

3 weeks, the predictions of zonal wind are unskillful over

most areas, except some sparse regions near the equator in

the Asian and Australian monsoon regions. In comparison,

the skills of precipitation prediction show a much more

rapid decrease with lead time over most areas, and they

often drop to insignificant level at the leads of about

1 week (figure not shown).

Although the predictions of grid-point precipitation are

disappointing, area-averaged rainfall is more predictable.

Here, we discuss the skills of prediction of regional aver-

aged precipitation for SAM, SEAM, WAFM, NAMM,

SAMM, and AUM. The selected regions basically cover the

places with concentrated monsoon rainfall and maximum

precipitation variability. The domains of these regions are

listed in Table 1 (also outlined in Fig. 6), and the same

regions have been used in previous studies (e.g., Lau et al.

Fig. 4 Left panels for 850-mb zonal wind (units ms-1): a observed

standard deviation, b CFSv2 standard deviation, c CFSv2 RMSE for

leads of 6–8 days, and d–f differences in CFSv2 RMSE between

different leads. Right panels are similarly shown for precipitation

(units mm/day). Values are the 12-year means for boreal summer

(May–September) from 1999 to 2010 and the mean seasonal cycle is

removed for each year
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2000; Xue et al. 2010; Vera et al. 2006; Kajikawa et al.

2009) to investigate the variability of monsoon precipita-

tion. Figure 7a shows the correlations between observa-

tions and forecasts as a function of lead time for

precipitation for different years. The forecast skills for all

regions show conspicuous interannual differences. For

example, the forecasts for AUM in 2001 and SAMM in

2003 are skillful at leads up to 5 weeks, while the AUM in

2008 and the SAMM in 2004 only show skills within

1-week leads. On average, the skill drops below the 99 %

confidence level in about 2 weeks for WAFM and SAMM,

one and a half weeks for SAM, SEAM and AUM, and

\1 week for NAMM. The low skill for NAMM may be

partially attributed to model’s inability in capturing the

regional precipitation with weak variability and small

spatial scale.

We further investigate the prediction skills of monsoon

indices (Fig. 7b) including the Webster-Yang index (WYI;

Webster and Yang 1992), the SAM index (Goswami et al.

1999), the SEAM index (Wang and Fan 1999), the AUM

index (Kajikawa et al. 2009), and a zonal wind shear index

(ZWSI) and a meridional wind shear index (MWSI) for the

SAMM (Gan et al. 2005). The definitions of these indices

are given in Table 1. On average, it takes about 2 weeks of

leads for WYI, SAM index, SAMM-ZWSI and SAMM-

MWSI, and about two and a half weeks of leads for SEAM

index and AUM index to fall into the range of unskillful

predictions. However, the prediction of each index shows

apparent interannual differences, with high skills at the

leads up to 5 weeks in some years but \2 weeks in other

years. Specially, the Asian and Australian monsoon indices

show larger spreads of skill than the South American

monsoon indices. Forecast skill generally shows an

apparent decreasing tendency with increasing lead time at

short leads, especially those \2 weeks, followed by con-

tinuous and rapid descent (e.g., WYI in 2003, SAM in

2010, SEAM in 2005, and AUM in 2008), or a persistency

with rarely-varying magnitude (e.g., WYI in 2005 and

SAM in 2002), or a gradual increase again at long leads

(e.g., SEAM in 2008 and AUM in 2001). The persistently

Fig. 5 Same as Fig. 4 but for climatological means for austral summer (November–March) from 1999 to 2009
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significant skills for subseasonal predictions may be more

attributable to the signals from slowly varying components

of the climate system, since the initial memories of rapidly

varying parts wither quickly with advancing leads.

Besides, the summer-averaged spatial correlation

between observations and forecasts as a function of lead

time for the precipitation and 850-hPa zonal wind in var-

ious monsoon regions is presented in Fig. 8. On the whole,

significantly higher skills are found for zonal wind than for

precipitation, and for the Asian monsoon (especially the

SEAM) than for other monsoons. There exist different but

considerably smaller interannual differences for spatial

correlation skills as compared to temporal correlation skills

of monsoon forecasts.

4.3 Prediction of relationships between monsoon

indices and circulation

The relationships between monsoon indices and atmo-

spheric circulation patterns are further evaluated in this

section, with a focus on the skillful and unskillful cases

shown in Sect. 4.2. The observations and predictions of

different leads for WYI, SEAM, AUM, SAMM-ZWSI,

NAMM, and WAFM indices in the years of most and least

significant skills are shown in Figs. 9, 10 and 11. The

features for other monsoon indices and secondary skillful

cases are also analyzed but figures are not shown.

In 2005, the observed WYI is an excellent measure

of the variability of low-level winds over the east coast

of Africa, the Arabian Sea, India, and the Bay of

Bengal. A stronger-than-normal WYI is associated with

more vigorous cross-equatorial flow (CEF) near Somali

and zonal wind over South Asia. This link is similar to

the response of atmospheric circulation to the enhanced

convection over the Bay of Bengal on interannual time

scale (Wang and Fan 1999). The CFSv2 is able to

capture the observed correlation reasonably well at all

leads. Nevertheless, it gradually overestimates the

relationship in both intensity and spatial extension and

partially reflects an increasing response to the con-

vection near the Philippines with advance of lead time.

Fig. 6 Spatial distributions of temporal correlation between obser-

vations and predictions of different leads for 850-hPa zonal wind

from May to September (left column) and from November to March

(right column). Shown are the 12-year averages for boreal summer

from 1999 to 2010 and 11-year averages for austral summer from

1999 to 2009. The mean seasonal cycle is removed for each year. The

three shading levels represent the statistical significance of correlation

above the 95, 99, and 99.9 % confidence levels, respectively. Black

rectangles indicate different monsoon regions

Table 1 List of monsoon indices defined by precipitation and

atmospheric circulation

Type Index

abbreviation

Definition (variables and the

domain range to average)

Regional

averaged

precipitation

SAM Prec (10�–30�N, 70�–100�E)

SEAM Prec (5�–25�N, 100�–130�E)

WAFM Prec (5�–20�N, 15�W–20�E)

NAMM Prec (20�–37�N, 103�–112�W)

AUM Prec (7.5�–17.5�S, 120�–150�E)

SAMM Prec (5�–20�S, 40�–60�W)

Dynamical

monsoon

indices

WY U850–U200 (0�–20�N, 40�–110�E)

SAM V850–V200 (10�–30�N, 70�–110�E)

SEAM U850 (5�–15�N, 90�–130�E)–U850

(22.5�–32.5�N, 110�–140�E)

AUM U850 (5�–15�S, 110�–130�E)

SAMM-

ZWSI

U850–U200 (10�–15�S, 50�–60�W)

SAMM-

MWSI

V850–V200 (5�–10�S, 30�–40�W)
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Fig. 7 Temporal correlations between observations and forecasts of

different lead days (horizontal axis) for a regionally averaged

precipitation and b dynamical monsoon indices listed in Table 1.

Shown are the three-point running averages along forecast lead days.

Black dash lines denote the statistical significance of correlation at the

99 % confidence level
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In contrast, the observed WYI in 2003 is strongly cor-

related with the zonal wind over the equatorial Indian

Ocean, but this relationship is rapidly replaced by a

strengthening link between WYI and the zonal wind

over southern Asia with increasing leads as a large-scale

response to the convections over the Bay of Bengal and

Fig. 8 Summer-averaged spatial correlations between observations

and forecasts of different lead days (horizontal axis) for a precipitation

and b 850-hPa zonal wind in monsoon regions outlined in Fig. 6.

Shown are the three-point running averages along forecast lead days.

Black dash lines denote the statistical significance of correlation at the

99 % confidence level

1496 X. Liu et al.

123



near the Philippines. This result means an unskillful

prediction of WYI in 2003.

For the SEAM index, the predictions in both 2008 and

2005 tend to indicate a gradually intensifying large-scale

response to the convection over the western tropical Pacific

with increasing lead time. The overall features are that a

stronger SEAM corresponds to more robust cyclonic con-

vergence anomalies over Southeast Asia and westerly wind

anomalies from the Indian Peninsula to the Philippines, and

corresponds to more precipitation over the western tropical

Pacific and less precipitation over the Maritime Continent.

However, the former is more skillful than the latter,

because the observed variability of SEAM is attributed

more to the variation of large-scale circulation and con-

vection anomaly in 2008 compared to 2005.

The observation in 2001 shows that, a higher-than-nor-

mal AUM index not only corresponds to stronger westerly

wind across southern Indonesia and northern Australia

associated with more precipitation off the north coast of

Australia, but also couples with cyclonic anomaly over

northwestern Australia. The CFSv2 is able to skillfully

reproduce the observed relationship at short leads.

Fig. 9 Patterns of correlations (shadings) between precipitation and

monsoon indices and regressions (vectors) of 850-hPa winds on

monsoon indices. Features are presented for observations and for

predictions of different leads. Shown are for Webster-Yang index (left

two columns) and Southeast Asian monsoon index (right two

columns) in higher-skill years (first and third columns) and lower-

skill years (second and fourth columns). The three shading levels

represent the statistical significance of correlation above the 95, 99,

and 99.9 % confidence levels respectively, and the decimals shown in

the right of headlines are spatial pattern correlations between

predicted and observed features
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However, with increasing leads, the strong convection over

northern Australia and the CEF across the Maritime Con-

tinent to the southern hemisphere seem to be more signif-

icantly related to the AUM index. Nevertheless, along with

the strengthening link with tropical circulation in the

southern and northern hemispheres, the variability of AUM

is still excellently captured by the southeasterly wind over

the west coast of Australia in 2001. In contrast, with

advancing lead time, the strengthening connection of AUM

to large-scale circulation quickly shields the observed

regional link between AUM and the zonal wind over

northern Australia in 2004.

As also shown by Fig. 10, the observed ZWSI for the

SAMM is best correlated with northerly wind over the

Amazon Basin and Brazil and with precipitation over

southeastern Brazil. The forecast in 2005 tends to show an

apparent response of larger-scale circulation to the

convection over Brazil so that the relationship between the

ZWSI and atmospheric circulation is reasonably well per-

sistent at all-lead forecasts. For 2004, however, such a

feature is not found and the forecasted ZWSI shows an

excessively strong connection with regional circulation.

The relationships between NAMM/WAFM and circu-

lation are presented in Fig. 11, in which monsoon indices

are area-averaged precipitation shown in Fig. 7. Compari-

sons between 2000 and 2010 for NAMM precipitation and

between 2005 and 2010 for WAFM precipitation indicate

that the long-lead forecasts depict a link between NAMM

precipitation and cyclonic wind anomaly over the north-

eastern Pacific and a link between WAFM precipitation

and cyclonic wind anomaly from the equatorial eastern

Atlantic to West Sahara, respectively. Therefore, forecasts

may be more skillful when observed monsoon precipitation

has such a similar connection with circulation over a

Fig. 10 Same as Fig. 9, but for the Australian monsoon index and the South American monsoon index
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relatively broad area than when precipitation is linked with

regional circulation.

The above comparisons imply that the model tends to

depict the response of large-scale atmospheric circulation

to tropical convection with increasing lead time, and the

prediction skill of a monsoon index may depend partially

on the extent to which observed variability of the monsoon

index is attributed to the variation of large-scale circula-

tion. This feature can also be found from the comparisons

of other cases, e.g., the forecasts in 2000 and 2010 for

SEAM, 2002/2005 and 2010/2007 for SAM, 2005 and

2008 for AUM, and 2001 and 2004 for MWSI of SAMM

(figures not shown).

5 Subseasonal variations of biases with monsoon

evolution and lead time

We further discuss the subseasonal variations of biases as a

function of prediction period and lead time. In addition to

discussion of the variation features of biases for individual

fields, multivariate empirical orthogonal function (EOF)

analyses are carried out for the biases of 850-hPa winds,

precipitation, and surface temperature over various mon-

soon regions. The predictions of all leads from zero to

40 days are involved in the EOF computations. For the

sake of clarity, results for precipitation and surface tem-

perature are discussed separately.

Fig. 11 Same as Fig. 9, but for the area-averaged precipitation over North America monsoon region (left two columns) and West African

monsoon region (right two columns) instead of dynamical monsoon indices
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5.1 Asian summer monsoon

Pentad climatologies of precipitation and 850-hPa winds in

different Julian pentads for ensemble predictions with leads

of 0–2 days and 24–26 days show reasonable features of

subseasonal evolution of the Asian summer monsoon. The

differences between predictions and observations (Fig. 12)

show the variations of biases with forecast period and lead

time. These variations include the migrations of the cyclo-

nic wind bias and associated precipitation bias over the

northwestern Pacific and the change in biases over the

tropical Indian Ocean from anticyclonic wind and insuffi-

cient rainfall in early May to cyclonic wind and excessive

precipitation in July and August. They also include the

persistence of dry bias over the northwestern Bay of Bengal

during monsoon season and the reinforcement of biases of

winds and precipitation over many places, especially the

equatorial Indian Ocean, from short leads to long leads.

Figure 13a–c show the latitude-time cross sections for

biases of surface temperature along 70�–100�E for

ensemble-mean predictions of different leads. Almost in all

predictions, apparent warm biases over the Tibetan Plateau

(30�–40�N) persist in summer even though with a signifi-

cant weakening from July. Among the latitude belt of 10�–

30�N, a change from cold to warm biases occurs around

mid-June at longer leads, while an opposite conversion

from warm to cold biases appears around late June at

shorter leads. Besides, the small biases to the south of 10�N

at shorter leads are replaced by larger biases at longer

leads, which are also featured by a warm-to-cold transition

in June. Over the northwestern Pacific (Fig. 13d–f), a

transition from cold bias to warm bias occurs over the

subtropics near late June and early July, probably associ-

ated with the shift of the cyclonic wind bias over the

western Pacific. Meanwhile, the warm biases over tropical

areas persist in the entire boreal summer and often

strengthen with increasing lead time.

The multivariate EOF analyses of the biases of 850-hPa

winds, precipitation, and surface temperature of all leads

are shown in Fig. 14. Similar to the features shown in

Figs. 1, 2 and 3, the first mode (not shown, the same

hereafter) indicates that the Asian monsoon is weaker than

observed in most of summer. It is further revealed by

Fig. 14c that the biases associated with this mode gradually

intensify before formation of the strongest SAM and full

control of the WPSH over the northwestern Pacific and

weaken with the retreat of SAM and WPSH (see Figs. 13,

14 in Liu et al. 2012). The second mode features a tran-

sition of biases from anticyclonic wind to cyclonic wind

across the Indian Peninsula and the equatorial Indian

Ocean and from the northwesterly wind bias in the tropics

and anticyclonic wind bias in the subtropics to an opposite-

sign distribution over the northwestern Pacific, along with a

consistent variation of biases in precipitation. The transi-

tion occurs around late June and early July, when the SAM

reaches its peak and the WPSH is in a northward shifting

process. Although the second mode has a smaller variance,

its typical features can be captured by the predictions of

individual fields (see description for Fig. 12) because the

second mode is in a strong state when the first mode is in a

weak state as depicted by Fig. 14c, d.

The result for winds and surface temperature (Fig. 14b)

further indicates that the transition of biases of winds over

the SAM region shown in the second mode is associated

with a reversal of biases of surface temperature from the

equatorial Indian Ocean across South Asia to the Tibetan

Plateau (also see Fig. 13a–c). Considering the evolution

features of the magnitude of SAM and the position of

WPSH, the first mode represents the dominance and per-

sistence of weaker-than-observed SAM and WPSH in

boreal summer, and the second mode can be explained

from the following two aspects. First, over the northwest-

ern Pacific, the weaker WPSH before July can contribute to

the cyclonic wind bias south of 20�N and the northwesterly

wind bias near the equator. The northward shift of WPSH

around July favors a northward movement of cyclonic wind

bias that intensifies the southeasterly wind bias near the

equator. Meanwhile, it is helpful for the biases of precip-

itation and surface temperature to be replaced by opposite-

sign biases during the transition process. Secondly, the

transition of biases of winds and precipitation over the

SAM region is not only connected to the reversal of biases

of surface temperature over the equatorial Indian Ocean

and near India through heat flux transportation and

upwelling processes, but also attributed partially to the

change from warm bias to cold bias over the Tibetan Pla-

teau, favoring the transition of zonal wind bias in the south

as a thermal response of regional atmospheric circulation.

5.2 West African summer monsoon

Results of multivariate EOF analysis for WAFM are shown

in Fig. 15. Also, the subseasonal variations of individual

fields of winds, precipitation, and surface temperature are

analyzed but the figures are not all shown (same hereafter

in Sect. 5).

The underestimated precipitation over most of West

Africa except the southwestern corner does not lead to

warming of land surface at the south of 15�N in the first

mode. Thus, the biases of winds and precipitation in the first

mode may be attributed to the rapid occurrence of con-

spicuous warm bias over the Sahara Desert and cold bias

over tropical West Africa, which maximize near 2 �C at the

leads of about 1 week (Fig. 13g–i). Especially, the apparent

warm bias over the Sahara has appeared at the minimum

leads. This thermal bias distribution may induce a regional
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low-level circulation bias, which suppresses convergence

and results in a dry bias over the WAFM region.

The second mode is characterized by a reversal of

wind and precipitation biases near the Gulf of Guinea

around July, which is likely related to the northward shift

of ITCZ and the intensification of southerly CEF over

the eastern equatorial Atlantic, leading to strengthening

monsoon precipitation from July. The warm state over

the Sahara attains its peak during this time and then

begins a gradually weakening process, along with a

Fig. 12 Biases of climatological pentad precipitation (shadings, units

mm/day) and 850-hPa winds (vectors, units ms-1) for different Julian

pentads in summer monsoon season for ensemble predictions with

leads of 0–2 days (left column) and 24–26 days (right column). The

decimals shown in right of headlines are spatial pattern correlations

between predictions and observations
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decrease in warm bias over the Sahara and weakening of

cold bias in tropical West Africa. Particularly, associated

with the northward shift of ITCZ and the boundary line

between warm and cold biases, the surface temperature

near 15�N shows a transition from warm bias to cold

bias (Fig. 13g–i).

Therefore, it seems that the regional impacts of the

strong warm bias over the Sahara and the cold bias over the

tropical monsoon region play an important role in the

formation of dry bias over West Africa. The northward

shift of ITCZ and the change in underlying thermal state

can weaken the dry bias to a certain degree in the latter part

of summer monsoon season.

5.3 North American summer monsoon

Figure 16 shows the results of multivariate EOF analysis

for NAMM. The first mode exhibits weaker-than-observed

monsoon low and Bermuda High in the model. The second

mode is characterized by transitions from anticyclonic

wind bias to cyclonic wind bias over the extratropical

northeastern Pacific and the northwestern Atlantic, and

Fig. 13 Latitude-time cross sections of prediction biases of surface temperature (units �C) along 70�–100�E (top row), 120�–150�E (middle

row), and 15�W–15�(bottom row) for ensemble-mean predictions of different leads
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from cyclonic wind bias to anticyclonic wind bias over the

subtropical eastern Pacific and the southwest coast of North

America. As a result, a change in precipitation from wet

bias to dry bias occurs over the NAMM region around

early July. The biases of regional circulation and precipi-

tation over eastern-central North America, although weak,

also exhibit transitional changes.

The apparent warm bias over the subtropical eastern

Pacific captured by the first mode seems to be associated

with the anticyclonic wind bias near the NAMM region,

while the gradually intensifying cold bias over eastern-

central North America may be linked to the strong anti-

cyclonic wind bias and dry bias over the region thorough

thermal response of regional circulation. The features

depicted by the second mode mainly reflect the occurrence

of transitions from anticyclonic wind bias to cyclonic wind

bias for the Pacific High and the Bermuda High, and from

cyclonic bias to anticyclonic bias for the monsoon low. In

addition, as suggested by the two modes, the variations of

wind and precipitation biases over eastern-central North

America may be affected by regional or mid-high latitude

factors.

5.4 Australian summer monsoon

Results of multivariate EOF analysis for AUM are ana-

lyzed. The first mode presents a stronger but more north-

ward ITCZ and corresponding warmer sea water over

Fig. 14 Multivariate EOF

analysis of the prediction biases

of 850-hPa winds, precipitation,

and surface temperature for all

leads. With the same

distribution of winds (vectors in

a and b), features for

precipitation (shading in a) and

surface temperature (shading in

b) in the second mode (first

mode not shown) are given

separately in the top row, and

three-point running averaged

principal components are shown

in the bottom row. The color

range from the red end to the

blue end in (c) and (d) denotes

the leads from 0 to 40 days

Fig. 15 Same as Fig. 14 but for

the multivariate EOF analysis

for the West African summer

monsoon
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northern Australia in the model. Figure 17a and b show a

transition of biases of winds, precipitation, and surface

temperate in the second mode. Due to the southward

movement of ITCZ from the northern hemisphere to the

southern hemisphere, the CEF near the Maritime Continent

shows a change from southerly flow to northerly flow, and

the winds over the adjacent tropical regions also show

opposite distributions between the early and late periods of

monsoon (figure not shown). Along with the above process,

there are transitions for winds from divergence bias to

convergence bias and for precipitation from dry bias to wet

bias to the north of Australia. Also, the dry bias over

northern Australia, which persists in most of monsoon

season, is weak in November and December and becomes

strong in January and February. Correspondingly, the sur-

face temperature over northern Australia shows a reversal

change from cold bias to warm bias.

5.5 South American summer monsoon

Figure 18 shows the results of multivariate EOF analysis

for SAMM. The first mode denotes that, in the SAMM

region, the weak northerly CEF in the northern Amazon

Basin and the overestimated precipitation near the Andes

are often predicted by model. The subseasonal variations of

individual fields (figure not shown) indicate that the

weaker-than-observed CEF should play a crucial part in the

formation of dry bias in northern South America, and the

biases of subtropical highs in the Pacific and the Atlantic

may partially account for the wind biases in the neigh-

boring regions of South America. Nevertheless, the

northerly wind bias from the southwestern Amazon Basin

to the La Plata Basin may be partially related to the

apparent cold bias from southeastern Brazil to northern

Argentina.

The second mode is featured by a clear reversal of bias

of winds in austral summer, indicating transitions of the

subtropical highs over the Pacific and the Atlantic from

weaker to stronger state near South America, as well as the

change in northerly CEF from weaker to stronger state

accompanied by a southward shift of the ITCZ. Corre-

spondingly, the dry bias over most of South America is

weakened or even regionally replaced by wet bias in late

monsoon period (figure not shown). However, the biases of

surface temperature do not show apparent development

over most areas except near the equatorial eastern Pacific

and the La Plata Basin.

5.6 Bias growth with lead time

The principal components also show that the time for

biases to reach saturation state experiences significant

geographical differences. As depicted by Figs. 14, 15, 16,

17, and 18c, the biases of associated winds, precipitation,

and surface temperature over the Asian monsoon, SAMM,

and AUM regions, especially the last one, show gradual

growth with increasing lead time. It often takes nearly

1 month for them to reach the peaks. These features sug-

gest a potentially large persistence of initial memory of the

climate system and a probably high skill for these monsoon

areas. However, over the regions for WAFM and NAMM,

mostly the biases need only a few days to attain their peaks,

possibly relating to the clear initial shock and quick skill

loss of precipitation as previously shown in Fig. 4.

The principle components of various leads of the second

mode often show much smaller differences compared to

the first mode. That is, small spreads of biases at different

leads are easily found even they vary with monsoon

regions, variables, mode phases, and ranges of lead time.

Particularly, the biases of second mode for Asian monsoon

Fig. 16 Same as Fig. 14 but for

the multivariate EOF analysis

for the North American summer

monsoon
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exhibit fast growth within short leads before July and major

development within long leads after July (Fig. 14d), which

suggests that slowly varying components of the coupled

system begin to exert a gradually important influence on

the biases after the transition process. Also, the biases of

second mode for AUM show a very slow increase with lead

time before the transition process in contrast to an imme-

diate growth and saturation afterwards (Fig. 17d).

6 Conclusion and discussion

In this study, we have diagnosed the subseasonal forecast

skills and prediction biases of global summer monsoons

using retrospective forecasts by the NCEP CFSv2. The

prediction skills of subseasonal monsoon variability are

evaluated by RMSE and correlations of zonal wind and

precipitation between the CFSv2 and observations. The

error growth of zonal wind is mainly concentrated in the

leads \2 weeks over most regions, except over southern

Asia in boreal summer and tropical northern Australia in

austral summer where a longer duration of error develop-

ment implies more actual predictability. The error growth

of precipitation is mostly concentrated within the leads of

about 1 week, and the prediction suffers by initial shocks

over some regions, especially over subtropical Asia and the

tropical areas from the eastern Pacific to West Africa in

boreal summer. Zonal wind also exhibits better correlation

skill over the Asian-Australian tropical monsoon regions

than other regions, while precipitation presents a very

quick decrease in prediction skill with increasing leads.

Nevertheless, the area-averaged precipitation over certain

Fig. 17 Same as Fig. 14 but for

the multivariate EOF analysis

for the Australian summer

monsoon

Fig. 18 Same as Fig. 14 but for

the multivariate EOF analysis

for the South American summer

monsoon
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monsoon regions is sometimes predicted with high skill,

although with an apparent interannual difference.

The lead time for most dynamical monsoon indices to

become unpredictable is about 2–3 weeks on average, but

it shows apparent interannual differences featured by

contrast between up to 5 weeks in some years and

\2 weeks in other years. Especially, the predictions for

Asian and Australian monsoon indices sometimes maintain

a nearly unchanged skill or a gradually increasing skill that

is above the significance level at leads longer than

2–3 weeks. For some indices, comparisons of their rela-

tionships with atmospheric circulation and precipitation

between skillful and unskillful cases are further conducted.

The forecast skills for certain indices depend partially on

the extent to which observed variability of the indices is

attributed to the variation of large-scale circulation. Thus,

the predictions of the subseasonal variability of a monsoon

index tend to be more (less) skillful when the index is

closely linked to atmospheric circulation over a larger

(smaller) spatial range.

The variation of biases with prediction period and lead

time are also explored by analyses of subseasonal varia-

tions of individual fields and multivariate EOF analyses of

winds, precipitation, and surface temperature. The first and

second modes for various monsoons are featured by per-

sistently existing biases and transitional biases, respec-

tively. Weaker-than-observed SAM, SEAM, WAFM, and

NAMM in boreal summer and underestimated AUM and

SAMM in austral summer are often captured by the model.

However, these features are regionally and temporally

offset or intensified by the secondary but important tran-

sitional processes of biases, which are partially related to

the northward shift of WPSH, the reversal of surface

temperature biases over the SAM and WAFM regions, the

migration of ITCZ, and the transitions of subtropical highs

near the NAMM and SAMM regions. For the primary

modes, bias growth with increasing leads is much slower

over the Asian monsoon, SAMM, and AUM regions than

over the WAFM and NAMM regions, implying potentially

longer persistence of initial memory of the climate system

for the former than for the latter. In addition, the spreads of

biases at various leads shown in the second modes exhibit

apparent variations with the phase of the modes and the

range of lead time, suggesting different contributions from

slow-varying and fast-varying components of the climate

system.

The subseasonal forecast skills of monsoons and their

interannual differences are preliminarily explored but the

source of forecast skills is not addressed in this study. It

should be noted that the variations of SEAM index are

more predictable by the model for 1999, 2000, and 2008

than for 2005 and 2010 due partially to its closer link with

larger-scale circulation and convection for the former than

for the latter (see discussion of Figs. 7b, 9). To a certain

extent, this feature implies that the forecasts for subsea-

sonal variability of SEAM tend to be more skillful in the

summer following La Niña than El Niño, possibly attrib-

uted to the apparently enhanced and suppressed convec-

tions near the Philippines in the decaying stage of La Niña

and El Niño, respectively (Xie et al. 2009). However, the

skills for most monsoon indices are found to show insig-

nificant correlation with ENSO. This feature suggests that

although the ENSO does not necessarily linearly affect

monsoon variation, it sometimes may act as an important

background to modulate the skills of forecast. Neverthe-

less, this conclusion needs to be investigated further for

two aspects. (a) The effects of interannually varying

external forcing are often represented as seasonally per-

sistent anomalies (Krishnamurthy and Shukla 2007;

Achuthavarier and Krishnamurtky 2010), which affect the

time-mean values of pentad anomaly sequences but do not

influence the results of forecast skills because the temporal

correlation between two sequences does not depend on

their respective sequence means. Or equivalently, it can

also be assumed that the interannual variability introduced

by external forcing is removed when the seasonal averages

of pentad anomalies are subtracted during the computation

of temporal correlation. (b) The data length in this study is

not long enough for exploring the relationship of subsea-

sonal forecast skills with ENSO. Thus, more experiments

and further analyses are needed for understanding above

results.

It should also be realized that our results are based on

the hindcasts by the NCEP CFSv2. The prediction skills

and biases of monsoon, however, are often model depen-

dent. Apparent model-to-model differences of prediction

biases and skills have been found by previous studies (e.g.,

Wang et al. 2008; Lee et al. 2010; Xue et al. 2010; Li et al.

2012; Rajeevan et al. 2012). Thus, further evaluations on

monsoon subseasonal predictions by different state-of-the-

art climate models are necessary for better understanding

monsoon predictability and multi-model ensemble

predictions.
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