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Abstract Recent publications have provided evidence

that hydrological processes exhibit a scaling behaviour,

also known as the Hurst phenomenon. An appropriate way

to model this behaviour is to use the Hurst-Kolmogorov

stochastic process. The Hurst-Kolmogorov process entails

high autocorrelations even for large lags, as well as high

variability even at climatic scales. A problem that, thus,

arises is how to incorporate the observed past hydrocli-

matic data in deriving the predictive distribution of hy-

droclimatic processes at climatic time scales. Here with the

use of Bayesian techniques we create a framework to solve

the aforementioned problem. We assume that there is no

prior information for the parameters of the process and use

a non-informative prior distribution. We apply this method

with real-world data to derive the posterior distribution of

the parameters and the posterior predictive distribution of

various 30-year moving average climatic variables. The

marginal distributions we examine are the normal and the

truncated normal (for nonnegative variables). We also

compare the results with two alternative models, one that

assumes independence in time and one with Markovian

dependence, and the results are dramatically different. The

conclusion is that this framework is appropriate for the

prediction of future hydroclimatic variables conditional on

the observations.

Keywords Bayesian statistics � Hydroclimatic

prediction � Likelihood � Hurst-Kolmogorov process �
Hydrological statistics

1 Introduction

A lot of work has been done in predicting the future of

hydroclimatic processes using Bayesian statistics. Berliner

et al. (2000) applied a Markov model to a low-order

dynamical system of tropical Pacific SST, using a hierar-

chical Bayesian dynamical modelling, which led to real-

istic error bounds on forecasts. Duan et al. (2007)

illustrated how the Bayesian model averaging (BMA)

scheme can be used to generate probabilistic hydrologic

predictions from several competing individual predictions.

Kumar and Maity (2008) used two different Bayesian

dynamic modelling approaches, namely a constant model

and a dynamic regression model (DRM) to forecast the

volume of the Devil’s lake. Maity and Kumar (2006) used a

Bayesian dynamic linear model to predict the monthly

Indian summer monsoon rainfall. Bakker and Hurk (2012)

used a Bayesian model to predict multi-year geostrophic

winds.

On the other hand, climate models (i.e. general circu-

lation models—GCMs) give deterministic projections of

future hydroclimatic processes for some hypothesized

scenarios e.g. for the increase of CO2 concentration, etc.

However, the uncertainty of these projections whose

sources may be attributed to insufficient current under-

standing of climatic mechanisms, to inevitable weaknesses

of numerical climatic and hydrologic models to represent

processes and scales of interest, to complexity of processes

and to unpredictability of causes (Koutsoyiannis et al.

2007), is not estimated by these models. Consequently, it is

impossible to estimate whether any observed changes

reflect the natural variability of the climatic processes or

should be attributed to external forcings. Additionally,

using deterministic projections and thus neglecting the

uncertainty in future hydroclimatic conditions, may result
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in underestimation of possible range of the future hydro-

climatic variation.

Koutsoyiannis et al. (2007) have done some work on the

uncertainty assessment of future hydroclimatic predictions.

They propose a stochastic framework for future climatic

uncertainty, where climate is expressed by the 30-year time

average of a natural process exhibiting a scaling behaviour,

also known as the Hurst phenomenon or Hurst-Kolmogo-

rov (HK) behaviour (Hurst 1951; Koutsoyiannis et al.

2008). To this end, they combine analytical and Monte

Carlo methods to determine uncertainty limits and they

apply the framework developed to temperature, rainfall and

runoff data from a catchment in Greece, for which mea-

surements are available for about a century.

In the study by Koutsoyiannis et al. (2007), the climatic

variability and the influence of parameter uncertainty are

studied separately. As a result, a hydroclimatic prediction

needs two confidence coefficients to be defined, one

referring to the uncertainty of the climatic evolution and

one to the uncertainty of model parameters. In this paper

we unify the study of the two uncertainties so that a cli-

matic prediction needs only one confidence coefficient to

be defined. To this end, we solve the problem of climatic

predictions of natural processes using Bayesian statistics,

instead of the stochastic framework developed by Kout-

soyiannis et al. (2007). For physical consistency with nat-

ural processes such as rainfall and runoff, whose values are

nonnegative, we also examine the case where truncation of

the negative part of the distributions is applied. No prior

information for the parameters of processes is assumed, so

that the prior distribution is non-informative. The posterior

joint distribution is derived from a mixture for the case

where truncation is not applied and a Gibbs sampler for the

case where truncation is applied. We derive the posterior

predictive distribution (Gelman et al. 2004, p. 8) of the

process in closed form given the posterior distribution of

the parameters. We simulate a sample from the posterior

predictive distribution and use it to make inference about

the future evolution of the averaged process. We apply this

procedure using the same data as in Koutsoyiannis et al.

(2007), and specifically runoff (Case 1 or C1), rainfall (C2)

and temperature (C3) data from catchments in Greece and

temperature data from Berlin (C4, C6 with the last 90 years

excluded from the dataset); in addition we used tempera-

ture data from Vienna (C5, C7 with the last 90 years

excluded from the dataset). For the rainfall and runoff data

we use truncated distributions.

As per the temporal dependence of the processes,

three alternative assumptions are made: (a) independence

in time; (b) Markovian dependence modelled by first-

order autoregressive [AR(1)] process; and (c) HK

dependence (see Markonis and Koutsoyiannis 2013, for a

justification of the latter). In the last section we compare

the results of the three models. Additional results such as

the posterior distributions of the parameters and the

asymptotic behaviour of the predictive distribution are

also given.

While this paper uses the same case studies as those in

Koutsoyiannis et al. (2007), the results of the two papers

are not directly comparable to each other. Here we give

posterior predictive distributions of the climatic variables,

whereas Koutsoyiannis et al. (2007) give confidence limits

for specified quantiles of climatic variables. The posterior

predictive distribution of the variables given here is exactly

what we call climatic prediction, whereas we could say that

the confidence limits of the quantiles, given by Koutsoy-

iannis et al. (2007), are intermediate or indirect results. The

Bayesian methodology applied here aims at (stochastic)

prediction (Robert 2007, p. 7) and is direct, while its dis-

advantage compared to Koutsoyiannis et al. (2007)

framework is the much heavier computational burden.

2 Definition of AR(1) and HK process

We use the Dutch convention for notation, according to

which random variables and stochastic processes are

underlined (Hemelrijk 1966). We assume that {xt}, t = 1,

2,… is a normal stationary stochastic process with mean l

:= E[xt], standard deviation r :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½xt�
p

, autocovari-

ance function ck := Cov[xt, xt ? k] and autocorrelation

function (ACF) qk := Corr[xt, xt ? k] = ck/c0

(k = 0, ±1, ±2,…) and that there is a record of n obser-

vations xn = (x1… xn)T. Each observation xt represents a

realization of a random variable xt, so that xn is a realiza-

tion of the vector of random variables xn = (x1…xn)T.

We assume that {at} is a zero mean normal white noise

process (WN), i.e. a sequence of independent random

variables from a normal distribution with mean E[at] = 0

and variance Var[at] = r2
a. In the following discussion {at}

is always referred to as WN. The following equation

defines the first-order autoregressive process AR(1).

xt � l ¼ u1 xt�1 � lð Þ þ at; u1j j\1 ð1Þ

The ACF of the AR(1) is (Wei 2006, p. 34)

qk ¼ uk
1; k ¼ 0; 1; . . . ð2Þ

Let j be a positive integer that represents a timescale

larger than 1, the original time scale of the process xt. The

averaged stochastic process on that timescale is denoted as

x
ðjÞ
t :¼ ð1=jÞ

X

tj

l¼ðt�1Þjþ1

xl ð3Þ

The notation implies that a superscript (1) could be

omitted, i.e. x
ð1Þ
t � xt. Now we consider the following
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equation that defines the Hurst-Kolmogorov stochastic

process (HKp). (Koutsoyiannis 2003)

ðxðjÞi � lÞ¼d j
k

� �H�1

ðxðkÞj � lÞ; 0\H\1;

i; j ¼ 1; 2; . . . and j; k� 1
ð4Þ

where H is the Hurst parameter.

The ACF of the HKp is (Koutsoyiannis 2003)

qk ¼ k þ 1j j2H=2þ k � 1j j2H=2� kj j2H ; k ¼ 0; 1; . . .

ð5Þ

and does not depend on averaging time scale j.

3 Posterior distribution of the parameters

of a stationary normal stochastic process

The distribution of the variable xn = (x1…xn)T is

f xnjhð Þ ¼ 2pð Þ�n=2 r2Rn

�

�

�

�

�1=2
exp½ �1=2r2

� �

� xn � lenð ÞTR�1
n xn � lenð Þ�

ð6Þ

where Rn is the autocorrelation matrix with elements

rij = q|i-j|, i,j = 1,2,…,n and en = (1 1…1)T is a vector

with n elements. Details on the distributions used thereafter

are given in Appendix 1. The autocorrelation q|i-j| is

assumed to be function of a parameter (scalar or vector) u,

so that h := (l, r2, u) is the parameter vector of the pro-

cess. We note that if xn is white noise then q0 = 1 and

qk = 0, k = 1, 2,…; if it is AR(1) then qk is given by (2) if

it is HKp then qk is given by (5).

We assume that u is uniformly distributed a priori. We

set as prior distribution for h the non-informative distri-

bution (see also Robert 2007, example 3.5.6)

p hð Þ / 1=r2 ð7Þ

(notice that we generally use the symbol p for probability

density functions of parameters).

The posterior distribution of the parameters does not

have a closed form. However it can be calculated from a

mixture based on conditional distributions. Specifically, it

is shown (see Appendix 2) that

ljr2;u; xn�N ðxT
n R�1

n enÞ=ðeT
n R�1

n enÞ; r2=ðeT
n R�1

n enÞ
� 	

ð8Þ

r2ju;xn� Inv-gamma

n�1ð Þ=2; eT
n R�1

n enxT
n R�1

n xn� xT
n R�1

n en

� �2
h i

= 2 eT
n R�1

n en

� �

n o

ð9Þ

pðujxnÞ/ Rnj j�1=2 eT
n R�1

n enxT
n R�1

n xn�ðxT
n R�1

n enÞ2
h i�ðn�1Þ=2

eT
n R�1

n en

� �n=2�1 ð10Þ

As real world problems often impose upper or lower

bounds on the variables xt, we assume that the distribution

of xn is two-sided truncated by bounds a and b, i.e.,

f xnjhð Þ / exp½ �1=2r2
� �

xn � lenð ÞTR�1
n xn � lenð Þ�

I½a;b�n x1; . . .; xnð Þ ð11Þ

where I denotes the indicator function, so that

I½a;b�n (x1,…,xn) = 1 if xn [ [a, b]n and 0 otherwise.

We assume that the truncation set of l is [a, b], a, b [
R[{-?,?}. The following Gibbs sampler is used to obtain

a posterior sample from h = (l, r2, u) (see Appendix 2).

pðljr2;u; xnÞ / exp � l� xT
n R�1

n en

� �

= eT
n R�1

n en

� �� 	2
n

2r2=eT
n R�1

n en

� �
 �

I½a;b�ðlÞ ð12Þ

r2jl;u; xn� Inv-gamma n=2; xn � lenð ÞTR�1
n xn � lenð Þ=2

n o

ð13Þ

p ujl; r2; xn

� �

/ Rnj j�1=2
exp �ðxn � lenÞTR�1

n ðxn � lenÞ=2r2
h i

ð14Þ

4 Posterior predictive distributions

As we stated in the Introduction, we seek to make an

inference about the future evolution of a process given

observations of its past. To this end, in this section we

derive the posterior predictive distributions of xn?1,n?m |xn

for the cases of the white noise, the AR(1) and the HKp,

where xn?1,n?m := (xn?1,…,xn?m)T.

4.1 White noise

We assume that xt, t = 1, 2,… is white noise, with

f(xt|l,r2) = (2pr2)-1/2 exp[- (xt - l)2/(2r2)]. A non-

informative prior distribution for h = (l,r2) is p(h) � 1/r2.

The posterior distributions of the parameters are given by

(Gelman et al. 2004, p. 75–77)

ljxn� tn�1 �xn; s
2
n=ðn� 1Þ

� �

ð15Þ

r2jxn� Inv-gamma ðn� 1Þ=2; n s2
n=2

� �

ð16Þ

Notice that (15) and (16) are derived from (8), (9), (10)

for Rn = In (the former after integrating out r2). The

posterior predictive distribution is

xtjxn� tn�1ð�xn; ðnþ 1Þ=ðn� 1Þð Þs2
nÞ;

t ¼ nþ 1; nþ 2; . . .
ð17Þ

where xn?1, xn?2,… are mutually independent,

�xn :¼
X

n

i¼1

xi=n ð18Þ

A Bayesian statistical model 2869

123



s2
n :¼

X

n

i¼1

ðxi � �xnÞ2=n ð19Þ

are the maximum likelihood estimates of l and r2

respectively and tv(l,r2) is the Student’s distribution with

v degrees of freedom.

4.2 AR(1) and HKp

When there is dependence among the elements of xn?m, the

posterior predictive distribution of xn?1,n?m given h and xn

is (Eaton 1983, p. 116, 117)

f xnþ1;nþmjh; xn

� �

¼ 2pr2
� ��m=2

Rmjn
�

�

�

�

�1=2

exp �1=2r2
� �

xnþ1;nþm � lmjn

� �T

R�1
mjn xnþ1;nþm � lmjn

� �

� 


ð20Þ

where lm|n and Rm|n are given by:

lmjn ¼ lem þ R nþ1ð Þ: nþmð Þ½ � ½1:n�R
�1
n xn � lenð Þ ð21Þ

Rmjn ¼ R nþ1ð Þ: nþmð Þ½ � nþ1ð Þ:ðnþmÞ½ �
� RT

1:n½ � nþ1ð Þ: nþmð Þ½ �R
�1
n R 1:n½ � nþ1ð Þ:ðnþmÞ½ � ð22Þ

where R[k:l] [m:n] is the submatrix of R which contains the

elements rij, k B i B l, m B j B n, whereas the notation

R[1:n] [1:n] with identical subscripts [1:n] can be simplified

to Rn as defined above. The elements of the correlation

matrices Rn and Rm?n are obtained from (2) for the case of

the AR(1) and from (5) for the case of HKp. In the

implementation of the AR(1) model we assume that all

three parameters l, r, u1 are unknown. For the HKp we

examine two cases: (a) all three parameters l, r, H, are

unknown, and (b) l, r, are unknown but H is considered to

be known and equal to its maximum likelihood estimate

(Tyralis and Koutsoyiannis 2011).

In the case that all three parameters of the AR(1) or

HKp are unknown, we obtain a simulated sample of h

from (8), (9), (10) and use this sample to simulate lm|n

and Rm|n from (21) and (22) and generate a sample of

xn?1,n?m from (20). In the case where H is considered as

known, we obtain a simulated sample of h = (l, r2)

from (8), (9) and use this sample to simulate lm|n and

Rm|n from (21) and (22) and generate a sample of

xn?1,n?m from (20).

4.3 Asymptotic behaviour of AR(1) and HKp

In most applications, it is useful to know the ultimate

confidence regions as prediction horizon tends to infinity.

This is expressed by the distribution of xn?m?1,n?m?l

:= (xn?m?1,…,xn?m?l) as m ? ?, conditional on xn. For

given h this distribution is:

f xnþmþ1;nþmþljh; xn

� �

¼ 2pr2
� ��l=2

Rljn
�

�

�

�

�1=2

exp �1=2r2
� �

xnþmþ1;nþmþl � lljn

� �T
�

R�1
ljn xnþmþ1;nþmþl � lljn

� �i

ð23Þ

where ll|n and Rl|n are given by:

lljn ¼ lel þ R nþmþ1ð Þ: nþmþlð Þ½ � ½1:n�R
�1
n xn � lenð Þ ð24Þ

Rljn ¼ R nþmþ1ð Þ: nþmþlð Þ½ � nþmþ1ð Þ:ðnþmþlÞ½ �
� RT

1:n½ � nþmþ1ð Þ:ðnþmþlÞ½ �R
�1
n R 1:n½ � nþmþ1ð Þ:ðnþmþlÞ½ �

ð25Þ

We observe that, as m ? ?, R[1:n] [(n?m?1):(n?m?l)] and

R[(n?m?1):(n?m?l)] [1:n] become zero matrices and

R[(n?m?1):(n?m?l)] [(n?m?1):(n?m?l)] = Rl. This implies that:

lljn ¼ lel ð26Þ

Rljn ¼ Rl ð27Þ

where Rl is again obtained from (2) for the case of the

AR(1) and from (5) for the case of HKp.

Accordingly, the application can proceed as follows.

We obtain a simulated sample of h from (8), (9), (10) and

use this sample to simulate ll|n and Rl|n from (26) and (27)

and generate a sample of xn?m?1,n?m?l from (23) for a

large m.

4.4 Truncated white noise, AR(1) and HKp

To examine real world problems which often impose

upper or lower bounds on the variables xt, we assume that

the distribution of xn is two-sided truncated, and is given

by (11). We obtain a posterior sample of h using the Gibbs

sampler defined by (12), (13), (14). When u is known, we

obtain a posterior sample of (l,r2) using the Gibbs sam-

pler defined by (12) and (13). Then xm|h follows a trun-

cated normal multivariate distribution and according to

Horrace (2005) the conditional multivariate distributions

of xn?1,n?m|h,xn are again truncated normal. As a result

(20) still holds after slight modifications and (21), (22) are

valid. The posterior predictive distribution of xn?1,n?m|h,xn

is then a multivariate truncated normal distribution:

f xnþ1;nþmjh;xn

� �

/ exp �1=2r2
� �

xnþ1;nþm�lmjn

� �T
�

R�1
mjn xnþ1;nþm�lmjn

� �i

I½a;b�m xnþ1;nþm

� �

ð28Þ

Now for the case of white noise, (15), (16) and (17) are

not valid. But from (21), (22) and for q0 = 1 and qk = 0,

k = 1, 2,…, we obtain that lm|n = lem and Rm|n = Rm.
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When looking for the asymptotic behaviour of the

process, (23) still holds after slight modifications, accord-

ing to Horrace (2005). As a result, the distribution of

xn?m?1,n?m?l|h,xn is truncated multivariate normal, while

(26) and (27) remain valid:

f xnþmþ1;nþmþljh; xn

� �

/ exp �1=2r2
� ��

xnþmþ1;nþmþl � lljn

� �T

R�1
ljn xnþmþ1;nþmþl � lljn

� �




I½a;b�l xnþmþ1;nþmþl

� �

ð29Þ

4.5 Asymptotic convergence of MCMC

To simulate from (10) we use a random walk Metropolis–

Hastings algorithm with a normal instrumental (or pro-

posal) distribution (Robert and Casella 2004, p. 271). We

implement the algorithm using the function MCMCme-

trop1R of the R package ‘MCMCpack’ (Martin et al.

2011). The variable ‘burnin’ in this package is given the

value 0, whereas the other variables keep their default

values.

There are a lot of methods to decide whether conver-

gence can be assumed to hold for the generated sample (see

Gamerman and Lopes 2006, p. 157–169; Robert and

Casella 2004, p. 272–276). We use the methods of

Heidelberger and Welch (1983) and Raftery and Lewis

(1992). These methods are described by Smith (2007),

whose notation we use here. We use the R package ‘coda’

(Plummer et al. 2011) to implement these methods. We

assume that we have obtained a sample w1, w2…, of a

scalar variable u using the MCMC algorithm.

The diagnostic of Heidelberger’s method provides an

estimate of the number of samples that should be discarded

as a burn-in sequence and a formal test for non-conver-

gence. The null hypothesis of convergence to a stationary

chain is based on Brownian bridge theory and uses the

Cramer-von-Mises test statistic
R 1

0
BnðtÞ2dt, where

Bn tð Þ ¼ T ntb c � ntb c�w
� �

=
ffiffiffiffiffiffiffiffiffiffiffi

nSð0Þ
p

ð30Þ

Tk ¼
X

k

j¼1

wj; k ¼ 1; 2; . . . and T0 ¼ 0 ð31Þ

where xb c denotes the floor of x (the greatest integer not

greater than x) and S(0) is the spectral density evaluated at

frequency zero. In calculating the test statistic, the spectral

density is estimated from the second half of the original

chain. If the null hypothesis is rejected, then the first

0.1n of the samples are discarded and the test is reapplied

to the resulting chain. This process is repeated until the test

is either non-significant or 50 % of the samples have been

discarded, at which point the chain is declared to be non-

stationary. For more details see Smith (2007).

The methods of Raftery and Lewis are designed to

estimate the number of MCMC samples needed when

quantiles are the posterior summaries of interest. Their

diagnostic is applicable for the univariate analysis of a

single parameter and chain. For instance, let us consider the

estimation of the following posterior probability of a model

parameter h:

P f hð Þ\ajxð Þ ¼ q ð32Þ

where x denotes the observed data. Raftery and Lewis

sought to determine the number of MCMC samples to

generate and the number of samples to discard in order to

estimate q to within ±r with probability s. In practice,

users specify the values of q, r and s to be used in applying

the diagnostic (For more details see Smith 2007).

To simulate from (14) we use an accept-reject algorithm

(Robert and Casella 2004, p. 51–53) with a uniform

instrumental density. Simulation from (12) and (13) is

trivial. We assess the convergence of the chain simulated

from (12), (13), (14) using the method of Gelman and

Rubin (1992; see also Gelman 1996; Gamerman and Lopes

2006, p. 166–168). An indicator of convergence is formed

by the estimator of a potential scale reduction (PSR) that is

always larger than 1. Convergence can be evaluated by the

proximity of PSR to 1. Gelman (1996) suggested accepting

convergence when the value of PSR is below 1.2.

5 Case studies

In this section we apply the methodology developed in the

previous sections to five historical datasets; three of them

obtained from the Boeoticos Kephisos River basin, one

from Berlin and one from Vienna. The choice of these

datasets was dictated by the fact that they have been also

studied in other works with similar objectives, i.e. Kout-

soyiannis et al. (2007) and Koutsoyiannis (2011), so that

the interested reader can make some comparisons. We

present the results of the application of the methodology to

the aforementioned datasets.

5.1 Historical datasets

The first case study is performed on an important catch-

ment in Greece, which is part of the water supply system of

Athens and has a history, as regards hydraulic infrastruc-

ture and management that extends backward at least

3,500 years. This is the closed (i.e. without outlet to the

sea) basin of the Boeoticos Kephisos River (Fig. 1), with

an area of 1,955.6 km2, mostly formed over a karstic

subsurface. Owing to its importance for irrigation and

water supply, data availability for the catchment extends

for about 100 years (the longest dataset in Greece) and
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modelling attempts with good performance have already

been carried out on the hydrosystem (Rozos et al. 2004).

The long-term dataset for the basin extends from 1908 to

2003 and comprises a flow record at the river outlet at the

Karditsa station (C1), rainfall observations in the raingage

Aliartos (C2) and a temperature record at the same station

(C3); the station locations are shown in Fig. 1. Further

details on the construction of these datasets are given by

Koutsoyiannis et al. (2007). The relatively long records

have already made it possible to identify the scaling

behaviour of rainfall and runoff in this basin (Koutsoy-

iannis 2003), and make the catchment ideal for a case study

of uncertainty assessment.

The two other datasets which we use are the mean

annual temperature record of Berlin/Templehof and

Vienna, two of the longest series of instrumental meteo-

rological observations. For further details on the Berlin

mean annual temperature dataset see Koutsoyiannis et al.

(2007) and for the Vienna mean annual temperature dataset

see Koutsoyiannis (2011). We examine two cases. In the

first case we assume that the update of the prior informa-

tion is done (C4, C5), using the whole dataset. In the

second case the update is done excluding the last 90 years

of the datasets (C6, C7).

5.2 Application of the method

We classified the data into three classes, the first containing

the data from the Boeoticos Kephisos River basin (C1–C3),

the second containing the data from Berlin and Vienna (C4,

C6) and the third containing again the data from Berlin and

Vienna (C5, C7) but excluding the last 90 years. In the

third case the posterior results were compared to the actual

90 last years.

First we calculated the maximum likelihood estimates of

the parameters for all the examined cases (WN, AR(1),

HKp). The results are given in Tables 1, 2. Truncated

models were used for C1 and C2 datasets due to the rela-

tively high estimated r which otherwise would result in

negative values. Instead, when we examined the tempera-

ture datasets (C3–C7), simulated values near the absolute

zero never appeared, indicating a good behaviour of the

non-truncated model.

The procedure for the temperature datasets is described

below. We used (15) and (16) to generate a posterior

sample from l and r2 for the WN case. To simulate from

(10) for the u1 and H posterior distribution of the AR(1)

Karditsa

Aliartos

Fig. 1 The Boeoticos Kephisos

River basin

Table 1 Summarized results and maximum likelihood estimates for

the cases of WN, AR(1) and HKp at Boeoticos Kephisos River basin

Boeoticos basin

Runoff (mm) Rainfall (mm) Temperature (�C)

Start year 1908 1908 1898

End year 2003 2003 2003

Size, n 96 96 106

WN

l̂ 197.63 658.36 16.96

r̂ 81.25 155.82 0.69

AR(1)

l̂ 197.65 658.22 16.96

r̂ 81.22 155.81 0.69

û1 0.34 0.10 0.31

HK

l̂ 195.11 657.38 16.97

r̂ 80.47 155.00 0.70

Ĥ 0.71 0.60 0.71
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and HK cases correspondingly, we used a random walk

Metropolis–Hastings algorithm. We simulated a single

chain with 3,000,000 MCMC samples. The Metropolis

acceptance rates are given in Table 3. To decide whether

convergence has been achieved, we used the Heidelberger

and Welch method (1983). We tested four cases, the first

case containing all the 3,000,000 samples, the second

containing the last 2,000,000 samples and so forth. The

results are presented in Tables 4, 5, from where we con-

clude that stationary chain hypothesis holds in every case.

We also used the methods of Raftery and Lewis (1992), to

estimate the number of MCMC samples needed when

quantiles are the posterior summaries of interest. The

minimum number of samples and the burn-in period for the

simulation is given in Tables 6, 7, where q = 0.025, 0.500,

0.975 are the quantiles to be estimated, r = 0.005 is the

desired margin of error of the estimate and s = 0.95 is the

probability of obtaining an estimate in the interval (q - r,

q ? r). We decided to use the last 2,000,000 samples of the

chains, to obtain the histograms of the posterior distribu-

tions of the parameters u1 and H. The simulation of l, r2

from (8) and (9) is then trivial. Summarized results for the

parameters of the AR(1) and HK cases respectively are

shown in Tables 8, 9.

From the simulated samples we obtained the posterior

probability plots of l, r, H, u1 for the AR(1) and HK cases

(Figs. 2, 3). The last 100,000 simulated samples of the

parameters, described in the previous paragraph were used

to obtain samples from the required posterior predictive

probabilities. The samples from the posterior predictive

probability of xt|xn, t = n ? 1, n ? 2,…, n ? 90 were

used to obtain samples for the variable of interest x
ð30Þ
t

given by (33).

x
ð30Þ
t :¼ 1=30ð Þ

X

n

l¼t�29

xl þ
X

t

l¼nþ1

xl

 !

;

t ¼ nþ 1; . . .; nþ 29 and x
ð30Þ
t :¼ 1=30ð Þ

X

t

l¼t�29

xl;

t ¼ nþ 30; nþ 31; . . .

ð33Þ

We examined the cases of WN, AR(1), asymptotic

behaviour of AR(1), HK where H is considered to be

known and has the value of the maximum likelihood esti-

mate, HK when H is not known, and its asymptotic

behaviour. Figures 4, 5a, b show the 0.025, 0.500 and

0.975 quantiles of the posterior predictive distributions of

xt
(30)|xn, t = n ? 1, n ? 2,���, n ? 90.

The procedure for C1 and C2 is described below. We

simulated from (12), (13) and (14) to obtain a posterior

sample from l, r2 and u for all cases. We simulated 10

chains with each one having 300,000 MCMC samples. To

decide whether convergence has been achieved, we used

Table 2 Summarized results

and maximum likelihood

estimates for the cases of WN,

AR(1) and HKp at Berlin and

Vienna

Berlin Vienna Berlin Vienna

Temperature (�C) Temperature (�C) Temperature (�C) Temperature (�C)

Start year 1756 1775 1756 1775

End year 2009 2009 1919 1919

Size, n 254 235 164 145

WN

l̂ 9.17 9.58 9.04 9.36

r̂ 0.91 0.87 0.92 0.84

AR(1)

l̂ 9.18 9.58 9.05 9.36

r̂ 0.92 0.87 0.92 0.84

û1 0.37 0.30 0.30 0.11

HK

l̂ 9.27 9.64 9.10 9.37

r̂ 0.91 0.86 0.92 0.84

Ĥ 0.73 0.70 0.70 0.59

Table 3 Metropolis acceptance rate for the MCMC simulation of u1 and H, respectively, at Boeoticos Kephisos River basin

Aliartos

temperature

Berlin temperature

(1756–2009)

Vienna temperature

(1775–2009)

Berlin temperature

(1756–1919)

Vienna temperature

(1775–1919)

u1 0.70731 0.70603 0.70612 0.70649 0.70654

H 0.706037 0.70551 0.70599 0.70601 0.70638
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the Gelman and Rubin (1992) rule. In all cases PSR & 1

which shows that the chains converged to the target dis-

tribution. We decided to use the last 200,000 samples of

each chain, to obtain the histograms of the posterior dis-

tributions of the parameters u1 and H. Summarized results

for the parameters of the AR(1) and HK cases respectively

are shown in Table 8.

From the simulated samples we obtained the posterior

probability plots of l, r, H, u1 for the AR(1) and HK cases

(Fig. 2a, b). The last 10,000 simulated samples of the

parameters of each chain, described in the previous para-

graph are used to obtain samples from the required pos-

terior predictive probabilities. The samples from the

posterior predictive probability of xt|xn, t = n ? 1,

Table 4 Heidelberger and Welch test, for significance level 0.05, at Boeoticos Kephisos River basin

Parameter Aliartos temperature

u1 H

Stationarity test Passed Passed Passed Passed Passed Passed Passed Passed

Start iteration 1 1 1 1 1 1 1 1

p-value 0.427 0.745 0.46 0.242 0.869 0.567 0.338 0.618

Table 5 Heidelberger and Welch test, for significance level 0.05, at Berlin and Vienna

Berlin temperature (1756–2009) Vienna temperature (1775–2009)

Data start 1 1,000,000 2,000,000 2,900,000 1 1,000,000 2,000,000 2,900,000

Parameter u1 u1

Stationarity test Passed Passed Passed Passed Passed Passed Passed Passed

Start iteration 1 1 1 1 1 1 1 1

p-value 0.943 0.738 0.342 0.448 0.928 0.696 0.366 0.0761

Parameter H H

Stationarity test Passed Passed Passed Passed Passed Passed Passed Passed

Start iteration 1 1 1 1 1 1 1 1

p-value 0.837 0.466 0.279 0.691 0.789 0.501 0.296 0.84

Berlin temperature (1756–1919) Vienna temperature (1775–1919)

Parameter u1 u1

Stationarity test Passed Passed Passed Passed Passed Passed Passed Passed

Start iteration 1 1 1 1 1 1 1 1

p-value 0.94 0.589 0.376 0.425 0.777 0.55 0.308 0.592

Parameter H H

Stationarity test Passed Passed Passed Passed Passed Passed Passed Passed

Start iteration 1 1 1 1 1 1 1 1

p-value 0.833 0.606 0.339 0.923 0.885 0.83 0.373 0.323

Table 6 Raftery and Lewis test for the case of Boeoticos Kephisos River basin

Aliartos temperature

q Burn-in Total Lower bound Dependence factor Burn-in Total Lower bound Dependence factor

u1 0.025 21 31,794 3,746 8.49 H 18 35,784 4,899 7.3

0.500 24 356,752 38,415 9.29 24 464,024 50,239 9.24

0.975 28 32,298 3,746 8.62 28 42,161 4,899 8.61

q is the quantile to be estimated, r = 0.005 is the desired margin of error of the estimate, s = 0.95 the probability of obtaining an estimate in the

interval (q - r, q ? r), eps = 0.001 is the precision required for estimating time to convergence
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Table 7 Raftery and Lewis test for the cases of Berlin and Vienna

Berlin temperature (1756–2009) Vienna temperature (1775–2009)

q Burn-in Total Lower bound Dependence factor Burn-in Total Lower bound Dependence factor

u1 0.025 21 31,416 3,746 8.39 21 31,612 3,746 8.44

0.500 24 356,512 38,415 9.28 21 322,441 38,415 8.39

0.975 21 31,731 3,746 8.47 21 31,745 3,746 8.47

H 0.025 18 27,288 3,746 7.28 18 35,670 4,899 7.28

0.500 21 322,777 38,415 8.4 21 422,975 50,239 8.42

0.975 28 32,732 3,746 8.74 28 42,882 4,899 8.75

Berlin temperature (1756–1919) Vienna temperature (1775–1919)

u1 0.025 21 31,780 3,746 8.48 21 31,780 3,746 8.48

0.500 24 356,656 38,415 9.28 21 323,631 38,415 8.42

0.975 21 32,193 3,746 8.59 21 32,137 3,746 8.58

H 0.025 18 27,330 3,746 7.3 18 27,072 3,746 7.23

0.500 21 323,330 38,415 8.42 21 324,177 38,415 8.44

0.975 18 32,991 3,746 8.81 27 39,690 3,746 10.6

q is the quantile to be estimated, r = 0.005 is the desired margin of error of the estimate, s = 0.95 the probability of obtaining an estimate in the

interval (q - r, q ? r), eps = 0.001 is the precision required for estimating time to convergence

Table 8 Summary results for

the parameters of the AR(1) and

HK cases at Boeoticos Kephisos

River basin

Case Mean Standard

deviation

Quantiles

2.5 % 25 % 50 % 75 % 97.5 %

Boeoticos runoff

AR(1)

l 197.7 12.69 172.5 189.4 197.7 205.9 222.8

r 83.93 7.41 71.50 78.78 83.23 88.29 100.45

u1 0.35 0.10 0.16 0.28 0.35 0.42 0.55

HK

l 194.85 31.30 132 178.1 195 211.6 256.1

r 86.51 12.35 71.19 79.15 84.40 91.06 114.22

H 0.74 0.07 0.62 0.69 0.74 0.78 0.88

Aliartos rainfall

AR(1)

l 658.18 18.57 621.5 646 658.2 670.4 694.7

r 159.9 12.24 138.3 151.3 159.1 167.5 186.2

u1 0.11 0.10 -0.09 0.04 0.11 0.18 0.32

HK

l 657.09 31.98 592.5 638.4 657.3 676.1 720.4

r 160.7 13.45 137.9 151.4 159.5 168.6 190.3

H 0.62 0.06 0.51 0.58 0.62 0.66 0.75

Aliartos temperature

AR(1)

l 16.96 0.10 16.76 16.89 16.96 17.02 17.15

r 0.71 0.06 0.61 0.67 0.70 0.74 0.84

u1 0.33 0.10 0.14 0.26 0.33 0.39 0.52

HK

l 16.97 0.29 16.44 16.83 16.97 17.11 17.52

r 0.75 0.13 0.62 0.68 0.73 0.79 0.99

H 0.74 0.07 0.61 0.69 0.74 0.78 0.88
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n ? 2,…, n ? 90 are used to obtain samples for the vari-

able of interest x
ð30Þ
t given by (33). We examined the cases

of WN, AR(1), asymptotic behaviour of AR(1), HK where

H is considered to be known and has the value of the

maximum likelihood estimate, HK with unknown H and its

asymptotic behaviour. Figure 4 shows the 0.025, 0.500 and

0.975 quantiles of the posterior predictive distributions of

xt
(30)|xn, t = n ? 1, n ? 2,…, n ? 90.

5.3 Results

A first important result of the proposed framework is that it

provides good estimates of the model parameters without

introducing any assumptions (i.e., using non-informative

priors). While common statistical methods give point esti-

mates of parameters, the Bayesian framework provides also

interval estimates based on their posterior distributions. The

Table 9 Summary results for the parameters of the AR(1) and HK cases respectively at Berlin and Vienna

Case Mean Standard deviation Quantiles

2.5 % 25 % 50 % 75 % 97.5 %

Berlin temperature (1756–2009)

AR(1)

l 9.18 0.09 9.01 9.12 9.18 9.24 9.35

r 0.93 0.05 0.84 0.89 0.92 0.96 1.03

u1 0.38 0.06 0.26 0.34 0.38 0.42 0.49

HK

l 9.28 0.25 8.80 9.13 9.27 9.43 9.79

r 0.94 0.06 0.83 0.89 0.93 0.97 1.08

H 0.75 0.03 0.67 0.72 0.75 0.77 0.83

Vienna temperature (1775–2009)

AR(1)

l 9.58 0.08 9.42 9.53 9.58 9.63 9.74

r 0.88 0.05 0.80 0.85 0.88 0.91 0.98

u1 0.31 0.06 0.19 0.27 0.31 0.35 0.43

HK

l 9.64 0.19 9.27 9.52 9.64 9.76 10.03

r 0.88 0.05 0.79 0.84 0.87 0.91 0.99

H 0.71 0.04 0.64 0.68 0.71 0.73 0.79

Berlin temperature (1756–1919)

AR(1)

l 9.05 0.10 8.85 8.98 9.05 9.12 9.25

r 0.94 0.06 0.83 0.89 0.93 0.97 1.06

u1 0.31 0.08 0.16 0.26 0.31 0.37 0.46

HK

l 9.11 0.26 8.60 8.95 9.10 9.26 9.64

r 0.96 0.08 0.83 0.90 0.95 1.00 1.14

H 0.72 0.05 0.63 0.69 0.72 0.76 0.83

Vienna temperature (1775–1919)

AR(1)

l 9.36 0.08 9.20 9.31 9.36 9.42 9.52

r 0.86 0.05 0.76 0.82 0.85 0.89 0.97

u1 0.12 0.08 -0.04 0.07 0.12 0.18 0.29

HK

l 9.37 0.13 9.10 9.29 9.37 9.45 9.63

r 0.86 0.06 0.76 0.82 0.86 0.89 0.98

H 0.61 0.05 0.51 0.57 0.61 0.64 0.72
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Fig. 2 Posterior probability

distributions of l, r, u1, H for

the cases of AR(1) and HK

processes for: a Runoff of

Boeoticos Kephisos. b Rainfall

at Aliartos. c Temperature at

Aliartos
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Fig. 3 Posterior probability

distributions of l, r, u1, H for

the cases of AR(1) and HK

processes, for the temperature

at: a Berlin/Tempelhof with

parameters are estimated from

years 1756–2009. b Vienna with

parameters estimated from years

1775–2009. c Berlin/Tempelhof

with parameters estimated from

years 1756–1919. d Vienna with

parameters estimated from years

1775–1919
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estimated values of l are given in Table 10. It turns out that

irrespective of the method used (MLE or posterior medians)

they are almost equal. When examining temperatures, HKp

resulted in the largest l̂ and AR(1) in the second largest. In

C4 and C6, l̂ was larger than in C5 and C7 respectively.

From the density diagrams of the posterior distributions

(Figs. 2, 3) it seems that the posterior distribution of l is

wider when HKp is used. The posterior distribution of r is

also wider on the right (see the values of the 0.975 quantiles

in Tables 8, 9) for the HKp. However the estimated values

of r are almost equal for the three used models (Tables 1,

2). The estimated u1 and H are given in Tables 1, 2. Their

estimated values for C5 are considerably higher compared

to C7, but their posterior distributions are narrower

(Table 9), probably because of the bigger sample size in the

former case. Their posterior distributions are also narrower

for C4 compared to C6.

The second result of the framework is the predictive

distribution of the future evolution of the process of

interest. The posterior predictive 0.95-confidence regions

for the 30-year moving averages are given in Figs. 4, 5a, b.

For C1 the confidence region is not symmetric with respect

to the estimated mean, owing to the lower truncation bound

alongside with the relatively big r̂. In contrast, there is a

symmetry for C2 owing to the relatively small r̂, which

justifies our decision to use models without truncation in

those cases where r̂ is even smaller (compared to mean).

For all cases, the widest confidence regions correspond to

the HKp (due to the existence of persistence), followed by

the AR(1), while the narrowest confidence regions appear

for the WN. Of course the confidence regions for unknown

H are wider than in the case where H was considered to be

known and equal to its maximum likelihood estimate. In

C5 and C7 the HKp seems to be the best model, because it

captures better than the others the observed values of the

climate variable for the last 90 years based on the observed

values of the previous years. In C7 it seems that the HKp

did not capture the increase of temperature in last decades.

But when we examine the full dataset (C5), the behaviour

in last 90 years does not appear extraordinary. For the

asymptotic values in the HKp, the 0.95-confidence region

ranges at intervals of the order of 150 mm (C1), 220 mm

Fig. 3 continued

Table 10 Estimates of l using various methods

Examined case Maximum likelihood estimate 50 % Quantile

WN AR(1) HKp AR(1) HK

Boeoticos runoff 197.63 197.65 195.11 197.7 195

Aliartos rainfall 658.36 658.22 657.38 658.2 657.3

Aliartos temperature 16.96 16.96 16.97 16.96 16.97

Berlin temperature (1756–2009) 9.17 9.18 9.27 9.18 9.28

Vienna temperature (1775–2009) 9.58 9.58 9.64 9.58 9.64

Berlin temperature (1756–1919) 9.04 9.05 9.10 9.05 9.11

Vienna temperature (1775–1919) 9.36 9.36 9.37 9.36 9.37
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(C2), 1.6 �C (C3), 1.9 �C (C4), 1.4 �C (C5) for the 30-year

moving average. The corresponding values for the case of

the WN of the order of 50 mm (C1), 75 mm (C2), 0.5 �C

(C3), 0.6 �C (C4), 0.6 �C (C5) are considerably smaller

compared to the case of the HKp.

6 Summary

We developed a Bayesian statistical methodology to make

hydroclimatic prognosis in terms of estimating future

confidence regions on the basis of a stationary normal

stochastic process. We applied this methodology to five

cases, namely the runoff (C1), the rainfall (C2) and the

temperature (C3) at Boeoticos Kephisos river basin in

Greece, as well as the temperature at Berlin (C4, C6) and

the temperature at Vienna (C5, C7). The Bayesian statis-

tical model consisted of a stationary normal process (or

truncated stationary normal process for the runoff and

rainfall cases) with a non-informative prior distribution.

Three kinds of stationary normal processes were examined,

namely WN, AR(1) and HKp. We derived the posterior

distributions of the parameters of the models, the posterior

predictive distributions of the variables of the process and

the posterior predictive distribution of the 30-year moving

average which was the climatic variable of interest. The

methodology can also be applied to other structures of the

ACF.

A first important conclusion is that for all the examined

cases and for all the examined processes their estimated

Fig. 4 Historical climate and confidence regions of future climate (for 1 - a = 0.95 and climatic time scale of 30 years) for (upper) runoff of

Boeoticos Kephisos, (middle) rainfall at Aliartos, and (lower) temperature at Aliartos
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Fig. 5 Historical climate and confidence regions of future climate

(for 1 - a = 0.95 and climatic time scale of 30 years) for: a (upper)

temperature at Berlin, and (lower) temperature at Vienna. b (upper)

temperature at Berlin/Tempelhof after the year 1920 and (lower)

temperature at Vienna after the year 1920
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means are almost equal as expected. However the posterior

distributions of the means are wider when using the HKp,

due to the persistence of the process, and even wider when

all parameters of the process are assumed to be unknown.

This results in wider confidence regions for future climatic

variables of the processes. Moreover the confidence

regions of truncated future variables are asymmetric. This

asymmetry depends on the variance of the examined pro-

cess. However the posterior distributions of the means of

all processes were less asymmetric.

Another important conclusion is that the use of short-

range dependence stochastic processes is not suitable to

model geophysical processes, because they underestimate

uncertainty. However stationary persistent stochastic pro-

cesses are suitable to achieve this purpose. In the examined

cases they performed well and were able to explain the

fluctuations of the process.

One may claim that, when climate is to be predicted, an

assumption of stationarity is not an appropriate one as

currently several climate models project a changing future

climate. Nonetheless, an assessment of future climate

variability and uncertainty based on the stationarity

hypothesis is a necessary step in establishing a stochastic

method, whose generalization at a second step would

enable incorporating nonstationary components. In addi-

tion, without knowing the variability under stationary

conditions, it would not be possible to quantify the credi-

bility of climate models and even their usefulness. Work on

the generalization of the methodology to incorporate

deterministic predictions by climate models is under way

and its results will be reported in due course.
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Appendix 1: Standard probability distributions

For easy reference, the details of the distribution functions

used in this paper are summarized in Table 11

Appendix 2: Mathematical proofs

In Appendix 2 the proofs of (8), (9), (10), (12), (13), (14)

are given. It is easily shown that

ðxn � lenÞTR�1
n ðxn � lenÞ ¼ eT

n R�1
n enl

2 � 2xT
n R�1

n enl

þ xT
n R�1

n xn ð34Þ

After completing the squares the above expression

becomes:

eT
n R�1

n enl
2 � 2xT

n R�1
n enlþ xT

n R�1
n xn

¼ eT
n R�1

n en l� xT
n R�1

n en

� �

= eT
n R�1

n en

� �� 	2

þ eT
n R�1

n enxT
n R�1

n xn � xT
n R�1

n en

� �2
h i

= eT
n R�1

n en

� �

ð35Þ

From (6) and (7) we obtain the following:

p hð Þf xnjhð Þ / r� nþ2ð Þ Rnj j�1=2

exp �1=2r2
� �

xn � lenð ÞTR�1
n xn � lenð Þ

h i

From (34), (35) and (36) we obtain (8). After integration of

(36) we obtain (37) which proves (9):

p r2ju; xn

� �

/ r2
� �� nþ1ð Þ=2

Rnj j�1=2

exp �1=2r2
� �

eT
n R�1

n enxT
n R�1

n xn � xT
n R�1

n en

� �2
h ih

eT
n R�1

n en

� �
 	

ð36Þ

After integration of (36) we obtain (38), which proves (10)

after integration:

Table 11 Distributions used in the Bayesian framework

Distribution Notation Parameters Density function

Normal x * N (l, r2) Location l, scale r[ 0 fM(x|l, r2) = (2pr2)-1/2 exp[(-1/2r2) (x - l)2]

Truncated

normal

x * TN (l, r2, a, b) Location l, scale r[ 0, a minimum

value, b maximum value

fSM(x|l, r2, a, b) = [fN((b - l)/r) - fM ((a - l)/r)]-1(1/r)

fM ((x - l)/r), x [ [a, b], fM(x) := fM(x|0,12)

Multivariate

normal

x * N (l, R) (implicit

dimension n)

location l, symmetric, pos. definite,

n x n variance matrix R

fLM(x|l, R) = (2p)-n/2 |R| -1/2 exp[(-1/2) (x - l)S R-1

(x - l)]

Inverse-

gamma

x * Inv-gamma (a, b) Shape a[ 0, scale b[ 0 fIG(x|a,b) = ba [C(a)]-1 x-(a?1) exp(-b/x), x [ 0

Student-t x * tn (l, r2) Degrees of freedom n, location l,

scale r[ 0

Not needed in the manuscript
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p ujxnð Þ /
ZZ

r� nþ2ð Þ Rnj j�1=2

exp �1=2r2
� �

xn � lenð ÞTR�1
n xn � lenð Þ

h i

dldr2 ð38Þ

See also Falconer and Fernadez (2007) for some

results.Now for the case where truncation is applied we

obtain from (7) and (11):

p hð Þf xnjhð Þ / r� nþ2ð Þ Rnj j�1=2

exp �1=2r2
� �

xn � lenð ÞTR�1
n xn � lenð Þ

h i

I½a;b�n x1; . . .; xnð Þ

ð39Þ

Conditional on l [ [a, b], a, b [ R[{- ?,?} the deri-

vation of (12), (13) and (14) from (39) is then trivial.
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