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Abstract The present study assesses the ability of seven

Earth System Models (ESMs) from the Coupled Model

Intercomparison Project Phase 5 to reproduce present cli-

mate conditions in Europe and Africa. This is done from a

downscaling perspective, taking into account the require-

ments of both statistical and dynamical approaches. EC-

MWF’s ERA-Interim reanalysis is used as reference for an

evaluation of circulation, temperature and humidity vari-

ables on daily timescale, which is based on distributional

similarity scores. To additionally obtain an estimate of

reanalysis uncertainty, ERA-Interim’s deviation from the

Japanese Meteorological Agency JRA-25 reanalysis is

calculated. Areas with considerable differences between

both reanalyses do not allow for a proper assessment, since

ESM performance is sensitive to the choice of reanalysis.

For use in statistical downscaling studies, ESM perfor-

mance is computed on the grid-box scale and mapped over

a large spatial domain covering Europe and Africa, addi-

tionally highlighting those regions where significant dis-

tributional differences remain even for the centered/zero-

mean time series. For use in dynamical downscaling

studies, performance is specifically assessed along the

lateral boundaries of the three CORDEX domains defined

for Europe, the Mediterranean Basin and Africa.

Keywords CMIP5 � Earth System Models � Performance �
Present climate � Downscaling � Africa � Europe

1 Introduction

At the onset of the Coupled Model Intercomparison Project

Phase 5 (CMIP5), a new generation of General Circulation

Models (GCMs) has become available to the scientific

community. In comparison to the former model generation,

these ‘Earth System Models’ (ESMs) incorporate addi-

tional components describing the atmosphere’s interaction

with land-use and vegetation, as well as explicitly taking

into account atmospheric chemistry, aerosols and the car-

bon cycle (Taylor et al. 2012). The new model generation

is driven by newly defined atmospheric composition forc-

ings—the ‘historical forcing’ for present climate conditions

and the ‘Representative Concentration Pathways’ (RCPs,

Moss et al. 2010) for future scenarios. The dataset resulting

from these global simulations will be the mainstay of future

climate change studies and is the baseline of the Fifth

Assessment Report (AR5) of the Intergovernmental Panel

on Climate Change (IPCC). Moreover, this dataset is the

starting point of different regional downscaling initiatives

on the generation of regional climate change scenarios,

which are being coordinated worldwide within the frame-

work of the COordinated Regional Climate Downscaling

EXperiment (CORDEX) (Jones et al. 2011). These initia-

tives use both dynamical and statistical downscaling (SD)

approaches to provide high-resolution information over a

specific region of interest (e.g. Europe or Africa) at the

spatial scale required by many impact studies (Fowler et al.

2007; Maraun et al. 2010; Winkler et al. 2011a, b). This is

done by either running a Regional Climate Model (RCM),

driven by a GCM at its lateral boundaries, or by applying
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empirical relationships, usually found between large-scale

reanalysis data and small-scale station data, to GCM output

(Giorgi and Mearns 1991). The basic assumption of

applying downscaling methods in this context is that the

ESMs should closely reproduce the observed climatology

of the large-scale variables used as predictors/drivers in

statistical/dynamical schemes (Hewitson and Crane 1996;

Timbal et al. 2003; Charles et al. 2007; Plavcova and

Kysely 2012).

In this study, we provide a comprehensive evaluation of

the new GCM generation from a downscaling perspective,

taking into account the requirements of both statistical and

dynamical approaches. To this aim, we test the ability of

seven ESMs to reproduce present-day climate conditions as

represented by ERA-Interim reanalysis data (Dee et al.

2011). This is hereafter referred to as the ‘performance’ of

the ESMs (Giorgi and Francisco 2000). ERA-Interim is

used as reference for evaluating ESM performance, not

because it is assumed to be superior to other reanalysis

products, but because it is the one used within the COR-

DEX initiative (http://wcrp-cordex.ipsl.jussieu.fr). The

models’ performance is assessed by testing their ability to

reproduce the mean and cumulative distribution function of

season-specific daily data, hereafter jointly referred to as

the ‘climatology’.

The study focusses on middle-tropospheric circulation,

temperature and humidity variables which are of particular

importance for the purpose of downscaling since they are

either used as predictor variables in statistical schemes

(Cavazos and Hewitson 2005; Sauter and Venema 2011;

Brands et al. 2011b) or form the lateral boundaries in

dynamical applications (Fernández et al. 2007; Laprise

2008). In order to test ESM performance in different cli-

mate regions, we consider a large spatial domain covering

Europe and Africa. Specific information for the dynamical

downscaling approach is provided by assessing ESM per-

formance along the lateral boundaries of the three domains

used in the Euro-CORDEX, Med-CORDEX and COR-

DEX-Africa initiatives.

In downscaling studies, reanalysis products are com-

monly used as a surrogate of observational data. However,

reanalyses are known to suffer from biases with respect to

observations and consequently can differ significantly over

certain regions (see Brands et al. 2012, and references

therein). As outlined by Sterl (2004), the difference

between two distinct reanalysis datasets is a reasonable

estimator of observational uncertainty, especially in case

an accepted observational dataset for the variables in

question is not available. Albeit seldom assessed in

downscaling studies (Koukidis and Berg 2009; Hofer et al.

2012), reanalysis uncertainty is relevant for (1) the evalu-

ation of ESM performance and (2) the applicability of the

downscaling methods themselves. With respect to (1),

large differences between JRA-25 and ERA-Interim indi-

cate that ESM performance is sensitive to the choice of

reanalysis used as reference for validation and, conse-

quently, cannot be objectively assessed (Gleckler et al.

2008). With respect to (2), calibrating SD-methods and

coupling RCMs require the large-scale predictor/boundary

data to reflect ‘real’ atmospheric processes (Fernández

et al. 2007; Koukidis and Berg 2009; Hofer et al. 2012).

Strictly speaking, downscaling is not applicable in regions

where reanalysis uncertainty is large since the latter

assumption does not hold. Therefore, apart from assessing

ESM performance, we provide a simple estimate of

reanalysis uncertainty by calculating the climatological

differences between an additional reanalysis product, the

Japanese Reanalysis JRA-25 (Onogi et al. 2007), and

ERA-Interim. Note that a comprehensive assessment of

this issue, which would involve a comparison with obser-

vations, is out of the scope of the present paper.

Our results are expected to be of value for the down-

scaling community because little to no information on the

relative performance of the CMIP5-ESMs is available at a

time the downscaling community has to decide on which

ESMs to rely on. Our approach provides a general over-

view on ESM performance on hemispheric to continental

scale and, as such, is not meant to replace studies on the

synoptic-scale performance (Maraun et al. 2012). The

additional assessment of reanalysis uncertainty is an update

of Brands et al. (2012), who assessed the differences

between ECMWF ERA-40 (Uppala et al. 2005) and

NCEP/NCAR reanalysis 1 (Kalnay et al. 1996) from a

downscaling perspective, and is meant to foster the scien-

tific discussion on this important issue within the down-

scaling community.

2 Data

The study area considered in this work is shown in Fig. 1.

It extends from the Arctic to South Africa and from the

Central Atlantic to the Ural Mountain Range and Arabic

Peninsula, covering the Euro-CORDEX, Med-CORDEX

and CORDEX Africa domains.

We use data from the seven ESMs listed in Table 1, which

were obtained from the Earth System Grid Federation

(ESGF) gateways of the German Climate Computing Center

(http://ipcc-ar5.dkrz.de), the Program for Climate Model

Diagnosis and Intercomparison (http://pcmdi3.llnl.gov), and

the British Atmospheric Data Center (http://cmip-gw.

badc.rl.ac.uk). Since we evaluate performance in present

climate conditions, we use CMIP5 experiment number ‘3.2

historical’ (Taylor et al. 2012). This new generation of con-

trol runs is forced by observed atmospheric composition

changes of both natural and anthropogenic nature in the
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period 1850–2005. The first historical run of the available

ensemble was chosen for the variables listed in Table 2.

These variables are standard predictors in statistical down-

scaling studies (Hanssen-Bauer et al. 2005; Cavazos and

Hewitson 2005), and they are also taken into account for

defining the lateral boundaries in the process of nesting a

RCM into a GCM.

As reference dataset for assessing ESM performance, we

apply the European Centre for Medium Range Weather

Forecasts ERA-interim reanalysis (Dee et al. 2011). As a

second quasi-observational dataset, the Japanese

CORDEX Africa

Med-CORDEX

Euro-CORDEX

Domain of study

Fig. 1 Geographical domain considered in the study (black dots) and lateral boundaries of the Euro-CORDEX, Med-CORDEX and CORDEX

Africa domains, solid and dashed squares refer to the exterior and interior of these boundaries

Table 1 CMIP5 Earth System Models used in this study

Model Hor. resolution References

CanESM2 2.8� 9 2.8� Chylek et al. (2011)

CNRM-CM5 1.4� 9 1.4� Voldoire et al. (2011)

HadGEM2-ES 1.875� 9 1.25� Collins et al. (2011)

IPSL-CM5-MR 1.5� 9 1.27� Dufresne et al. (submitted)

MIROC-ESM 2.8� 9 2.8� Watanabe et al. (2011)

MPI-ESM-LR 1.8� 9 1.8� Raddatz et al. (2007),

Jungclaus et al. (2010)

NorESM1-M 1.5� 9 1.9� Kirkevag et al. (2008),

Seland et al. (2008)

Table 2 Variables used in this study

Code Name Height Unit Acronyms

Z Geopotential 500 hPa m2 s-2 Z500

T Temperature 2 m, 850,

500 hPa

K T2, T850,

T500

Q Specific humidity 850 hPa kg kg-1 Q850

U U-wind 850 hPa m s-1 U850

V V-wind 850 hPa m s-1 V850

SLP Sea-level

pressure

Mean sea-

level

Pa SLP
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Meteorological Agency JRA-25 reanalysis (Onogi et al.

2007) is used for comparison with ERA-Interim in order to

obtain an estimate of reanalysis uncertainty (see Sect. 3 for

more details).

Due to distinct native horizontal resolutions (see

Table 1), the reanalysis and ESM data were regridded to a

regular 2.5� grid by using bilinear interpolation, which is a

common step in downscaling and GCM performance

studies. The period under study is 1979–2005. Daily mean

values were used and, when not provided by the original

data set, were derived from 6-hourly instantaneous values.

3 Methods

The methodological approach followed in this study is

twofold. First, to evaluate the degree of reanalysis uncer-

tainty, atmospheric variables from JRA-25 are validated

against those from ERA-Interim. Due to the lack of

observational datasets for free-tropospheric variables on

daily timescale, the difference between two distinct rea-

nalyses is a reasonable estimator of observational uncer-

tainty. If a close agreement is found, both reanalyses are

likely driven by assimilated observations and reasonably

reflect reality. On the contrary, in case of considerable

differences, at least one reanalysis is dominated by internal

model variability rather than observations and therefore

does not reflect reality (Sterl 2004). Consequently, vali-

dating JRA-25 against ERA-Interim does not yield an

‘error’ in the sense of one reanalysis being ’better’ than the

other, but is interpreted as an estimate of reanalysis

uncertainty.

Second, ESM performance in present climate conditions

is assessed by validating the ESMs listed in Table 2 against

ERA-Interim. At this point, the results obtained from the

first step allow for testing if the degree of reanalysis

uncertainty permits for assessing ESM performance in an

objective manner. In case of large reanalysis uncertainties,

ESM performance cannot be objectively assessed since it is

sensitive to reanalysis choice. On the contrary, in case of

negligible reanalysis uncertainties, ESM performance is

not sensitive to reanalysis choice and applying JRA-25 as

reference for validation would lead to similar results.

The first measure for evaluating reanalysis uncertainty

and ESM performance in this study is the mean difference

(bias). Since the variability of the applied daily timeseries

is much smaller in the tropics than in the mid-latitudes, the

bias is normalized by the standard deviation of ERA-

Interim to make results comparable (Brands et al. 2011b).

This is hereafter referred to as ‘normalized bias’ or ‘nor-

malized mean difference’ (when applied to the two

reanalyses).

To detect distributional differences, we apply the two-

sample Kolmogorov Smirnov test (KS test) to the original

time series and to the time series centered to have zero

mean, which are obtained by subtracting the seasonal mean

from each timestep. For simplicity, the resulting time series

will hereafter be referred to as ‘centered’. Validating cen-

tered time series is equivalent to removing the mean dif-

ference and, consequently, permits for detecting

distributional differences in higher order moments. Note

that comparing centered ESM data to centered ERA-

Interim data is one possible solution of correcting the mean

error of the ESM, which is commonly done in statistical

downscaling studies (Wilby et al. 2004) and recently has

also been proposed for the dynamical downscaling

approach (Colette et al. 2012; Xu and Yang 2012).

The KS test is a non-parametric hypothesis test assess-

ing the null hypothesis (H0) that two candidate samples

(here: reanalysis and ESM series for a particular gridbox

and season of the year) come from the same underlying

theoretical probability distribution. It is defined by the

statistic:

KS� statistic ¼ max
2n

i¼1
jEðziÞ � IðziÞj ð1Þ

where n is the length of the time series, zi denotes the ith

data value of the sorted joined sample and E and I are the

empirical cumulative frequencies from a given ESM (or

JRA-25, in case reanalysis uncertainty is assessed) and the

ERA-Interim reanalysis, which serves as reference for

validation in any case. This statistic is bounded between

zero and one, with low values indicating distributional

similarity. In this study we use the p value of this statistic

as a measure of distributional similarity. Decreasing p val-

ues indicate an increasing confidence on distributional

differences between both series. Note that a base 10 log-

arithmic transformation is applied to the p values in order

to better indicate the different significance levels, 10-1,

10-2, 10-3, corresponding to increasing confidences (90,

99, 99.9 % respectively) on the dissimilarity of the

distributions.

Since the daily time series applied here are serially

correlated, we calculate their effective sample size before

estimating the p value of the KS statistic in order to avoid

committing too many type I errors (i.e. erroneous rejections

of the H0). Under the assumption that the underlying time

series follow a first-order autoregressive process, the

effective sample size, n� , is defined as follows (Wilks

2006):

n� ¼ n
1� p1

1þ p1

ð2Þ

where n is the sample size and p1 is the lag-1 autocorre-

lation coefficient.
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If not specifically referred to in the text, all of the above

mentioned validation measures are applied at the grid-box

scale, using season specific time series.

4 Results

In this section we first assess reanalysis uncertainty (by

comparing JRA-25 with ERA-Interim) and then evaluate

ESM performance (by comparing the ESMs with ERA-

Interim). The normalized bias is applied to assess reanal-

ysis differences and ESM errors in the mean of the distri-

bution. Then, to detect reanalysis differences and ESM

errors in higher order moments, we apply the KS test to the

centered time series. Note that in the latter case the degrees

of freedom are reduced by -1, which is a negligible

problem since n� is of the order of several hundreds in any

case.

Finally, model performance for the original (i.e. non-

transformed) data is specifically assessed along the lateral

boundaries of the three CORDEX domains defined in

Fig. 1, which is of particular interest for the dynamical

downscaling community. Unless RCMs are nudged to the

large scale information (von Storch et al. 2000), ESM

performance in the interior of the aforementioned domains

is less important for the purpose of dynamical downscaling,

since the corresponding atmospheric variability is simu-

lated by the RCM, which is driven by the ESM at the

boundaries of the domain only.

4.1 Reanalysis uncertainty

In Fig. 2, the results of validating JRA-25 against ERA-

Interim in boreal winter (DJF, first and second column) and

summer (JJA, third and forth column) are mapped for the

variables SLP, T2, T850, Q850, U850, V850, T500 and

Z500 (from top to bottom). Along the first and third col-

umn, the mean difference between JRA-25 and ERA-

Interim, normalized by the standard deviation of ERA-

Interim (Bias/Std) is mapped. The second and fourth col-

umns display the logarithm to base 10 of the KS statistic’s

p value (KS pVal), obtained from applying the KS test to

the centered time series. Recall that applying centered data

at this point permits for detecting reanalysis uncertainties

in higher order moments. Values below -1.3 indicate that

distributional differences in higher order moments are

significant (a = 0.05), whereas values exceeding this

threshold represent spurious differences (see the white area

in the panels). For simplicity, the latter will hereafter be

referred to as ‘perfect’ distributional similarity. A grid box

is marked with a black dot if significant distributional

differences for the original data disappear when applying

the KS test to the centered time series, thereby indicating

Z
50

0
T

50
0

Q
85

0
058

U
058

T
V

85
0

T
2

S
LP

DJF JJA
dtS/saiBdtS/saiB )gol( laVp SK)gol( laVp SK

-1 -0.5 -1.5 -2 -2.5 -30.5 10 -1 -0.5 -1.5 -2 -2.5 -30.5 10

Fig. 2 Columns 1?3: Mean differences between JRA-25 and ERA-

Interim, normalized by the standard deviation of the latter; Columns

2?4: p Value (in logarithmic scale) of the KS test applied to the time

series from JRA-25 and ERA-Interim, both centered to have zero

mean. Grid boxes are whitened if the p value does not exceed the

threshold value of -1.301, i.e. if the distributional differences are not

significant (a = 0.05). Colour darkening corresponds to increasing

(and significant) distributional differences/reanalysis uncertainties.

Grid boxes marked with a black dot indicate areas where significant

distributional differences for the original reanalysis data are elimi-

nated by using the centered time series
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that reanalysis uncertainty is restricted to a shift in the

mean of the distribution.

Reanalysis uncertainty for SLP (see row 1 in Fig. 2) is

negligible north of 45� N and clearly depends on season in

the Northern Hemisphere subtropics (25� N–45� N), where

it is more (less) pronounced in JJA (DJF). Over Africa (and

especially in JJA), SLP in JRA-25 is much lower than in

ERA-Interim, while the opposite is the case over the

adjacent ocean areas. Consequently, JRA-25 is character-

ized by a more pronounced land-sea pressure gradient than

ERA-Interim. For the Southern and Northern Hemisphere

mid-latitude oceans, reanalysis differences are negligible.

Reanalysis uncertainty for T2 (see row 2 in Fig. 2) is

more widespread than for any other variable under study,

with JRA-25 being systematically warmer than ERA-

Interim. Exceptions from this general result occur over land

areas north of 45� N and the northern Arctic Ocean, where

differences are negligible or even negative during DJF and

MAM (MAM is not shown).

As was the case for SLP, reanalysis uncertainty for T850

(see row 3 in Fig. 2) is most pronounced over Africa and

negligible over the the Northern-Hemisphere extratropics

(with the exception of the Scandinavian Mountains in DJF

and Greenland in all seasons). Along the ascending branch

of the Hadley Cell, JRA-25 is considerably warmer than

ERA-Interim, while the opposite is the case for the large-

scale subsidence zones. Interestingly, the resulting merid-

ional tripole structure (JRA-25 colder, JRA-25 warmer,

JRA-25 colder) follows the seasonal march of the Hadley

Cell.

The tripole difference structure found for T850, as well

as its associated seasonality, also appears in Q850 (see row

4 in Fig. 2). Along the ascending branch of the Hadley

Cell, JRA-25 is dryer than ERA-Interim, while the opposite

is the case along the descending branches. Except for

central-to-east Europe and the northern North Atlantic,

differences for Q850 are remarkable over the whole study

area.

For U850 and V850 (see row 5?6 in Fig. 2), reanalysis

uncertainty is generally weaker than for the other variables

under study and, in the extratropics, is confined to regions

of high orography. During the core of the monsoon season

(JJA), U850 and V850 over West Africa are weaker in

JRA-25 than in ERA-Interim, while over East-Africa the

sign of the difference is more heterogenous.

Considerable reanalysis uncertainties for T500 (see row

7 in Fig. 2) are mainly confined to the Tropics. In DJF,

JRA-25 is generally colder than ERA-Interim (exception:

western South Africa), whereas in JJA it is colder near the

Equator but warmer over the semi-arid to arid regions of

the Northern Hemisphere.

Finally, although reanalysis uncertainty for Z500 (see

row 8 in Fig. 2) is generally lower than for any other

variable under study, considerable differences are found

over the tropics and subtropics. Over Africa and the

tropical Oceans, and especially during DJF and MAM,

Z500 in JRA-25 is lower than in ERA-Interim. In con-

junction with higher values in the area of the St. Helen’s

High, the meridional gradient for Z500 over the South

Atlantic is more pronounced in JRA-25 than in ERA-

Interim.

When applying the KS-test to centered/zero-mean data,

no significant distributional differences are detected for the

case of SLP, T500 and Z500. For T850 and T2, the area of

significant distributional differences is reduced to Central

Africa (Kongo Basin), where it follows the seasonal march

of the Hadley Cell, as was the case for the original data (see

Fig. 2, columns 2 and 4). For U850 and V850, this area is

confined to high-orography regions and, in case of V850, to

the Guinea Coast (with a widespread error in JJA, i.e.

during the core of the summer monsoon). For Q850, sig-

nificant distributional differences are essentially removed

in the extratropics, while large areas of significant differ-

ences remain over the South Atlantic, Tropical Africa and,

with a considerable error magnitude (i.e. low p value), over

the Indian Ocean.

As an anticipated conclusion to bear in mind when

interpreting the results of the next section, the mean dif-

ference between JRA-25 and ERA-Interim generally

exceeds a magnitude of one standard deviation for central-

to-south Africa. Even if the data is centered to have zero

mean, i.e. if differences in the mean are removed, there

remain significant differences in higher order moments.

Consequently, it is neither possible to objectively assess

ESM performance for central-to-south Africa, nor does the

basic assumption of ‘real’ or ‘perfect’ large scale data hold

in these regions.

In contrast to the tropics, reanalysis uncertainty in the

extratropics is generally negligible and the above men-

tioned problems may consequently be ignored, meaning

that ESM performance can be assessed and the basic

downscaling assumption can be affirmed.

4.2 Performance maps

Figures 3, 4, 5, 6, 7, 8, 9 and 10 show the results of vali-

dating the 7 ESMs listed in Table 1 against ERA-Interim

for the case of SLP, T2, T850, Q850, U850, V850, T500

and Z500 respectively. Columns 1 and 2 (3 and 4) refer to

the results for DJF (JJA). For each season we show the bias

normalized by the standard deviation of ERA-Interim

(Bias/Std), as well as the logarithmic p value of the KS

statistic (KS pVal) obtained from the centered/zero-mean

data. For the ease of comparison, the corresponding panels

for reanalysis uncertainty (copied from Fig. 2) are dis-

played at the bottom of each figure.
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Regarding the ESM error for SLP (see Fig. 3), the

meridional pressure gradient in the Northern Hemisphere

(NH) extratropics during DJF and MAM is too strong in

CanESM2, IPSL-CM5A-MR, MIROC-ESM, MPI-ESM-

LR and NorESM1-M (MAM is not shown). In JJA,

CanESM2 and CNRM-CM5 suffer from too low SLP

values over a large fraction of the land areas. For MIROC-

ESM, MPI-ESM-LR and NorESM1-M, and in the light of

considerable reanalysis uncertainty, both the Sahara Heat

Low and the St. Helen’s High are too weak during JJA,

leading to an underestimation of the land-sea pressure

gradient during the West African rainy season. Over the

extratropical North Atlantic, SLP during JJA is systemati-

cally overestimated by all ESMs except MPI-ESM-LR and

CanESM2, the latter two showing more heterogeneous

spatial patterns.

The T2 bias is generally larger and more widespread

than at 850 hPa (compare Figs. 4, 5). The aforementioned

largely exaggerated meridional pressure gradient during

boreal winter and spring is associated with too strong

westerlies in the Northern Hemisphere mid-latitudes,

which lead to an exaggerated advection of oceanic air

masses, resulting in too mild and moist conditions in

continental Europe, an effect that extends throughout the

whole planetary boundary layer (see Figs. 4, 5, 6 for T2,

T850 and Q850 respectively).

During the core of the West African monsoon (JJA), and

as revealed by U500 (not shown), a too strong Subtropical

Jet, as well as a too weak African Easterly Jet (Cook 1999)

are simulated by the ESMs, with NorESM1-M performing

best for these features. The monsoonal winds over West

Africa, as represented by U850 in JJA, are underestimated

over the Sahel but overestimated over the subhumid to

humid zones along the Guinea Coast in all ESMs except

IPSL-CM5A-MR; the latter underestimating this variable

over the entire region (see Fig. 7). Also reflected in U850 is

the above mentioned overestimation of the wintertime

westerlies in the North Atlantic-European region. In gen-

eral, the bias for U850 is larger and more widespread than

for V850 (compare Figs. 7, 8).

For all ESMs except IPSL-CM5A-MR, a cold bias was

found in the middle troposhere (see Fig. 9), which covers a

large fraction of the domain under study in any season and,

with the exception of CanESM2 and IPSL-CM5A-MR, is

Fig. 3 Columns 1?3: Mean differences (columns 1?3) between the

seven ESMs listed in Table 1 and ERA-Interim, normalized by the

standard deviation of ERA-Interim; Columns: 2?4: p Value (in

logarithmic scale) of the KS test applied to the time series from the

respective ESM and ERA-Interim, both centered to have zero mean.

Grid-boxes are whitened if the p value does not exceed the threshold

value of -1.301, i.e. if the distributional differences are not

significant (a = 0.05). Colour darkening corresponds to increasing

(and significant) distributional differences/ESM errors. Grid boxes

marked with a black dot indicate areas where significant ESM errors

in the original data are eliminated by using the centered time series;

results for SLP. For the ease of comparison, the corresponding panels

for reanalysis uncertainty (copied from Fig. 2 are displayed at the

bottom of the figure
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associated with an underestimation of the geopotential at

500 hPa over the Tropics (see Fig. 10).

Remarkably, one should expect the spatial pattern of the

normalized ESM error to be independent from the spatial

patterns of the normalized reanalysis difference. However,

a considerable agreement between both types of patterns is

found in central-to-south Africa, at least for some vari-

ables. To mention an example, the pattern of reanalysis

uncertainty for T850 (see Fig. 5, JRA-25 is warmer than

ERA-Interim over central Africa) is approximately

resembled by a warm bias in all of the 7 ESMs under study

(compare last row to remaining rows in Fig. 5). This points

to a substantial error in the reference data set (ERA-

Interim) for this specific region. This error, however, can-

not be ultimately deduced from our analyses, since this

would require a more thorough verfication against inde-

pendent station and/or radiosonde data.

For all applied variables, ESM performance largely

improves when applying centered time series (see columns

2 and 4 in Figs. 3, 4, 5, 6, 7, 8, 9, 10). In case of SLP, errors

in higher order moments are detected over the high-orog-

raphy regions of the Middle-East (for CanESM2, IPSL-

CM5-MR and MIROC-ESM in at least one season of the

year), over the Red-Sea and adjacent land areas (MIROC-

ESM in JJA and SON, the latter season not shown), the

Mediterranean (MIROC-ESM, NorESM1-M and MPI-

ESM-LR in JJA), South Africa (CanESM2, IPSL-CM5-

MR and MIROC-ESM in SON and/or DJF) and West

Africa (CNRM-CM5 in JJA). Best overall performance is

yielded for HadGEM2-ES, which, at least in case of SLP,

does not suffer from errors in higher order moments at all

(see Fig. 3, row 3, columns 2 and 4).

In case of the centered T850 data (see Fig. 5), any ESM

except CanESM2 and HadGEM2-ES suffers from signifi-

cant distributional differences over the tropics, the South-

ern-Hemisphere subtropics and the North Atlantic, while

errors for T2 (see Fig. 4) are more widespread and addi-

tionally cover the Southern Hemisphere mid-latitudes.

Interestingly, HadGEM2-ES again outperforms any other

ESM for both T850 and T2, the performance of CanESM2

being comparable in case of T850.

Regarding the centered U850 and V850 data (see

Figs. 7, 8), performance is generally better for U850.

Errors in higher order moments appear over the tropics and

subtropics. Large inter-model differences are found for

both variables, with HadGEM2-ES and IPSL-CM5-MR

performing clearly better than the remaining ESMs.

Albeit the errors in T500 are largely reduced by using

centered data, CanESM2, MIROC-ESM, and NorESM1-M

suffer from errors in higher order moments along the

ascending branch of the Hadley Cell in JJA (see Fig. 9). In
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IPSL-CM5-MR, this error type appears during DJF

between the Azores and the Bay of Biscay while it is vir-

tually absent in HadGEM2-ES.

As shown in Fig. 10, ESM errors for Z500 disappear

almost completely for the centered data.

4.3 Performance along the lateral boundaries

of the CORDEX domains

Figure 11 displays the medians (bars) of the samples

formed by the absolute normalized differences along the

lateral boundaries (LB) of the 3 CORDEX domains shown

in Fig. 1. From top to bottom (left to right) the results for

different variables (LBs) are shown, while the season-

specific results are displayed within each panel (see

x-axes). For reasons of simplicity, the interquartile ranges

(IQRs) are not shown since they are roughly proportional

to their respective medians (i.e. the higher the median, the

broader the IQR).

It is remarkable that ESM performance along the lateral

boundaries of the 3 domains is generally very similar, i.e.

the models do not perform systematically worse for any

single domain compared to the other two. For any domain

under study, ESM performance is best for V850, followed

by U850, and is worse for T2 and T500 (note the distinct

scaling of the y-axis for the latter two). Intermodel per-

formance differences are smallest for U850 (except over

the African domain) and V850 and generally larger for the

remaining variables. Also, intermodel performance differ-

ences for the Med-CORDEX and CORDEX Africa

domains are more pronounced than for the Euro-CORDEX

domain. While MPI-ESM-LR and HadGEM2-ES are

among the best models in any case, MIROC-ESM and

IPSL-CM5-MR generally perform poorer, the remaining

ESMs lying in-between in most cases. Interestingly, for the

CORDEX Africa domain, ESM performance (and reanal-

ysis agreement) along the lateral boundaries is systemati-

cally better than in the interior of the domain.

5 Discussion and conclusions

This study has shown that distributional differences

between free tropospheric circulation, temperature and
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humidity data from JRA-25 and ERA-Interim are compa-

rable to those obtained from validating the ESMs against

ERA-Interim in central-to-south Africa. This questions the

basic downscaling assumption of ‘real’ or ‘perfect’

reanalysis data and hinders the objective evaluation of

ESM performance (Gleckler et al. 2008) in these regions.

The reason behind the differences cannot be inferred

from our analyses. However, the large differences between

JRA-25 and ERA-Interim over central-to-south Africa are

consistent with Betts et al. (2009), who found ERA-Interim

compared to in-situ station data to be cold-biased over the

Amazon basin. Moreover, the cold bias of ERA-Interim

over African tropical regions, which was systematically

found against JRA-25 and 7 ESMs, indicate that ERA-

Interim might not reflect ‘real’ atmospheric conditions in

that area and that, in a strict sense, it should not be applied

there for the purpose of downscaling. This should be a

warning sign for the CORDEX Africa community, indi-

cating that the errors of the downscaled times series may

originate from the driving reanalysis, apart from being

caused by SD or RCM errors.

In contrast, reanalysis uncertainty for the Northern

Hemispheric extratropics is negligible, which (1) affirms

the above mentioned basic downscaling assumption and (2)

permits for assessing ESM performance. A largely over-

estimated meridional pressure gradient was found in 5 out

of 7 ESMs during boreal winter and spring, leading to too

mild and moist conditions in continental Europe. This is in

agreement with van Ulden and van Oldenborgh (2006) and

Vial and Osborn (2011), who found serious circulation

biases and an underestimation of the frequency and dura-

tion of wintertime atmospheric blocking in most CMIP3-

GCMs. Consequently, artificial feedback processes in the

scenario period resulting from ESM errors in the control/

historical period (Raisanen 2007) cannot be ruled out for

Europe.

HadGEM2-ES and MPI-ESM-LR generally outperform

the remaining models along the lateral boundaries of the

Euro-CORDEX, Med-CORDEX and CORDEX Africa

domains, which is in qualitative agreement with Brands

et al. (2011a), who validated the former versions of these

models over southwestern Europe. The systematic superi-

ority of these models questions the paradigm of equi-

probable treatment of the driving models in downscaling

studies.

For the CORDEX Africa domain, ESM performance

and reanalysis agreement along the lateral boundaries is

systematically better than in the interior of the domain,

which might be one argument against the use of RCM

nudging (von Storch et al. 2000). In this context, it is worth

mentioning that GCM control runs nudged to reanalysis

data (Eden et al. 2012) fail to reproduce the temporal

variability of observed precipitation in the tropics (where

reanalysis uncertainty is large) whereas they perform well

in the extratropics (where reanalysis uncertainty is low).

This indicates that the success of nudging GCMs (and also

RCMs) to reanalysis data might critically depend on the

degree of reanalysis uncertainty.

The final message is that many of the errors found in the

CMIP3-GCMs are still present in current Earth System

Models. For instance, the systematic domain-wide cold

bias in the middle troposphere found in this study is con-

sistent with John and Soden (2007), who found similar

results for the CMIP3-GCMs. Thus, the shortcomings and

corresponding recommendations for working with GCM

data in the context of downscaling (Wilby et al. 2004)

remain valid for the new model generation.
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Cassou C (2011) The CNRM-CM5.1 global climate model:

description and basic evaluation. Clim Dyn. doi:10.1007/s003

82-011-1259-y

Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima

H, Nozawa T, Kawase H, Abe M, Yokohata T, Ise T, Sato H,

Kato E, Takata K, Emori S, Kawamiya M (2011) MIROC-ESM

2010: model description and basic results of CMIP5-20c3m

experiments. Geosci Model Dev 4(4):845–872. doi:10.5194/gmd-

4-845-2011

Wilby R, Charles S, Zorita E, Timbal B, Whetton P, Mearns L (2004)

Guidelines for uses of climate scenarios developed from statistical

downscaling methods. Supporting material, http://www.

narccap.ucar.edu/doc/tgica-guidance-2004.pdf

Wilks D (2006) Statistical methods in the atmospheric sciences, 2

edn. Elsevier, Amsterdam

Winkler JA, Guentchev GS, Liszewska M, Perdinan A, Tan PN

(2011a) Climate scenario development and applications for

local/regional climate change impact assessments: An overview

for the non-climate scientist. Geogr Compass 5(6):301–328. doi:

10.1111/j.1749-8198.2011.00426.x

Winkler JA, Guentchev GS, Perdinan A, Tan PN, Zhong S, Liszewska

M, Abraham Z, Niedzwiedz T, Ustrnul Z (2011b) Climate

scenario development and applications for local/regional climate

change impact assessments: an overview for the non-climate

scientist. Geogr Compass 5(6):275–300. doi:10.1111/j.1749-

8198.2011.00425.x

Xu Z, Yang ZL (2012) An improved dynamical downscaling method

with GCM bias corrections and its validation with 30 years of

climate simulations. J Clim 25(18):6271–6286. doi:10.1175/JCLI-

D-12-00005.1

Validation of the CMIP5 Earth System Models for downscaling 817

123

http://dx.doi.org/10.1256/qj.04.176
http://dx.doi.org/10.1007/s00382-011-1177-z
http://dx.doi.org/10.1007/s00382-011-1177-z
http://dx.doi.org/10.1007/s00382-011-1259-y
http://dx.doi.org/10.1007/s00382-011-1259-y
http://dx.doi.org/10.5194/gmd-4-845-2011
http://dx.doi.org/10.5194/gmd-4-845-2011
http://www.narccap.ucar.edu/doc/tgica-guidance-2004.pdf
http://www.narccap.ucar.edu/doc/tgica-guidance-2004.pdf
http://dx.doi.org/10.1111/j.1749-8198.2011.00426.x
http://dx.doi.org/10.1111/j.1749-8198.2011.00425.x
http://dx.doi.org/10.1111/j.1749-8198.2011.00425.x
http://dx.doi.org/10.1175/JCLI-D-12-00005.1
http://dx.doi.org/10.1175/JCLI-D-12-00005.1

	How well do CMIP5 Earth System Models simulate present climate conditions in Europe and Africa?
	A performance comparison for the downscaling community
	Abstract
	Introduction
	Data
	Methods
	Results
	Reanalysis uncertainty
	Performance maps
	Performance along the lateral boundaries of the CORDEX domains

	Discussion and conclusions
	Acknowledgments
	References


