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Abstract The ability of an ensemble of six GCMs,

downscaled to a 0.1� lat/lon grid using the Conformal

Cubic Atmospheric Model over Tasmania, Australia, to

simulate observed extreme temperature and precipitation

climatologies and statewide trends is assessed for

1961–2009 using a suite of extreme indices. The

downscaled simulations have high skill in reproducing

extreme temperatures, with the majority of models

reproducing the statewide averaged sign and magnitude

of recent observed trends of increasing warm days and

warm nights and decreasing frost days. The warm spell

duration index is however underestimated, while

variance is generally overrepresented in the extreme

temperature range across most regions. The simulations

show a lower level of skill in modelling the amplitude

of the extreme precipitation indices such as very wet

days, but simulate the observed spatial patterns and

variability. In general, simulations of dry extreme pre-

cipitation indices are underestimated in dryer areas and

wet extremes indices are underestimated in wetter areas.

Using two SRES emissions scenarios, the simulations

indicate a significant increase in warm nights compared

to a slightly more moderate increase in warm days, and

an increase in maximum 1- and 5-day precipitation

intensities interspersed with longer consecutive dry

spells across Tasmania during the twenty-first century.

Keywords Extremes � Climate change � Regional climate

models � Observations � Projections � Australian climate

1 Introduction

Scientific evidence that the earth is warming is unequivocal

and there is overwhelming evidence that increased con-

centrations of greenhouse gases, caused by human activity,

are contributing to this warming (Solomon et al. 2007).

Associated with this warming, other aspects of the climate

system are projected to change. Changes in local weather

conditions, particularly extreme events, pose a significant

challenge for society and the natural environment (Sene-

viratne et al. 2012; Burton et al. 2012) and are therefore of

particular interest in the context of adaptation planning.

Recent advances in extremes research have found that

observations of extremes largely reflect shifts in the mean

distribution (Hansen et al. 2012; Donat and Alexander

2012). However, such changes are likely to exhibit large
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spatial heterogeneity (e.g. Min et al. 2011). Furthermore,

weather and climate extremes are often influenced by

large-scale processes and features that are not well mod-

elled or resolved by the current generation of coupled

ocean-atmosphere General Circulation Models (GCMs),

contributing to uncertainty in future projections of these

quantities (e.g. Meehl et al. 2004; Scaife et al. 2008),

particularly at the regional level (Randall et al. 2007).

Existing studies of observed and future extremes have

been undertaken globally (e.g. Tebaldi et al. 2006; Alex-

ander et al. 2006; Kharin et al. 2007) and for the Australian

region (e.g. Collins et al. 2000; Gallant et al. 2007; Alex-

ander and Arblaster 2009). In general, these have con-

cluded that significant changes to temperature and

precipitation extremes have been observed across Australia

in the past century, and that Australia is likely to see a shift

towards warmer temperature extremes and increased

extreme precipitation events interspersed with longer dry

spells during the twenty-first century (Alexander and

Arblaster 2009). However, these studies have typically

been undertaken using coarse global-scale GCMs which

display varied levels of skill at simulating observed trends

and patterns of extremes. Kharin et al. (2007) and Kiktev

et al. (2007) report that globally GCMs show reasonable

skill at simulating observed extreme temperature trends but

show poor model agreement for extreme precipitation

patterns and trends. Similarly for Australia, Alexander and

Arblaster (2009) find that both the trends and inter-annual

variability of temperature extremes are well simulated by

the GCMs, but that few GCMs showed significant skill at

reproducing observed extreme precipitation patterns across

Australia. This makes the interpretation of observed and

future projected changes to extreme events difficult for

practitioners at the local level where the impact of

extremes is most keenly felt.

Recent observed extreme events such as the Russian

heat wave in 2010 (e.g. Dole et al. 2011) and flooding in

England and Wales in 2000 (e.g. Pall et al. 2011) have

increased demand for information to report and attribute

the causes of observed extreme events (e.g. Hegerl et al.

2004; Schiermeier 2011; Peterson et al. 2012) and to pro-

vide relevant and concise information on the potential

impacts of extremes in a future non-stationary climate

(IPCC 2012). This has motivated recent efforts to provide

climate projections at temporal and spatial scales that are

more applicable for extremes. While efforts have been

made to address this on a regional scale using GCMs (e.g.

Alexander and Arblaster 2009 for Australia; Sillmann and

Roekner 2008 for Europe), to date little has been published

on extremes at the local scale.

To address the limited ability of GCMs to simulate

extremes, a commonly applied technique is dynamical

downscaling in which high-resolution Regional Climate

Models (RCMs) are forced by the output of GCMs.

Dynamical RCMs have been shown to simulate climate

variables and related processes realistically at a range of

scales and locations both across Australia (e.g. Watterson

et al. 2008; Nguyen and McGregor 2009) and interna-

tionally (e.g. Boé and Terray 2007; Engelbrecht et al. 2009;

Nguyen et al. 2011), often with a particular focus on

resolving regional precipitation processes (e.g. Kendon

et al. 2010; Berg et al. 2009). However, assessments of the

performance of the dynamical downscaling process for the

simulation of climate extremes have been more limited.

In this study, we aim to contribute to the knowledge of

temperature and precipitation extremes by assessing

aspects of the performance of dynamically downscaled

climate simulations undertaken across Tasmania, Australia

for the Climate Futures for Tasmania project. Tasmania is

Australia’s island state and features a varied maritime

climate and mountainous topography. However, its rela-

tively small size means that it is poorly resolved in global-

scale GCMs where circulation changes between the east

and west of the state are not distinguished (Grose et al.

2012a). Furthermore, it is located near a boundary of

projected future precipitation increase to the south and

decrease to the north in most GCMs (Christensen et al.

2007) and this leads to limited agreement in the sign and

magnitude of future precipitation changes over the Tas-

manian region between GCMs, making it an ideal location

for studying and validating the performance of high-reso-

lution regional-scale projections of climate extremes.

This paper is organized as follows. The study location,

model experiments and a review of extremes metrics are

given in Sect. 2. Section 3 assesses the performance of the

downscaled experiments across an ensemble of six simu-

lations with regards to their representation of extremes

while Sect. 4 describes future projections. The final section

provides a discussion of results and concluding comments.

2 Background and methods

2.1 Region of study

Tasmania is located 240 km south of the south–east corner

of the Australian mainland (Fig. 1a), near the northern

boundary of the mid-latitude belt of southern hemisphere

westerlies. It is characterised by mountainous topography

in much of the south and west, a plateau in the centre of the

state and lowlands predominating in the north and east. The

mountains create a sharp west–east mean annual precipi-

tation gradient from more than 3,200 mm in the Western

district to less than 600 mm in the East Coast lowlands

district (districts are shown in Fig. 1b). Mean annual daily

maximum temperatures range from *12 �C in the Central
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Plateau district to *17 �C in the East Coast district.

Although less frequent and intense as those observed in parts

of the Australian mainland, temperatures as high as 42.2 �C

have been recorded in the state’s North East and as low as

-13.0 �C on the Central Plateau (Bureau of Meteorology

2012). The most extreme temperature events and worst fire

danger conditions occur under the influence of strong hot

dry north–westerly prefrontal winds crossing Tasmania

(Mills 2005). Frontal systems are the dominant cause of

precipitation in the western half of the state, while east coast

low systems dominate extreme precipitation events in the

northeast (Pook et al. 2010), one such example producing

extreme precipitation totals of 352 mm in 1 day on the 22nd

March 1974 (Bureau of Meteorology 2012).

The projections of future temperature changes across the

Tasmania region from GCM simulations are broadly con-

sistent with parts of the southern Australian mainland.

However, there is poor agreement on the sign and magni-

tude of future precipitation changes, with Tasmania lying

near a boundary between the subtropics where most GCMs

project a decrease in mean precipitation, and the higher

latitudes where precipitation is largely projected to increase

in a warming climate (Christensen et al. 2007; Suppiah

et al. 2007). The exact placement of this boundary is likely

to dictate both the sign and magnitude of mean and

extreme precipitation changes across Tasmania. The coarse

resolution of GCMs, where Tasmania is represented by

between 0 and 6 grid cells (Fig. 2a shows an example using

the GFDL-CM2.1 GCM), means they do not delineate the

west to east gradients of precipitation or precisely define

the boundary between projected future increases and

decreases in precipitation.

Tasmania’s location, diverse topography and varied

climate over a relatively small area makes assessing the

regional impacts of climate change on extreme temperature

and precipitation events particularly difficult when relying

solely on low-resolution GCMs. It is therefore an ideal case

study location for an assessment of the performance of the

new generation of high-resolution dynamically downscaled

climate simulations.

Fig. 1 Australia geographical location map showing a the location of

the state of Tasmania, and b the Tasmania districts used in this study.

Districts derived from the Bureau of Meteorology’s Tasmanian

Forecast Areas Map, available online at www.bom.gov.au/tas/

forecasts/map.shtml

Fig. 2 Demonstration of the effects of resolution on an example

variable (mean annual precipitation in mm) for Tasmania using a the

2.0� 9 2.5� GFDL-CM2.1 GCM, b the 0.5� CCAM simulations

(using the same GCM), c the 0.1� CCAM simulations (using the same

GCM), and d the 0.1� AWAP interpolated observations, all for

1961–1990
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2.2 Models and dynamical downscaling

In this study, climate simulations for the Tasmanian region

were produced by downscaling GCMs with CSIRO’s

Conformal Cubic Atmospheric Model (CCAM) as part of

the Climate Futures for Tasmania project (Corney et al.

2010). CCAM is a global atmospheric model that uses a

stretched-grid to increase the resolution over the geo-

graphic region of interest (McGregor 2005; McGregor and

Dix 2008; Thatcher and McGregor 2011). Other variable

resolution global atmospheric models have been shown to

realistically simulate precipitation and related processes at

a range of scales and locations (e.g. Berbery and Fox-

Rabinovitz 2003; Fox-Rabinovitz et al. 2006; Boé and

Terray 2007) as has CCAM for regional climate studies in

Australia (Watterson et al. 2008; Nguyen and McGregor

2009; Chiew et al. 2010) and internationally (Lal et al.

2008; Engelbrecht et al. 2009; Nguyen et al. 2011). This

study forms part of a wider body of work assessing large-

scale climate processes and synoptic systems (Grose et al.

2012a, b) and future water availability (Bennett et al. 2012)

using the CCAM simulations across the Tasmanian region.

Understanding model uncertainty is a key element of

assessing model skill. We have used an ensemble of sim-

ulations to reduce this source of uncertainty to develop a

plausible range of future changes in extremes. Five of the

World Climate Research Programmes’s (WCRP’s) Cou-

pled Model Intercomparison Project phase 3 (CMIP3)

GCMs (Meehl et al. 2007a) were selected on the basis that

they realistically simulated observed precipitation across

Australia (Smith and Chandler 2009) and ENSO variability

(van Oldenborgh et al. 2005) and include GFDL-CM2.0,

GFDL-CM2.1, ECHAM5/MPI-OM, UKMO-HadCM3 and

MIROC3.2(medres). The sixth GCM selected was the

most recent Australian CMIP3 GCM; CSIRO-Mk3.5. For

brevity, we refer to the downscaled GCMs as models

throughout the paper.

Forcing for CCAM is typically applied in one of two

ways. It can be applied at the surface boundary through the

specification of bias-adjusted sea-surface temperatures and

sea-ice (Katzfey et al. 2009) where the atmosphere within

CCAM is able to evolve freely in response to the surface

forcing. The bias-correction of the SSTs prior to their

application to the CCAM model has been shown to

improve the representation of the current climate (e.g.

Grose et al. 2012a, b; Nguyen et al. 2011). Alternatively,

CCAM can be forced using a spectral nudging technique

(Thatcher and McGregor 2009) in which the surface

pressure, air temperature and winds and moisture fields are

perturbed at spatial scales typically greater than the size of

the region of interest (in this case Tasmania) using a

specified source of atmospheric data. Using spectral

nudging, the atmosphere at small spatial scales is able to

evolve freely within CCAM. Both of these methods avoid

the need for horizontal boundary conditions and their

associated problems on limited area model domains.

While downscaling with multiple RCMs can be benefi-

cial for capturing the uncertainty related to the downscaling

model, the primary source of the climate change signal

results from changes in the ocean temperatures (Dom-

menget 2009). Therefore, with limited resources, it was

decided to only use CCAM for all the simulations, but to

downscale six GCMs (to capture some of the uncertainty

related to the climate change signal) and two emission

scenarios (to capture some of the uncertainty related to

future scenarios). The SST forcing from the host GCM is

applied as a fixed correction factor for each month and so

the climate change signal and the inter-annual variability in

SST’s from the host GCMs will be transferred to CCAM.

However, as the land surface and atmosphere is not con-

strained by forcing from the host it can evolve indepen-

dently to reflect changes in the atmosphere due to climate

change.

The downscaling in this study is undertaken in two

stages. In the first, CCAM, with an approximate horizontal

resolution of *50 km (0.5�) over the Australian continent

(Fig. 2b), is forced with bias-corrected GCM sea surface

temperatures (SSTs) and sea-ice concentrations. In the

second stage, CCAM, at an approximate horizontal reso-

lution of *10 km (0.1�) over Tasmania (Fig. 2c), is forced

with the same bias-corrected GCM SSTs and sea-ice con-

centrations (downscaled through the *50 km simulations)

as well as spectral nudging of the atmosphere from the 50

km CCAM simulations (Thatcher and McGregor 2009;

Katzfey et al. 2009). The spectral nudging is necessary for

the model with higher-resolution over Tasmania because

the associated lower resolution of this stretched grid

transformation on the opposite side of the globe means it is

unable to maintain a realistic global atmosphere there

(Corney et al. 2010). The downscaling approach is applied

to two of the Special Report on Emissions Scenarios

(SRES) experiments (Nakićenović and Swart 2000): B1

(a low-range emissions scenario) and A2 (a high-range

emissions scenario).

2.3 Observations

The ability of the dynamically downscaled CCAM simu-

lations to reproduce extreme temperature and precipitation

observations and trends for the present (or validation)

period of 1961–2009 is assessed using the Australian Water

Availability Project (AWAP) high-resolution gridded

observational dataset. AWAP is an interpolated product,

created using station records across Australia (Raupach

et al. 2008; Jones et al. 2009). While the AWAP dataset

provides complete spatial coverage across Tasmania, some

3148 C. J. White et al.
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areas of Tasmania, particularly in the west, have sparse

observational station records and hence extremes in this

region may be less reliable compared to areas with a denser

station network (King et al. 2012). King et al. (2012) also

note that AWAP tends to underestimate the intensity of

extreme heavy precipitation events and overestimate the

frequency and intensity of very low precipitation events.

Therefore, although AWAP provides the most spatially

complete dataset of daily precipitation and daily maximum

and minimum temperature observations for the region,

some caution in its use for evaluating the performance of

the CCAM simulations is needed. In this study, we use a

subset of the AWAP observations for the Tasmanian region

which is interpolated from its native 0.05� grid to the

CCAM 0.1� grid for direct comparison with the CCAM

simulations (Fig. 2d).

2.4 Probability density functions and skill scores

Statewide and regional district area-averaged annual

probability density functions (PDFs) are calculated for

daily maximum temperature, daily minimum temperature,

and daily precipitation. The seven regional districts (1–7)

are defined in Fig. 1b. Bin sizes of 1 �C for daily tem-

perature and 1 mm for daily precipitation are used, with all

daily precipitation values below 0.2 mm omitted as rates

below this amount are generally not recorded in the

observations. The skill of each of the six area-averaged

CCAM simulated PDFs relative to the area-averaged

AWAP observed PDFs for each region for the validation

period is assessed using the metric presented in Perkins

et al. (2007), in which the common area between each of

the PDF pairs of individual CCAM simulations and the

AWAP observations is calculated. The metric is based on

the cumulative minimum value of each bin used to calcu-

late the PDFs, and the PDF skill score is then expressed as

the total sum of the probability at each bin center (Perkins

et al. 2007). A PDF skill score of one (zero) represents

perfect (no) overlap between the two PDFs (see Perkins

et al. (2007) for a formal explanation of the PDF skill score

metric). PDFs of daily maximum temperature, daily mini-

mum temperature, and daily precipitation for the

1961–2009 validation period are shown as statewide and

selected regional district area-averages with corresponding

PDF skill score box-whisker diagrams.

2.5 Extreme indices

Extreme events are characterised in various ways. Exam-

ples include the number of events above a selected per-

centile or threshold value (frequency), the amount or

magnitude of the event (intensity), the percentage of time

of occurrence or length of events (duration), the area

impacted (spatial) or the seasonal patterns or distributions

(timing). Recent studies have attempted to capture many of

these parameters in a suite of simple indices to enable

Table 1 Summary of the extreme indices used in this study

Code Index name Definition Units

TX90p Warm days Percentage of time where daily maximum temperature [ the 1961–1990 90th percentile

of daily maximum temperature

%

TN90p Warm nights Percentage of time where daily minimum temperature [ the 1961–1990 90th percentile

of daily minimum temperature

%

FD Frost days Number of days where daily minimum temperature \0 �C Days

SU Summer days Number of days where daily maximum temperature [25 �C Days

ETR Extreme temperature

range

Difference between the highest and lowest temperature values per annum �C

WSDI Warm spell duration

index

Annual count of days [5 consecutive days when daily maximum temperature [ the

1961–1990 90th percentile

Days

R1D Maximum 1-day

precipitation

Maximum daily precipitation total mm

R5D Maximum 5-day

precipitation

Maximum precipitation total over a consecutive 5-day period mm

R95p Very wet days Number of days where daily precipitation [ the 1961–1990 95th percentile

of daily precipitation

Days

CDD Consecutive dry days Maximum number of consecutive days where daily precipitation \1 mm Days

CWD Consecutive wet days Maximum number of consecutive days where daily precipitation C1 mm Days

SDII Simple daily intensity

index

Ratio of annual wet-day total precipitation to annual number of wet-days mm d-1

Extreme temperature indices calculated using daily maximum and minimum temperature (�C); extreme precipitation indices calculated using

daily precipitation totals (mm). Index definitions can be viewed in full at http://cccma.seos.uvic.ca/ETCCDI/
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consistent and comparable analyses to be undertaken. A

suite of twenty-seven definitions of extreme temperature

and precipitation indices (Zhang et al. 2011) were devel-

oped for the measurement and characterisation of extreme

climate variability and climate change using observations

and modelled projections by the CCl/CLIVAR/JCOMM

Expert Team on Climate Change Detection and Indices

(ETCCDI) panel.

A subset of the ETCCDI extreme indices—six precipi-

tation and six temperature—are used in this study to assess

the performance of the CCAM simulations at simulating

temperature and precipitation extremes across Tasmania

for the 1961–2009 validation period and to demonstrate

future projected changes in extreme events across the state

up to 2099. The twelve indices used in this study are

summarised in Table 1 and are referred to hereafter by

their index codes. The indices are selected to focus on

different aspects of the temperature and precipitation

extremes. The indices compare contrasting parts of the

distributions (e.g. warm night time extremes such as

TN90p and hot day time extremes such as TX90p), cover

different metrics of extremes such as magnitude (e.g.

R1D), frequency (e.g. R95p) and duration (e.g. CWD), and,

in some cases, allow for an inter-comparison of the indices

themselves (e.g. percentile-based indices such as TX90p

vs. fixed threshold indices such as SU). The indices are also

selected for their general applicability to the Tasmanian

region and usability within the wider communities. In

addition, a larger set of the ETCCDI extreme indices for

the Tasmanian region can be seen in White et al. (2010a).

The extreme indices are calculated for each of the

downscaled 0.1� CCAM simulations independently and the

results averaged across the six models to provide a multi-

model mean (referred to hereafter as CCAM–MMM) and

these are compared to the 0.1� AWAP interpolated obser-

vations (referred to hereafter as AWAP). It is noted how-

ever that while the central estimate from multiple

simulations generally provides more robust information

than from any single model (Meehl et al. 2007b), there

remains a range of uncertainty with it. Therefore, where

applicable the CCAM–MMM time series for each index

are presented with a minimum and maximum range cal-

culated across the six models.

2.6 Trends

Decadal trends for each of the temperature and precipita-

tion extreme indices are calculated using simple linear

Ordinary Least Squares (OLS) regression following Alex-

ander and Arblaster (2009). Goodness of fit of the regres-

sion is assessed using the R2 correlation coefficient and

trend significance is estimated using two methods: (a) sig-

nificance of the slope coefficient, and (b) slope significance

using a non-parametric Mann–Kendall test (Mann 1945;

Kendall 1975). The non-parametric test was used in con-

junction with the standard regression test to test against

departures of assumptions, as well as to safe-guard against

possible extreme effects of outliers, if present. All tests

were performed at the 5 % level. In all cases, the differ-

ences between the sets of test results were minimal and in

most cases identical, therefore we concluded that linear

regression was appropriate for this study. For each index,

trends are calculated for each grid cell for the AWAP

observations and for each of the six CCAM simulations.

Future projections are shown for all districts as area-aver-

aged decadal trends per CCAM simulation up to 2099 with

±90 % confidence intervals and trend significance, and as

CCAM–MMM area-averaged decadal trends.

3 Downscaling performance of extremes

3.1 Validation of the downscaled simulations

In the global-scale host GCMs, the orography of Tasmania

is poorly represented leading to weak spatial correlation

between variables from the host GCM and observations

(Corney et al. 2010), particularly for the spatial distribution

of precipitation (Fig. 2a). In the downscaled 0.5� and 0.1�
CCAM simulations, interaction between rain-producing

systems and model orography through mechanisms such as

orographic lifting leads to more realistic results (Fig. 2b, c).

This is demonstrated in Table 2 where the spatial correla-

tion of the 0.1� CCAM simulation of mean precipitation

from GFDL-CM2.1 with the AWAP observations for the

same period has a statewide correlation coefficient of 0.86

compared with 0.00 for the native GCM resolution. The

slightly higher value of 0.88 for the 0.5� simulation com-

pared to the 0.1� simulation reflects the smoother topog-

raphy in the 0.5� simulations. Similarly, for daily

maximum and daily minimum temperatures, spatial cor-

relations between the 0.1� CCAM simulation (forced by

GFDL-CM2.1 in this example) and AWAP are consider-

ably higher than those between the host GCM and AWAP.

Table 2 Spatial correlations between GFDL-CM2.1 and the 0.1�
AWAP observations at three resolutions: GFDL-CM2.1 native

2.0� 9 2.5� GCM resolution, CCAM downscaled 0.5� resolution, and

CCAM downscaled 0.1� resolution, all for 1961–1990

Model

resolution

Mean daily

maximum

temperature

Mean daily

minimum

temperature

Mean

precipitation

GCM -0.15 0.43 0.00

0.5� 0.59 0.83 0.88

0.1� 0.94 0.90 0.86
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The correlation coefficients of GFDL-CM2.1 are highly

representative of the six 0.1� CCAM simulations (not

shown).

In addition to the spatial correlations of the climatolo-

gies for the validation period, the capacity of the CCAM

simulations to reproduce the full PDFs of observed mean

precipitation, daily maximum and daily minimum tem-

perature is an equally important test of the fidelity.

Figure 3 shows the general shape and skew of the

Tasmanian area-averaged AWAP daily maximum and

minimum temperature PDFs to be well simulated by the six

CCAM models, with consistently high CCAM–MMM PDF

skill scores [0.89 for daily maximum temperature

(Fig. 4a) and [0.91 for daily minimum temperature

(Fig. 4b) across the districts (see Fig. 1b for district defi-

nitions). PDF skill scores of daily maximum temperature

are slightly more varied across the regions than daily

minimum temperature, with the lower lying districts

Fig. 3 Statewide and selected district area-averaged probability

density functions of a daily maximum temperature, b daily minimum

temperature, and c daily precipitation for the 0.1� AWAP

observations (bold black lines) and for each of the 0.1� CCAM

simulations (thin coloured lines) (1961–2009). Numbered Tasmania

districts (1–7) are defined in Fig. 1b
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typically exhibiting slightly lower daily maximum tem-

perature PDF skill scores. The area-averaged daily mean

precipitation PDFs from CCAM show a slight tendency to

overestimate the lower end of the distribution combined

with a tendency to underestimate the magnitude of the

more extreme precipitation events compared to the AWAP

PDFs (Fig. 3c), however the overall PDF skill scores are

high (Fig. 4c). Considering agreement between the area-

averaged CCAM and AWAP mean precipitation PDFs, the

majority of districts display CCAM–MMM PDF skill

scores [0.95. The lowest skill score of *0.82 (Fig. 4c) is

due to overestimation of extreme precipitation occurring

over the Central North and Midlands district, which is a

region that has the largest mean precipitation bias in the

CCAM simulations (Grose et al. 2010).

It is interesting to note that the area-averaged skill

scores are generally higher for the mean precipitation PDFs

than for the daily maximum and minimum temperature

PDFs across the majority of the districts. While there is no

physical basis to fully explain this, it is likely that the PDF

skill score method of Perkins et al. (2007) is more appro-

priate for variables that are close to normally distributed

such as temperature, than those that are far from normally

distributed such as precipitation. Notwithstanding this

however, the high PDF skill scores across the three vari-

ables are indicative of the overall high skill of the six

CCAM simulations at capturing the observed PDFs, which

is reflected in the shape of the PDFs (Fig. 3) and the tight

grouping of the skill scores for each of the different Tas-

manian regions (Fig. 4).

3.2 Validation of decadal trends

The observed mean temperature trend over the state of

Tasmania is *0.1 �C per decade over the 1961–2009

period (Grose et al. 2010), which suggests that observed

trends in the extreme indices may also be evident. Trends

over the validation period are calculated for each of the six

CCAM simulations independently and compared to those

from the AWAP observations. Significance is tested at the

5 % level using the Mann–Kendall test (Mann 1945;

Kendall 1975). Strong statewide area-averaged statistically

significant positive trends of 0.5 %/decade for TX90p

(Fig. 5a) and 0.36 %/decade for TN90p (Fig. 5b) and a

strong statistically significant negative trend of -1.3 days/

decade for FD (Fig. 5c) are observed in the AWAP

observations over 1961–2009 indicating a progressively

warming climate over the past half-century across Tas-

mania. The CCAM simulations reproduce the observed

trends with a high level of skill with all models simulating

the correct sign and, mostly, the significance of the trends.

Importantly, the CCAM–MMM simulations of each

extreme index for the validation period (with the exception

of ETR and CDD) fall within the 95 % confidence intervals

of the corresponding trend estimated from the AWAP

observations (Fig. 5). Since rising greenhouse gases and

tropospheric aerosols are the key forcing mechanism for

the trends in the climate model simulations, this suggests

that trends in the observed indices may be attributed to

rising greenhouse gases and aerosols.

In terms of the skill of the individual CCAM simulations

in representing the observed trends in temperature indices

(except ETR; Fig. 5e), GFDL-CM2.0, GFDL-CM2.1 and

ECHAM5/MPI-OM simulate the correct sign and a similar

magnitude to the observed extreme temperature trends,

whereas CSIRO-Mk3.5, UKMO-HadCM3 and MI-

ROC3.2(medres) show reduced ability at simulating the

correct trends with mixed signs and/or magnitudes. For

example, the GFDL-CM2.0, GFDL-CM2.1 and ECHAM5/

MPI-OM models simulate significant positive trends of 0.5,

0.7 and 0.6 %/decade in TX90p respectively for the vali-

dation period in close agreement with AWAP. In com-

parison, the CSIRO-Mk3.5 and UKMO-HadCM3 models

capture the direction and significance of warming trends

evident in the observed FD index, but show reduced skill at

simulating the warmer extreme indices of TX90p, SU and

Fig. 4 Statewide and district area-averaged annual PDF skill score

box-whisker diagrams of a daily maximum temperature, b daily

minimum temperature, and c daily precipitation for the 0.1� CCAM

simulations relative to the 0.1� AWAP observations (1961–2009).

Red horizontal bar in the centre of each box is the CCAM multi-

model mean PDF skill score. Upper and lower bars show the 75th and

25th percentiles of the six model ensemble and the whiskers show the

maximum and minimum values from across the six models.

Numbered Tasmania districts (1–7) are defined in Fig. 1b
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WSDI. Arguably, the worst performing model for the

extreme temperature indices is MIROC3.2(medres) which

finds no statistically significant trends for any of the

extreme temperature indices (the only model to not do so)

and underestimates the magnitudes of the observed trends

in each case. The observed ETR flat trend, however, is

generally not simulated well by any of the CCAM down-

scaled models, which is reflective of the models over-

representing the variance associated with absolute maxi-

mum and minimum extreme temperature magnitudes

(Fig. 5e).

With respect to observed trends in the precipitation

indices, only CWD (Fig. 5k) is statistically significant with

a statewide average trend of -0.6 days/decade for the

1961–2009 validation period. Given the weakness of the

observed trends across the majority of the precipitation

Fig. 5 Statewide area-averaged time series (1961–2009) for the 0.1�
AWAP observations (bold black lines) and for each of the 0.1�
CCAM simulations (thin coloured lines) for the extreme indices used

in this study (definitions shown in Table 1). Thin black lines show the

0.1� AWAP observed linear trend for 1961–2009 and grey shading

shows the 90 % confidence interval of the trend
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indices (Fig. 5g–l), it is perhaps not surprising that none of

the CCAM simulations simulate extreme precipitation

trends statewide with any significance. Of the six CCAM

simulations, ECHAM5/MPI-OM is the only model to

correctly simulate all of the observed signs of the extreme

precipitation trends, and is also the only model to capture

the observed increasing trend of R1D (Fig. 5g) and the

decreasing trend of R5D (Fig. 5h), although confidence at

the 90 % level is low. ECHAM5/MPI-OM is also one of

only two models (with GFDL-CM2.1) to simulate the flat

or decreasing observed trends for both CDD (Fig. 5j) and

CWD (Fig. 5k). For other models, the trends are generally

mixed across the extreme precipitation indices, with some

disagreement in both the signs and magnitudes of the

trends for the validation period, which is broadly consistent

with the higher noise-to-signal ratio and larger confidence

intervals compared to the temperature extremes.

3.3 Validation of extreme temperature climatologies

The previous sections have shown that the CCAM simu-

lations capture the spatial distributions of PDFs and trends

over broad regions of Tasmania. Here we examine the

spatial patterns (Fig. 6) and the statewide area-averages

differences between of the extreme indices of the CCAM

simulations with respect to the AWAP observations

(Table 3). There is generally good agreement between the

CCAM simulations and the AWAP observations for the

extreme temperature indices of TX90p (Fig. 6a), TN90p

(Fig. 6b) and SU (Fig. 6d) although the CCAM simulations

tend to overestimate SU in the East Coast and North East

and Flinders Island districts compared to AWAP. Histori-

cally this area of the state has observed some of the most

extreme temperature events, including the highest recorded

statewide temperature of 42.2 �C on 30 January 2009 at

Scamander in the state’s north–east (Bureau of Meteorol-

ogy 2012). The spatial variance shown in the CCAM–

MMM for SU in this region consistently forces the state-

wide area-average values well above the observed values

(Fig. 5d). TX90p (Fig. 6a; Table 3) and TN90p (Fig. 6b;

Table 3) are generally more consistent, with prominent

differences being limited to some coastal regions in the

north and low lying areas in the east for TX90p and the

coastal regions of the North West and North East districts

and the mountainous Western district for TN90p.

For the colder extremes, the CCAM–MMM shows

mixed skill at simulating the spatial patterns of FD

(Fig. 6c) compared to AWAP. The highest frequencies of

observed cold extremes occur at higher elevations

encompassing the Central Plateau district, but the CCAM–

MMM underestimates FD in this region for the validation

period. The CCAM–MMM also overestimates FD in the

Western and North West districts (Fig. 6c) leading to

strong statewide overestimates (Fig. 5c), driven largely by

a bias over the summer DJF season.

The CCAM–MMM underestimates the WSDI across

most districts compared to AWAP (Fig. 6f) and Table 3

indicates that this underestimation is fairly uniform across

the seasons. However, the ability of CCAM to simulate

consecutive extreme temperature days is evident in the

narrow multi-model spread seen in the individual CCAM

statewide averages (Fig. 5f). In contrast though, variance in

ETR is generally overestimated in the CCAM–MMM

across almost all of the state (Fig. 6e) producing a state-

wide area–average difference of 4.1 �C compared to the

AWAP observations (Fig. 5e; Table 3). This is particularly

strong in the autumn SON and winter DJF seasons, indi-

cating reduced skill by the CCAM downscaled models at

Table 3 Statewide area-averaged annual and seasonal multi-model mean differences between the 0.1� CCAM simulations and the 0.1� AWAP

observations (CCAM minus AWAP) for the extreme indices used in this study (definitions shown in Table 1) for 1961–2009

Index Annual DJF MAM JJA SON

TX90p 0.0 (-0.3/0.4) -0.1 (-0.9/0.6) 0.4 (-0.1/1.1) 0.4 (-0.6/1.4) 0.1 (-0.4/0.7)

TN90p 0.4 (0.2/1.0) -0.2 (-0.8/1.1) 1.3 (0.8/1.9) 0.0 (-0.9/1.1) 0.4 (-0.2/1.2)

FD 4.4 (3.7/6.6) 1.0 (0.9/1.1) 1.6 (1.4/1.9) -1.6 (-2.1/-0.3) 3.4 (3.2/4.0)

SU 5.0 (4.4/5.9) 5.0 (4.5/5.9) -0.5 (-0.8/-0.3) 0.0 (0.0/0.0) 0.5 (0.4/0.6)

ETR 4.1 (3.8/4.4) 2.7 (2.4/3.1) 0.9 (0.6/1.2) 1.2 (0.9/1.3) 3.3 (2.9/3.6)

WSDI -0.3 (-0.7/0.1) -0.2 (-0.3/0.0) -0.3 (-0.5/0.0) -0.6 (-0.8/-0.4) 0.2 (0.0/0.3)

R1D -0.8 (-1.4/-0.1) -4.0 (-5.3/-2.9) 0.3 (-2.0/2.3) -0.3 (-0.8/0.6) 2.1 (0.9/3.4)

R5D -11.3 (-12.9/-9.0) -12.7 (-14.0/-11.1) -5.2 (-8.0/-3.3) -9.2 (-10.5/-5.9) -4.0 (-6.7/-1.5)

R95p 0.2 (-0.2/0.7) -0.1 (-0.4/0.1) 0.4 (0.2/0.8) -0.2 (-0.3/0.1) 0.1 (-0.2/0.4)

CDD -5.1 (-5.6/-4.7) -4.0 (-4.3/-3.6) -4.0 (-4.3/-3.8) -2.4 (-2.6/-2.2) -2.2 (-2. 5/-1.9)

CWD -2.2 (-2.5/-1.6) -0.6 (-0.7/-0.3) -0.4 (-0.8/0.0) -1.6 (-2.1/-1.2) -1.6 (-1.9/-1.3)

SDII -0.4 (-0.5/-0.3) -1.3 (-1.4/-1.1) -0.3 (-0.5/0.0) 0.1 (0.0/0.3) -0.2 (-0.4/0.0)

Differences are shown with a minimum and maximum range (in brackets) calculated independently across the six models
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simulating the magnitude of the single-most extreme

temperature values in any given year.

3.4 Validation of extreme precipitation climatologies

Unlike extreme temperature events that typically occur

over wide areas, extreme precipitation events are typically

localised phenomena occurring over relatively short time

and space scales, driven by a complex interaction of tem-

perature, moisture, winds and topography. Although there

is generally good agreement between the CCAM–MMM

and AWAP across the six extreme precipitation indices,

some indices display significant spatial differences to the

mean patterns in some areas of the state (Fig. 6g–l). These

differences are likely to be related to the different climate

drivers of extreme events, although limitations of observed

precipitation extremes in the AWAP dataset noted earlier,

particularly in areas of sparse station coverage, should not

be overlooked. The Western, Central North and East Coast

districts for example are more prone to intense precipita-

tion events (and subsequently to potential flooding) than

the rest of the state, exhibiting considerable inter-annual

variability. The north–east of the state in particular has

recorded some of the state’s most extreme precipitation

events (White et al. 2010a; Bureau of Meteorology 2012).

Such rare events are dominated by large-scale meteoro-

logical drivers such as cutoff lows and frontal systems and

the influence of these systems can vary markedly over

relatively small distances. For example, cutoff lows

accounted for [50 % of precipitation totals in the East

Coast district between April and October (calculated using

the Bureau of Meteorology observational record for

1981–2009), whereas Launceston in the Central North

district, despite being less than 100 km from the East Coast

district, received nearly half of its total precipitation from

frontal systems observed for the same period (Pook et al.

2010).

GCMs generally underestimate cutoff lows in southeast

Australia and the associated features such as atmospheric

blocking over the Tasman Sea and the split jet structure

(e.g. Katzfey and McInnes 1996; McIntosh et al. 2008).

The CCAM simulations also show these biases including

an underestimate of the incidence of cutoff lows, but the

biases are generally smaller than GCMs (Grose et al.

2012a). Consequently, although CCAM simulates mean

annual precipitation with considerable skill across the

whole of the state (Grose et al. 2010), the simulation of

extreme precipitation indices of R1D (Fig. 6g) and R5D

(Fig. 6h) is underestimated by the CCAM–MMM by

*45 mm and *75 mm respectively in the East Coast

district. This is related to a northward bias in the central

latitude of cutoff lows in the CCAM simulations, which

produces an underestimation of the associated precipitation

over Tasmania for April to October (Grose et al. 2012a).

Correspondingly, the overestimation of extreme precipita-

tion totals across the Central North and Midland districts

may be explained by too many frontal systems in the

CCAM simulations relative to observations. Across the

remainder of the state, the CCAM simulations show

improved skill for R1D (Fig. 6g) and R5D (Fig. 6h) with

the annual statewide average of the CCAM–MMM closely

resembling the AWAP observations (Table 3). This is due,

in part, to CCAM’s ability to simulate the regional impact

of cutoff lows across Tasmania (Grose et al. 2012a). It is

also worth noting that the generally low variability in R1D

and R5D in the AWAP observations during the 1975–1995

period (Fig. 5g, h) coincides with a general decline in

precipitation in southeast Australia seen in observations

Table 4 Statewide area-averaged decadal trends calculated for the 0.1� CCAM simulations (single models) for the extreme indices used in this

study (definitions shown in Table 1, per decade)

Index CSIRO-Mk3.5 GFDL-CM2.0 GFDL-CM2.1 ECHAM5/MPI-OM UKMO-HadCM3 MIROC3.2(medres)

TX90p 1.63 (±0.14) 1.37 (±0.14) 1.29 (±0.15) 1.57 (±0.16) 1.46 (±0.14) 1.51 (±0.15)

TN90p 2.44 (±0.18) 1.78 (±0.17) 1.84 (±0.15) 1.89 (±0.20) 2.32 (±0.18) 1.98 (±0.18)

FD 22.15 (±0.15) 21.82 (±0.16) 21.63 (±0.15) 21.92 (±0.20) 21.97 (±0.18) 22.03 (±0.14)

SU 2.83 (±0.33) 2.48 (±0.34) 2.04 (±0.34) 2.47 (±0.42) 2.33 (±0.35) 2.55 (±0.37)

ETR 20.07 (±0.12) 0.06 (±0.13) 0.14 (±0.13) 0.01 (±0.13) 0.08 (±0.14) 0.01 (±0.13)

WSDI 0.98 (±0.11) 0.72 (±0.16) 0.86 (±0.14) 0.90 (±0.16) 0.99 (±0.16) 0.94 (±0.18)

R1D 0.85 (±0.96) 0.91 (±0.70) 0.36 (±0.85) 1.19 (±0.77) 1.01 (±1.05) 0.42 (±0.63)

R5D 0.32 (±1.86) 0.61 (±1.11) 0.25 (±1.34) 0.99 (±1.34) 1.16 (±1.63) 20.21 (±1.26)

R95p 0.18 (±0.20) 0.15 (±0.23) 0.29 (±0.23) 0.11 (±0.21) 0.25 (±0.24) 0.30 (±0.22)

CDD 20.04 (±0.15) 0.11 (±0.17) 0.02 (±0.17) 0.18 (±0.14) 0.09 (±0.15) 0.09 (±0.14)

CWD 0.13 (±0.15) 20.06 (±0.14) 20.06 (±0.18) 20.17 (±0.11) 0.11 (±0.17) 20.12 (±0.12)

SDII 0.03 (±0.04) 0.05 (±0.04) 0.05 (±0.04) 0.07 (±0.04) 0.05 (±0.04) 0.09 (±0.04)

Trends are shown for the SRES A2 scenario for 2010–2099. Bold values signify trend significance at the 5 % level with ±90 % confidence

intervals (in brackets)
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(e.g. Murphy and Timbal 2008). The CCAM–MMM also

shows skill in simulating the high inter-annual variability

of R95p (Fig. 5i) by capturing the frequency of the extreme

precipitation events with a statewide area-average of

between 10 and 30 days per annum across the models for

the validation period. This simulated variability is strongly

influenced by the most extreme precipitation events

occurring in these Western, North east and East Coast

Fig. 6 Multi-model mean

differences between the 0.1�
CCAM simulations and the 0.1�
AWAP observations (CCAM

minus AWAP) for the extreme

indices used in this study

(definitions shown in Table 1)

for 1961–2009. Blue-to-red

colourbars denote hot extreme

temperature indices using daily

maximum temperature, red-to-

blue colourbars denote cold

extreme temperature indices

using daily minimum

temperature, brown-to-blue/

green colourbars denote wet

extreme precipitation indices

and blue/green-to-brown

colourbars denote dry extreme

precipitation indices both using

daily precipitation totals, where

positive values signify a multi-

model mean overestimate and

negative values show a multi-

model mean underestimate
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districts (White et al. 2010b) and is robust across the sea-

sons (Table 3).

The CCAM simulations show lower skill at resolving

longer duration precipitation events with the CCAM–

MMM of CCD (Figs. 5j, 6j) and CWD (Figs. 5k, 6k) both

underestimated compared to AWAP across all seasons

(Table 3), particularly in the eastern districts for CDD and

the western districts for CWD. Crucially, the longest

Fig. 7 Multi-model mean

projected future anomalies

(2070–2099 relative to

1961–1990) for the extreme

indices used in this study

(definitions shown in Table 1)

using the 0.1� CCAM

simulations for the SRES A2

scenario. As for Fig. 3, blue-to-

red colourbars denote hot

extreme temperature indices,

red-to-blue colourbars denote

cold extreme temperature

indices, brown-to-blue/green

colourbars denote wet extreme

precipitation indices and blue/

green-to-brown colourbars

denote dry extreme precipitation

indices, where positive values

signify multi-model mean

increasing future trends and

negative values show multi-

model mean decreasing future

trends
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observed dry spells typically occur in the lower lying areas

in the eastern half of the state and the longest wet spells are

observed in the western half of the state. This suggests that

that the CCAM simulations have reduced skill at simulat-

ing the autocorrelation (i.e. the temporal sequencing) of

consecutive extreme events in regions where the most

extreme values are observed, leading to the east–west bias

evident in many of the precipitation indices. This is driven

by the limitations of CCAM to accurately model the larger

proportion of extreme precipitation totals in the western

half of the state compared to the east as well as the sim-

ulation of the dominant synoptic systems that bring

extreme precipitation events to these regions. This is sup-

ported by results for SDII, the ratio of annual total wet-day

precipitation to annual number of wet-days (Fig. 6l), the

latter of which is overestimated by the CCAM simulations

Fig. 8 Statewide area-averaged time series anomalies (1961–2099

relative to 1961–1990) of the 0.1� CCAM simulations for the extreme

indices used in this study (definitions shown in Table 1). Multi-model

means (bold lines) of the six CCAM downscaled models are shown

for the SRES B1 (blue) and A2 (red) scenarios with the maximum and

minimum spread from across the six models (shading). Time series

are smoothed with an eleven-year running mean
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in the Central North and North East districts (White et al.

2010b; Bennett et al. 2010).

While the extremes indices for some variables exhibit

biases, the large reduction in biases compared to the parent

GCMs, together with the increase in spatial resolution and

extra information regarding topography and land surface,

mean that there is increased confidence that the dynamics

of extremes are reasonably well simulated. Therefore, it is

expected that the climate change signal in extreme events

at the regional scale is more reliable than the GCMs.

4 Future projections

The previous sections have shown that the CCAM simu-

lated extreme temperature and precipitation PDFs, trends

and spatial patterns compare well on balance to the AWAP

observations across the validation period, suggesting that

the future projections should be plausible representations

of future changes across Tasmania. The future projections

of the extreme temperature and precipitation indices

defined in Table 1 are shown as CCAM–MMM anomalies

spatially for 2070–2099 relative to 1961–1990 for the

SRES A2 scenario (Fig. 7) and as statewide area-averaged

time series for 1961–2099 relative to 1961–1990 for the

SRES B1 (blue) and A2 (red) scenarios (Fig. 8) with a

minimum and maximum range calculated across the six

models. Time series are smoothed with an eleven-year

running mean to reduce the inter-annual variability.

4.1 Future extreme temperature projections

Increases are projected in five of the six extreme temper-

ature indices (Fig. 7a–f). For SU, a larger increase is pro-

jected at lower elevations, particularly in the Central North

and Midlands district with many regions projected to

experience up to a three-fold increase in the number of SU

relative to 1961–1990 for the SRES A2 scenario (Fig. 8d).

For the SRES B1 scenario the rate of rise slows abruptly in

the latter half of the century. Projected decreases in FD

(Fig. 7c) are consistent with an overall warming trend. The

most dramatic decreases of up to 60 days per annum are

projected by the CCAM–MMM SRES A2 scenario at the

higher elevation Central Plateau district, which currently

experiences the highest number of frosting events. State-

wide, this corresponds to a decrease of *24 days per

annum on average for the SRES A2 scenario and

*18 days per annum on average for the SRES B1 scenario

(Fig. 8c).

A comparison of the projected statewide averages of

TX90p (Fig. 8a) and TN90p (Fig. 8b) indicates that the

frequency of TX90p increases at a slightly lower rate

proportionally than increases in TN90p. Progressively

throughout the 21st century, there is a greater percentage of

time where maximum daily maximum temperatures are

above the baseline 90th percentile (an increase of *15 %

statewide for the SRES A2 scenario by the end of the

century) compared to a more substantial change in the

percentage of time where maximum daily minimum tem-

peratures are above the corresponding baseline 90th per-

centile values (an increase of *22 % statewide for the

SRES A2 scenario). In both cases, the greatest changes are

projected in coastal regions, particularly in the North East

and Flinders Island and North West and King Island dis-

tricts. The changes to TN90p are however noticeably lower

than the global (Tebaldi et al. 2006) and Australia-wide

(Alexander and Arblaster 2009) projected increases of

*40 % by the end of the twenty-first century, which is

likely due to the maritime nature of the Tasmanian climate

and the moderating effect of the Southern Ocean. The

asymmetry evident in the trends of daily maximum tem-

perature compared to daily minimum temperature is

influenced by the changes in cloud, soil moisture, precip-

itation and water vapour, which are in turn influenced by

greenhouse and aerosol forcings (Dai et al. 1999).

Changes to ETR (Fig. 7e) are not consistent across the

state, with a projected increase of *3 �C across much of

the southern half of the state being offset by a decrease of

*1 �C in the North West including King Island and the

North East including Flinders Island districts. This is,

despite the increase in both mean and maximum temper-

atures across the state. These regions are directly adjacent

to a projected enhancement of the East Australian Current,

which is likely to result in higher SSTs directly adjacent to

the northern and eastern coastlines of Tasmania (Cai et al.

2005), with the greatest increases in autumn and winter

(Grose et al. 2010). This seasonally-varying change in

SSTs immediately adjacent to the islands may have a

moderating influence on ETR. The region of the largest

increase in ETR is the east and south of the state, which

also experiences the hottest temperatures and greatest fire-

weather danger during conditions of hot, dry pre-frontal

north–westerly winds (Fox-Hughes 2008). WSDI shows a

general enhancement compared to the baseline 1961–1990

spatial distribution, with an increased average duration of

up to 30 days per annum for the SRES A2 scenario being

particularly apparent in the North West and King Island,

Central North and North East and Flinders Island districts

for 2070–2099 (Fig. 7f). This pattern corresponds spatially

with the projected changes to TX90p (Fig. 7a) and other

extreme indices such as tropical nights (where daily min-

imum temperatures are [20 �C) (White et al. 2010b; not

shown) which may also be influenced by the increase in

local SSTs from an enhanced East Australian Current

interacting with the local climate processes. Statewide, the

averaged WSDI projected increase of *10 days (Fig. 8f)
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is smaller than the projected increase of SU (Fig. 8d). The

projected changes to SU is distributed across a more

extensive areas in the eastern half of the state (Fig. 7d)

which suggests an increase in hot pre-frontal north-

westerlies and an enhanced Foehn wind effect.

4.2 Future extreme precipitation projections

Projected changes in the extreme precipitation indices are

smaller than projected changes in the extreme temperature

indices. This reflects the greater internal variability of the

Fig. 9 Statewide and district area-averaged annual decadal trends

calculated for the 0.1� AWAP observations (1961–2009) and the 0.1�
CCAM simulations multi-model mean (1961–2009 and 2010–2099)

for the extreme indices used in this study (definitions shown in

Table 1, per decade). CCAM multi-model mean trends (2010–2099

only) are shown with the minimum and maximum spread calculated

across the six models (thick bars) and with the 90 % confidence

interval of the trend (thin whiskers) for the SRES A2 scenario.

Numbered Tasmania districts (1–7) are defined in Fig. 1b
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precipitation indices and the relative small net change in

precipitation over the entire region. The R1D and R5D

indices both show increases statewide of * 8 mm for the

SRES A2 scenario by the end of the twenty-first century

(Fig. 8g, h). Particularly strong increases are projected in

late summer and autumn in the east of the state (not

shown). The greater increase in R1D (up to 40 %) com-

pared with R5D (*25 %) suggests the increasing trend in

R5D is due to more intense short-duration events. Indeed,

increases in the CCAM–MMM 6-min peak precipitation

rate (typically referred to as an instantaneous rate) is par-

ticularly strong in late summer, autumn and spring in the

eastern half of the state (White et al. 2010b) with a *60 %

increase in the East Coast district for the SRES A2 scenario

by the end of the century (not shown). A warming tropo-

sphere, with greater capacity to hold moisture, is expected

to lead to increases in extreme precipitation totals, con-

strained by the Clausius–Clapeyron relation (Allen and

Ingram 2002; Pall et al. 2007; Allan and Soden 2008).

Globally, an amplification of precipitation extremes has

already been observed and attributed to warming (Min

et al. 2011). This global-scale phenomenon can be modu-

lated by regional-scale influences, but the (positive) sign of

change in short-duration heavy precipitation in the CCAM

projections across Tasmania is almost uniformly consistent

with this global-scale effect.

The spatial change in R95p in the CCAM–MMM is for

an increase everywhere except over the Central Plateau

district (Fig. 7i), and a net statewide increase for the SRES

A2 scenario, although there is little change for the SRES

B1 scenario (Fig. 8i). The projected increases in the

Western district are driven predominantly by the increased

frequency of winter events with lesser increases in the

autumn and spring seasons, which is consistent with an

enhancement of mean westerly circulation over the region

in winter (Grose et al. 2012a). The projected changes in

CDD and CWD are more modest, showing a statewide

trend towards more CDD (Fig. 8j) and less CWD (Fig. 8k)

for the SRES A2 scenario. This suggests an overall move to

more prolonged dry spells interspaced with an increased

frequency of R95p (Fig. 8i).

The projected increase in SDII statewide of *0.5 mm/

day for the SRES A2 scenario (Fig. 8l) suggests that

increases in daily extreme precipitation totals are likely to

be sufficiently high to cause mean annual precipitation

totals on wet-days to increase over many areas of Tasmania

despite a statewide projected decrease in the number of

annual rain days (White et al. 2010b; Grose et al. 2010).

The general tendency towards delivery of precipitation

from fewer, more intense events as the climate warms is a

robust feature of theory, simulations and observations (e.g.

Pall et al. 2007; Allan and Soden 2008). This tendency is

evident in the CCAM simulations in almost all areas of

Tasmania, except for the Central Plateau district, which has

the largest projected decline in mean precipitation (Grose

et al. 2010).

4.3 Future decadal trends

Trends of the temperature and precipitation extreme indi-

ces are shown in Fig. 9 as statewide area-averages and for

each of the seven districts (1–7) defined in Fig. 1b. As with

previous sections, the projected trends up to 2099 are

calculated independently per model and the results aver-

aged across the six models to provide a central estimate per

scenario. The central value of each index is shown with a

range determined from the spread of values from minimum

and maximum modelled value and with 90 % confidence

intervals for the SRES A2 scenario, and significance is

tested at the 5 % level using the Mann–Kendall test

(Table 4). Decadal trends for the 1961–2009 period, for

both the AWAP observations and the CCAM–MMM,

together with the projected trend for the SRES B1 scenario

up to 2099 are also shown for reference.

Projected statewide area-averaged decadal trends of the

extreme temperature indices, TX90p, TN90p, SU, WSDI

and FD show increases relative to the validation period,

(typically in regions where the mean temperature is higher)

under the SRES A2 scenario (Fig. 9a–f; Table 4). There is

also strong agreement between the six CCAM simulations

of the extreme temperature indices in both the sign and

magnitude of the decadal trends with statistically signifi-

cant trends (at the 5 % level). The exception is ETR which

displays mixed signs and trends. Only GFDL-CM2.1 shows

a statistically significant trend for ETR for the SRES A2

scenario. More appreciable differences are evident between

the statewide area-average trends for the extreme precipi-

tation indices (Fig. 9g–l; Table 4). No single model is

found to show consistently biased or outlying values,

although UKMO-HadCM3 is the only model to not project

any statistically significant trends for the statewide area-

averaged precipitation indices and the CSIRO-Mk3.5

simulation shows a slight decreasing trend of CDD and an

increasing trend of CWD, which is different to the other

CCAM simulations.

In general, the spatial distribution of the projected

extreme precipitation trends (Fig. 9) align well with the

patterns of projected mean annual precipitation (Grose

et al. 2010), with an increase in winter and a decrease in

summer in the Western district and projected wetter sum-

mers for eastern districts (not shown). Weak CCAM–

MMM trends are evident for the Central Plateau district for

all of the extreme precipitation indices (Fig. 9g–l), with

close agreement between the six CCAM simulations. The

CCAM simulations show increased multi-model spread for

the longer duration precipitation indices of CDD (Fig. 9j)
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and CWD (Fig. 9k), particularly in districts with the

highest annual precipitation totals such as the Western

district. The East Coast district in contrast shows more

uncertainty for R1D (Fig. 9g) and R5D (Fig. 9h) totals than

any other district, reflecting the high inter-annual vari-

ability in this area of Tasmania driven by individual, rare

extreme events.

The projected extreme decadal trends up to 2099 of SU

(Fig. 9d) and WSDI (Fig. 9f), are substantially greater than

observed trends for the 1961–2009 validation period,

indicating a progressive increase in hot extremes with a

high degree of confidence across the multi-model simula-

tions (Table 4) across all districts. Indices such as R1D

(Fig. 9g) and SDII (Fig. 9l) show a smaller departure from

the observed trends, with more constant trends through the

coming century. For other indices however, particularly

those that model multi-day events such as CDD (Fig. 9j)

and CWD (Fig. 9k), the poorer simulation of the observed

trend during the validation period increases the uncertainty

around the projected future trends of these indices.

5 Discussion and conclusions

The six global-scale host GCMs used in this study have

been previously shown to under-represent extremes due to

poor representation of variability across Tasmania (Corney

et al. 2010) and limited model resolution. As shown in this

study, the downscaling process enables both the regional

spatial and seasonal patterns of temperature and precipi-

tation extremes to be simulated with a high level of

agreement with the AWAP observations for the 1961–2009

validation period. This can be related to the finer spatial

resolution of features such as topography in CCAM, but

also the better representation of large-scale climatological

features such as location and intensity of the mean mid-

latitude westerly jet (Grose et al. 2012a) and frequency of

cutoff lows (Grose et al. 2012b). The bias-correction of the

SSTs in the parent GCM models used to drive the down-

scaled simulations has also ensured that the inputs from

each GCM are aligned with observed large-scale temper-

atures during the validation period and has also signifi-

cantly contributed to the narrow spread of the downscaled

output. While there is no possibility that the parent GCMs

can distinguish the influence of regional-scale drivers when

Tasmania is typically represented by between 0 and 6 grid

cells, the higher resolution of the CCAM simulations have

been shown here to simulate distinct regional mechanisms

that influence extremes across the different regions of

Tasmania. For example, extreme precipitation events in the

west of the state are often the result of strong cold fronts

interacting with rugged topography, whereas those in the

northeast of Tasmania are often the result of intense lows

making landfall, both of which are well represented by the

CCAM simulations (Grose et al. 2012b).

Evidence of some persistent spatial errors and biases

in the downscaled simulations, of varying strengths in

each region and season, are noted however. These

include a distinct east–west divide in the simulation of

precipitation extremes for the validation period across

Tasmania, with a general overestimation in extreme

precipitation in the east and an underestimation in the

west. Some of these spatial inconsistencies can be

attributed to biases in the simulated synoptic-scale

meteorology in the models (Grose et al. 2012a), although

these tend to fall within the uncertainty of the estimates

of the trends and are small relative to the future projected

changes. The downscaled simulations demonstrate

reduced skill in areas where the most ‘extreme’ extreme

values are observed, notably the East Coast and North

East districts for extreme precipitation events and the

higher-elevation Central Plateau district for cold tem-

perature extremes. They also struggle to simulate events

such as the single-most extreme temperature values in

any given year, which can be related to an overestimation

of warm and cold extremes in some regions. Lower skill

is also seen in regions with varied topography and where

events are more likely to be driven by localised phe-

nomenon associated with complex systems that cannot be

fully resolved by the models.

Both the evident skill and noted deficiencies are

reflected in the decadal trends simulated across the down-

scaled simulations and influence the ability of the models

to simulate the trends of the extreme indices over the

validation period. The majority of the models simulate

trends that are similar in magnitude and sign to the

extremes indices in the AWAP observations, with only the

trends in ETR and CDD from the CCAM–MMM not

falling within the 95 % confidence intervals of the trends

estimated from the AWAP observations. Averaged across

Tasmania, observed trends of increased TX90p and TN90p

with decreased FD are skilfully captured by the high-res-

olution models, but in general the simulations of the

extreme precipitation indices have lower confidence than

the extreme temperature indices. These results are consis-

tent with findings derived from the coarse-resolution

GCMs at the global-scale (e.g. Kiktev et al. 2007; Kharin

et al. 2007) and across the Australian continent (Alexander

and Arblaster 2009). Alexander and Arblaster (2009) find

that GCMs are generally able to simulate the observed

trends and, to some degree, the range of variability of

extremes averaged across Australia. However, due to the

limited number of observations over Tasmania in the

HadEX observational dataset, Alexander and Arblaster

(2009) did not include Tasmania in their assessment (Lisa

Alexander and Julie Arblaster, pers comm.).
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The level of skill in describing the validation period

provides increased confidence that high-resolution simu-

lations have significantly greater capacity to make realistic

future projections of extremes at the regional level than do

GCMs. The future projections of the extreme temperature

indices are consistent with the projected change in mean

temperature due to greenhouse warming, with significant

increases in TN90p, TX90p and SU. However, spatial

variations in the pattern of change indicate that localised

influences are also playing a role in some regions, such as

an enhanced response in the projected change in WSDI in

northern Tasmania compared to the south. For the extreme

precipitation indices, the future projected changes appear

to be driven primarily by global-scale factors, but with

second-order influences from regional drivers and features.

There is an almost uniform increase in all indices of

extreme precipitation intensities (R1D, R5D, R95p), and a

mostly consistent tendency towards shorter rain periods

with longer dry spells (SDII, CWD, CDD) over most of

Tasmania. This is consistent with an enhanced hydrological

cycle influencing the extremes under a warming climate

(e.g. Pall et al. 2007), although regional modulation of this

overall tendency is seen in the generally weaker or drier

projected changes over the Central Plateau district in the

centre of Tasmania, which is likely to be related to

topography. The north–east of the state displays a pattern

of an increasing frequency of extreme precipitation events,

although there is reduced consistency across the models in

this area.

With regards to the indices themselves, we find that

the regional downscaled simulations generally show

higher skill at simulating the observed extreme indices

that are derived from either percentile-based thresholds

(e.g. TN90p, TX90p) or ratios (e.g. SDII) than the

exceedance of fixed thresholds (e.g. FD, SU, CDD),

suggesting that extreme indices based on percentile

values, anomalies or fractional differences relative to a

baseline period appear to be more appropriate for pro-

jecting changes to extremes.

In conclusion, this study has contributed to the

greater understanding of the regional downscaling of

climate models in the context of how extremes in

temperature and precipitation are represented. It has

shown, for the first time, that there are likely to be

substantial changes to the characteristics of extreme

events across many regions of Tasmania. In particular it

has indicated that there are likely to be increases in

TX90p, TN90p, SU, R95p, and R1D totals, combined

with decreases in FD and CWD with greater uncertainty

associated with precipitation extremes compared to

temperature extremes. It has also provided valuable

insights into the representation of climate extremes by

regional climate models.
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