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Abstract In analysis of climate variability or change it is

often of interest how the spatial structure in modes of

variability in two datasets differ from each other, e.g.

between past and future climate or between models and

observations. Often such analysis is based on Empirical

Orthogonal Function (EOF) analysis or other simple indi-

ces of large-scale spatial structures. The present analysis

lays out a concept on how two datasets of multivariate

climate variability can be compared against each other on

basis of EOF analysis and how the differences in the

multivariate spatial structure between the two datasets can

be quantified in terms of explained variance in the leading

spatial patterns. It is also illustrated how the patterns of

largest differences between the two datasets can be defined

and interpreted. We illustrate this method on the basis of

several well-defined artificial examples and by comparing

our approach with examples of climate change studies from

the literature. These literature examples include analysis of

changes in the modes of variability under climate change

for the sea level pressure (SLP) of the North Atlantic and

Europe, the SLP of the Southern Hemisphere, the surface

temperature of the Northern Hemisphere, the sea surface

temperature of the North Pacific and for precipitation in the

tropical Indo-Pacific.

Keywords Modes of variability � Spatial structure of

variability � Empirical orthogonal functions � Global

warming

1 Introduction

Climate variability has significant spatial structure that is often

characterized by so called modes of variability. Such modes

are, for instance, the El Nino Southern Oscillation (ENSO),

the Pacific Decadal Oscillation (PDO), the North Atlantic

Oscillation (NAO) or the Southern Annular Mode (SAM).

These modes are assumed to be quasi-fixed spatial patterns

(Wallace and Gutzler 1981), that represent a relative large part

of climate variability. Alternatively one can think of the cli-

mate variability as a multivariate stochastic process, which

has a continuum of spatial patterns of variability (e.g. see

discussion in Dommenget 2007; hereafter D07). Independent

of whether we think of the climate variability as fixed modes

(factors) or a continuum of spatial patterns reflecting a mul-

tivariate stochastic process, often the question arises: What are

the differences in the spatial structures of variability between

one time period and another or between a control and a sen-

sitivity experiment or between model simulations and obser-

vations? The aim of this study presented here is to outline a

concept of how such a comparison can be done in a quanti-

tative way on the basis of Empirical Orthogonal Function

(EOF) analysis (also known as principal component analysis).

As the multivariate structure of any dataset is unique and

different from any other dataset, a special frame is needed to

be able to compare the multivariate structure of two data sets.

Jolliffe (2002, Chapter 13.5) gives a nice overview about

EOF related technics for comparing the multivariate struc-

ture in two or more datasets against each other. Some of these

technics aim to find some common eigenvectors, which are
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then used as basis to compare the individual datasets (e.g. in

common principal component analysis in Sengupta and

Boyle 1998). Some other technics suggest a criterion like the

angle between the eigenvectors of different datasets to find

out if eigenvectors differ significantly from each other (e.g.

in Krzanowski 1979). Beyond that several other technics

were used in recent literature to investigate the changes in the

modes of variability under increased greenhouse gas emis-

sions (e.g. Osborn 2004; Rauthe et al. 2004; Hu and Wu

2004; Kuzmina 2005; McHugh and Rogers 2005; Miller

et al. 2006; Stephenson et al. 2006; Keeley et al. 2008). Most

of these technics focus on the changes in one particular mode

or compare the leading modes pairwise. Although this gives

a good discussion of how the particular investigated leading

modes will change, it remains unclear whether this change is

representative for the whole multivariate stochastic vari-

ability or it is the most important change in the dataset.

Considering only the dominant mode in the dataset will in

most cases exclude the largest part of the variability that is

represented by all the other modes of variability. It also needs

to be considered that the changes in the spatial structure of

the variability may not be well described by the changes in

one or two particular modes at all. The change in the spatial

structure of variability is not limited to intensification,

reduction or shift in one pattern, but it could, for instance, be

a change in the length scale of variability in general, a change

in the higher ordered modes or a change of in multiple pat-

terns, thus of the multivariate structure.

The method that we will describe is based on the Distinct

Empirical Orthogonal Function (DEOF) analysis introduced

by D07. The basic idea is similar to the one of Krzanowski

(1979), but our method takes the whole multivariate structure

of the two datasets into account. The method allows to

objectively quantify differences between the multivariate

structure of two datasets and it allows to define the patterns

which best describe these differences. The paper is organised

as follows: In Sect. 2 the data used in this study are presented,

and the new method is introduced in Sect. 3. The statistical

significance levels of the DEOF patterns are discussed in Sect.

4. How this method works and how the results can be inter-

preted is illustrated in Sect. 5 on the basis of four well-defined

constructed examples. The robustness of this method is then

compared against several literature examples of studies about

changes in the modes of variability under climate change

scenarios in Sect. 6. The study is concluded with Sect. 7.

2 Data

The data analysed in this study are taken from the Climate

Model Intercomparison Project 3 (CMIP3, Meehl et al. 2007).

We selected all climate models, which had sea level pressure

(SLP), surface temperature (Tsurf), sea surface temperature

(SST) and precipitation available for the present day (20C)

and global warming scenario (A1B); see Table 1 for a list of

climate models. For each model simulation the linear trend

and mean annual cycle is subtracted to define anomalies which

are interpolated onto a common 2.5� 9 2.5� grid. The

anomalies of the 24 individual model simulations are then

concatenated to build one multi model ensemble dataset with

one ensemble member from each model.

3 Method of comparing two sets of EOF-modes

In the following we assume that the spatial structure of the

variability in two datasets is well represented by the

Table 1 List of climate models taken from the CMIP3 database

Model Institute

BCCR-BCM2.0 Bjerknes Centre for Climate Research, Norway

CGCM3.1(T63) Canadian Centre for Climate Modelling and

Analysis, Canada

CGCM3.1(T47) Canadian Centre for Climate Modelling and

Analysis, Canada

CNRM-CM3 Centre National de Recherches

Meteorologiques, France

CSIRO-Mk3.0 Commonwealth Scientific and Industrial

Research Organisation, Australia

CSIRO-Mk3.5 Commonwealth Scientific and Industrial

Research Organisation, Australia

GFDL-CM2.0 Geophysical Fluid Dynamics Laboratory, USA

GFDL-CM2.1 Geophysical Fluid Dynamics Laboratory, USA

GISS-AOM Goddard Institute for Space Studies, USA

GISS-EH Goddard Institute for Space Studies, USA

GISS-ER Goddard Institute for Space Studies, USA

IAP-FGOALS-g1.0 Institute of Atmospheric Physics, China

INGV-SXG Italian National Institute of Geophysics and

Volcanology, Italy

INM-CM3.0 Institute for Numerical Mathematics, Russia

IPSL-CM4 Institut Pierre Simon Laplace, France

MIROC3.2(hires) Center for Climate System Research, Japan

MIROC3.2(medres) Center for Climate System Research, Japan

MIUB-ECHO-G Meteorological Institute of the University of

Bonn, Meteorological Research Institute of

the Korea, Germany/Korea

MPI-ECHAM5 Max Planck Institute for Meteorology,

Germany

MRI-CGCM2.3.2 Meteorological Research Institute, Japan

NCAR-CCSM3 National Center for Atmospheric Research,

USA

NCAR-PCM National Center for Atmospheric Research,

USA

UKMO-HadCM3 Hadley Centre for Climate Prediction and

Research/Met Office, UK

UKMO-HadGEM1 Hadley Centre for Climate Prediction and

Research/Met Office, UK
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leading EOF-modes of each dataset. Note that the set of

EOF-modes of any dataset is unique and different from any

other dataset. In order to be able to compare the relative

importance of the different modes in two different datasets

we need to define a common reference set of modes. A

method of comparing two sets of EOF-modes against each

other has been discussed in D07. Therein the EOF-modes

of a dataset are compared against the EOF-modes of the

stochastic null hypothesis of isotropic diffusion by pro-

jecting the leading EOF-modes of the isotropic diffusion

process onto the EOF-modes of the dataset. This approach

can be generalized by replacing the EOF-modes of the

stochastic null hypothesis with the EOF-modes of any other

dataset. Thus we define the EOF-modes of our first dataset

‘‘A’’ as the reference modes. The variance that each

(i-index) of the reference modes from dataset A;E~Ai would

explain in the dataset B can be estimated by projecting all

of the EOF patterns of A, E~
A
i ; onto the EOF pattern of

B;E~Bj , or in shortened form, A ! B. Due to the orthogo-

nality of the EOF pattern, the sum over all linear combi-

nations gives us the explained variance the EOF pattern of

E~
A
i would have in the dataset B:

pevA!Bi ¼
XN

j¼1

c2
ij evBj ð1Þ

with projected explained variance, pevA!Bi , the explained

variance of the jth EOF pattern in dataset B, evBj and

cij ¼
E~
B
j E~
A
i

E~
B
j

���
��� E~
A
i

���
���
ðpattern correlationÞ ð2Þ

It is important to note that the projected explained vari-

ances pevA!Bi do not have to be monotonically decreasing

as the explained variances of EOF-modes do. An EOF-

mode that explains at lot of variance in dataset A does not

need to explain as much variance in dataset B and vice

versa. We can now directly compare the spectrum of evAi
values against the pevA!Bi values to estimate which modes

have different strength in the two datasets.

One has to keep in mind that the differences between the

two datasets may be largest in a pattern that does not

project well onto any of the EOF-modes. In order to find

the pattern which shows the largest differences in

explained variance between the two datasets it is necessary

to rotate the EOF-modes to a set of patterns that maximize

the difference in explained variance between the two

datasets. These modes are called the DEOF patterns. They

can be found by pairwise rotation of the EOF-modes to

maximize the difference in the leading evAi values relative

to the pevA!Bi (See D07 for details).

The DEOF patterns have two explained variance values:

one is corresponding to the amount of variance the pattern

explains in dataset A, devA!BðAÞ, and the other is the

corresponding values for dataset B, devA!BðBÞ: The

DEOF-modes are ordered by the difference in explained

variance between devA!BðAÞ and devA!BðBÞ; and not, as

in EOF analysis, by the explained variance of the pattern. It

is important to keep in mind that interpretation of the

DEOF-patterns can be equally difficult as for the normal

EOF-modes.

The leading DEOF-mode, DEOF-1A!B, is the pattern

that explains more variance in dataset A than in dataset B.

No other pattern can have a larger difference in the

explained variance between the two datasets,

DdevA!B ¼ devA!BðAÞ � devA!BðBÞ, than DEOF-1, as

the pattern are ordered by their DdevA!B. In turn, if we

want to know which patterns have a higher explained

variance in dataset B than in dataset A, we have to repeat

the analysis by defining the EOF-modes of dataset B as our

reference modes and project the EOF-modes of dataset B
onto the EOF-modes of dataset A ðDEOFB!AÞ. A MAT-

LAB-script that does the complete analysis is provided as a

supplementary material and the nomenclature used in this

paper is summed up in Table 2.

4 Uncertainties of DEOF-modes

In the discussion of the DEOF-modes it is important to

know whether the difference DdevA!B is just a reflection

of sampling uncertainties or whether it is an indication of

differences in the stochastic processes underlying the two

datasets. Thus we need to know the probability density

function (pdf) of Ddev under the null hypothesis that the

stochastic processes in the two datasets are the same

(sampling uncertainty).

The rule of thumb for EOF analysis from North et al.

(1982) gives the sampling uncertainty range of an

Table 2 Nomenclature for terms in EOF and DEOF analysis

EOF analysis

EOF pattern of data set A E~
A
i

EOF pattern of data set B E~
B
j

Explained variances of EOF pattern of A evAi

DEOF analysis

Explained variance of E~
A
i projected on B pevA!Bi

DEOF pattern from projection of A on B DEOF-iA!B

Explained variance of DEOF-iA!B in data set A devA!Bi (A)

Explained variance of DEOF-iA!B in data set B devA!Bi (B)

Difference devA!Bi (A)�devA!Bi (B) DdevA!Bi
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eigenvalue, which is essentially the standard deviation of

the pdf of the eigenvalue. For the DEOF analysis we have

to estimate the expectation value of the difference

DdevA!B ¼ devA!BðAÞ � devA!BðBÞ as well as the

spread around it. To estimate the pdf of DEOF analysis we

followed a bootstrapping approach: As the stochastic pro-

cess we chose isotropic diffusion, as it is a useful null

hypothesis for climate variability and has a well-defined

structure of multi-poles in the EOF-modes (for details see

D07). It can be described for any space and time dependent

variable Uðx~; tÞ with the following differential equation:

d

dt
Uðx~; tÞ ¼ cdamp � Uðx~; tÞ þ cdiffuse � r2Uðx~; tÞ þ f ðx~; tÞ

ð3Þ

where cdamp \ 0 is a constant for local linear damping, cdiffuse is

the diffusion coefficient and f ðx~; tÞ is spatial and temporal

white noise forcing. First, we generated a large ensemble of

isotropic diffusion processes (Eq. 3) with different white noise

realizations, the same spatial number degrees of freedom

Nspatial (Bretherton et al. 1999) and the same number of

independent samples Ntime (sampling uncertainties). We then

calculated the difference of Ddev between all pairs of the

ensemble. Since all members are realizations from the same

stochastic process, we get an estimate of the pdf ofDdev for this

process. We repeated this for different parameters of the

isotropic diffusion process, leading to different spatial degrees

of freedom (Nspatial from 5 up to 40). We also repeated this

bootstrapping approach for different numbers of independent

samples (Ntime from 120 up to 12,000). Additionally we

calculated the uncertainties of datasets that are generated from

20 unorthogonal patterns following a bootstrapping approach.

The pattern we got from a random rotation of EOF-1 to EOF-

20 and multiplied them with random times series to create a

dataset. In this case we get Nspatial between 5 and 9 and repeated

again the bootstrapping approach for different numbers of

independent samples (from 120 up to 12,000). With both

approaches we find a good approximation for the expectation

and spread of the pdf of Ddev. The expectation value is best

described by:

eðDdevkÞ � devk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Nspatial

Ntime

r
ð4Þ

where k denotes the kth DEOF mode. Thus the expectation

value differs from the North’s rule of thumb only by the

factor
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Nspatial

p
. It seems reasonable to assume that the

expectation of Ddev would depend on the number of

independent modes in the domain (Nspatial), as we have

maximized Ddev by pairwise rotation of all leading modes.

The standard deviation (stdv) of the pdf of Ddev follows

North’s rule of thumb:

stdvðDdevkÞ � devk

ffiffiffiffiffiffiffiffiffiffi
2

Ntime

r
ð5Þ

With Eqs. (4) and (5) we can calculate the significance of

the DEOF-modes: A DEOF mode that has a Ddev larger

than eðDdevÞ þ stdvðDdevÞ passes the 86 % confidence

level and a Ddev larger than eðDdevÞ þ 2 � stdvðDdevÞ
passes the 96 % confidence level. In Fig. 1 two pdfs of the

Ddev for Nspatial = 10 (Fig. 1a) and Nspatial = 20 (Fig. 1b)

are shown. Our estimated pdf of Ddev (dashed lines) is

more conservative than the observed pdf (solid lines) and

the cumulative distribution curve can be used to estimate

the significance of a Ddev value for a given Ntime.
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Fig. 1 Probability density function (pdf) (blue bars), cumulative

distribution function (cdf) (red line) of Ddev �
ffiffiffiffiffiffiffiffiffiffi
Ntime

p
; all values for

different numbers of independent samples Ntimes = 120 up to 12000

are show in this figure; the dashed lines are our estimates of the pdf

according Eqs. (4) and (5); in a for spatial degrees of freedom

Nspatial = 10 (according to Bretherton et al. 1999) and in b for

Nspatial = 20
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5 Discussion of some artificial examples

In the following we discuss four artificial examples that

increase in complexity, to illustrate how this method

detects prescribed changes. The four examples are chosen

in a way, that we can see how some simple types of

changes are revealed in the DEOF analysis. Although, the

changes in climate variability can be more complex, we

will see in the subsequent section that the discussion of

these simple artificial examples helps us to interpret the

results of observed and simulated phenomena. The artificial

examples are summarized in Table 3.

For all following artificial examples we choose the

stochastic isotropic diffusion process (Eq. 3), as it is a

useful null hypothesis for climate variability and has a

well-defined structure of multi-poles in the EOF-modes

(for details see D07). The EOF-modes of isotropic diffu-

sion depend only on the domain dimensions and the dec-

orrelation length. The latter is here a function of damping

coefficient cdamp and diffusion coefficient cdiffuse. The EOF-

1 mode is a monopole, the second and third mode are

dipoles followed by multi-poles (for details see D07).

The artificial examples we discuss here are all well-

defined and the differences between the two artificial data-

sets are known by construction. In the first two examples we

discuss two datasets, which only differ in the strength of the

variability of a fixed pattern. In the third example we discuss

two datasets in which the position of a dominant mode of

variability is different whereas in the last example the mul-

tivariate structure of the variability differs in length scale.

5.1 Different fixed teleconnection patterns

In the first example we add a fixed forcing pattern on top of

an isotropic diffusion process:

d

dt
Uðx~; tÞ ¼ cdamp � Uðx~; tÞ þ cdiffuse � r2 Uðx~; tÞ

þ f ðx~; tÞ þ pðx~Þ � FðtÞ ð6Þ

with pðx~Þ as the fixed forcing pattern and F(t) as temporal

white noise. The isotropic diffusion processes are calcu-

lated on a 77 9 71 grid point domain, but for EOF analysis

only the inner 37 9 31 grid points are chosen as the data

basis to avoid boundary effects. The datasets are driven by

different white noise f ðx~; tÞ and F tð Þ, so that the differences

between two datasets are a result of the different forcing

patterns and sampling uncertainties. The datasets in this

example have 2,400 independent time samples, a decorre-

lation length of about 9 grid points and Nspatial of about 13.

We choose in this first example two different (orthog-

onal) dipoles as forcing patterns, a left-to-right dipole in

dataset A and a top-to-bottom dipole in dataset B (Fig. 2a,

b). The shape and strength of these two forcing patterns

were chosen in a way that they would result as the EOF-2

modes in each dataset. Note, that in a continuous stochastic

process such as isotropic diffusion (Eq. 3) all possible

patterns of variability exist (explain a non-zero amount of

variance). The left-to-right dipole pattern would explain

10.0 % in A and the top-to-bottom dipole 8.3 % in B in the

pure isotropic diffusion process (the background noise). By

including the forcing pattern in A we increase the amount

of variance explained of this pattern in dataset A by 6.0 %

and by including the forcing pattern in B we increase the

amount variance explained of this pattern in dataset B by

4.2 %. Due to the different forcing patterns the variability

is higher in the left and right part of the domain in A and in

the top and bottom part in B (Fig. 2c).

We start the discussion of the differences of the spatial

structure in the variability of the two datasets by comparing

the leading EOF-modes (see Fig. 3a–f). The three leading

EOF-modes of the two datasets are similar in pattern and

explained variances, but the order of the patterns are dif-

ferent for mode 2 and 3. This reflects the fact that the left-

to-right dipole pattern explains more variance in dataset A
and the top-to-bottom dipole pattern explains more vari-

ance in dataset B, as we forced it by construction. These

differences are quantified in the eigenvalue spectra (see

Fig. 3g, j). It is first of all important to note, that the x-axes

in Fig. 3g and j refer to different sets of EOF-modes in

general and the eigenvalues can therefore not be compared

against each other directly. The left-to-right dipole pattern

of dataset A, for instance, is the mode number two in

Fig. 3g, which is similar, but not identical to mode number

three in Fig. 3j. So in order to be able to compare the

relative importance of a specific pattern in both datasets we

have to compare the evAi values against the values pevA!Bi

or the evBi values against the values pevB!Ai . In Fig. 3g, j

we see that projected explained variances (pevA!Bi and

pevB!Ai ) do not have to be monotonically decreasing as

explained variances of EOF analysis. From the projected

explained variances we can further see, that the left-to-right

dipole has in dataset B a much lower explained variance

and the top–bottom dipole has a larger explained variance,

thus showing the change in the hierarchy between EOF-2

and EOF-3, as forced by the construction of the example.

In the next step we can now find the leading DEOF

patterns that maximize the differences between the two

datasets by pairwise rotations of the EOF-modes. DEOF-

1A!B (Fig. 3h) is a left-to-right dipole with an explained

variance of 16.0 % in A and 9.3 % in B, thus a difference

of 6.7 %, statistical significant according the test in Sect. 4.

This pattern is very similar to the EOF-2 in A; EOF-3 in B
and the forcing pattern in A. The DEOF-2A!B(Fig. 3i) has

no significant spatial structure and reflects the different

white noise forcing (see further below for a discussion of
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Table 3 Summary of all examples

Example name Type of differences DEOF characteristics

5.1 Different fixed
teleconnection patterns

One leading mode in each data set
is different from the other data set

One or more eigenvalues will be more dominant in both datasets
relative to the other dataset

One (only one!) DEOF-mode will be significantly dominant in
each of the two datasets

5.2 Intensification of a fixed
pattern

One leading in one data set mode
is stronger than in the other

One or more eigenvalues will be more dominant in one dataset
relative to the other dataset

One (only one!) DEOF-mode will be significantly dominant in the
one dataset relative to the other dataset

5.3 Shift of the location of a
fixed pattern

One leading mode has different
spatial location in the two datasets

One or more eigenvalues will be more dominant in both datasets
relative to the other dataset

One (only one!) DEOF-mode will be significantly dominant in
each of the two datasets

The DEOF-modes peak at the locations where the variance is
increased most relative to the other dataset, marking the location
shift

5.4 A Multivariate
difference: A difference in
length-scale

The length scale of the multivariate
stochastic process is
different in the two data sets

Most leading eigenvalues will be more dominant in one dataset
relative to the other dataset

The higher-ranked eigenvalues of the other data set maybe more
dominating than in the first dataset

Two or more DEOF-modes will be significantly dominant in the
first dataset relative to the other dataset

More than one large-scale leading EOF-mode will be more
dominant than in the other dataset

6.1 Sea Level Pressure over
the North Atlantic and
Europe in winter

Mainly a pattern shift in the EOF-1
as in 5.3 and S4

One eigenvalue dominates in both datasets relative to the other
dataset

One DEOF-mode significantly dominates in each of the two
datasets

The DEOF-modes peak at the locations where the variance is
increased the most relative to the other dataset, marking the
location shift

6.2 Sea Level Pressure of the
Southern Hemisphere in
DJF

Mainly a pattern shift in the EOF-1
as in 5.3 and S6

One eigenvalue dominate in both datasets relative to the other
dataset

One DEOF-mode significantly dominates in each of the two
datasets

The DEOF-modes peak at the locations where the variance is
increased the most relative to the other dataset, marking the
location shift

6.3 Northern Hemispheric
winter surface temperature

Mainly a pattern shift in the EOF-1
as in 5.3 and S4,
but also some difference
in the patterns as in 5.1

Several eigenvalues dominate in both datasets relative to the other
dataset

One DEOF-mode significantly dominates in each of the two
datasets

The DEOF-modes peak at the locations where the variance is
increased the most relative to the other dataset, marking the
location shift

6.4 North Pacific SST Mainly an intensification in parts of EOF-1 (or the
variance in this region) as in 5.2, but also some
similarity to a shift as in 5.3

Two eigenvalues dominate in the 21C dataset relative to the 20C
dataset

One DEOF-mode significantly dominates in each of the two
datasets

The DEOF-modes peak at the locations where the variance is
increased most relative to the other dataset. With the 21C
DEOF-mode being more dominant

6.5 Precipitation over the
tropical Indo-Pacific

Mainly a multivariate change in the modes of
variability as in 5.4, with some characteristics of a
shift in the EOF-1 as in 5.3

Several eigenvalues dominate in the 20C dataset relative to the
21C dataset and one eigenvalue of 21C dominates over the 20C
dataset

Two DEOF-modes significantly dominate in each of the two
datasets
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significance and uncertainties). This indicates that the

dataset A has one and only one pattern of variability

(DEOF-1A!B in Fig. 3h) that is more dominant in dataset

A than in dataset B. In turn for dataset B we find the top-to-

bottom pattern as the significant DEOF-1B!A (Fig. 3k).

The DEOF-2B!A (Fig. 3l) is not significant and is there-

fore again indicating that the top–bottom dipole is the only

pattern that is more dominant in dataset B than in dataset

A, as expected by construction of this example.

The significance of Ddev was calculated using the Eqs. (4)

and (5) with an 86 % confidence level. Alternatively we can

estimate it from Fig. 1a, b: with a Ddev ¼ 6:7 % and

Ntimes = 2,400 we get Ddev �
ffiffiffiffiffiffiffiffiffiffiffi
Ntimes

p
¼ 328. With Nspa-

tial = 13 we find that this value is roughly at the 100 % value

(none of the numerical realizations produced such a largeDdev).

According to the significance test both DEOF-1 patterns

have a significant Ddev, while the higher ordered DEOF pat-

terns are all insignificant. Thus our test can separate the signal

from the noise. The strength of the forcing patterns in this

example was constructed in a way, that we would expect a

difference of 6.0 % in DEOF-1A!B and of 4.2 % in DEOF-

1B!A, as mentioned above. The estimated values in this

example (Fig. 3h, k) match the expected values relatively well.

In summary, we have illustrated in this example that the

two different forcing patterns can be identified with this

approach quite clearly in a qualitative and quantitative

way, even though the forcing patterns are not the dominant

modes and even though they project strongly onto the

background noise of isotropic diffusion. Additionally, the

approach demonstrates that there are no other significant

large-scale differences between the two datasets.

5.2 Intensification of a fixed pattern

In the second example we included a forcing pattern in the

second dataset only to illustrate how the intensification of a

mode is represented in the DEOF analysis. The forcing

pattern (Fig. 4a) is a monopole located in the eastern part

of the domain, which increases the variance in this region

(Fig. 4b). The shape of the pattern was chosen to be pro-

jecting onto both EOF-1 and EOF-2 of the isotropic dif-

fusion process (domain-wide monopole and a left-to-right

dipole) to illustrate how a forcing pattern can be detected

that does not project on one EOF-mode only.

The EOF-modes (Fig. 5a–d) of the two datasets are

quite similar, but the comparison of the eigenvalue spectra

reveals some differences. The DEOF-1B!A (Fig. 5h) is the

only significant DEOF pattern and no other significant

DEOF patterns exist in dataset A. Thus the DEOF analysis

is able to reveal the forcing pattern even though its original

structure is not projecting on one particular EOF-mode and

it shows that only one pattern is amplified in dataset B. The

increase in variance in DEOF-1A!B (Fig. 5f) is not sig-

nificant and reflects the different white noise forcing.

The experiment can also be repeated with more than one

fixed forcing pattern included in Eq. (6) for dataset B, to

test if the intensification of several modes can be detected.

The method can clearly present several fixed forcing pat-

terns, assuming that they are orthogonal to each other (see

Supplemental Figure S1 and S2).

5.3 Shift of the location of a fixed pattern

In the third example we introduce a forcing pattern that shifts

the location between dataset A and dataset B (Fig. 6a, b), so

that the forcing weakens in one part and strengthens in the

other (Fig. 6c) and describes an eastward shift of the forcing

by 16 grid points. The two EOF-1 modes are slightly different

in shape, with the center more to the left in datasetA and more

on the right in B (Fig. 7a–d), consistent with the forcing pat-

terns. The eigenvalue spectra reveal differences between the

two datasets in EOF-1 and EOF-2 (Fig. 7e) and the DEOF-1 of

both projections reveal larger and significant differences.

Thus in this example, the DEOF-1 patterns of both projections

reveal a dominant pattern in each dataset, together illustrating

the shift in a pattern.
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Fig. 2 a The forcing pattern, that was used in the first dataset A, in

b in the second dataset B (colorbar in arbitrary units) and in c the

ratio of the standard deviation of the second dataset divided by the

first dataset is given, with shading indicating statistical significant

changes according to a Fisher-F test with 90 % confidence level
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However, we have to note that the pattern shape of the

DEOF-1 patterns do not quite match the forcing patterns.

This can be understood when we think about how this

method works: A DEOF pattern with the shape of the

forcing pattern would not maximize in this case the

difference in explained variance between the two datasets,

because it also has amplitude at those locations, where the

other dataset has more explained variance due to the other

forcing pattern. So the interpretation in this case becomes

more complicated. Indeed if we compare the first example

EOFs in EOFs in DEOFs DEOFs
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Fig. 3 a–c EOF patterns of dataset A (colorbar in arbitrary units);

d–f EOF patterns of dataset B; explained variance is given in the

header in brackets; g the explained variances of the eigenvalues of the

dataset A (black) and explained variances of dataset A projected

onto the eigenvalues of dataset B (red dashed), the error bars show

the statistical uncertainties of the eigenvalues due to sampling

errors according to North et al. (1982); h–i DEOFA!B patterns; the

explained variances devA!BðAÞ and devA!BðBÞ are given in the

header in brackets, respectively, and grey values indicate that Ddev is

not significant according the test in Sect. 4; j same as g, but here

showing the eigenvalues of dataset B (red) and the explained

variances of dataset B projected onto the eigenvalues of dataset A
(black dashed), k–l same as h–i, but for the DEOFB!A patterns
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Fig. 4 Same as Fig. 2, but here

for the example in Sect. 5.2
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with two different (orthogonal) forcing patterns with this

example here, we can notice that the two patterns (before

and after the shift) here are not orthogonal to each other

(they project onto each other). In principle the first example

can also be interpreted as a shift in one pattern: The forcing

pattern in dataset A is the forcing pattern in dataset B
rotated by 90�. The shift in this first example is more

complete, leading to two (before and after the shift)

orthogonal patterns.

So the signature of a shift of one pattern is that we have

a significant DEOF-1 mode in both projections, each rep-

resenting a pattern that is similar to the pattern that is

shifted. The fact that the patterns before and after the shift

are not orthogonal to each other will lead to the DEOFs

being slightly different from the pattern that is shifted.

Thus we get two patterns, each of them mostly similar to

one ‘‘sign’’ of the ratio of standard deviation (Fig. 6d).

Other examples with a shifted dipole pattern are shown in

the Supplemental Figures S3 to S6.

5.4 A multivariate difference: a difference in length-

scale

In this last artificial example we compare two pure iso-

tropic diffusion processes with different length-scales. So

no fixed forcing patterns are included. This example can

illustrate that differences in the EOF-modes do not always

have to be interpreted as a difference in a fixed pattern, but

may sometimes reflect multivariate differences in the sto-

chastic high-dimensional process underlying the dataset. In

comparison with the above examples the discussion of this

example illustrates the characteristic signatures of multi-

variate (high-dimensional) differences.

In dataset A we choose a weaker damping and diffusion

constants than in dataset B, which leads to a shorter dec-

orrelation length (about 7 grid points) in dataset A and a

larger decorrelation length (about 10 grid points) in dataset

B. The pattern shape of the EOF-modes is similar in both

datasets (Fig. 8a–f), which we also see in the eigenvalues,
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Fig. 5 Same as Fig. 3, but here for the example in Sect. 5.2
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Fig. 6 Same as Fig. 2, but here for the example in Sect. 5.3; additional in c the difference between the two forcings B � A
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as the black dashed line of Fig. 8j is nearly the same as the

black solid line in Fig. 8g (same for the two red lines). But

the amount of explained variance is different. The shorter

decorrelation length in dataset A leads to larger number of

spatial degrees of freedom compared to dataset B and

subsequently more EOF-modes are needed to explain the

same amount of variance. Therefore the leading EOF-

modes have to explain less variance and the higher order

EOF-modes have to explain more variance to sum up to

100 %.

The first three leading DEOFB!A are similar to the first

three EOF patterns and are all significantly stronger in

dataset B than in dataset A. This is quite different from the

previous examples, where we always found only one pat-

tern that was more dominant in one of the datasets. It thus

suggests that the differences in the two datasets are of a

higher-dimensional order and are most likely not best

described by the change in one, two or three patterns but

are more likely a reflection of a change in the stochastic

high-dimensional process underlying the dataset, such as a

change in decorrelation length. In turn the DEOFA!B are

all of small-scale structure and reflect the relative increase

in variance of small-scale variability, with first two

DEOFA!B being significant (Fig. 8h–i).

5.5 Summary

We illustrated the application of the DEOF analysis with a

series of well-defined examples. By analyzing the spectrum

of eigenvalues in comparison with the projected explained

variances we can see how distinct the EOF patterns are and

with the DEOF patterns we are able to specify the pattern

that most strongly gains or loses importance and to quan-

tify how much explained variance is gained or lost.

The discussion of the idealized examples is summarized

in Table 3. The table can be used as look up table to

identify the structures that describe the difference in real

data analysis problems. If a single mode or teleconnection

is amplified in dataset B compared to a dataset A it appears

as the DEOF-1B!A, but no significant DEOFA!B will

appear (second example in Table 3). If a pattern shifts its

position in dataset B compared to its position in dataset A,

then both the leading DEOFA!B and the DEOFB!A pattern

together highlight the shift (third example in Table 3). And

last a change in the multivariate structure is reflected in

having several significant DEOF patterns in either one

projection or in both, depending on the nature of the

multivariate changes (fourth example in Table 3).

6 Literature examples about climate change

simulations

In this section we discuss examples from the literature to

illustrate how this method relates to other approaches. In

all cases we discuss previous studies that analyzed the

changes in the spatial structure of climate variability from

20th century control climate to future 21th century global
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Fig. 7 Same as Fig. 3, but here for the example in Sect. 5.3
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warming scenarios with different methods. Some of these

methods are based on EOF-modes and others are based on

alternative methods. In all examples the discussion is about

the change of modes under climate change. Thus to test our

method we try to reproduce with our method the results of

several previous studies in a multi model ensemble from

the CMIP3 data base. In the following examples the dataset

A refers to the period 1950–1979 in the present day or 20th

century control climate (dataset 20C) and dataset B to the

period 2070–2099 future 21th century or global warming

scenario climate (dataset 21C). The focus in the discussions

will be on illustrating the robustness of the method intro-

duced in this study and not on arguments about changes in

the modes of variability in the future, although the dis-

cussion may contribute to the latter.

6.1 Sea level pressure over the North Atlantic

and Europe in winter

Hu and Wu (2004) investigated the two centers of action of

the North Atlantic Oscillation (NAO) in winter SLP of the

coupled ECHAM4/OPYC3 climate model, which they

defined by the strongest negative correlation between two

grid points in this region, and found a northeastward shift

of both centers of the NAO in global warming.

The EOF analysis in winter SLP of the CMIP3 multi

model ensemble shows in both periods as EOF-1 the typ-

ical NAO pattern (Fig. 9a, b), with only small differences:

The negative pole gets stronger over the Barents Sea in

21C, both centers move a little bit to the east and the

explained variance is 2.1 % higher in 21C as in 20C. These

changes appear to be small by visual inspection or pattern

correlation (0.99).

The DEOF-120C!21C (Fig. 9e) shows a significant

decrease in explained variance of 2.6 % in 21C in a dipole

structure over the western Atlantic. The DEOF-121C!20C

(Fig. 9f) shows a significant increase in explained variance

of 4.3 % in a dipole structure over the polar region and the

midlatitudes of the east Atlantic and Eurasia. This structure

with significant DEOF-1 in both projections is similar to

the artificial examples with the pattern shift (Sect. 5.3 or

Supplemental Fig. S3 and S4): Losing relevance over the

western Atlantic in 20C and gaining relevance over the

Polar Regions, the eastern Atlantic and Eurasia in 21C.
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Fig. 8 same as Fig. 3, but here for the example in Sect. 5.4
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These DEOF-1 patterns together mark the northeastward

shift of the NAO pattern in global warming, as already

mentioned in Hu and Wu (2004) and fit quite well to the

change in variability in Fig. 10. Additionally we can see,

that the NAO pattern strengthens strongest over the Barents

sea, a region that could be important for the Northern

Hemisphere in global warming, as also mentioned in

Petoukhov and Semenov (2010). In summary, the DEOF

analysis basically confirms the Hu and Wu (2004) results,

illustrating the robustness of the method in this context.

6.2 Sea level pressure of the Southern Hemisphere

in DJF

Kidston and Gerber (2010) analysed the position of the

Southern Hemispheric eddy-driven jet stream by looking at

the maximum in zonal mean near surface zonal wind speed

in the CMIP3 data base and found a pole-ward shift of the

jet under global warming, which also leads to a pole-ward

shift of the Southern Annular Mode (SAM).

In the EOF analysis of DJF SLP in the Southern

Hemispheric higher latitudes the EOF-1 pattern (SAM,
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Fig. 9 same as Fig. 3, but here

for DJF SLP over the Atlantic

region in the periods 1950–1979

(20C) compared with the period

2070–2099 (21C), as discussed

in Sect. 6.1
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Fig. 10 Ratio of the standard deviation of 21C divided by 20C for DJF

SLP over the Atlantic region, with shading indicating statistical

significant changes according a Fisher-F test with 90 % confidence level
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Fig. 11a, b) is by far the most dominant but loses 4.5 % of

its explained variance in 21C in comparison to 20C. The

annular pattern shifts pole-ward in 21C and the amplitude

weakens a little bit. Again these changes can hardly be seen

by visual inspection or by pattern correlation (0.99). The

DEOF-120C!21C (Fig. 11e) shows an almost annular pat-

tern that has a 7.7 % higher explained variance in 20C than

in 21C. This pattern is located further equator-ward than

the EOF-1 pattern. The DEOF-121C!20C (Fig. 11f) is also

almost annular but with a maximum over the Pacific and
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(f) DEOF−1 ( 11.6 %) ( 15.8 %)

Fig. 11 Same as Fig. 9, but here

for Southern Hemispheric SLP in

DJF as discussed in Sect. 6.2
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has a 4.2 % higher explained variance in 21C than in 20C.

This structure is more pole-ward than the EOF-1 pattern. In

comparison with the artificial example in Sect. 5.3 and

Supplemental Fig. S5 and S6 it becomes clear, that these

two DEOF pattern together reveal the pole-ward shift of

the SAM pattern, consistent with the study of Kidston and

Gerber (2010). Again it illustrates the robustness of the

DEOF analysis. Additionally, it could be noted here, that

this shift is most pronounced over the South Pacific.

6.3 Northern hemispheric winter surface temperature

The third example is the winter Tsurf of the Northern

Hemisphere. In Keeley et al. (2008) Tsurf was investigated

in a 2 9 CO2 and 4 9 CO2 slab ocean run in comparison

to a control run. EOF analysis was performed to find the

patterns of variability and pattern correlations between

individual EOF-modes to find the differences in the modes

between the control and increased CO2 runs. They found

no significant changes in terms of dominance or spatial

pattern in the modes of variability.

The leading EOF-modes in the CMIP3 multi model

ensemble in both the control 20C simulations and the 21C

scenario simulations (which corresponds roughly to the

analysis of Keeley et al. 2008) are shown in Fig. 12. The

EOF-1 modes in both centuries are mostly the manifesta-

tion of the NAO in Tsurf (Hurrell and Van Loon 1997). The

leading EOF-modes in the multi model ensemble simula-

tions are indeed very similar. Not only are the patterns

quite similar (pattern correlation = 0.94), but also are the

explained variances not too different. However, the

eigenvalue spectra of the 20C and 21C multi-model

ensemble dataset relative to the projected eigenvalues

pev20C!21C
i ; and pev21C!20C

i reveal some quite significant

difference, also in the spatial structure.

The DEOF-120C!21C (Fig. 12e) is a multi-pole structure,

with strongest amplitude over the Barents Sea, the Labra-

dor Sea and Alaska. This pattern shows a significant

decrease of explained variance of 2.9 % (a reduction of

one-third relative to its eigenvalue) from 20C to 21C. The

DEOF-121C!20C (Fig. 12f) projects strongly on the EOF-1

pattern, but is shifted more to the east over Eurasia. This

pattern shows a significant increase in explained variance

of 2.8 % from 20C to 21C, which represents a 30 %

increase relative to the explained variance of this mode in

the 20C control simulation. Both DEOF-1 modes together

reveal an eastward shift of the NAO manifestation in Tsurf

in 21C, with an increase in dominance over Asia and a

decrease over the Barents Sea and Scandinavia. This

eastward shift could be expected from shift of NAO in

winter SLP in Sect. 6.1. But also the changed snow and sea

ice conditions seem to have an effect on Tsurf, by reducing

the amount of variability over Alaska and the Labrador Sea

in 21C.

Thus in contrast to the study of Keeley et al. (2008) our

method reveals significant changes in the spatial pattern of

the modes variability. This may, to some degree, be due to

the larger database used here (24 CMIP3 models) and using

transient global warming simulations, in contrast to Keeley

et al. (2008) who used only one 2 9 CO2 and 4 9 CO2

global warming simulation of one climate model. But it

also illustrates the robustness of the method presented here.

6.4 North Pacific sea surface temperature

The next example is SST of the North Pacific for the

periods 1950–1999 (20C) and 2050–2099 (21C). We

choose here 50 years long periods, because the Ocean has a

longer decorrelation time, thus fewer independent samples.

The Pacific Decadal Oscillation (PDO) is the dominant

mode of variability of North Pacific SST and in Furtado

et al. (2011) its change in global warming was investigated

in the same multi model ensemble of 24 IPCC models from

the CMIP3 database. They did not mention which method

they used to compare the two EOF sets, but found no

significant changes in the patterns of variability.

In both centuries the EOF-1 (Fig. 13a, b) represents the

PDO and again the modes are quite similar in pattern

(pattern correlation = 0.98) and explained variances.

However, the DEOF-121C!20C (Fig. 13f) finds a significant

increase in variance in a pattern centered in the subtropical

southeast corner of the domain. This modes variance is

increasing by roughly one-third relative to its variance in

the 20C simulations. The overall change in modes is

somewhat similar to the artificial example 2 with the

intensification of a pattern. The strong variability increase

over the subtropical region further supports this view (not

shown). However, the change in modes in the North Pacific

also has some aspects of a shift in a pattern. This is sup-

ported by fact that the DEOF-121C!20C and DEOF-

120C!21C both project onto the EOF-1, but both repre-

senting different aspects or locations of the EOF-1 mode.

Thus it could be interpreted as a shift in the teleconnection

of this mode from the extra-tropics more to the eastern

subtropics of the North Pacific.

6.5 Precipitation over the tropical Indo-Pacific

Hu et al. (2012) analysed the global warming response of

tropical precipitation in the CCSM3 climate model in all

four seasons and compared EOF-modes of the control

scenario with the EOF-modes of the A1B scenario. They

found some small differences in the details, but overall a

high pattern correlation of the leading EOF-modes let them
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conclude that there are no significant differences. Here we

will focus our analysis on the Indo-Pacific region as the

leading modes of variability of tropical precipitation are all

located in this region (see Figs. 11 and 12 of Hu et al.

2012), but the results would be the same, if we would take

the whole tropics.

The variability of precipitation has a small decorrelation

length, thus has a lot of small scale variability (Fig. 14a–f).

The projected eigenvalues show that the pattern shape has

changed. The DEOF-121C!20C (Fig. 14k) is a multi-pole

structure quite different from the EOF-1 pattern that has a

significant increase in variance. The variance in this mode
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Fig. 12 Same as Fig. 9, but

here for Northern Hemispheric

Tsurf in DJF as discussed in Sect.

6.3
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Fig. 13 Same as Fig. 9, but

here for North Pacific SST as

discussed in Sect. 6.4
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Fig. 14 Same as Fig. 9, but here for Tropical Indo-Pacific precipitation as discussed in Sect. 6.5
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increases by about 40 % relative to its value in the 20C

simulations. Together with the DEOF-120C!21C (Fig. 14h),

which is mostly the EOF-1 pattern losing relative impor-

tance in the 21C simulations, this illustrates an eastward

shift of the ENSO related precipitation, in agreement with

Chung and Power (2012). Both DEOF-2 (Fig. 14i, l) also

show significant changes that project on EOF-2 and show

small-scale changes in the pattern shape. As all leading

DEOF patterns are significant, this example illustrates that

a multivariate system as a whole can change and it is not

enough to look at the dominant mode only. But this

example has also some similarity to the artificial example

in Sect. 5.3 (shift in location). Here it is mostly an eastward

shift in the dominant variability pattern.

7 Summary and discussion

In this study we introduced a method based on EOF

analysis to quantify the differences in the modes of vari-

ability in two datasets, which is called DEOF analysis. It

can be used to compare modes of variability in climate

models with observations or find the changes in the modes

of variability in climate change scenarios. We can sum-

marize the DEOF analysis as a simplified recipe for the

comparison of modes, see Table 4. The first feature of this

method, the projected explained variances, reveals which

EOF patterns are most distinct in two datasets. The second

feature, the DEOF patterns, are the patterns with the largest

differences in explained variance between two datasets and

is also able to find small-scale changes in the modes of

variability. The biggest advantage of this method is that it

considers the changes in all patterns of variability instead

of only the leading mode.

We further illustrated the method on the basis of several

well-defined constructed examples. These examples do not

only demonstrate the application of the DEOF method, but

are also role models for formulating simple hypothesis for

the differences in modes of variability between two data-

sets of real data analysis. Table 3 can basically be used as a

look up table for the characteristics of the spatial variability

differences. These characteristics are mainly: an intensifi-

cation, a shift or a multivariate difference.

In the application of the DEOF analysis to literature

examples we demonstrated that we could reproduce the

main findings of the previous studies. Furthermore, we

could also demonstrate that the DEOF analysis may in

some aspects be more powerful than previously used

methods. We detected the northeastward shift of the NAO

pattern as in the paper from Hu and Wu (2004) and beyond

that we could also find how much explained variance is

gained and lost in certain regions. We could also find the

pole-ward shift of the SAM with the DEOF method as

described in Kidston and Gerber (2010), and beyond that

we found that this is strongest over the Pacific Ocean.

Further we investigated changes in the modes of Northern

Hemispheric winter Tsurf in global warming and found an

eastward shift in the dominant mode, which is the mani-

festation of the NAO in Tsurf. From the northeastward shift

of NAO in SLP we expected this shift in the dominant

mode of Tsurf, which Keeley et al. (2008) could not find in a

similar analysis. We think that their conclusion being dif-

ferent from ours is on the one hand based on the fact that

they use only one model instead of a multi model ensemble

to investigate the changes and on the other hand that their

method (pattern correlation) aims on changes in the large

scale pattern structure and while our method can also detect

local changes in the patterns. For the modes of North

Table 4 DEOF-analysis recipe

Step Comment

1. Define anomalies for both data sets

2. EOF analysis for both data sets Use identical domains and define eigenvalue variances in terms of

relative explained variance [%]

3. Define the EOF-modes of one dataset as the reference modes This defines the reference modes (patterns) on which you base your

analysis

4. Project the reference EOF-modes onto the other dataset This will allow you to compare the eigenvalue spectrum of the reference

dataset with the projected explained variances of these modes in the

other dataset

5. Compute the DEOF-modes by pairwise rotation to maximize the

differences in explained variance of this mode in the two data sets

The DEOF-modes represent the modes in the reference dataset that have

the largest difference in explained variance relative to the other dataset

6. Repeat steps 3–5 with the other dataset as the reference modes If you first projected A on B, then now project B on A
7. Compare the results with idealized examples to understand the

nature of the differences

The idealized examples will help you to formulate a simple model to

describe the differences

8. Do further analysis to verify findings No single statistical analysis will be sufficient. Use other statistical

methods and, most importantly, sensitivity experiments or theoretical

considerations to backup the results
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Pacific SST we could also find in contrast to Furtado et al.

(2011) significant changes: A shift of the eastern part of the

PDO and a strengthening in the southeastern part of the

PDO. Furtado et al. (2011) did not made any statement

about the method they used to compare the modes of

variability, thus again we think their conclusion being

different from ours is mostly based on the fact that their

method aims more on the large scale changes in the modes

of variability while our method can also detect local

changes in the patterns. In the modes of precipitation we

found an eastward shift in the ENSO related precipitation

(EOF-1) in agreement with Chung and Power (2012), but

beyond that also significant changes in the higher ordered

modes, thus in the whole multivariate structure.

Finally, we need to note that although we think that the

DEOF analysis method is a powerful new tool to help

evaluate the differences in the spatial structure of climate

variability, the interpretation of DEOF-modes or EOF-

modes can be complicated (See e.g. Dommenget and Latif

2002). Alternative statistical methods, model sensitivity

simulations and theoretical considerations of the climate

processes involved should accompany any analysis of these

complex multivariate datasets.
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