
Performance of Regional Integrated Environment Modeling
System (RIEMS) in precipitation simulations over East Asia

Deming Zhao

Received: 18 January 2012 / Accepted: 31 December 2012 / Published online: 10 January 2013

� Springer-Verlag Berlin Heidelberg 2013

Abstract Regional climate models (RCMs) can provide

much more precise information on surface characteristics

and mesoscale circulation than general circulation models.

This potential for obtaining more detailed model results has

motivated to a significant focus on RCMs development in

East Asia. The Regional Integrated Environment Modeling

System, version 2.0 (RIEMS2.0) has been developed from

an earlier RCM, RIEMS1.0, at the Key Laboratory of

Regional Climate-Environment for East Asia and Nanjing

University. To test the ability of RIEMS2.0 to simulate

long-term climate and climate changes in East Asia and to

provide a basis for further development and applications,

we compare simulated precipitation from 1979 to 2008

(simulation duration from 1 January 1978 to 31 December

2008) to observed meteorological data. The results show

that RIEMS2.0 reproduces the spatial distribution of pre-

cipitation in East Asia but that the simulation overestimates

precipitation. The simulated 30-year precipitation average

is 26 % greater than the observed precipitation. Simulated

upper and root soil water correlate well with remote

sensing derived soil moisture. Annual and interannual

variation in the average precipitation and their anomalies

are both well reproduced by the model. A further analysis

of three subregions representing different latitude ranges

shows that there is good correlation and consistency

between the simulated results and the observed data.

Annual variation, interannual variation of average precip-

itation, and the anomalies in the three sub-regions are also

well captured by the model. The model’s performance on

atmospheric circulation and moisture transport simulations

is discussed to explore the bias between the simulation and

observations. In summary, RIEMS2.0 shows stability and

does well in both simulating long-term climate and climate

changes in East Asia and in describing subregional

characteristics.
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Atmospheric circulation � Climate � Simulation

1 Introduction

Compared with General Circulation Models (GCMs), high-

resolution Regional Climate Models (RCMs) can describe

more detailed topography, land–sea distributions and sur-

face vegetation (Gao et al. 2006) when simulating regional

climate over East Asia. RCMs can better capture both

regional forcing and large-scale forcing when nested with

GCMs (Fu et al. 2000). Improvements in computing

capacity and model development make possible the use of

high-resolution RCMs, with finer land use and vegetation

data.

RCMs were originally developed by Giorgi and Bates

(1989) and Dickinson et al. (1989). They have been grad-

ually recognized as efficient and necessary tools for

studying regional climate. Since the 1980s, significant

attention has been focused on RCMs development, such as

RegCM (Giorgi et al. 1993a, b, 2012; Pal et al. 2007),

MM5 (Grell et al. 1995; Dudhia et al. 2001), WRF

(Weather Research and Forecast, Skamarock et al. 2005,

2008), REMO (Roeckner et al. 1996). Meanwhile, new

mesoscale models and assimilation systems are being

applied much more frequently in regional climate
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simulations, including examples in China such as RegCM

(Zhao and Luo 1998; Zhang et al. 2007; Gao et al. 2001),

MM5 (Tang et al. 2006), WRF (Liu et al. 2008), and

REMO (Jacob et al. 2001).

The climate in East Asia is characterized by a typical

monsoon climate (Fu et al. 2000). The vastness and com-

plexity of the Asian continent, the unique configuration of

the East African Highlands and the Tibetan Plateau, and

the Pacific in the east all contribute to making the East

Asian monsoon the most vigorous and influential of all the

monsoon circulations (Annamalai et al. 1999). Meanwhile,

with the rapid economic development and population

growth over East Asia in recent years, there have been

significant land use and cover changes, as well as increased

aerosol emissions. These changes make it necessary for

RCMs development to correctly reflect the East Asian

Monsoon System. In Europe, RegCM3 reproduced the

distributions of precipitation and surface air temperatures,

as well as the centers of extremes (Giorgi et al. 2004). The

model also exhibits good performance in simulating

extreme climatic events in West Africa (Afiesimama et al.

2006). In East Asia, however, there are obvious biases in

the location and intensity of precipitation and the surface

air temperatures simulated using RegCM3 (Zhang et al.

2007; Liu et al. 2005). As RCMs are being widely used to

simulate regional climate and climate changes, Chinese

scientists have tried to develop RCMs more suitable to the

specific conditions present in East Asia, such as Reg-

CM_NCC (Ding et al. 1998) from the National Climate

Center and the Advanced Regional Eta Model (AREM),

which is based on REM (Yu 1989).

For a typical monsoon system in East Asia, the research

has shown that climate and ecosystem are strongly coupled

in two ways. First, the high rate of changes to the monsoon

climate serves as a strong force driving variation in the

ecosystem. Second, changes in the terrestrial ecosystem

should significantly feedback to affect the monsoon cli-

mate. Therefore, there is a need to couple the biological

component with the physical monsoon climate. The need is

particularly pressing because nearly 60 % of the world’s

population lives in Asia and the area is undergoing rapid

economic growth and continuing population increases. The

anthropogenic modification of the monsoon system by

industry emissions, land use/cover change and urbanization

is very likely. There is a need to couple the human com-

ponent with the natural monsoon system. There is also a

need to couple the chemical component with the physical

climate, due to anthropogenic forcing and industrialization.

It is anticipated that from the point of view of earth science,

a more complete monsoon system should thus be a phys-

ical, biological, chemical and social coupled system. This

coupled system can be called the ‘General Monsoon sys-

tem’ (Fu 1997; Fu et al. 2000, 2006).

This concept has been the basis for the integrated

analysis and modeling theoretical framework on regional

environmental systems over East Asia. Additionally, this

concept is the scientific framework for MAIRS (Monsoon

Asia Integrated Regional Study), a key project of the Earth

System Science Partnership (ESSP). Recently, RIEMS1.0

(Regional Integrated Environmental Modeling System

version 1.0, Fu et al. 2000) was developed by researchers

from the START (Global Change System for Analysis,

Research, and Training) Regional Center for Temperate

East Asia (RCE-TEA, IAP/CAS) in 1998 based on the

concept of the General Monsoon system and supported by

the National Basic Research Program of China (973).

RIEMS1.0 was built on the thermodynamic framework

of PSU/NCAR MM5V2 (Grell et al. 1995), into which both

a land surface scheme (BATS1e, Dickinson et al. 1993) and

a radiative transfer scheme (the revised CCM3, Briegleb

1992; Kiehl et al. 1997) are integrated. The model can be

used to investigate the interactions between vegetation and

the atmosphere, as well as the influence of aerosols on

atmospheric processes. RIEMS1.0 has been widely used in

regional climate studies of the East Asian monsoon system.

The results from the Regional Climate Model Intercom-

parison Project (RMIP) have shown that RIEMS1.0 per-

forms well (Fu et al. 2005). RIEMS2.0, based on

RIEMS1.0, is now being developed by researchers from

RCE-TEA and Nanjing University, China.

RIEMS2.0 is built on the thermodynamic framework of

a non-hydrostatic approximation, a change from the

hydrostatic approximation used in RIEMS1.0. The two

models share the same land (BATS1e) and radiation

(revised CCM3) schemes. To make an integrated modeling

system, the Princeton Ocean Model (POM), the Atmo-

sphere–Vegetation Interaction Model (AVIM) and a

chemical model will be integrated into RIEMS2.0 in the

near future. BATS1e can account for precipitation, snow-

melt, canopy foliage drip, evapotranspiration, surface

runoff, infiltration below the root zone, and diffusive

exchange of water between soil layers. The CCM3 radia-

tion scheme retains the same structure as that of CCM2 but

includes new features such as the inclusion of aerosols and

additional greenhouse gases (CH4, NO2) that affect short-

and long-wave radiation, respectively. The results from

RIEMS2.0 coupled with POM, AVIM and the chemical

model show that the coupled model can improve simula-

tions of precipitation and surface air temperatures for dif-

ferent subregions of East Asia. Furthermore, the

relationship between human socio-economic activities and

climate are accounted for through a dynamic model of land

use/cover change and by incorporating the spatial distri-

bution of CO2 emissions (http://973.tea.ac.cn/).

RIEMS2.0 has shown good performance in simulating

multiyear means and variability of climate conditions in
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China (Zhao et al. 2009; Zhao and Fu 2009). RIESM1.0

occasionally overestimated the precipitation intensity for

the rainfall center. However, the revised version shows

better performance in the rain belt simulation, which is

highly connected with the East Asian summer and winter

monsoons. Ensemble simulations of two extreme climate

events in China with different physical schemes and initial

conditions show that the model can reproduce the extremes

well (Zhao and Fu 2010). Based on the previous long-term

integrations and ensemble simulations, we extend our

simulated domain over East Asia. Here, we use the model

to simulate climate conditions in East Asia from 1978

to 2008 to further test the simulation capabilities of

RIEMS2.0 in East Asia and to evaluate the model

improvements (including coupling with POM, AVIM, the

chemical model, etc.) and their applications.

2 Experimental design and data

2.1 Experimental design

The model is continuously integrated from 1 January 1978

to 31 December 2008 (31 years). As described by Giorgi

and Mearns (1999), RCMs spin-up time is on the order of

several days for the atmospheric components but can be

longer for the surface components. However, because the

most hydrologically active soil region is the rooting zone

(1 m depth or less), for most practical purposes the soil

spin-up time can be considered to be on the order of a few

seasons to a year. Therefore, the first year is used to ‘spin-

up’ the model in the experiment and only the results for the

subsequent 30 years are analyzed. The central latitude and

longitude of the simulated domain are 35�N and 105�E. The

horizontal mesh consists of 171 grid points in the longitu-

dinal direction and 131 grid points in the latitudinal direc-

tion, including a 15-grid point buffer zone that is not used in

the analysis. The horizontal resolution is 50 km (Fig. 1a).

The air pressure at the top of the model is 10 hPa with 23

levels in the vertical dimension. This experimental design is

also consistent with that of RMIP III. Based on previous

work regarding RIEMS2.00s ability to simulate regional

climate in China (Zhao et al. 2009; Zhao and Fu 2009,

2010), the main physical parameterization schemes for the

current experiment include the BATS1e land surface

scheme, the revised CCM3 radiative scheme, the KF (Kain

and Fritsch 1993) cumulus parameterization scheme, and

the MRF boundary layer parameterization scheme. During

the experiment, the CO2 concentration is updated according

to Forster et al. (2007). The global mean concentration of

CO2 in 2005 was 379 ppm. The average rate of increase in

CO2, determined by direct instrumental measurements over

the period of 1960–2005, is 1.4 ppm year-1. Between 1995

and 2005, the growth rate of CO2 in the atmosphere was

1.9 ppm year-1.

This experiment only includes the BATS1e land surface

scheme and the revised CCM3 radiative scheme; no ocean

or chemical models are applied. This is consistent with

previous work, which is the basis of the physical parame-

terization scheme selection for the current experiment. A

number of data fields must be supplied by RIEMS to

integrate BATS1e with the main model. Additionally,

some other fields must be exchanged between BATS1e and

RIEMS at each time step (Dickinson et al. 1993). Variables

from RIEMS, such as wind, surface air density, air tem-

perature, water vapor mixing ratio, and precipitation, are

used to compute soil, leaf and canopy temperature, soil

moisture, snow cover, momentum, heat and water vapor

flux by BATS1e. These variables are also returned to

RIEMS as feedback.

2.2 Data

2.2.1 Driving data

Initial conditions and time-varying boundary conditions

are taken from the National Centers for Environmental

Prediction/National Center for Atmospheric Research

(NCEP/NCAR) re-analysis dataset with a 2.5� 9 2.5�
resolution. The data are bilinearly interpolated into the

model domain as initial and boundary conditions, and the

boundary conditions are updated every 6 h. No real SST

data are used, and SST data are derived from skin

temperature.

2.2.2 Observed precipitation data

2.2.2.1 Observed data from meteorological stations To

test the model’s performance in simulating daily precipi-

tation, observed daily precipitation between 1979 and 2008

from the China Meteorological Administration is used

here. The data only cover the regions of China with 756

stations, as shown in Fig. 1b.

2.2.2.2 Global Precipitation Climatology Centre data-

set The GPCC (Global Precipitation Climatology Centre)

Monitoring Product (Schneider et al. 2010; Rudolf et al.

2010) uses the station database (SYNOP, CLIMAT)

available via the Global Telecommunication System (GTS)

of the World Meteorological Organization (WMO) at the

time of analysis (2 months after the end of an analysis

month). The GPCC product is recommended for use in all

applications needing near real-time, high-quality gridded

monthly precipitation analyses. The GPCC precipitation

data cover global land area with a spatial resolution of

0.5� 9 0.5�. The data are developed from the most
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comprehensive database of worldwide monthly observed

precipitation data from the GPCC within the framework of

the German Climate Research Program (DEKLIM)-funded

research project Variability Analysis of Surface Climate

Observations (VASClimO). The data have been shown to

express good performance on rain belt movement, con-

nected with the East Asian summer and winter monsoons

(Zhao et al. 2008; Zhao and Fu 2010). To make the com-

parison between the observed data and simulated results,

the GPCC data are mapped to a model grid.

2.2.3 Remote sensing derived soil moisture data

2.2.3.1 AMSR-E daily surface soil moisture The

Advanced Microwave Scanning Radiometer-Earth

Observing System (AMSR-E) instrument on the NASA

Earth Observing System (EOS) Aqua satellite provides

global passive microwave measurements of terrestrial,

oceanic, and atmospheric variables for the investigation of

water and energy cycles. Soil moisture and other land

surface variables are key variables in understanding land

surface hydrology and in modeling ecosystems, weather,

and climate. The gridded Level-3 land surface product

(AE_Land3) includes daily measurements of surface soil

moisture in nearly the top 1 cm of soil, vegetation/rough-

ness water content interpretive information, brightness

temperatures and quality control variables. Input brightness

temperature data corresponding to a 56 km mean spatial

resolution are resampled to a global cylindrical 25 km

Equal-Area Scalable Earth Grid (EASE-Grid) cell spacing

(Njoku 2004, http://nsidc.org/data/docs/daac/ae_land3_l3_

soil_moisture.gd.html). The data between the summers of

2003 and 2008 are used in this study.

2.2.3.2 ERS scatterometer derived SWI (soil water

index) Global coarse-resolution soil moisture data

(25–50 km) are derived from backscatter measurements

acquired with scatterometers onboard the satellites ERS-1

(1991–1996) and ERS-2 (1995–2006) and the three MetOp

satellites (2006–2020). The advanced scatterometers

(ASCAT) on board the meteorological operational

(MetOp) platforms are the follow-on for the ERS scattero-

meters. Due to a change from ERS to MetOp in the sensor

onboard, only soil moisture data for the years 1992 and

2006 onboard the ERS are used in this study.

The active microwave sensor acquires imagery inde-

pendent of cloud cover and solar illumination. Because of

the multiple viewing capabilities of the instrument, it is

possible to differentiate temporal vegetation and soil

moisture effects on the signal. Electromagnetic waves

transmitted by scatterometers penetrate only a few centi-

meters into the soil surface. Therefore, the signals scattered

back to the sensor only provide information about the

moisture content in the soil surface layer, the so-called

‘topsoil moisture’. However, the topsoil moisture may

change significantly within a few hours. Furthermore, the

magnitude of change depends on the amount of rainfall,

the evaporation rate and the time that has passed since the

rainfall event. In most applications, one is interested in

the soil moisture content at a certain depth instead of the

topsoil moisture. A Soil Water Index (SWI) for the top

100 cm layer was introduced based on a simple two-layer

infiltration model by Wagner et al. (1999). The spatial

resolution of the ERS scatterometer data is approximately

50 km, and its temporal resolution is approximately

2–3 days. The data are interpolated to 0.25� 9 0.25� with a

nearly 10-day temporal resolution, with approximately a

28 km spatial resolution at the middle latitudes of China.

The data have been shown to reasonably depict soil

moisture trends (Ceballos et al. 2005; Drusch et al. 2004;

Wagner et al. 2007). These trends have also been observed

in China (Zhao et al. 2006, 2008).

2.3 Monsoon related subregion analysis

Characteristics of the East Asian rainy season suggest that

the Asian–Pacific summer monsoon can be divided into

three regional monsoon systems: the Indian Summer

Monsoon (ISM), the WNPSM (western North Pacific

Summer Monsoon), and the East Asian Summer Monsoon

(EASM). In between the ISM and the WNPSM is a broad

transitional zone over the Indo-China Peninsula and the

Yun-Gui Plateau (Wang and Lin 2002). As terrestrial

precipitation is our focus, latitude-month cross-sections of

rain belt movement in the three subregions are analyzed

(Fig. 1). The three subregions are defined as follows: east

ba

Fig. 1 Topography for the

model domain without the

buffer zone (unit: 103 m) and

the three subregions (a), the

spatial distribution of

meteorological stations in China

(b)
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of 110�E (SR1, covering East Asia), west of 95�E (SR2,

including the Indian subcontinent), and between 95 and

110�E (SR3, including the Indo-China Peninsula). Precip-

itation in the simulated regions occurs primarily in the

summer. Annual and interannual variations in precipitation

are analyzed to determine the model’s ability to display the

movement of the rain belt. As precipitation intensity varies

significantly across the different subregions, the relative

values of BIAS/RMSE (RBIAS/RRMSE, as defined in

Eqs. 1 and 2) are discussed.

RBIAS ¼ BIAS
�POBS

ð1Þ

RRMSE ¼ RMSE
�POBS

� 100% ð2Þ

where BIAS is the difference between the observed data

and simulated result. RMSE is the corresponding root mean

square error. �POBS is the observed averaged precipitation

from GPCC.

3 Results

3.1 Spatial characteristics

The spatial distribution of the 30-year average

(1979–2008) annual precipitation derived from the

observed data (Fig. 2a) shows that precipitation is more

intense in the south, ranging from the Indian subcontinent

and the Indo-China Peninsula to southeast China, and then

weakens in the north. This distribution is well reproduced

using RIEMS2.0 (Fig. 2b). However, precipitation is gen-

erally overestimated, with the exception of southeast

China, the Bay of Bengal, the southern boundary of the

Tibetan Plateau, and Central Asia (Fig. 2c). The maximally

overestimated subregions are located in the western Indian

subcontinent, the southern Indo-China Peninsula, and the

subregions covering the Tibetan plateau and Northeast

Asia. East of 100�E, the simulated rain belt showed pre-

cipitation rates greater than 2 mm day-1 extends north-

ward to cover Northeast Asia.

In simulations of the summer months (June, July and

August, Fig. 2d–f), the subregions where precipitation is

overestimated cover less area than that of annual precipi-

tation, especially in Northeast Asia, the Tibetan plateau and

the southern Indo-China Peninsula. However, the subre-

gions where precipitation is underestimated are expanded

in area, especially in southwest China and Central Asia.

In simulations of the winter months (December, January

and February, Fig. 2g–i) precipitation is underestimated in

southeast China, the eastern Tibetan plateau and west of

the Tibetan plateau. There is a similar distribution for the

subregions, with the precipitation being overestimated

between annual and winter simulations, but the pattern is

stronger in the winter. In the case of the subregions where

precipitation is underestimated, there is a significant dif-

ference in southeast China, as well as in the eastern Tibetan

Plateau and to the west of the Tibetan Plateau.

3.2 Correlation analysis

3.2.1 Monthly mean precipitation

To determine the spatial distributions of the correlation

between the simulated results and the observed data for

monthly average precipitation, the correlation coefficients,

RBIAS and relative RRMSE for the averaged monthly

results (360 months) are computed.

Correlation coefficients are mostly greater than 0.40

(Fig. 3a), especially in Northeast Asia, the northern Indian

subcontinent, the Indo-China Peninsula and the eastern part

of the Tibetan Plateau. However, there is a lower, even

negative, correlation in Central Asia and southwest China.

The precipitation is mostly overestimated by the model,

especially in the northern part of the simulated domain, as

well as in the southern part of the Indian subcontinent and

the Indo-China Peninsula (Fig. 2c). The precipitation is

underestimated by the model in Central Asia and to the

south of the Tibetan plateau, as well as in southern and

southwestern China. The distributions show that the model

overestimates precipitation in the north and underestimates

precipitation in the south.

RRMSE, or the degree of dispersion between the

observed and simulated precipitation, is greater in the

middle latitudes covering the northern part of the Tibetan

plateau and northern China. It is also greater in the

southern Indian subcontinent and to the southwest of the

Tibetan plateau (Fig. 3b). RRMSE values are lower from

the northern Indian subcontinent and the Indo-China Pen-

insula to southeastern China.

3.2.2 Daily precipitation

Observed daily precipitation from the China Meteorological

Administration (CMA) between 1979 and 2008 are used to

test the model’s performance to simulate daily precipitation.

Thirty year mean daily precipitation is analyzed here (sample

number = 365), in which daily precipitation on 29 February

is averaged with 28 February for leap years. The observed

data only cover the regions of China with 756 stations, which

are shown in Fig. 1b. Simulated daily precipitation is

resampled to station locations. Spatial distribution for the

correlation coefficient, RBIAS and RRMSE at each meteo-

rological station for 30-year mean daily precipitation, are

analyzed here (Fig. 4a–c). There are similar distributions for
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the correlation analysis between daily and monthly mean

precipitation. However, there are higher correlation coeffi-

cients and lower RBIAS and RRMSE values for daily pre-

cipitation than for the monthly mean results. This may result

from two aspects. First, the observed data used has a greater

spatial resolution than the GPCC data. Second, the model

expresses accurately the variation in daily precipitation.

3.3 Annual and seasonal variations

3.3.1 Across the full East Asian region

Simulated and observed monthly average precipitation

shows a higher correlation (0.92) in February and lower

correlation (0.45) in July (Fig. 5a). Additionally, RRMSE

and RBIAS are both higher in the spring and lower in the

summer and autumn, which means that the simulated

precipitation is closer to the observed data in the summer

and autumn.

An analysis of anomalies found that the consistency of

anomaly symbol (CAS) is consistently greater than 0.68

and reaches a maximum in February (Fig. 5b). Correlations

between the simulated and observed precipitation are

stronger in February and are not as strong in July. RMSE of

the anomaly fields is greater in the summer and lower in the

winter, thus showing better performance in winter.

To further disclose the subregional characteristics for the

annual variations of average precipitation, the model’s

a b

d

c

fe

g h i

Fig. 2 Observed (a, d, g, unit: mm day-1), simulated (b, e, h, unit: mm day-1) and RBIAS (c, f, i, unit: %) values for monthly average

precipitation at annual (a, b, c), summer (d, e, f) and winter (g, h, i) time scales between 1979 and 2008

ba

Fig. 3 The spatial distributions

of correlation coefficients

(a) and RRMSE (b, unit: %)

between the observation and

simulation for monthly average

precipitation from 1979 to 2008
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performance in simulating different precipitation intensities

is analyzed. Across the full East Asian region, the precipi-

tation intensity is divided into five ranges: less than

0.568 mm day-1, 0.568–1.038 mm day-1, 1.038–1.706

mm day-1, 1.706–3.536 mm day-1 and greater than

3.536 mm day-1 (Fig. 5c–g). There are equal grid numbers

for the different precipitation intensities. In general, the

model exhibits good correlations for the subregions with

different precipitation intensities, except for the negative

correlation observed in July for the subregions with a pre-

cipitation intensity between 1.706 and 3.536 mm day-1.

RRMSE/RBIAS is greater from June to December for the

weaker precipitation intensity than for the stronger one, in

which a negative RBIAS for the subregions with the precip-

itation intensity greater than 3.536 mm day-1 is observed.

The simulated results for the stronger precipitation intensity

are closer to the observed data and exhibit less dispersion.

3.3.2 In the subregions

To assess the model’s ability to capture the movement

pattern of the rain belt, annual variations in both simulated

and observed precipitation are calculated in each of the

three subregions (SR1, SR2 and SR3).

In SR1, which is highly connected with the East Asia

Monsoon (EAM), the latitude-month cross-section of rain

belt movement (Fig. 6a, b) shows that the model can

generally grasp the movement of the rain belt and represent

the oscillation of the EAM. Precipitation is generally

overestimated by the model, except in southeastern China.

RBIAS reaches a maximum in northern China in the late

winter and early spring (Fig. 6c). In southeast China, the

model underestimates precipitation except in the late

summer and early autumn. Notably, there is a stronger

positive bias (absolute value) in late spring and early

summer precipitation downstream of the Yangtze River

Valley due to the strong intensity of precipitation in that

area.

In SR2, which is highly connected with the Indian

Monsoon (IM) in the lower latitudes, the latitude-month

cross-section of rain belt movement (Fig. 6d, e)

demonstrates that the model generally captures the

movement of the rain belt in terms of both intensity and

location. The oscillation of the IM, which results in

precipitation between May and October and maximum

precipitation in the summer, is well represented by the

model. However, the model generally overestimates

precipitation, especially in the winter, in both the lower

latitudes and in the northern Tibetan plateau between

36�N and 38�N (Fig. 6f). Meanwhile, the model under-

estimates precipitation in the north Indian subcontinent

and the southwestern Tibetan plateau between 20 and

34�N, especially in the summer. North of 40�N, preci-

pitation is underestimated in the late summer and early

autumn.

In SR3, which is highly connected with Indo-China

Peninsula Monsoon in the lower latitudes (Fig. 6g, h), the

latitude-month cross-section shows that the model can

capture the rain belt movement in this subregion. However,

precipitation is overestimated in areas north of 30�N,

especially from winter to spring and in September (Fig. 6i).

Precipitation is also overestimated in the lower latitudes,

particularly in the winter and early spring months. In the

northern Indo-China Peninsula and in southwest China, the

model generally overestimates spring and late winter pre-

cipitation and underestimates June to December

precipitation.

3.4 Interannual variations

3.4.1 Across the full East Asian region

Analysis of the relationship between interannual variation

of simulated and observed average precipitation from 1979

to 2008 shows that the correlation coefficient between

simulated and observed variation is 0.37, with an RRMSE

and RBIAS of 26.8 and 26.2 %, respectively. On average,

the simulated precipitation is 26 % greater than observed

precipitation. For the corresponding anomaly (Fig. 7a), the

consistency of the anomaly symbol is 53 %, and the cor-

relation coefficient is 0.30, suggesting that the model can

generally grasp major anomalies.

a b c

Fig. 4 The correlation analysis on daily precipitation between the observation and simulation for the years 1979 and 2008 (a correlation

coefficient; b relative bias, unit: %; c relative RMSE, unit: %, white areas for no value)
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To disclose subregional characteristics for the interan-

nual variations in the anomaly, the model’s performance in

simulating different precipitation intensities (same defini-

tion as Sect. 3.3.1) is analyzed (Fig. 7b–f). The correlation

coefficients for the different precipitation rates are 0.60,

0.46, 0.41, 0.19 and 0.55. The corresponding CASs are 67,

77, 63, 50 and 77 %. The model shows good correlation

and can grasp the consistency of the anomaly symbol,

except for the subregions where the precipitation intensity

is between 1.706 and 3.536 mm day-1.

3.4.2 In the subregions

3.4.2.1 Average precipitation Observed interannual

variations in precipitation show a similar distribution

among three subregions, with variation being higher in the

south and lower in the north. The model can generally

reproduce this distribution (figures omitted). Correlation

coefficients between the simulated and observed precipi-

tation for each subregion are nearly equal, at 0.93, 0.89 and

0.92 in SR1, SR2 and SR3, respectively (Table 1). The

a b

c

e

d

f

g

Fig. 5 Annual variations of correlation coefficients, RBIAS,

RRMSE/RMSE and the consistency of the anomaly symbol (CAS)

for monthly average precipitation (a the full simulated domain; c–

g for the subregions with different average precipitation rates, c less

than 0.568 mm day-1; d 0.568–1.038 mm day-1; e 1.038–1.706 mm

day-1; f 1.706–3.536 mm day-1; g greater than 3.536 mm day-1)

and the anomalies (b) for the entire simulated domain
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corresponding RRMSE/RBIAS values are 30 %/18 %,

58 %/34 % and 41 %/26 %, indicating lower dispersion

between observed and simulated precipitation in SR1 and

higher dispersion in SR2.

In SR1, the difference between the observed and simu-

lated data is negative in the south and positive in the north

with greatest RBIAS values observed north of 40�N

(Fig. 8a). This result indicates that precipitation is under-

estimated in southern China, while the rain belt extends

farther north in the simulation than is apparent in the

observed data. In SR2, there are two precipitation belts

overestimated: one located in southern India and one in the

36–39�N region (Fig. 8b). There are both positive and

negative biases between the two RBIAS belts. In SR3, the

precipitation is heavily overestimated at 33–45�N and less

overestimated in southern Indo-China (Fig. 8c). Between

18 and 33�N, RBIAS is both positive and negative.

3.4.2.2 Precipitation anomalies Spatial distributions for

the interannual variations of precipitation anomalies also

show consistency in the three subregions between 1979 and

2008 (Fig. 9). The spatial correlations for the three subre-

gions are almost equal, at 0.34, 0.37 and 0.36 for SR1, SR2,

and SR3, respectively.

3.5 Comparison for soil moisture between observed

and simulated results

Spatial distributions for average soil moisture between the

observed and simulated data in the summer are shown in

Fig. 10. The upper soil water data are based on surface soil

water and represents the water in the upper layer 0–10 cm,

while the rooting soil water data are based on the rooting

zone depth according to land cover/vegetation type

(Dickinson et al. 1993).

For the SWI and simulated soil water, good spatial

consistency can be found between the remote sensing-

derived data and the simulated results. Soil moisture is

greater in southwestern China and the Indo-China Penin-

sula, as well as in northeastern Asia, and lower in north-

western China and Central Asia. AMSR-E and simulated

soil water exhibit a similar distribution to that between SWI

g h i

d

a b c

fe

Fig. 6 Latitude-month cross-sections of annual variation for precipitation in SR1 (a, b, c), SR2 (d, e, f) and SR3 (g, h, i) from 1979 to 2008

(a, d, g, observed; b, e, h, simulated; unit: mm day-1; c, f, i, RBIAS, unit: %)
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and simulated upper soil water. However, the spatial con-

sistence between AMSR-E and simulated upper soil water

is lower than that between SWI and simulated upper soil

water. The less spatial consistence may result from AMSR-

E derived surface soil water being highly affected by rain-

fall, the evaporation rate and the time that has passed since

the rainfall event.

For simulated upper and root soil water between 1992 and

2006, the spatial correlation coefficients with SWI are 0.66 and

0.71, respectively. The corresponding correlation coefficients

for simulated results for AMSR-E between 2003 and 2008 are

0.64 and 0.57. There is high consistency between the observed

and simulated data. Meanwhile, as the SWI data represent the

soil water for the 100 cm soil layer and the AMSR-E data

represent the 1 cm surface soil water content, the higher cor-

relations for root soil water with SWI and for upper soil water

with AMSR-E indicate that the model can correctly express the

soil moisture distribution at different layers.

3.6 Bias analysis

The model can generally reproduce intensity, spatial dis-

tribution and annual and interannual variation for precipi-

tation over East Asia and its subregions. However, there

are biases between the simulated results and observed data,

which are partly revealed by the model’s performance on

atmospheric circulation and moisture transport simulations

in the summer and winter.

3.6.1 In summer

3.6.1.1 Precipitable water and specific humidity For

precipitable water (PWAT, Fig. 11a–c), the bias shows

a b

c d

fe

Fig. 7 Observed (bar) and simulated (line) interannual variation in

precipitation anomalies (a the entire simulated domain, b–f for the

subregions with different average precipitation rates, b less than

0.568 mm day-1; c 0.568–1.038 mm day-1; d 1.038–1.706 mm

day-1; e 1.706–3.536 mm day-1; f greater than 3.536 mm day-1)

Table 1 Correlation coefficients, RMSE (RRMSE) and BIAS

(RBIAS) of interannual variation for average precipitation and

anomalies between simulated and observed data (unit: mm day-1)

Average Anomaly

SR1 SR2 SR3 SR1 SR2 SR3

CORR 0.93 0.89 0.92 0.34 0.37 0.36

RMSE 1.04 1.14 0.95 0.33 0.63 0.30

RRMSE (%) 30 58 41

BIAS 0.61 0.66 0.59

RBIAS (%) 18 34 26
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contrary characteristics over eastern China, being positive

in the north and negative in the south. Additionally, the

bias is positive over the Indian subcontinent and negative

over the Indo-China Peninsula. It is worth noting that there

is a strong positive bias in the south boundary of the

Tibetan Plateau for the simulated PWAT.

For specific humidity at 850 hPa (Fig. 11d–f), the bias has

a similar distribution to that of PWAT in eastern China. There

is an obvious positive bias in northern China and a negative

bias in southeast China, the western Pacific and the Indo-

China Peninsula. This bias is lower in the Indian subcontinent.

3.6.1.2 Pressure-latitude cross-section for wind field The

pressure-latitude cross-section along the 115�E axis for the

zonal and meridional winds in the summer (Fig. 12) are

analyzed to determine the model’s performance in East

Asian summer and winter monsoon simulations.

In the summer, the pressure-latitude cross-section is

occupied by the westerly winds across the whole tropo-

sphere along the latitude, except for the easterly winds

above 600 hPa in the low latitudes (Fig. 12a). The merid-

ional winds in the low troposphere are southerly winds in

the middle and low latitudes, and northerly winds in the

middle and high latitudes. Consistently northerly winds are

observed in the upper troposphere (Fig. 12d). The model

can generally grasp the vertical distribution of the wind

(Fig. 12b, e). However, there are differences between the

observed data and the simulated results.

For the zonal winds, the subtropical westerly jet at

200 hPa in the simulation is stronger than that observed,

with the center moving northward; the corresponding

westerly winds in the low troposphere are also stronger in

the middle latitudes (Fig. 12c). For the meridional winds,

the simulated center of the strong northerly winds is to the

a b c

Fig. 8 Latitude-year cross-section of interannual variation in the RBIAS between observed and simulated precipitation in SR1 (a), SR2 (b) and

SR3 (c) from 1979 to 2008 (unit: %)

a b

d

c

e f

Fig. 9 Latitude-year cross-section of interannual variation in precipitation anomalies in SR1 (a, d), SR2 (b, e) and SR3 (c, f) from 1979 to 2008

(a, b, c, observed; d, e, f, simulated, unit: mm day-1)
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north and in the lower layer of the observed data, with

stronger southerly winds in the low troposphere (Fig. 12f).

The simulated strong subtropical westerly jet and

northward of the wind center in the upper troposphere

result in stronger westerly and southerly winds in the low

troposphere. Therefore, the simulated summer monsoon

circulation is stronger than the observed one and has a

potential effect on moisture transport.

In East Asia, the rain belt movement is highly connected

by summer monsoon-affected atmosphere circulation and

moisture transport. The differences in the meridional and

zonal winds at 850 hPa between the observation and sim-

ulation, as well as moisture flux, will be discussed below.

3.6.1.3 Subtropical westerly jet Spatial distributions of

the 30-year average subtropical westerly jet and its bias

over East Asia show that the bias is positive in India, the

Bay of Bengal and Northeast Asia; while negative from

southeast to northwest China and Central Asia (Fig. 13a–c).

The bias displays positive–negative–positive spatial

a b c

fed

Fig. 10 The spatial distributions of average soil moisture between

remote sensing derived data (a SWI, unit: %, d AMSR-E, unit:

g cm-3) and simulated results (b and e for the upper soil water, c and

f for the rooting soil water, unit: cm H2O) in the summer for two time

periods (a–c for the years 1992 and 2006, d–f for the years 2003 and

2008, white areas for no value)

a b c

d e f

Fig. 11 The spatial distributions of average precipitable water (a–c, unit: cm) and specified humidity (d–f, unit: 10-3 kg kg-1) at 850 hPa (white
areas for topography above 850 hPa) in the summer between 1979 and 2008 [a, d observed, b, e simulated, c, f bias (simulated–observed)]
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distributions from the southwest to the northeast in the

simulated domain. Simulated results are weaker to the south

of subtropical westerly jet axis and to the north, which is

maximal in northeast Asia. The weaker simulated results to

the south of the subtropical westerly jet axis correspond to

the stronger simulated EASM.

3.6.1.4 Wind at 850 hPa For the zonal winds at 850 hPa

(Fig. 13d–f), a positive bias belt exists from southeast

China to Japan. In the Indian subcontinent, the bias is

positive in the south and negative in the north. However,

the opposite is observed in the Indo-China Peninsula,

which is positive in the north and negative in the south.

Compared with NCEP reanalysis data, simulated easterly

winds from the western Pacific in the low latitudes extend

far westward with greater intensity, while simulated wes-

terly winds from the Indian subcontinent to the Indo-China

Peninsula retreat westward with less intensity. As a result,

a negative bias belt exists in the low latitudes.

For the meridional winds at 850 hPa (Fig. 13g–i), the

simulated southerly winds in southeast China are consid-

erably stronger than the observed winds. With the simu-

lated stronger westerly winds (Fig. 13e), there is a positive

bias for southwesterly flow in southeast China. The model

underestimates southerly winds in the northwest while

overestimating northerly winds in the other subregions in

the Indian subcontinent. Southerly winds with a negative

bias exist for the Indo-China Peninsula. The simulated

southerly winds over East China Sea are weaker than the

observed winds.

At 850 hPa, the Indian subcontinent is mainly controlled

by westerly winds from the Arabian Sea, which transfer to

southwesterly flow over the Bay of Bengal (Fig. 13j–l).

The flow covers the Indo-China Peninsula and South China

Sea and converges with southeasterly flow from the wes-

tern side of the subtropical high in the western Pacific.

Therefore, southwesterly flow exists in southeast China, as

well as in the East China Sea and Japan. The model can

reproduce the flow distribution accurately. However,

obvious biases can be found. Simulated results are much

stronger in the southern and northern parts of the Indian

subcontinent, while weaker in the middle part. In the Indo-

China Peninsula, the bias distribution is different between

the south and north, being negative and positive, respec-

tively. In the EASM subregions, the bias distribution is

controlled by southwesterly flow from southwest China,

the northern Indo-China Peninsula, the SCS, southeast

China and Japan. Due to the simulated weaker westerly

winds and stronger easterly winds in the low latitudes

(Fig. 13f), simulated transferred southerly winds from the

a b c

d fe

Fig. 12 The pressure-latitude cross-section along the 115�E axis (white areas for topography) for the zonal (a–c) and meridional winds (c–e) in

the summer between the observed (NCEP) data (a, d) and simulated results (b, e), and the biases (c, f, simulated–observed, unit: m s-1)
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South China Sea to southeast China are stronger (Fig. 13i)

and lead to stronger southwesterly flow in southeast China.

This corresponds to stronger simulated EASM. Further-

more, simulated southwesterly flow expresses greater

intensity with narrow east–west coverage, in which

southwesterly winds are observed to the east of Taiwan,

while easterly or southeasterly winds are predicted from

the simulation. Meanwhile, simulated easterly or

a b c

d e f

g h i

j

n om

k l

Fig. 13 The spatial distributions (white areas for topography above

850 hPa)of the average subtropical westerly jet (a–c, unit: m s-1),

zonal winds (d–f, unit: m s-1), meridional winds (g–i, unit: m s-1),

wind speed (shaded) and vector (j–l, unit: m s-1), and moisture flux

(shaded) and vector (m–o, unit: 10-4 kg hPa-1 m-1 s-1) at 850 hPa

in the summer between 1979 and 2008 [a, d, g, j, m observed, b, e, h,

k, n simulated, c, f, i, l, o bias (simulated–observed)]
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southeasterly winds are weaker in the western Pacific. As a

result, the bias at 850 hPa displays an anticyclone circu-

lation characteristic to the southeast of Taiwan over the

western Pacific.

3.6.1.5 Moisture transport at 850 hPa For moisture

transport at 850 hPa (Fig. 13m–o), the narrowed south-

westerly flow over the western Pacific results in stronger

moisture transport in the central part of eastern China,

which displays a strong positive center and has a significant

effect on the precipitation simulations for both the location

and intensity. The precipitation is overestimated in north-

ern China and underestimated in southeast China. Mean-

while, the bias is negative for moisture transport in the low

latitudes, exhibiting less moisture transport from the

southern part of the southwesterly flow and the western

Pacific. The stronger moisture transport in the EASM

mainly comes from the SCS and the northern part of the

southwesterly flow from the Bay of Bengal. The main

difference between the simulated and observed data lies in

the more strongly simulated moisture center in southeast

China, the expanded weak simulated moisture coverage in

the western Pacific, and the failure for the model to display

a strong moisture center over the Indo-China Peninsula.

3.6.2 In winter

3.6.2.1 PWAT and specified humidity For PWAT

(Fig. 14a–c), a negative bias occurs to the south of the

Yellow River Valley in eastern China and extends to the

Indo-China Peninsula, as well as the southern and western

edges of the Tibetan Plateau. The bias is positive in the

Indian subcontinent, northern China and Central Asia.

For specific humidity at 850 hPa (Fig. 14d–f), the bias is

mainly negative from southeast China to the Indo-China

Peninsula, centering in the Indo-China Peninsula. How-

ever, the bias is positive in India.

3.6.2.2 Pressure-latitude cross-section for wind fields

The pressure-latitude cross-section along the 115�E axis

for the zonal and meridional winds in the winter (Fig. 15)

is analyzed to determine the model’s performance in East

Asian winter monsoon simulations.

The zonal winds in the winter are nearly always westerly

winds across the whole troposphere, except for the easterly

winds in the near surface to the south of 35�N. Simulated

westerly winds in the middle latitudes are stronger than the

observed ones, while weaker than those observed in the

low and high latitudes (Fig. 15a–c). The meridional winds

are consistently northerly winds in the middle and high

latitudes across the entire troposphere, and extend in the

near surface layer in the low latitudes. Simulated northerly

winds in the low troposphere are stronger than the observed

ones (Fig. 15d–f).

3.6.2.3 Subtropical westerly jet Simulated results along

the subtropical westerly jet axis are weaker than the

observed data, with the bias being negative in Japan,

southeast China and the northern Indian subcontinent

(Fig. 16a–c). However, simulated results from northwest

China to Central Asia are greater, which correspond to

stronger East Asian winter monsoons (EAWM).

a

d

b

e

c

f

Fig. 14 The spatial distributions of average precipitable water (a–c unit: cm) and specified humidity (d–f, unit: 10-3 kg kg-1) at 850 hPa (white
areas for topography above 850 hPa) in the winter between 1979 and 2008 [a, d observed, b, e simulated, c, f bias (simulated–observed)]
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3.6.2.4 Wind at 850 hPa For zonal winds at 850 hPa

(Fig. 16d–f), simulated results for the westerly winds in the

middle latitudes are strong. However, the bias is negative

from the Indo-China Peninsula to the Indian subcontinent,

due to the northward extension of the easterly winds in the

low latitudes. It is worth of noting that there exists a

positive bias to the south of the Tibetan Plateau, which

extends to southwest China.

There is a negative bias for meridional wind at 850 hPa

(Fig. 16g–i) from eastern China to the Indo-China Penin-

sula, indicating simulated stronger northerly winds in the

north and weaker southerly winds in the south. Addition-

ally, the bias is positive in the Indian subcontinent.

At 850 hPa, the winds are controlled by northwesterly

flow in Northeast Asia that transfers into two branches, one

to westerly winds and the other to northeasterly winds

(Fig. 16j–l). The winds are mainly easterly winds from the

western Pacific in the low latitudes, which also transfer into

two branches in the SCS, one to southwesterly winds and

the other continuing as easterly winds. The model can

predict the flow in Northeast Asia. However, the bias is

positive for the northwesterly winds over northern and

eastern China, indicating stronger simulated EAWM. In the

low latitudes, the bias is positive, which corresponds to

stronger simulated easterly winds. Notably, the simulated

easterly winds over the Indo-China Peninsula are stronger

with their location extending northward, which results in

weaker transfer of southwesterly flow with narrowed east–

west coverage in southeast China. Therefore, with stronger

simulated EAWM, the transferred northeasterly winds are

also stronger. These northeasterly winds, combined with

easterly winds from the western Pacific in the Philippines,

intensify the easterly flow to the Indo-China Peninsula and

the Indian subcontinent, and weaken the moisture transport

to southeast China. Additionally, the observed westerly

winds to the south of the Tibetan Plateau transfer into two

branches in northeast India: one to southwesterly flow over

the Bay of Bengal and the other to northeasterly winds

along the seashore of the Indian subcontinent. The former

flow is described by the model with greater intensity, while

the latter fails to be shown.

3.6.2.5 Moisture transport at 850 hPa For moisture

transport at 850 hPa (Fig. 16m–o), the observed strong

easterly moisture transport is mainly located to the east of

the Indo-China Peninsula in the low latitudes. The flow

transfers into two branches: one continues westward and

the other turns northward in the SCS and the Indo-China

Peninsula, from which a large amount of moisture is

transported to eastern China. However, simulated results

show that easterly moisture transport extends far westward

to the southern Indian subcontinent with the location

d

a b

e

c

f

Fig. 15 The pressure-latitude cross-section along the 115�E axis (white areas for topography) for the zonal (a–c) and meridional winds (c–e) in

the winter between the observed (NCEP) data (a, d) and simulated results (b, e), and the biases (c, f simulated–observed, unit: m s-1)
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expanding northward. The results are in weaker the

southern branch of the southwesterly winds and less

moisture transport to eastern China is observed; in contrast

greater moisture transport to the Indian subcontinent and

the Indo-China Peninsula is predicted based on higher

simulated precipitation levels in those areas. Additionally,

due to the failure of the model to reproduce the transfer of

the flow from southwesterly winds to northeasterly winds

in northeast India, the northern branch of the southwesterly

winds in northern India is stronger. This strengthens

m on

k lj

a b c

d e f

g h i

Fig. 16 The spatial distributions (white areas for topography above

850 hPa) of the average subtropical westerly jet (a–c unit: m s-1),

zonal winds (d–f unit: m s-1), meridional winds (g–i unit: m s-1),

wind speed (shaded) and vector (j–l unit: m s-1), and moisture flux

(shaded) and vector (m–o unit: 10-4 kg hPa-1 m-1 s-1) at 850 hPa in

the winter between 1979 and 2008 [a, d, g, j, m observed, b, e, h, k,

n simulated, c, f, i, l, o bias (simulated–observed)]
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moisture transport and increases precipitation to southwest

China. The weakened southern branch of the southwesterly

moisture transport, combined with weakened transferred

southerly winds from the western Pacific and the SCS,

result in less precipitation in southeast China. Additionally,

strengthened easterly moisture transport in the low lati-

tudes from the western Pacific leads to greater moisture

transport and increased precipitation to the Indo-China

Peninsula and the Indian subcontinent.

4 Conclusions and discussion

The model can generally reproduce the distributions of

precipitation, which is greater in the south and decreases in

the north. However, the model overestimates precipitation

in the Tibetan plateau and in northeastern Asia, as well

as in the southern subregions of the Indian subcontinent and

in the Indo-China Peninsula. Additionally, precipitation is

underestimated in Central Asia. The model underestimates

precipitation in southern China, where a negative bias in the

annual and winter simulations is observed; this bias extends

westward to southwestern China in the summer.

In terms of the correlation between the observed and

simulated spatial distributions of precipitation, the model

performs well in northeastern Asia and in the eastern

Tibetan plateau, as well as in the Indo-China Peninsula and

the northern Indian subcontinent. However, the subregions

north of the Tibetan plateau display less correlation and

greater RRMSE values. Daily and monthly mean precipi-

tation can be reproduced accurately by the model. Simu-

lated upper and root soil water correlate well with remote

sensing derived soil moisture.

The model captures the annual variations in averaged

precipitation and its anomalies in East Asia, as well as the

subregions with different precipitation intensities. Further

analysis within the three subregions shows that the model

generally captures rain belt movement in the low latitudes,

which are closely connected with the EAM and IM as well

rain belt movement in the Indo-China Peninsula. The dis-

tribution of the rain belt in the north is also reproduced by

the model well. However, the relative bias in the north is

greater, with wider coverage than that observed in the

south for both SR1 and SR2. The relative bias in the winter

is stronger than that in the summer.

The model can generally grasp the major anomalies in

interannual variation of precipitation in East Asia, as well

as the subregions with different precipitation intensities.

Further analysis of the simulated and observed data for the

three subregions shows that the model performs well in

capturing the average precipitation and its anomalies.

However, differences in the bias distributions can be found

between the different subregions. There is a greater relative

positive bias in the north that in the south for both SR1 and

SR3, while a greater bias between 36 and 39�N is observed

in SR2.

In general, the model simulates precipitation well. The

simulated precipitation is 26 % greater than observed

precipitation in East Asia and 18, 34 and 26 % greater than

the observed precipitation in the three subregions, SR1,

SR2, and SR3, respectively.

Differences between the simulated and observed pre-

cipitation in the summer can be summarized as follows.

With the stronger simulated subtropical westerly jet

accompanied by the jet axis moving northward, the simu-

lated EASM is stronger than the observed. The channel for

simulated moisture transport from southwesterly flow is

narrower than observed; additionally, easterly flow from

the western Pacific extends westward. Moisture transport

from the western Pacific and the southern branch of the

southwesterly winds from the Bay of Bengal are weakened

in the simulation. The strengthened moisture transport in

eastern China comes from the SCS and the northern branch

of the southwesterly flow from the Bay of Bengal. The

precipitation bias in eastern China displays the opposite

distribution, being negative in the south and positive in the

north. In the Indian subcontinent, precipitation is overes-

timated in the northwest and the south. In the Indo-China

Peninsula, there is less positive bias in the southwest and a

greater negative bias in the northeast, which is connected

with the strong negative bias in southwest China.

Differences between the simulated and observed pre-

cipitation in the winter can be summarized as follows. With

the stronger simulated westerly winds in the middle lati-

tudes and the stronger simulated northerly winds in the low

troposphere, the simulated EAWM is also stronger than the

observed. Additionally, with the stronger easterly flow in

the low latitudes, moisture transport to the Indian sub-

continent and the Indo-China Peninsula from the western

Pacific and the SCS is stronger in the simulation. However,

simulated moisture transport from the Bay of Bengal

(southern branch of southwesterly moisture transport), as

well as transferred southerly flow from the SCS and the

Indo-China Peninsula, is weaker than the observed, which

results in less simulated moisture transport to eastern

China. Meanwhile, due to the failure to simulate the

transfer from northwesterly to northeasterly winds in

northeast India, simulated southwesterly winds in northern

India re stronger (northern branch of southwesterly winds).

As a result, there is a strong negative bias for the precip-

itation in southern China and a positive bias in India, the

Indo-China Peninsula and southwest China.

RIEMS can generally reproduce the rainfall belt

movement, daily and monthly mean precipitation, as well

as annual and interannual variation. However, there are

biases between the observations and the simulation, which

1784 D. Zhao

123



is a common difficulty from RCMs and GCMs. The dif-

ference for the wind field between the NCEP reanalysis

data and simulated results shows that climate drift during

long-time consecutive integration exists. Consecutive

integrations with frequent re-initializations, as well as 3D-

nudging, are a good approach to improve the accuracy of

RCMs (Lo et al. 2008). Meanwhile, RCMs depend on

GCMs or analysis data as driven data for initial and

boundary conditions. Error from driven data can be

involved in the simulated results from RCMs. Nudging

with observed data can adjust the bias between the simu-

lated results and the observed data. Multidriven data is

another method to decrease the origin of the bias.

Due to the scarcity of the observed data and the com-

puting capacity, the present common spatial resolution for

RCMs is not enough to resolve actual atmospheric condi-

tions and different parameterization schemes are adopted

by the regional climate models. For example, there is an

obvious inconsistency from the different cumulus param-

eterization schemes for the regional applicability of RCMs.

Ensemble simulations can decrease the model’s uncertainty

(Zhao and Fu 2010). Meanwhile, some parameters are

considered unchanged when performing long term inte-

gration for current RCMs. For example, land use/cover

change can alter the surface albedo and then change the

energy and water cycles between the land surface and the

atmosphere. This will have an effect on local and regional

climate.

Several factors result in the poor performance of RCMs

for some seasons and regions. However, compared to

GCMs, high-resolution RCMs can describe topography,

land-sea distributions and surface vegetation more accu-

rately, as well as show regional characteristics in East Asia.

With the Tibetan Plateau and desert in the southwest and

northwest, as well as the Pacific in the east, topographic

distributions in China are complex. There have been sig-

nificant effects from anthropogenic forcing with regard to

land use, vegetation cover and aerosol emissions in recent

years. Improvements in computing capacity make high-

resolution RCMs possible, for which finer forcing data,

such as land use and vegetation data from remote sensing,

can be used to improve the model’s description of land

surface characteristics and disclose its effect on regional

climate. It is crucial to involve all of these factors and

ensure that they are captured by the RCMs. Based the

present analysis of RIEMS’s performance on regional cli-

mate simulations over East Asia, the biological, human,

and chemical components will be coupled with the natural

monsoon system to make it a physically, biologically,

chemically and socially coupled system.

As a result, the failure for physical process to be accu-

rately expressed in RCMs is the main difficulty for model

development and accounts for the main bias of the model.

However, current RCMs usually fail to express the com-

ponent in the ‘General Monsoon System’ and cannot cor-

rectly disclose the feedback between climate and

ecosystem. This problem can be solved with effort, which

is the initial aim for RIEMS development.
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