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Abstract An assessment is made of the modes of inter-

annual variability in the seasonal mean summer and winter

Southern Hemisphere 500 hPa geopotential height in the

twentieth century in models from the Coupled Model

Intercomparison Project phase 3 (CMIP3) dataset. The

analysis is done for both the intraseasonal and slow com-

ponents of the geopotential height. When the CMIP3 models

are assessed against reanalysis data, the spatial structure and

variance of the leading modes in the intraseasonal compo-

nent are generally well reproduced. There are systematic

differences between the models in their reproduction of the

leading modes in the slow component. An overall score

using the leading modes in the slow component allows a

categorisation of CMIP3 model performance. Using an

ensemble from four models that suitably reproduce the

twentieth century modes, modes of variability in the slow-

internal and slow-external components are estimated. The

leading mode of the slow-external component is shown to be

related to observed changes in greenhouse gas concentra-

tions. In this ensemble, there is little change in the leading

modes in the intraseasonal component in the twenty-first

century. Larger changes in variance, and subtle changes in

regional-scale structure, are found for the leading modes in

the slow-internal component. These are related to changes

in the slowly varying dynamics of the Southern Annular

Mode and the El Niño-Southern Oscillation. By far the

biggest change is in the leading mode of the slow-external

component. The spatial structure becomes uniform in the

twenty-first century, and the variance increases with

increasing greenhouse gas concentrations.

Keywords Modes of variability � Atmospheric

circulation � CMIP3 models � Model assessment �
Climate change

1 Introduction

The ability of coupled atmosphere–ocean general circula-

tion models (CGCMs) to represent coherent patterns, or

modes, of interannual variability in the large-scale tropo-

spheric circulation is an important consideration in the use

of such models to understand how these modes might

change in the future. Of particular importance is the extent

to which these modes respond to, or reflect the trend in,

projected and observed changes in radiative forcing due to

changing greenhouse gas concentrations. A key require-

ment is the need to separate the ‘signal’, in this case the

response to radiative forcing, from the ‘noise’, i.e. internal

variability. Aspects of this have been examined in a

number of recent studies. The mean projected change has

been examined in large ensembles from single models (e.g.

Kirtman et al. 2011; Deser et al. 2012; McSweeney et al.

2012) or from multi-model ensembles (e.g. Meehl et al.

2007b; and references therein). Different radiative forcings

have been applied to an atmosphere general circulation

model (AGCM) (e.g. Deser and Phillips 2009) or CGCM

(e.g. Arblaster and Meehl 2006). Time series of the

response to radiative forcing can be projected on to current

modes of variability (e.g. Brandefelt and Källén 2004;

Simpkins and Karpechko 2012), while Branstator and

Selten (2009) estimated modes of variability using a large
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CGCM ensemble. The response to radiative forcings has

also been considered using theoretical forcing functions

(e.g. Majda et al. 2010). The concept of partitioning the

seasonal mean into terms related to external- and inter-

nally-forced components (e.g. Zwiers 1996; Rowell 1998)

has been used to investigate projected changes in interan-

nual variability of surface temperature and rainfall (e.g.

Boer 2009; Hawkins and Sutton 2011).

Here, for the first time, the projected changes in all

leading modes of variability are directly estimated in a

multi-model CGCM ensemble. This is based on the pre-

mise that the seasonal mean of a climate variable, e.g.

geopotential height, can be considered as a random vari-

able, with a seasonal ‘population’ mean and departures

from that mean (Zheng and Frederiksen 2004; Frederiksen

and Zheng 2007b; and references therein). Zheng and

Frederiksen (2004) referred to these two components as the

slow and intraseasonal components of the seasonal mean.

Madden (1976) used daily climate data in the frequency

domain to estimate the interannual variance of the slow

and intraseasonal components. Zheng et al. (2000, 2004)

formulated methods using monthly climate data in the time

domain. Zheng and Frederiksen (2004) extended the latter

method to estimate the covariance matrix of each compo-

nent. This allows empirical orthogonal functions (EOFs) to

be calculated, and these represent the modes of interannual

variability in each component. Frederiksen and Zheng

(2007b) showed the equivalence of modes estimated using

the frequency or time domain methods.

Using an ensemble of model realisations, Zheng and

Frederiksen (1999) and Zheng et al. (2004) included the

partitioning used by Zwiers (1996) and Rowell (1998).

This allows the estimation of the interannual variance in

three components of the seasonal mean. They are: (1) an

intraseasonal component related to internal dynamics on

intraseasonal time scales, (2) a slow-internal component

related to internal dynamics on slowly varying (interannual

or longer) time scales, and (3) a slow-external component

related to external forcings. Zheng et al. (2009) extended

the method of Zheng et al. (2004) to estimate the modes of

interannual variability in each component using EOF

analysis. Zheng et al. (2009) and Grainger et al. (2011b;

hereinafter G11) used this method to examine the modes

of interannual variability of atmospheric circulation in

AGCMs. The prescription of sea surface temperature (SST)

meant that the slow-external component in those studies

was related to variations in both SST and radiative forcing.

Here, an ensemble of CGCM realisations is examined,

meaning that the slow-external component will only be

related to variations in radiative forcing.

Frederiksen and Zheng (2007a; hereinafter FZ07) esti-

mated the dominant modes of interannual variability in the

Southern Hemisphere (SH) 500 hPa geopotential height,

commonly used to represent the atmospheric circulation, for

December–January–February (DJF) and June–July–August

(JJA) using the National Centers for Environmental Pre-

diction (NCEP) reanalysis dataset (Kalnay et al. 1996).

Both the intraseasonal and slow components were consid-

ered, as the intraseasonal component explains a significant

fraction of the extratropical variability of the atmospheric

circulation (Zheng et al. 2004). It is well understood that

statistical modes of variability are not the same as dynam-

ical or physical modes (e.g. Frederiksen and Frederiksen

1993a; Monahan et al. 2009; and references therein).

However, FZ07 found that their modes of variability had

spatial structures similar to many dynamical modes.

The leading mode of the intraseasonal component has a

zonally symmetric annular structure resembling the

Southern Annular Mode (SAM). Frederiksen and Freder-

iksen (1993b) also found annular structures on intrasea-

sonal time scales that they attributed to barotropic

instability. SAM has also been shown to be generated

through wave-interactions with the zonal flow (e.g. Lim-

pasuvan and Hartmann 2000). Secondary modes have mid-

latitude wave-4 (DJF) or wave-3 (JJA) patterns, similar to

those seen in other reanalysis studies (e.g. Kidson 1999).

Such structures may be generated by internal instability of

the atmospheric flow (e.g. Frederiksen and Frederiksen

1993b), or as meridional wave trains associated with the

Madden Julian Oscillation (e.g. Frederiksen and Frederik-

sen 1993a). The regions of maximum loading are also

associated with regions of persistent blocking events (e.g.

Sinclair 1996), particularly in the South Pacific.

FZ07 found that their leading mode of the slow com-

ponent also had a SAM-like pattern, but with a pronounced

protrusion into the South Pacific that has also been seen in

reanalysis studies (e.g. Kidson 1999; Fogt et al. 2011).

L’Heureux and Thompson (2006) found that the El Niño-

Southern Oscillation (ENSO) influences the wave activity

related to SAM, while Fogt et al. (2011) attributed the

zonally asymmetric features of SAM to these interactions

with ENSO. The next two modes were found to be related

to ENSO variability. They have spatial structures similar to

the Pacific-South American (PSA) modes found in other

reanalysis studies (e.g. Mo and Higgins 1998; Mo 2000),

with a wave propagating from the tropics to high latitudes.

The fourth mode is similar to the South Pacific Wave (e.g.

Kidson 1999). Similar fast-growing stationary modes were

found by Frederiksen and Frederiksen (1996) that they

related to the north–south gradient in Indian Ocean SST.

The aim of this paper is twofold. First, the modes of

interannual variability in the SH atmospheric circulation in

CGCMs from the Coupled Model Intercomparison Project

phase 3 (CMIP3) dataset (Meehl et al. 2007a) are assessed

for the second half of the twentieth century. CMIP3 data is

used so that the assessment can be compared with the large
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body of literature (e.g. Randall et al. 2007; and references

therein) on the representation of climate processes in

CMIP3 models. The modes of variability in the intrasea-

sonal and slow components are compared against those

estimated using reanalysis data from the Twentieth Century

Reanalysis (20CR) project (Compo et al. 2011). Then,

CMIP3 models that represent relatively well the 20CR

modes are used to examine the projected changes for the

second half of the twenty-first century. Projected changes

in the intraseasonal, slow-internal and slow-external com-

ponents are all examined.

The outline of this paper is as follows. The reanalysis

and CMIP3 model data used are described in Sect. 2.

Section 3 describes the methods used to estimate the

modes of variability, and to assess the model modes against

reanalysis dataset modes. An assessment of the CMIP3

models against reanalysis data for the second half of the

twentieth century is given in Sect. 4. Section 5 gives the

projected changes for the second half of the twenty-first

century. Conclusions are given in Sect. 6.

2 Data

As in FZ07 and G11, the SH atmospheric circulation is

represented by monthly mean 500 hPa geopotential height

in summer (DJF) and winter (JJA). For the modes of var-

iability in the slow, slow-internal and slow-external com-

ponents we are also interested in their relationship with

global SST.

In order to compare the CMIP3 models with reanalysis

data (see Sect. 3.2), all 500 hPa geopotential height data

are mapped onto the same 2.5� 9 2.5� longitude/latitude

grid, then sub-sampled to 5� 9 5�. This is thinned towards

the South Pole, as in FZ07 and G11, so that the data is

approximately weighted by area. All SST data are mapped

onto the same 2� 9 2� latitude/longitude grid. Before

analysis (see Sect. 3.1), the annual cycle is removed by

subtracting the climatological monthly mean.

2.1 Reanalysis data

The reanalysis monthly mean SH 500 hPa geopotential

height used is from the 20CR dataset for the period

1951–2000. The 20CR project uses a recent AGCM and

data assimilation system to generate an ensemble of fore-

casts of the atmospheric circulation using only surface

pressure observations and monthly SST and sea–ice—full

details are in Compo et al. (2011). Although satellite data

are not used, the quality of the 20CR is at least comparable

to other reanalysis products (e.g. Compo et al. 2011;

Stachnik and Schumacher 2011). The SST data used are

from the HadISST dataset (Rayner et al. 2003).

2.2 CMIP3 data

Monthly mean 500 hPa geopotential height from the

CMIP3 dataset has been obtained for the last 50 years of

the 20c3m experiment, and for the second half of the

twenty-first century in the Special Report on Emission

Scenarios (SRES) B1, A1B and A2 experiments (Meehl

et al. 2007a). The models to be assessed are summarised in

Table 1. In total, there are 70 20c3m realisations from 23

models. Surface skin temperature over oceans is used to

represent model SST.

3 Methodology

3.1 Modes of variability

The principles and assumptions used by the methodology

have been detailed in previous papers (e.g. Frederiksen

and Zheng 2007b; and references therein). Here a brief

summary is provided. Consider a climate variable, x (e.g.

Table 1 CMIP3 models and the number of 20c3m realisations used

in this study

CMIP3 model name No. 20c3m

realisations

Climatological

ozone?

Flux

adjustment?

BCCR–BCM2.0 1 Yes No

CCSM3 8 No No

CGCM3.1 (T47) 5 Yes Yes

CGCM3.1 (T63) 1 Yes Yes

CNRM–CM3 1 Yes No

CSIRO–Mk3.0 2 No No

CSIRO–Mk3.5 3 No No

ECHAM5/MPI–OM 4 No No

FGOALS–g1.0 3 Yes No

GFDL–CM2.0 3 No No

GFDL–CM2.1 3 No No

GISS–AOM 2 Yes No

GISS–EH 5 No No

GISS–ER 9 No No

INGV–SXG 1 No No

INM–CM3.0 1 Yes No

IPSL–CM4 1 Yes No

MIROC3.2 (hires) 1 No No

MIROC3.2 (medres) 3 No No

MRI–CGCM2.3.2 5 Yes Yes

PCM 4 No No

UKMO–HadCM3 2 No No

UKMO–HadGEM1 2 No No

Also indicated are whether the models use climatological ozone in the

twentieth century (from Son et al. 2010) or whether flux adjustment

has been applied (from Randall et al. 2007)
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geopotential height), from which the annual cycle has been

removed. A time series of x, in this case monthly mean

anomalies, is considered to be represented as

xsymðiÞ ¼ byðiÞ þ dsyðiÞ þ esymðiÞ; ð1Þ

where y = (1, …, Y) is the year index in a sample of Y

years, m = (1, 2, 3) is the month index within a season,

s = (1, …, S) is the realisation index in an ensemble of size

S and i = (1, …, I) is the index of I geographical locations

(e.g. grid points). by is the slow-external component, dsy is

the slow-internal component and esym is the residual

monthly departure of xsym from the slow-external and

slow-internal components. The seasonal mean can then be

written as

xsyoðiÞ ¼ byðiÞ þ dsyðiÞ þ esyoðiÞ; ð2Þ

where the subscript o denotes the average over an index

(s, y or m). esyo is associated with variability within the

season and has been called the intraseasonal component of

the seasonal mean (Zheng and Frederiksen 2004).

Given monthly mean anomalies, Zheng and Frederiksen

(2004) and Zheng et al. (2009) respectively showed that

interannual covariance matrices for the components of the

seasonal mean can be estimated for reanalysis data, or a

single model realisation, and model ensembles. More

details are given in the ‘‘Appendix’’. EOF analysis is used

to estimate the modes of interannual variability for each

component. The terms used in this paper, and their mean-

ing, are summarised in Table 2.

For the S-EOFs, as defined in Table 2, the relationship

with SST is considered using the covariance between the

slow components in both the associated time series of the

S-EOF and the SST time series. This is calculated at each

SST grid point using the methodology of Grainger et al.

(2011a), and is described here as the slow SST-height

covariance. Analogous definitions are used for the slow-

internal and slow-external SST-height covariances.

3.2 Model assessment

As detailed in the ‘‘Appendix’’, it is not possible to use

reanalysis data to estimate the covariance matrices for the

slow-external and slow-internal components. Therefore

only the CMIP3 20c3m I- and S-EOFs, as defined in

Table 2, are assessed against the 20CR EOFs. Since all

500 hPa geopotential height and SST data have been

mapped to the same grid, the variance of the EOFs (i.e. the

eigenvalues) are directly comparable and pattern correla-

tions of the spatial structures can be calculated (Grainger

et al. 2008). Based on the principles of Taylor (2001),

scores for how well a model I- or S-EOF reproduces a

20CR EOF are respectively defined as

Me ¼
2 Rj j

V̂
0
e

V̂e
þ V̂e

V̂
0
e

� � ð3Þ

and

Ml ¼
Rj j 1þ RSSTð Þ2

2
V̂
0
l

V̂l
þ V̂l

V̂
0
l

� � ; ð4Þ

where V̂e and V̂l are the estimated variances of the 20CR

I- and S-EOFs, V̂
0
e and V̂

0
l are the estimated variances of the

model I- and S-EOFs, R is the pattern correlation between

the model and 20CR EOFs (the absolute value is used since

the sign of an EOF is arbitrary) and RSST is the pattern

correlation, over a specified region, between the model and

20CR slow SST-height covariances.

For a set of model I-EOFs and S-EOFs, estimated from

either a single realisation or an ensemble, the following

procedure is used to find a set of 1–1 ‘best matches’ to the

20CR EOFs:

1. For the leading N 20CR I- or S-EOFs, find the

permutation of N model modes that maximises the

structure component of the score. That is, the permu-

tation which maximises the sum over N EOFs of the

numerator in Eqs. (3) or (4). This is the initial set of

model ‘best match’ EOFs.

2. For each 20CR I- or S-EOF, check for any higher

order, i.e. [N, model EOF that has a higher score

according to Eqs. (3) or (4). Change the model ‘best

match’ to the higher order EOF, and flag for further

checking.

Table 2 Definitions of terms used in this paper to describe the modes of interannual variability in the components of the seasonal mean

Term Description Modes of

variability

V̂ xsyo i1ð Þ; xsyo i2ð Þ
� �

Estimated interannual covariance of the total seasonal mean T-EOFs

V̂ esyo i1ð Þ; esyo i2ð Þ
� �

Estimated interannual covariance of the intraseasonal component of the seasonal mean I-EOFs

V̂ by i1ð Þ þ dsy i1ð Þ;by i2ð Þ þ dsy i2ð Þ
� �

Estimated interannual covariance of the slow component of the seasonal mean S-EOFs

V̂ dsy i1ð Þ; dsy i2ð Þ
� �

Estimated interannual covariance of the slow-internal component of the seasonal mean SI-EOFs

V̂ by i1ð Þ;by i2ð Þ
� �

Estimated interannual covariance of the slow-external component of the seasonal mean SE-EOFs
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3. For each 20CR I- or S-EOF, also check whether any

model EOF has a score that is at least 80 % of the

current ‘best match’, and flag these for further

checking.

4. For the model ‘best matches’ flagged above, subjec-

tively inspect the EOFs to obtain the final set of ‘best

matches’. In practice changes were made to 10–15 %

of the original, objective, ‘best matches’.

It is convenient to consider the estimated standard

deviation of an EOF, which by definition here is the square

root of the eigenvalue. It is also useful to define the model

estimated standard deviation relative to a 20CR EOF by

r� ¼
ffiffiffiffiffi
V̂
0

p
ffiffiffiffî
V

p ; ð5Þ

where V̂ is the estimated variance of the 20CR EOF (i.e. V̂e

or V̂l) and V̂
0

is the estimated variance (V̂
0

e or V̂
0

l) of the

model EOF.

4 Assessment

4.1 20CR modes of variability

The leading four I-EOFs of the 20CR SH 500 hPa geo-

potential height for DJF and JJA 1951–2000 are shown in

Fig. 1, and Fig. 2 shows the leading three S-EOFs for the

same period and their slow SST-height covariance with

HadISST SST. The spatial structure and physical inter-

pretation of these modes is discussed in detail in FZ07 and

summarised in the Introduction, and need not be repeated

here. However, it is worth pointing out that the pronounced

loading in the South Pacific of the 20CR JJA S-EOF1

(Fig. 2c) is consistent with the concept that there is zonal

asymmetry as a result of SAM-ENSO interactions (Fogt

et al. 2011). In contrast, I-EOF1 in both seasons is zonally

symmetric (Fig. 1a, b), reminiscent of annular structures

due to barotropic instability (Frederiksen and Frederiksen

1993b).

Qualitatively the 20CR modes are similar to those

estimated using NCEP reanalysis data from the periods

1949–2002 (FZ07) or 1951–2000 (G11). This is summa-

rised in Table 3, which shows the estimated standard

deviation and percentage variance explained in the two

datasets for the period 1951–2000, and the EOF pattern

correlations between the datasets. However, there are some

features that have implications for model assessment.

In both reanalysis datasets, the variance explained of

I-EOF3 and -EOF4 is similar, suggesting that they are

degenerate. The pattern correlations are generally lower

when compared with those for I-EOF1 and -EOF2

(Table 3). It also suggests that I-EOF3 and -EOF4 will be

subject to sampling error and may be less well reproduced

in the CMIP3 models.

In contrast, the leading S-EOFs are not degenerate, and

so this should not be a source of error when assessing

models. Previous studies (e.g. Mo and Higgins 1998; Mo

2000) found that the leading two PSA modes were

degenerate when the total seasonal mean covariance

(T-EOFs; see Table 2) was considered. However, FZ07

showed that the NCEP reanalysis T-EOFs are very highly

correlated with the S-EOFs, and moderately correlated with

the I-EOFs. When the covariance of the intraseasonal

component is removed, the resulting S-EOFs were better

related to slowly varying processes than the T-EOFs. Here,

for example, the 20CR JJA T-EOF2 and -EOF3 (not

shown) are degenerate. But JJA T-EOF3 is well correlated

(0.604) with I-EOF2, and when I-EOF2 is in effect

removed from the covariance matrix, JJA S-EOF3 is much

better separated from S-EOF2.

There is a much clearer separation between the variance

explained by S-EOF3 and -EOF4 in the 20CR than in the

NCEP reanalysis, particularly in JJA (Table 3). The lead-

ing three 20CR S-EOFs explain 74.5 % and 71.1 % of the

covariance of the slow component in DJF and JJA

respectively. Consequently, in this study the CMIP3

models will only be assessed against these leading three

modes.

The NCEP reanalysis S-EOFs have higher estimated

standard deviations than the 20CR, particularly for

S-EOF1. Bromwich and Fogt (2004) found that the NCEP

reanalysis has a bias and artificial linear trend at SH high

latitudes. It is possible that this may result in higher

interannual variability. The choice of reanalysis dataset

may affect which models have the ‘better’ estimated

standard deviation. But models that fail to reproduce the

spatial structure of the S-EOFs, or fail to correctly esti-

mate the standard deviation, will have lower scores in

Eq. (4).

4.2 Intraseasonal component modes

The EOF pattern correlation, |R|, and relative standard

deviation, r*, in the CMIP3 models for the leading four

20CR I-EOFs are shown in Figs. 3 and 4 for DJF and JJA

respectively. For models with multiple realisations

(Table 1), I-EOFs estimated using both individual realisa-

tions and the model ensemble are assessed.

In DJF, the models best reproduce the spatial structure

of the 20CR I-EOF1, with a median value of about 0.9 for

|R| in the ensemble estimates (filled square in Fig. 3a).

However, r* is generally too low, with a median value of

about 0.85 (Fig. 3e). The other modes all have lower values

of Rj j than for the leading mode (Fig. 3b–d) and their

values of r* are generally slightly\1.0 (Fig. 3f–h). These
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modes are generally present, but not necessarily in the

same order as the 20CR, suggesting that they are degen-

erate in the CMIP3 models.

In JJA, the models also best reproduce the spatial

structure of the 20CR I-EOF1 (Fig. 4a). The second mode

is well separated in percentage variance explained from the

other modes in the CMIP3 models. The median value of |R|

of about 0.8 with respect to the 20CR I-EOF2 (Fig. 4b), is

much higher than the other mid-latitude wave modes in

either season. r* is typically slightly [ 1.0 in the CMIP3

models for all modes (Fig. 4e–h), with highest values

occurring relative to 20CR I-EOF4 (Fig. 4h).

Fig. 1 Leading four I-EOFs of

20CR SH 500 hPa geopotential

height for a DJF and b JJA

1951–2000. EOFs are

normalised to unit length. The

estimated standard deviation

(m) and variance explained (%)

are given to the right of each

EOF
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Fig. 2 a Leading three S-EOFs of 20CR SH 500 hPa geopotential

height for DJF 1951–2000. b Slow SST-height covariance with

HadISST SST for the S-EOFs in a. c, d as in a, b but for JJA. EOFs

are normalised to unit length. The estimated standard deviation

(m) and variance explained (%) are given to the right of each EOF
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For individual models, the ensemble estimate generally

reproduces the 20CR I-EOFs better than most realisations.

The value of |R| in the ensemble estimates is typically at the

upper end of the range over individual realisations. The

value of r* is typically about that of the mean over indi-

vidual realisations. Overall, the intraseasonal modes are

generally well reproduced in the CMIP3 models.

4.3 Slow component modes

For the CMIP3 models the pattern correlations, respec-

tively |R| and RSST for the S-EOFs and SST-height covar-

iances, and relative standard deviation, r*, are calculated

with respect to the leading three 20CR S-EOFs. RSST for

each mode is calculated over regions of high slow SST-

height covariance seen in Fig. 2b, d. The chosen region for

each mode is somewhat arbitrary. However they are con-

sistent with the regions selected by Zheng and Frederiksen

(2007) as optimal SST-based predictors for statistical sea-

sonal forecasting of SH 500 hPa geopotential height.

4.3.1 First mode

The ability of the CMIP3 models to reproduce the 20CR

S-EOF1 is summarised in Fig. 5. RSST is calculated over the

region 60�S–30�S. In DJF, the values of |R| and RSST (Fig. 5a,

b) are high across most models. The model mode has an

annular structure, and the median ensemble value of |R| is

about 0.8 (Fig. 5a). Highest values of |R| are found in GISS-

EH, GISS-ER and UKMO-HadGEM1, while CSIRO-Mk3.5

stands out as having the lowest pattern correlations. The

majority of models have values of r* that are[ 1.0 (Fig. 5c).

However, there are two models, CSIRO-Mk3.5 and INGV-

SXG, that have particularly low values, and reproduce the

20CR S-EOF1 relatively poorly. Consistent with this, Sen

Gupta et al. (2009) found that CSIRO-Mk3.5 and INGV-

SXG have a poleward bias in the latitude of maximum zonal

wind stress with respect to other CMIP3 models.

In JJA, the median ensemble value of |R| is about 0.55

(Fig. 5d). The model mode usually has an annular struc-

ture, and does not reproduce the zonal asymmetry of

the 20CR S-EOF1 (Fig. 2c). All models except MIROC3.2

(medres) have low values of RSST (Fig. 5e). There is a wide

range of values of r* (Fig. 5f), particularly across indi-

vidual realisations, although the median is close to 1.0.

There does not appear to be any systematic differences

between CMIP3 models in their reproduction of the 20CR

JJA S-EOF1.

For each model, the ensemble estimate generally lies

within the range of the individual realisations. The values

of |R| and RSST are typically at the upper end of the range.

However, the value of r* is often towards the lower end of

the range. Similar behaviour for all three diagnostics is also

seen for the second and third modes (see Figs. 6, 7).

4.3.2 Second mode

Figure 6 summarises the ability of the CMIP3 models to

reproduce the 20CR S-EOF2. RSST is calculated over the

region 60�S–20�N. Similar to the leading mode, in DJF the

value of |R| is high in most models, with a median value of

about 0.7 (Fig. 6a). However there are more models with

lower values of RSST (Fig. 6b) and r* (Fig. 6c). Models

that reproduce the EOF spatial structure relatively well are

more likely to have above-median values of RSST. The

median ensemble value of r* is just \1.0 (Fig. 6c).

However, the values of r* in FGOALS-g1.0 are about 2.0,

and about 0.6 in BCCR–BCM2.0 and the three GISS

models.

In JJA, the median ensemble value for |R| of about 0.4

(Fig. 6d) is much lower than in DJF. The values of RSST are

generally only slightly lower (Fig. 6e), with a median

ensemble value of about 0.6. Except for FGOALS-g1.0,

r* is generally lower in JJA (Fig. 6f) than in DJF.

A number of models (e.g. ECHAM5/MPI-OM, both

GFDL models and both CSIRO models) have above-

median pattern correlations in both seasons, and have

values of r* close to 1.0. Most of these models are also

considered to have ‘realistic’ oceanic ENSO variability in

other studies (e.g. van Oldenborgh et al. 2005; Guilyardi

2006). In contrast, GISS-AOM and GISS-ER, which

Table 3 Estimated standard deviation (m) and variance explained

(%) for the leading four I- and S-EOFs from the 20CR and NCEP

reanalysis DJF and JJA SH 500 hPa geopotential height for the period

1951–2000

Mode 20CR NCEP Correlation

DJF I–EOF1 245.9 (24.8 %) 247.1 (24.6 %) 0.980

DJF I–EOF2 171.4 (12.0 %) 179.9 (13.0 %) 0.957

DJF I–EOF3 143.2 (8.4 %) 137.1 (7.6 %) 0.665

DJF I–EOF4 134.5 (7.4 %) 155.1 (9.7 %) 0.685

JJA I–EOF1 289.6 (24.3 %) 297.8 (23.3 %) 0.966

JJA I–EOF2 209.3 (12.7 %) 250.5 (16.5 %) 0.899

JJA I–EOF3 178.2 (9.2 %) 177.7 (8.3 %) 0.808

JJA I–EOF4 165.2 (7.9 %) 195.4 (10.0 %) 0.593

DJF S–EOF1 305.6 (43.7 %) 404.4 (54.4 %) 0.954

DJF S–EOF2 204.2 (19.5 %) 225.9 (17.0 %) 0.938

DJF S–EOF3 155.7 (11.3 %) 141.0 (6.6 %) 0.600

DJF S–EOF4 106.6 (5.3 %) 114.1 (4.3 %) 0.586

JJA S–EOF1 219.1 (29.7 %) 342.9 (39.1 %) 0.813

JJA S–EOF2 198.7 (24.4 %) 230.1 (17.6 %) 0.882

JJA S–EOF3 165.6 (17.0 %) 177.4 (10.5 %) 0.797

JJA S–EOF4 97.5 (5.9 %) 165.9 (9.2 %) 0.400

Also given is the EOF pattern correlation between the datasets
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under-perform here, have been identified as having no

oceanic ENSO variability (van Oldenborgh et al. 2005).

Guilyardi (2006) identified GISS–EH as having much

lower ENSO-related atmosphere–ocean coupling strength

than in other CMIP3 models or observations, and this

model also under-performs here. FGOALS-g1.0 was

identified by van Oldenborgh et al. (2005) as having large

ENSO amplitude and a sharp spectral peak centred on

3 years. Here, the FGOALS-g1.0 S-EOF1 is clearly iden-

tified as the ‘best match’ to 20CR S-EOF2 in all cases.

4.3.3 Third mode

The ability of the CMIP3 models to reproduce the 20CR

S-EOF3 is summarised in Fig. 7. RSST is calculated over

the region bounded by 30�S–20�N and 90�E–70�W. Most

models have a mode analogous to the 20CR S-EOF3. In

contrast to the two leading modes, this mode is often

represented by a higher order S-EOF. Consequently, the

standard deviation of the mode is under-estimated, with a

median value of r* of about 0.6 in both seasons (Fig. 7c,

f). Values of |R| are also lower than for the two leading

modes, with medians of about 0.4 in both seasons (Fig. 7a,

d). Values of RSST are similar to the two leading modes,

with medians of about 0.6 in DJF (Fig. 7b) and 0.7 in JJA

(Fig. 7e).

Overall, the CMIP3 models reproduce the 20CR SEOF-

3 less well than they do the two leading modes. However, it

should be noted that models that reproduce the second

mode relatively well are more likely to also do so with the
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Fig. 3 For the CMIP3 models

a–d the EOF pattern correlation,

|R|, and e–h the relative standard

deviation, r*, to the leading

four 20CR DJF I-EOFs. For

each model, the ensemble

estimate (filled square) and

range over realisations

(whiskers) are plotted. The

median over the ensemble

estimates is shown by the

dashed line. The number of

realisations for each model is

given above (a) and (e)
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third. As mentioned in Sect. 4.3.2, these models are typi-

cally those considered to have ‘realistic’ oceanic ENSO

variability.

4.4 Model overall score

It is useful to quantify how well models reproduce overall

the modes of variability in the twentieth century, and to

identify differences between models. Here, we have found

that the CMIP3 models generally reproduce well the modes

of variability of the intraseasonal component of SH 500 hPa

geopotential height. So our focus will be on the modes of

variability in the slow component. For this purpose, we

define an overall score for each model in each season by

Overall Score � 1

3

X3

n¼1

ðMlÞn; ð6Þ

where (Ml)n is the score estimated from Eq. (4) for the

model ensemble S-EOF corresponding to the nth 20CR

S-EOF. This is shown in Fig. 8 for the CMIP3 models.

It is clear from Fig. 8 that all CMIP3 models perform

better in DJF than in JJA. This is primarily due to the

higher EOF pattern correlations for the two leading modes

(compare Figs. 5a, 6a with Figs. 5b, 6b). However, in both

seasons there are clear differences between models, as

indicated by the spread about the median Overall Score.

From this it is possible to categorise the CMIP3 model

performance.
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Fig. 4 As in Fig. 3, but for the

leading four 20CR JJA I-EOFs
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Five models reproduce the 20CR S-EOFs relatively

well, with Overall Scores well ‘above median’ in both

seasons. They are CSIRO-Mk3.0, ECHAM5/MPI–OM,

GFDL–CM2.0, GFDL–CM2.1 and MRI–CGCM2.3.2.

There are six models that are ‘below median’ in both

seasons. The three GISS models were shown to have poor

representations of ENSO variability (Sect. 4.3.2) and

BCCR–BCM2.0 shows similar behaviour. INGV–SXG and

INM–CM3.0 appear to be relatively poor across all three

modes. The remaining 12 models fall into a broad category

of ‘about median’. Some (CCSM3, CGCM3.1(T63), IPSL–

CM4 and UKMO-HadGEM1) perform relatively well only

in DJF. Others (CNRM-CM3, MIROC3.2(medres), PCM

and UKMO–HadCM3) perform better, i.e. above the model

median, in JJA. The categorisation of CGCM3.1(T47) and

MIROC3.2 (hires) as ‘about median’ is marginal, since

they are below median in DJF and about median in JJA.

CSIRO–Mk3.5 and FGOALS–g1.0 behave differently from

the other CMIP3 models. They both have very good spatial

structures for the modes related to ENSO variability but are

penalised by poor values of r* for the first mode in

CSIRO-Mk3.5 and for the second mode in FGOALS–g1.0.

However, when compared with the ‘above median’ models,

all ‘about median’ models are more likely to show the

deficiencies described in Sect. 4.3.

It is reasonable to use the model ensemble S-EOFs for

assessment of the overall performance. An alternative

model Overall Score could be calculated by applying

Eq. (6) to the individual realisations, and then averaging. In

DJF, the ensemble Overall Score (Fig. 8) exceeds this

realisation-average Overall Score (not shown) in all 16

CMIP3 models (Table 1) with multiple realisations. In JJA,

the ensemble Overall Score is higher in 11 models, but is

only lower than all realisations in UKMO–HadCM3.

Including the intraseasonal modes in the overall score is

unlikely to change the categorisation. For example, see

Grainger et al. (2010) for realisation-average Overall

Scores calculated over the leading four NCEP reanalysis

I- and S-EOFs.

Although there are some subjective aspects of the ‘best

match’ selection method (Sect. 3.2), the CMIP3 model

categorisation is generally robust. Choosing plausible

alternative ‘best match’ EOFs or regions for calculating

RSST does not greatly affect the categorisation, although the

ranking of models within each category may change.

Finally, it should be noted that the assessment method only
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Fig. 5 For the CMIP3 models

a the EOF pattern correlation

|R|, b the pattern correlation

between the slow SST-height

covariances, RSST, calculated

over the region 60�S–30�S, and

c the relative standard deviation,

r*, to the 20CR DJF S-EOF1.

d–f Are as in a–c but for JJA.

For each model, the ensemble

estimate (filled square) and

range over realisations

(whiskers) are plotted. The

median over the ensemble

estimates is shown by the

dashed line. The number of

realisations for each model is

given above (a) and (d)
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shows which models are relatively good or poor at repro-

ducing twentieth century variability. It will not explain why

this is the case, and the required diagnostic studies are

beyond the scope of this work.

5 Projections

We now consider how the modes of interannual variability

are projected to change in the CMIP3 SRES experiments.

With an ensemble of model realisations, it is possible to

estimate the interannual covariance of the intraseasonal,

slow-internal and slow-external components and conse-

quently the changes in their modes.

There has been much recent discussion on issues relat-

ing to model selection and the use of multi-model ensem-

bles in projection studies (e.g. Knutti et al. 2010; Weigel

et al. 2010; McSweeney et al. 2012; and references

therein). Here we will use an ensemble based on a selection

of CMIP3 models that are suitable for further analysis. We

choose these on this basis of two requirements. The first is

that the models reproduce ‘reasonably well’ the leading

modes of variability of the slow component in both sea-

sons. Based on Sect. 4.4, this will mostly likely be those

CMIP3 models categorised as ‘above median’.

The second requirement is that the models have the

‘correct’ external forcings. Differences have been found in

the twenty-first century projected SH atmospheric circula-

tion depending on whether or not an ozone recovery is

prescribed (Son et al. 2008). McSweeney et al. (2012)

found that twentieth century regional precipitation was

more realistic in a flux-adjusted model as a result of the

more realistic SST. However, they argued that it was not

clear that future precipitation is more realistic or reliable in

flux-adjusted models than in non-flux adjusted models.

Table 1 lists the CMIP3 models that have climatological

ozone or apply flux-adjustment. When the results in Sect. 4

are grouped by external forcing (not shown), the only clear

difference is lower values of RSST and r* for DJF S-EOF1

in the six models with climatogical ozone and no flux-

adjustment. No systematic differences in model perfor-

mance were found. Nevertheless, only those models that
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Fig. 6 As in Fig. 5, but for the

20CR S-EOF2 for DJF and JJA.

In b and e, RSST is calculated

over the region 60�S–20�N
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Fig. 7 As in Fig. 5, but for the

20CR S-EOF3 for DJF and JJA.

In b and e, RSST is calculated

over the region 30�S–20�N,
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Fig. 9 a Leading three SI-EOFs of the ENS4 20c3m DJF SH

500 hPa geopotential height for 1951–2000. b Slow-internal SST-

height covariance with ENS4 SST for the SI-EOFs in a. c and d as in

a and b but for JJA. EOFs are normalised to unit length. The

estimated standard deviation (m) and variance explained (%) are

given to the right of each EOF
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have a prescribed ozone trend and recovery, as documented

by Son et al. (2010), are considered for selection here.

Based on these requirements an ensemble, hereinafter

denoted ‘ENS4’, is created from the four ‘above median’

CMIP3 models that have a prescribed ozone trend and

recovery. They are: CSIRO–Mk3.0, ECHAM5/MPI–OM,

GFDL–CM2.0 and GFDL–CM2.1. One realisation from

each model is used. CSIRO-Mk3.0 and the two GFDL

models have only one realisation of the SRES experiments,

so for the 20c3m the realisation that initialised those

experiments is used. For ECHAM5/MPI–OM, realisation 2

was selected for the 20c3m and SRES experiments, as it

has the highest Overall Score of the individual 20c3m

realisations (not shown).

5.1 ENS4 twentieth century modes

The spatial structure of the ENS4 20c3m I-, S-EOFs and

slow SST-height covariances (not shown) are similar to the

20CR (Figs. 1, 2). The pattern correlations for ENS4 are

usually well above the ensemble median values shown in

Figs. 3, 4, 5, 6 and 7 and the values of r* are usually closer

to 1.0. The Overall Score for ENS4 in both DJF (0.565) and

JJA (0.420) exceeds that of the best individual model,

Table 4 Estimated standard deviation (m), and variance explained (%) for the leading I-, SI-EOFs and SE-EOF1 from the ENS4 20c3m for DJF

and JJA 1951–2000

Mode 20c3m SRES B1 SRES A1B SRES A2

DJF I–EOF1 237.3 (22.2 %) 223.2 (21.5 %)

0.974

238.7 (23.5 %)

0.953

221.5 (21.4 %)

0.972

DJF I–EOF2 160.1 (10.0 %) 159.4 (11.0 %)

0.883

167.4 (11.6 %)

0.822

163.7 (11.7 %)

0.836

DJF I–EOF3 150.7 (8.9 %) 130.9 (7.4 %)

0.866

133.0 (7.3 %)

0.565

138.6 (8.4 %)

0.748

DJF I–EOF4 142.2 (8.0 %) 141.4 (8.6 %)

0.595

153.7 (9.7 %)

0.825

144.4 (9.1 %)

0.492

JJA I–EOF1 311.8 (22.3 %) 330.9 (24.7 %)

0.925

327.0 (24.3 %)

0.887

328.0 (24.8 %)

0.915

JJA I–EOF2 233.4 (12.5 %) 213.9 (10.3 %)

0.772

216.6 (10.7 %)

0.724

231.4 (12.3 %)

0.888

JJA I–EOF3 220.1 (11.1 %) 222.7 (11.2 %)

0.794

236.2 (12.7 %)

0.681

204.2 (9.6 %)

0.817

JJA I–EOF4 176.0 (7.1 %) 164.6 (6.1 %)

0.724

184.2 (7.7 %)

0.883

179.4 (7.4 %)

0.722

DJF SI–EOF1 346.1 (58.7 %) 350.3 (62.2 %)

0.945

304.7 (54.7 %)

0.871

347.0 (64.1 %)

0.897

DJF SI–EOF2 216.6 (23.0 %) 187.8 (17.9 %)

0.967

214.8 (27.2 %)

0.914

198.6 (21.0 %)

0.926

DJF SI–EOF3 98.8 (4.8 %) N/A N/A N/A

JJA SI–EOF1 250.0 (39.3 %) 288.9 (45.5 %)

0.778

268.8 (42.5 %)

0.851

283.0 (38.3 %)

0.900

JJA SI–EOF2 189.0 (22.5 %) 226.0 (27.9 %)

0.748

211.4 (26.3 %)

0.835

243.3 (28.3 %)

0.872

JJA SI–EOF3 142.0 (12.7 %) 103.5 (5.8 %)

0.453

120.1 (8.5 %)

0.658

149.1 (10.6 %)

0.481

DJF SE–EOF1 141.4 (53.5 %) 135.6 (55.2 %)

0.572

284.3 (88.2 %)

0.724

457.4 (92.6 %)

0.743

JJA SE–EOF1 95.0 (40.2 %) 142.8 (59.6 %)

0.830

263.5 (79.6 %)

0.853

449.6 (90.0 %)

0.877

Also given, except for DJF SI-EOF3, are the values for the corresponding EOFs (and their pattern correlation with 20c3m) from the ENS4 SRES

B1, SRES A1B and SRES A2 experiments
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GFDL–CM2.0 (0.500) and CSIRO–Mk3.0 (0.395)

respectively.

Figure 9 shows the leading three SI-EOFs, as defined in

Table 2, from ENS4 20c3m for DJF and JJA 1951–2000,

along with the slow-internal SST-height covariance with

ENS4 SST. In both seasons the spatial structure of these

modes are similar to the corresponding modes in the slow

component in ENS4. When compared with the 20CR

(Fig. 2), Fig. 9 shows some of the deficiencies that are

general to the CMIP3 models. The structure of the leading

mode for JJA is too annular and the positive slow-internal

SST-height covariance for the second mode extends too far

westwards in the tropical Pacific Ocean. The percentage

variance explained by SI-EOF1 (Table 4) and S-EOF1 (not

shown) is much more than that explained by the 20CR

S-EOF1 (Table 3). This is particularly true in DJF, where

the ENS4 SI-EOF1 and -EOF2 together explain 81.7 % of

the variance (Table 4). The ENS4 DJF SI-EOF3 has a low

estimated standard deviation and the 4.8 % of the variance

explained is much lower than that of the 20CR S-EOF3

(11.3 %).

The leading SE–EOF, as defined in Table 2, in the

ENS4 20c3m is shown in Fig. 10 along with the slow-

external SST-height covariance with ENS4 SST. In DJF,

the SAM-like structure (Fig. 10a; left) has been seen in

other studies (e.g. Arblaster and Meehl 2006; Deser and

Phillips 2009; G11) investigating trends in the twentieth

century atmospheric circulation. The estimated standard

deviation in ENS4 (141.4) is within the range

(132.5–154.4) of the ‘trend mode’ in G11 of the three

AGCMs forced by SST, CO2 and Ozone. In JJA, the

structure (Fig. 10a; right) is similar to the ENSO-like

structure of the ‘trend mode’ described by G11. However,

the estimated standard deviation in ENS4 (95.0) is much

lower than the range (125.7–170.6) in G11 over all five

AGCMs. SE-EOF1 explains 53.5 % of the variance in DJF

and 40.2 % in JJA, and the trend in the associated time

series is statistically significant at the 99 % level. All this

suggests that in this ensemble there is a coherent response

to observed changes in greenhouse gas concentrations. The

slow-external SST-height covariance (Fig. 10b) is positive

almost everywhere, and the structure is similar to linear

trends in ENS4 ensemble mean SST (not shown) and

twentieth century observed SST (e.g. Rayner et al. 2003).

5.2 ENS4 twenty-first century modes

When the I-EOFs from the ENS4 SRES B1, A1B and A2

experiments for DJF and JJA 2051–2100 (not shown) are

compared against the leading four 20c3m I-EOFs, there are

minimal changes in either the spatial structure or standard

deviation in either season. Table 4 gives a summary,

including the EOF pattern correlation with respect to the

ENS4 20c3m I-EOFs. The estimated standard deviations

indicate that in the SRES experiments, the third and fourth

modes in DJF are swapped relative to the 20c3m, as are the

Fig. 10 a SE-EOF1 of the

ENS4 20c3m SH 500 hPa

geopotential height for DJF

(left) and JJA (right)

1951–2000. b Slow-external

SST-height covariance with

ENS4 SST for the SE-EOFs in

a. EOFs are normalised to unit

length. The estimated standard

deviation (m) and variance

explained (%) are given to the

right of each EOF
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second and third modes in JJA. However, pattern correla-

tions generally remain high. There is a consistent increase

across all SRES experiments in the estimated standard

deviation of the leading mode in JJA, but the variance

explained only increases by just over 2 %.

Figure 11 shows the leading SI-EOFs in the ENS4 SRES

A1B experiment for DJF and JJA 2051–2100. Since ENS4

DJF SI-EOF3 in the 20c3m experiment is very weak, pro-

jected changes in this mode are not examined. While there

are some subtle regional differences, most notably in JJA SI-

EOF3, the large-scale spatial structure is largely unchanged,

as indicated by the high pattern correlations with respect to

ENS4 20c3m (Table 4). This is also true for the SRES B1

and A2 experiments (SI-EOFs not shown, but see Table 4).

The large-scale spatial structure of the slow-internal SST-

height covariance (not shown) is also generally unchanged

across all three experiments. In DJF, the estimated standard

deviations of the two leading modes are the same or slightly

lower across all three experiments, although the total vari-

ance explained is unchanged, ranging over 80–85 %. In JJA,

the estimated standard deviation of the two leading modes is

higher in all experiments. There are corresponding increases

in the percentage variance explained (Table 4), which are

larger than those seen in the I-EOFs. The estimated standard

deviation of the JJA SI-EOF3 is lower in the SRES B1 and

A1B experiments than in the 20c3m.

SE-EOF1 of the ENS4 SRES B1, A1B and A2 experi-

ments is shown in Fig. 12 and is summarised in the bottom

Fig. 11 Leading SI-EOFs of

the ENS4 SRES A1B

experiment SH 500 hPa

geopotential height for a DJF

and b JJA 2051–2100. EOFs are

normalised to unit length. The

estimated standard deviation

(m) and variance explained (%)

are given to the right of each

EOF

Modes of interannual variability 495

123



two rows of Table 4. There is a much larger change in the

model response to radiative forcings than in the other

components. In both seasons, the spatial structure of the

EOF becomes nearly uniform. With increasing greenhouse

gas concentrations, the estimated standard deviation and

percentage variance explained by this mode also increases

(Table 4), and the spatial structure becomes more uniform

(Fig. 12). The increases in estimated standard deviation are

much larger than the differences in the intraseasonal and

slow-internal modes (Table 4). The slow-external SST-

height covariances (not shown) are positive everywhere,

and have the largest values in the SRES A2 experiment. The

trend in the associated time series is statistically significant

at the 99 % level in all cases. The spatial structures of the

EOF and slow-external SST-height covariance are similar

to the structures of the linear trends in ENS4 ensemble mean

SH 500 hPa geopotential height and SST respectively (not

shown). The changes in spatial structure and magnitude are

consistent with the projected expansion of the Hadley Cell

(e.g. Lu et al. 2008; and references therein).

6 Conclusions

In this paper coherent patterns, or modes, of interannual

variability in the components of the seasonal mean SH

Fig. 12 As in Fig. 11, but for the leading SE-EOF of the ENS4 SRES B1, SRES A1B and SRES A2 experiment SH 500 hPa geopotential height

for DJF and JJA 2051–2100
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500 hPa geopotential height for summer (DJF) and winter

(JJA) were estimated using the CMIP3 dataset. For the first

time, modes of variability related to radiative forcing have

been separated from those related to intraseasonal and

slowly-varying internal dynamics. The modes of variability

in the intraseasonal and slow components in the second half

of the twentieth century were first assessed against those

estimated using 20CR data. Diagnostics were defined to

evaluate the spatial structure and variance of the model

modes. For modes of variability in the slow component, the

relationship with SST was also assessed. Individual reali-

sations and the model ensemble were both examined. Next

an ensemble from four CMIP3 models, found to be suitable

for further analysis, was used to directly estimate projected

changes in all leading modes of variability of the intrasea-

sonal, slow-internal and slow-external components for the

second half of the twenty-first century. Our key findings are:

1. The leading four modes of variability in the intrasea-

sonal component are generally well reproduced in the

CMIP3 models in both seasons.

2. There are clear differences between models in their

reproduction of the leading three modes of variability

in the slow component. The modes are generally better

reproduced in DJF than in JJA. The behaviour of the

CMIP3 models here is consistent with other studies

examining the SAM and ENSO variability.

3. An overall score is calculated using the leading three

modes of variability in the slow component. Clear

differences are found between the CMIP3 models,

allowing a categorisation of their performance. The model

ensemble estimates are suitable for assessing individual

modes and for categorising model performance.

4. In the twentieth century, an ensemble based on four

suitable CMIP3 models outperforms all individual

CMIP3 models in both seasons. The modes of variabil-

ity in the slow-internal component have similar spatial

structures to the corresponding modes in the slow

component. The leading mode of variability in the slow-

external component explains about half of the variance

of this component. The spatial structure of this mode is

consistent with other studies of the effect of changes in

greenhouse gas concentrations on the twentieth century

atmospheric circulation, and there is a statistically

significant trend in the associated time series.

5. In the CMIP3 ensemble, there are small changes in the

leading modes of variability in the intraseasonal com-

ponent in the second half of the twenty-first century. The

behaviour is consistent across the three SRES experi-

ments. Changes in the variance and percentage

explained are larger in the modes of variability in the

slow-internal component, and there are subtle regional-

scale changes in the spatial structure of these modes.

6. By far the largest changes are in the leading mode of

variability in the slow-external component. The spatial

structure changes from annular (DJF) or ENSO-like (JJA)

in the twentieth century to almost uniform in the twenty-

first century. The variance and percentage explained

increases with increasing greenhouse gas concentrations.

In future work, the assessment of and projected changes

in the modes of variability in the recently released CMIP5

dataset will be examined. Of interest will be any improve-

ment in performance relative to CMIP3, and any differences

in the projected changes. The larger number of models in

the CMIP5 dataset, and that their external forcings should

be consistent, may enable an investigation of the effect of

model-dependency on the projected changes.
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Appendix

It has been previously shown (Zheng and Frederiksen 2004;

Zheng et al. 2009) that covariance matrices for the compo-

nents of the seasonal mean can be estimated from monthly

mean anomalies. A summary of their estimation method is

given here. The covariance of the ensemble mean seasonal

mean between geographical locations i1 and i2 is estimated by

V̂ xoyoði1Þ; xoyoði2Þ
� �

¼ 1

Y � 1

XY

y¼1

xoyo i1ð Þ � xooo i1ð Þ
� �

xoyo i2ð Þ � xooo i2ð Þ
� �

;

ð7Þ

where V̂fg denotes an estimated covariance. For an

ensemble of model realisations, Zheng et al. (2009)

showed that the covariance of the internal components is

estimated by

V̂ dsyði1Þþesyoði1Þ;dsyði2Þþesyoði2Þ
� �

¼ 1

Y S�1ð Þ
XS

s¼1

XY

y¼1

xsyoði1Þ�xoyoði1Þ
� �

xsyoði2Þ�xoyoði2Þ
� �

;

ð8Þ

and the total covariance of the seasonal mean can be

estimated by
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V̂ xsyo i1ð Þ; xsyo i2ð Þ
� �

¼ V̂ xoyo i1ð Þ; xoyo i2ð Þ
� �

þ S� 1

S
V̂ dsy i1ð Þ þ esyo i1ð Þ; dsy i2ð Þ þ esyo i2ð Þ
� �

:
ð9Þ

Zheng and Frederiksen (2004) showed that the covariance

of the intraseasonal component can be estimated by

V̂ esyoði1Þ; esyoði2Þ
� �

¼ 1

9
3þ 4/̂
� �

â; ð10Þ

where

â ¼ a

2 1� /̂
� � ; ð11Þ

/̂ ¼ aþ 2b

2 aþ bð Þ ; 0� /̂� 0:1 ð12Þ

and

a ¼ 1

2

1

SY

XS

s¼1

XY

y¼1

xsy1 i1ð Þ � xsy2 i1ð Þ
� �

xsy1 i2ð Þ � xsy2 i2ð Þ
� �"

þ 1

SY

XS

s¼1

XY

y¼1

xsy2 i1ð Þ � xsy3 i1ð Þ
� �

xsy2 i2ð Þ � xsy3 i2ð Þ
� �

#
;

ð13Þ

b ¼ 1

2

1

SY

XS

s¼1

XY

y¼1

xsy1 i1ð Þ � xsy2 i1ð Þ
� �

xsy2 i2ð Þ � xsy3 i2ð Þ
� �"

þ 1

SY

XS

s¼1

XY

y¼1

xsy2 i1ð Þ � xsy3 i1ð Þ
� �

xsy1 i2ð Þ � xsy2 i2ð Þ
� �

#
;

ð14Þ

are the monthly moments between x(i1) and x(i2).

Assuming that by is statistically independent of dsy ? esyo

(e.g. Zwiers 1996; Zheng and Frederiksen 1999) the

covariance of the slow-external component can be

estimated as

V̂ byði1Þ; byði2Þ
� �

¼ V̂ xoyoði1Þ; xoyoði2Þ
� �

� 1

S
V̂ dsyði1Þ þ esyoði1Þ; dsyði2Þ þ esyoði2Þ
� �

: ð15Þ

Finally, the covariance of the slow-internal and slow

components of the seasonal mean are respectively

estimated as residuals by

V̂ dsyði1Þ; dsyði2Þ
� �

¼ V̂ dsyði1Þ þ esyoði1Þ; dsyði2Þesyoði2Þ
� �

� V̂ esyoði1Þ; esyoði2Þ
� �

ð16Þ

and

V̂ byði1Þ þ dsyði1Þ; byði2Þ þ dsyði2Þ
� �
¼ V̂ xsyoði1Þ; xsyoði2Þ

� �
� V̂ esyoði1Þ; esyoði2Þ

� �
: ð17Þ

Note that, as written, Eqs. (16) and (17) assume that dsy

and esyo are statistically independent. However, even if this

is not the case, the residual estimates, i.e. the left hand side

of Eqs. (16) and (17), may still be better related to the

covariance of the slow-internal and slow components than

the total covariance (Zheng and Frederiksen 2004).

For reanalysis datasets there is only one ‘realisation’, i.e.

S = 1. This means that the covariance of the internal

components (Eq. 8) cannot be estimated, and therefore it is

not possible to estimate the covariance of the slow-external

and slow-internal components (Eqs. 15, 16). However, the

total covariance, in effect Eq. (7), and covariances of the

intraseasonal component (Eq. 10) and slow component

(Eq. 17) can still be estimated.

The covariance matrices for each component of the

seasonal mean are estimated by applying the above equa-

tions to all pairs of geographical locations. The truncation

method of Zheng and Frederiksen (2004) is applied to the

estimate the covariance matrices of the internal and intra-

seasonal components (Eqs. 8, 10). All covariance matrices

are adjusted to ensure that they are positive semi-definite

using the method of Grainger et al. (2008), before EOF

analysis is applied to estimate the modes of interannual

variability.
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