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Abstract Underestimated rainfall over Amazonia was a

common problem for the Coupled Model Intercomparison

Project phase 3 (CMIP3) models. We investigate whether it

still exists in the CMIP phase 5 (CMIP5) models and, if so,

what causes these biases? Our evaluation of historical

simulations shows that some models still underestimate

rainfall over Amazonia. During the dry season, both con-

vective and large-scale precipitation is underestimated in

most models. GFDL-ESM2M and IPSL notably show more

pentads with no rainfall. During the wet season, large-scale

precipitation is still underestimated in most models. In the

dry and transition seasons, models with more realistic

moisture convergence and surface evapotranspiration gen-

erally have more realistic rainfall totals. In some models,

overestimates of rainfall are associated with the adjacent

tropical and eastern Pacific ITCZs. However, in other

models, too much surface net radiation and a resultant high

Bowen ratio appears to cause underestimates of rainfall.

During the transition season, low pre-seasonal latent heat,

high sensible flux, and a weaker influence of cold air

incursions contribute to the dry bias. About half the models

can capture, but overestimate, the influences of telecon-

nection. Based on a simple metric, HadGEM2-ES outper-

forms other models especially for surface conditions and

atmospheric circulation. GFDL-ESM2M has the strongest

dry bias presumably due to its overestimate of moisture

divergence, induced by overestimated ITCZs in adjacent

oceans, and reinforced by positive feedbacks between

reduced cloudiness, high Bowen ratio and suppression of

rainfall during the dry season, and too weak incursions of

extratropical disturbances during the transition season.
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1 Introduction

The Amazonian rainforest accounts for approximately 15 %

of global terrestrial photosynthesis (Field et al. 1998) so that

future changes of rainfall in that region are needed for

determining global carbon-climate feedbacks (Cox et al.

2004). However, CMIP3 models were shown to have highly

variable biases in Amazonia precipitation and its seasonality

(Li et al. 2006; Vera et al. 2006). Such biases and lack of

understanding of their cause contribute to the large uncer-

tainty in projecting future changes of the atmospheric CO2

concentration and climate (Friedlingstein et al. 2006).

Since the Intergovernmental Panel on Climate Change

(IPCC) Fourth Assessment Report (AR4), considerable

efforts have been made to reduce dry biases in the climate

models that participated in the IPCC Fifth Assessment

Report (CMIP5) (Dickinson et al. 2006). CMIP5 includes

more than 50 models from 24 modeling groups with gen-

erally higher resolution and more ensemble members for

individual experiments (Taylor et al. 2012). Are rainfall

climatology, variability and their controlling processes

realistically represented in CMIP5 models? If not, what are

the main causes of such model biases?
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What metrics should we use for model evaluation? The

CMIP5 program has recommended a broad suite of metrics

for characterizing general model performance (Gleckler

et al. 2008). However, because this study is focused on the

evaluation of rainfall biases over Amazonia and their

underlying causes, it uses a process-based model evaluation.

Since IPCC AR4, our understanding on what control

climatology and variability of Amazonian rainfall has

advanced significantly. We take advantage of these recent

improvements, as well as knowledge accumulated earlier,

in determining the metrics. In particular, it has been

established that SST anomalies over the adjacent tropical

oceans are the primary forcing for drought and extreme

events in some part of Amazonian basin (Chen et al. 2011;

Davidson et al. 2012; Doi et al. 2012; Liebmann and

Marengo 2001; Moura and Shukla 1981; Bombardi and

Carvalho 2011), through their impacts on atmospheric

circulation patterns and moisture transport (Wang and Fu

2002; Fu et al. 1999). Surface soil moisture and vegetation

feedbacks, as well as land, regulate rainfall variability by

altering the surface Bowen ratio and buoyancy of air in the

boundary layer (Nepstad et al. 1999; Malhi and Wright

2004; Fu and Li 2004; Chen et al. 2011; Lee et al. 2011;

Toomey et al. 2011). While both remote and local effects

as mentioned above are important, their relative impor-

tance can change in different seasons (Seth et al. 2011).

This study evaluates eleven CMIP5 models and deter-

mines what biases in Amazonian rainfall and its seasonality

still remain. It analyzes sea surface temperature (SST) and

regional land surface forcing and their influences on pre-

cipitation to determine the possible causes for rainfall bias in

different seasons and regions. The climate records over

Amazonia are too short for evaluation of the sensitivity of

rainfall to the warming trend of global SST even though its

simulation is important for determining the fidelity of the

climate projection. We also evaluate the partitioning

between convective and large-scale precipitation because

they are parameterized based on different large-scale con-

ditions in models and can impact surface water partitioning

between evapotranspiration (ET), infiltration, and runoff.

Section 2 describes the datasets, models and analysis

methods used in this study. Section 3 reports the results of

our analysis in detail for specialized readers. A brief

summary of the main findings is provided at the end of

each sub-section for general readers.

2 Data and methods

2.1 The CMIP5 simulations

This study examines the precipitation simulated in the

historical runs of CMIP5 models and other key variables, a

total of eleven models are available at this time. A general

description is given in Table 1. These simulations were

performed by different modeling groups that participated in

the CMIP5, organized by the World Climate Research

Programme’s (WCRP) Working Group on Coupled Mod-

elling (WGCM) and to be addressed in the 5th Assessment

Report (AR5) of the IPCC. All the models provided mul-

tiple ensemble runs in order to increase the signal-to-noise

ratio except for GFDL-ESM2M and INM-CM4, and we

average all the ensemble runs before comparing to obser-

vations. Models with fewer ensemble members will have

more uncertainty due to random internal variability of the

models (Deser et al. 2010). More details on the dynamic

core and physical parameterization of these models and

description of performed simulations can be found in cor-

responding references. The model outputs are being

archived and made available to the scientific community by

the Program Climate Model Diagnosis and Intercompari-

son (PCMDI) at their website: http://pcmdi3.llnl.gov/

esgcet/home.htm;jsessionid=8B859722DD0B923B9E05C1

71806B87A4.

Some modeling groups provide a new set of models

named Earth System Models (ESMs), which are atmo-

sphere-ocean global climate models (AOGCMs) coupled to

a carbon cycle model (Flato 2011). Simulations are run in

various spatial resolutions. We interpolate different reso-

lutions into 2.5� 9 2.5� in order to minimize effects of

resolution on our comparison. To reduce the noise in

modeled rainfall, we use pentad-averaged precipitation

derived from daily means for precipitation to assess its

frequency distribution. For other fields, monthly data are

employed to provide a reasonably comprehensive picture

of model performance.

The historical experiment, which resembles the twenti-

eth century simulation in CMIP3, is carried out with all

forcing including changes of atmospheric composition due

to anthropogenic and volcanic influences, solar forcing,

aerosol emissions and land use change (Taylor et al. 2012).

The simulations are initialized using pre-industrial condi-

tions of 1850 and carried out to 2005. We use the time

period of 1979 to 2005 for most fields, a period when the

observational record is most reliable and available. The

analysis of sea surface temperature (SST) is carried out for

the period of 1950 to 2005 to adequately capture the modes

of lower frequency SST variability.

2.2 Reference data

Beginning from 1979, satellite-based measurements along

with ground-based observations substantially improved

spatial and temporal sampling and reliability of the

reanalysis products, supporting our choice of 1979–2005

periods for model evaluation.
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The Global Precipitation Climatology Project (GPCP)

provides combined precipitation products (Adler et al.

2003). Since GPCP daily precipitation only starts from

1992 and in order to include as many years as possible, we

use the GPCP v1.2 pentad product (Xie et al. 2003) to

assess the frequency distribution. Monthly CPC merged

analysis of precipitation (CMAP) is also employed as

another reference for the Taylor diagram. Many studies

have compared these precipitation products (Shin et al.

2011), including over South America (Negrón Juárez et al.

2009).

The ECWMF ERA-Interim reanalysis data (Dee et al.

2011) has been demonstrated to be able to capture the

ITCZ compared with observations (Žagar et al. 2011), and

is also the best among the three state-of-art reanalysis

products for the Amazonian region (Lorenz and Kunst-

mann 2012). Since the ERA-Interim has a reasonable

terrestrial water balance, we assume that it has a better

estimation of convective and large-scale precipitation than

models, even though it is still quite uncertain. Other vari-

ables examined are mainly from the ERA-Interim,

including winds, surface latent and sensible heat fluxes,

surface solar radiation, geopotential height and water vapor

transport.

We use the NOAA/NCDC Extended Reconstructed SST

(ERSST) version 3b (Smith et al. 2008), available from

1854 to present. It is derived from the International Com-

prehensive Ocean-Atmosphere Data Set (ICOADS) data

with missing values filled in by statistical methods. SST in

this dataset since 1950 is compared to that of models in

order to provide enough sample years to reduce measure-

ment biases and uncertainties. The models with tripolar

gridded SSTs have been interpolated into a common lat-lon

grid with spatial resolution of 2.5� 9 2.5�.

Table 1 Description of the CMIP5 models used in this study

Model

(Fig marker)

Institute (country) Available

ensembles

Components (resolutions) Calendar Reference

CCSM4

(A)

National Center for

Atmospheric Research

(USA)

6 F09_g16 (0.9 9 1.25_gx1v6) No leap Gent et al. (2011)

GFDL-CM3

(B)

NOAA/Geophysical Fluid

Dynamics Laboratory

(USA)

5 Atm: AM3 (2.0� lat 9 2.5� lon)

Ocn: MOM4.1 (1.0� lat 9 1.0� lon,

enhanced tropical resolution: 1/3 on the

equator)

No leap Donner et al. (2011)

GFDL-ESM2M

(C)

NOAA/Geophysical Fluid

Dynamics Laboratory

(USA)

1 Atm: AM2 (AM2p14, M45L24)

Ocn: MOM4.1 (1.0� lat 9 1.0� lon,

enhanced tropical resolution: 1/3 on the

equator)

No leap Dunne et al. (2012)

GISS-E2-H

(D)

NASA/Goddard Institute

for Space Studies (USA)

5 Atm: GISS-E2 (2.0� lat 9 2.5� lon)

Ocn: H

No leap Schmidt et al. (2006)

GISS-E2-R

(E)

NASA/Goddard Institute

for Space Studies (USA)

5 Atm: GISS-E2 (2.0� lat 9 2.5� lon)

Ocn: R

No leap Schmidt et al. (2006)

HadCM3

(F)

Met Office Hadley Centre

(UK)

10 Atm: HadAM3 (N48L19)

Ocn: HadOM (Lat: 1.25 Lon: 1.25 L20)

360 d/y Collins et al. (2001)

HadGEM2-CC

(G)

Met Office Hadley Centre

(UK)

3 Atm: HadGAM2 (N96L60)

Ocn: HadGOM2 (Lat: 1.0–0.3 Lon: 1.0

L40)

360 d/y Collins et al. (2011),

Martin et al. (2011)

HadGEM2-ES

(H)

Met Office Hadley Centre

(UK)

4 Atm: HadGAM2 (N96L38)

Ocn: HadGOM2 (Lat: 1.0–0.3 Lon: 1.0

L40)

360 d/y Jones et al. (2011)

MPI-ESM-LR

(I)

Max Planck Institute for

Meteorology (Germany)

3 Atm: ECHAM6 (T63L47)

Ocn: MPIOM (GR15L40)

Gregorian Raddatz et al. (2007),

Marsland et al.

(2003)

IPSL-CM5A-LR

(J)

Institut Pierre Simon

Laplace (France)

5 Atm: LMDZ4 (96 9 95 9 39, 1.875�
lat 9 3.75� lon)

Ocn: ORCA2 (2 9 2L31, 2.0� lat 9 2.0�
lon)

No leap Marti et al. (2010)

INM-CM4

(K)

Institute for Numerical

Mathematics (Russia)

1 Atm: 1.5� lat 9 2.0� lon

Ocn: 2.0� lat 9 2.5� lon

No leap Volodin et al. (2010)
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Shortened names are used for observations in the fig-

ures. If more than one datasets are used, we chose one

dataset as the reference data and compared the other

datasets to assess observational uncertainty.

2.3 Computation of variables and indices

To investigate the potential causes of precipitation bias, we

will analyze whether atmospheric circulation, surface

conditions or Pacific and Atlantic SSTs are reasonably

simulated in these models. The variables we evaluate

include the lower and higher tropospheric winds, 500 hPa

geopotential height, surface fluxes, moisture convergence

and SST indices.

Due to lack of instantaneous wind and atmospheric

humidity information in the CMIP5 models outputs, we

compute moisture convergence from the water budget

(Trenberth et al. 2007) instead of the vertical integration of

horizontal moisture transport, using the following equation:

MC ¼ P� E þ DTWV ð1Þ

where MC is moisture convergence, P is precipitation, E is

evapotranspiration, and DTWV is the change in

atmospheric total water vapor storage. Some models do

not provide evapotranspiration, so E is calculated as:

E ¼ LH=k ð2Þ

where k = 2.502 9 106 J kg-1 is latent heat of vaporiza-

tion, and LH is upward surface latent heat flux.

To quantify the effects of teleconnection, several SST

indices are calculated. The Niño 3 index is an average of

SST anomalies (SSTA) in the region of 150�W–90�W and

5�N–5�S, and Niño 4 index is an average of SSTA in the

region of 160�E–150�W and 5�N–5�S. The Atlantic Mul-

tidecadal Oscillation (AMO) is described as the area

weighted average of SSTA over the northern Atlantic,

basically from 0 to 70�N (Endfield et al. 2001). The detailed

calculation procedure is found on the NOAA/ESRL web-

site: http://www.esrl.noaa.gov/psd/data/timeseries/AMO/.

(a) 

(b) 

(c) 

Fig. 1 Seasonal mean of a total

precipitation, b convective

precipitation and c large-scale

precipitation. (A CCSM3,

B GFDL-CM3, C GFDL-

ESM2M, D GISS-E2H, E GISS-

E2R, F HadCM3, G HadGEM2-

CC, H HadGEM2-ES, I MPI-

ESM, J IPSL, K INM-CM4)

3130 L. Yin et al.

123

http://www.esrl.noaa.gov/psd/data/timeseries/AMO/


The tropical Atlantic SST gradient (AtlG) is defined as the

area averaged SSTA difference between the northern

(60�W–30�W, 5�N–25�N) and southern (30�W–0�, 5�N–

25�N) Atlantic (Giannini et al. 2004), and is important for

the cloudiness in some regions of Amazonia (Arias et al.

2010).

3 Results

3.1 Comparisons of rainfall seasonality

Figure 1 shows the spatial pattern of the seasonal mean

total rainfall, convective and large-scale precipitation of

the eleven models in northern South America. Total rain-

fall is compared with GPCP, and convective and large-

scale rainfall is compared with ERA-Interim reanalysis

(ERA-Int). Most models generally show reasonable pat-

terns of seasonal precipitation (Fig. 1a). During the wet

seasons (DJF and MAM), three Had-models, MPI-ESM

and IPSL can adequately simulate the rainfall patterns over

the Amazon basin. Maximum rainfall centers in the two

GISS models are too far northward and that modeled by

CCSM4 is too far eastward. INM-CM4 has enough rainfall

over tropical South America but less in its central region.

In the dry season (JJA), only the two HadGEM2 models

can capture the center of rainfall over the northwest corner of

South America (Fig. 1a). Most of the models overestimate

rainfall associated with the Atlantic ITCZ, especially the two

GISS, two HadGEM and IPSL models. During the transition

season (SON), the three Had-models and MPI-ESM capture

the northwest-to-southeast spread of rainy area fall pattern as

observed. CCSM and GFDL-CM3 also capture this rainfall

pattern, but underestimate rainfall amounts. GFDL-ESM2M

and IPSL show rainfall patterns similar to those of the dry

season, thus substantially underestimating rainfall over

southern Amazon. The majority of the models either over-

estimate the Atlantic ITCZ (the two GISS models) or the

eastern Pacific ITCZ (MPI) or both (CCSM4, the two GFDL

models, the three Had- models and IPSL). Such an overes-

timate of the ITCZs could enhance subsidence and moisture

divergence over the Amazon, contributing to dry biases

during the dry season. This problem also exists in CMIP3

models, showing that a misrepresentation of the tropical

ITCZ can result in a bias in the annual cycle of precipitation

over the Amazon (Bombardi and Carvalho 2009).

(a)

(b)

100W 80W 60W 40W
30S

20S

10S

EQ

10N

20N

30N

Sama
Nama
NWama
SAMS

Fig. 2 a Map of regions;

b Spatial mean of seasonal

precipitation in the regions;

standard deviations are denoted

by light grey bars
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Most of the other models overestimate convective

rainfall and underestimate large-scale rainfall during the

wet seasons, but underestimate both convective and large-

scale rainfall in the dry and transition seasons (Fig. 1b, c).

CCSM4 is among the best in simulating convective and

large-scale precipitation for all the seasons. The three Had-

models strongly overestimate convective rainfall and

underestimate large-scale rainfall in SON. The two GISS

models substantially underestimate convective rainfall and

overestimate large-scale rainfall in all four seasons

(Fig. 1b, c).

To quantify the precipitation bias in Amazonia, we

select four regions: the southern Amazon (Sama, 70�W–

50�W, 15�S–5�S), northern Amazon (Nama, 70�W–55�W,

5�S–5�N), northwestern Amazon (NWama, 75�W–60�W,

10�S–5�N), and South American Monsoon System region

(SAMS, 60�W–45�W, 17.5�S–5�S) shown in Fig. 2a. The

southern Amazon has a wet season beginning in austral

spring, peaking in summer and ending in austral fall

(Marengo et al. 2001; Li and Fu 2004), while the northern

Amazon differs in rainfall seasonality since it crosses the

equator (Marengo 2005; Wang and Fu 2002). The north-

western Amazon is also an extension of the V index region,

which was defined to describe the moisture transport from

the equator to the southern Amazon (Wang and Fu 2002;

Petersen et al. 2006). The South American Monsoon Sys-

tem region is very closely related to the South Atlantic

Convergence Zone (SACZ; Vera et al. 2009).

Rainfall seasonality is stronger in Sama and SAMS than

in Nama and NWama (Fig. 2b). Over Sama and SAMS, the

wet seasons are DJF and MAM, and the dry and transition

seasons are JJA and SON. In the wet seasons, the differ-

ence in precipitation across the models is not as significant

as in dry seasons. Most models produce reasonable rain-

fall with mean biases ranging from -1.5 to 1.2 mm day-1.

In the dry seasons, CCSM4, HadGEM2-CC, HadGEM2-ES

and INMCM4 best simulate precipitation while HadCM3,

GFDL-CM3, GFDL-ESM2M and IPSL significantly

underestimate it. Indeed, GFDL-ESM2M and IPSL have no

rain in JJA in Sama. Rainfall has the largest discrepancies

between models in transition seasons due to the strong dry

biases in the two GFDL models, IPSL and the two GISS

models.

Over Nama and NWama, seasonal rainfall in CCSM4,

the two GISS models, and the three Hadley models gen-

erally agree with observations. The two GFDL models,

HadCM3 and IPSL show dry biases in rainfall by

3–4 mm day-1 (25–30 %) over the wet season and by as

much as 4–5 mm day-1 (50–80 %) during the dry season.

Generally, models tend to have reasonable standard

deviations compared with GPCP in Nama and NWama,

even those models (the two GFDL models, MPI-ESM,

IPSL) with a dry bias in the mean rainfall of dry season.

For the latter models, dry season rainfall can be zero in

Sama and SAMS in the interannually dry years.

Figure 3 shows the distribution of rainrate derived from

pentad rainfall in the four regions. Results for the GISS-E2-

H model are not shown because it does not provide daily

precipitation. GFDL-ESM2M and IPSL both strongly

overestimate the frequency of occurrence of pentads with

no rain in the four regions ([50 % in Sama and SAMS,

[40 % in Nama and [35 % in NWama). They also have

fewer pentads of strong precipitation ([10 mm day-1 in a

pentad) in Nama and NWama. GFDL-CM3 shows more

pentads of no rain, but has a reasonable simulation of

medium precipitation ([5 and\10 mm day-1 in a pentad)

for Sama and SAMS.

No models realistically represent the observed distri-

bution pattern of rainrates. The three Had-models overes-

timate medium rainrate and underestimate light rainrate,

Fig. 3 Distribution of rates of

pentad precipitation in the four

regions
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whereas the two GFDL models, CCSM, and IPSL under-

estimate medium rainrate over all four regions. The over-

estimate of light rainrate in the two GFDL models is

similar to that in GFDL-CM2.0 (Dai 2006; Sun et al. 2006),

while GFDL-CM3 has largely improved its medium to

strong rainrate (1–10 mm day-1) in Sama and SAMS

compared to the old version (Sun et al. 2006). CCSM4 is

reasonable for Nama and NWama, but shows more non-

rain pentads for Sama and SAMS. INM-CM4 is among the

best for Sama and SAMS, but shows more pentads with

medium and strong rainfall in Nama and NWama. The

GISS models, similar to the old one GISS-ER (Sun et al.

2006; Dai 2006), underestimate medium and strong rain-

rate over the southern Amazon but overestimate it over

tropical South America.

Taylor diagrams (Taylor 2001) are used to compare

model performances for the annual cycle of precipitation

with observations (Fig. 4). Overall, the models produce

better annual cycles of precipitation in Sama and SAMS

than in Nama and NWama. Rainfall has clear one cycle

during a year in Sama and SAMS (Fig. 2b). Therefore, the

correlations between the models and observation in Sama

and SAMS are larger than 0.9. Two HadGEM2 models

(‘G’ and ‘H’) have the least mean square error (MSE) in

Sama, NWama and SAMS, though they underestimate the

standard deviation for NWama. CCSM4 and INM-CM4

(‘A’ and ‘K’) are also among the best in Sama. CCSM4

variability is similar to that of GPCP in all regions except

SAMS. Although the two GISS models (‘D’ and ‘E’)

perform well in the Sama and SAMS regions, they are

among the most poorly performing models in Nama and

NWama. The two GFDL models and IPSL (‘B’, ‘C’ and

‘J’) also have large discrepancies in Sama and SAMS.

IPSL has the least MSE in Nama. The larger standard

deviation of GFDL-ESM2M in all the four regions is

dominated by the dry bias during its dry and transition

seasons.

Figure 5 compares the partitioning of models between

convective and large-scale rainfall for four different sea-

sons and regions. Except for the two GISS models, they

generally underestimate large-scale rainfall in all seasons

and all four regions. Over the Sama and SAMS regions,

models generally overestimate convective rainfall during

the wet season (DJF and MAM), and underestimate con-

vective rainfall in the dry and transition seasons (JJA and

SON), even though most models simulate reasonable total

rainfall (Fig. 2b). Over the two northern Amazon regions

(Nama and NWama), convective rainfall is generally

unbiased except for MAM, during which several models

(the three Hadley models and INM-CM4) overestimate

convective rainfall (Fig. 5). Among all the models, the

partitioning between convective and large-scale rainfall in

CCSM4 agrees the closest to that of ERA-Int.

In short, the eleven CMIP5 models we evaluated gen-

erally capture realistically wet season rainfall amounts,

although they overestimate convective rainfall and
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tion. The markers are denoted in the top left panel

Fig. 5 Scatter plot of convective precipitation and large-scale

precipitation in DJF, MAM, JJA, and SON
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underestimate large-scale rainfall. Over the dry and tran-

sition seasons, most of the models underestimate rainfall

over the four regions, i.e., except for HadGEM2-CC,

HadGEM-ES, and INM-CM4, but overestimate rainfall

associated with the Atlantic and eastern Pacific ITCZ. The

low biases are stronger in Sama and SAMS, and weaker in

Nama and NWama. Greatest inter-model discrepancy

occurs in the transition season for all four regions. Both

large-scale and convective rainfalls are underestimated.

3.2 Evaluation of surface energy and water balance

and atmospheric circulation

A bias of its Atlantic ITCZ in a coupled model could result

in a dry bias during the dry season in Amazonia (Doi et al.

2012). A strong Atlantic ITCZ may contribute to large

divergence over tropical South America (Rao et al. 1996;

Li et al. 2006). In addition, ET influences rainfall change

during the transition season in Amazonia (Li and Fu 2004).

Therefore, rainfall during the dry and transition seasons is

sensitive to land use change or water stress of the rain-

forest. Since the main source of water for precipitation

during dry season is ET and circulation-controlled moisture

transport, it is crucial to look at the water budget and

determine if either or both are biased in some models.

Figure 6 shows how different models determine rainfall

amounts from ET and moisture convergence (MC) in JJA

and SON. HadCM3 does not provide the total column

water vapor content, so it is not included. Models with

more realistic MC and ET generally have more realistic

rainfall amounts. Over Sama and SAMS, most models have

overestimated moisture divergence during the local dry

(Fig. 6a) and transition seasons (Fig. 6b). Models that

overestimate moisture divergence the most (MPI-ESM and

IPSL or ‘I’ and ‘J’) have the strongest dry bias in rainfall

and the lowest ET values. Two GISS models (‘E’ and ‘D’)

have reasonable moisture divergence, but they significantly

underestimate surface ET and rainfall. Thus, their dry

biases are likely caused by either insufficient soil moisture

storage and a dry atmospheric boundary layer, or by errors

in their convective scheme that underestimates convective

rainfall and so causes lower soil moisture and ET (Fig. 1b).

GFDL-ESM2M (‘C’) and GFDL-CM3 (‘B’) have biases of

MC similar to those of HadGEM2-CC (‘G’) and Had-

GEM2-ES (‘H’), but much lower ET and rainfall amounts.

High ET in the two HadGEM2 models appears to com-

pensate the impact of their excessive moisture divergence,

and so they are able to produce realistic rainfall.

In the tropical regions Nama and NWama, about a half

of the models overestimate ET, but underestimate moisture

convergence and thus rainfall. The two HadGEM2 models

overestimate both moisture convergence and ET, thus

overestimate rainfall. CCSM4 underestimates MC and

overestimates ET during JJA (Fig. 6a). Thus, its dry bias is

likely caused by bias of circulation and consequent MC.

Whether an underestimate of MC is caused by an

overestimate of the strength of tropical Atlantic and eastern

Pacific ITCZ seems to be model dependent. For example,

in some models (the two HadGEM2 models and MPI), MC

is not underestimated even though the ITCZs are too strong

(Figs. 6b, 1a). In other models (CCSM4, the two GFDL

models, the two GISS models), MC is underestimated.

Thus, too strong ITCZs over adjacent oceans are not

always a cause for dry bias of rainfall over Amazonia. MC

(a)

(b)

Fig. 6 Scatter plot of ET and moisture convergence in a JJA and

b SON. Precipitation is color shaded. The unit for ET, MC and Pr is

mm day-1. Pentagram represents the reference. (A CCSM3,

B GFDL-CM3, C GFDL-ESM2M, D GISS-E2H, E GISS-E2R,

F HadCM3, G HadGEM2-CC, H HadGEM2-ES, I MPI-ESM, J IPSL,

K INM-CM4)
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in the SAMS region is mainly influenced by the South

Atlantic Convergence Zone (SACZ; Vera et al. 2009) and

is not directly influenced by tropical ITCZs.

Surface conditions are also very important during the

dry and transition seasons (Fu and Li 2004). Almost all the

models overestimate surface net solar radiation, including

the models that overestimate total rainfall (Fig. 7a). This

high bias is due to an underestimate of cloudiness, which is

also implied by their excessive divergence or weak con-

vergence and their underestimate of large-scale rainfall

(Fig. 6). Such a high bias of the surface solar radiation

leads to a high bias in surface net radiation (Fig. 7b).

Latent flux is generally realistic during DJF and MAM,

except for its overestimate by the two GISS models and by

INM in all four regions (Fig. 7c). During JJA, latent flux

generally agrees with that of reanalysis over Nama and

NWama, but is underestimated by 20–40 % in CCSM4, the

two GFDL models, the two GISS models, IPSL and INM.

During SON, latent flux is underestimated by 20–60 % in

the two GFDL models and in MPI and IPSL in all four

regions. As expected by surface energy balance, the models

that underestimate surface latent flux overestimate surface

sensible flux (Fig. 7d), since surface solar flux and net

radiative flux (Fig. 7a, b) are overestimated.

To evaluate the role of land surface feedback in deter-

mining rainfall during the dry and transition seasons, we

evaluate pre-seasonal latent heat versus rainfall to deter-

mine sensitivity of rainfall to the land surface. Figure 8a

shows that the higher is the JJA latent heat, the larger is the

SON precipitation, i.e., the latent flux in the dry season can

influence rainfall during the transition season (Li and Fu

2004). In Sama and SAMS, the three Had-models are

closest to the observations, whereas GFDL-ESM2M and

IPSL show least agreement with observations. In SAMS,

the differences in JJA latent heat between the three Had-

models are not followed by plausible large differences in

SON rainfall, because the occurrence of rainfall is more

connected to moisture transport in this monsoon core area.

(a)

(b)

Fig. 7 Spatial mean of

a surface net solar radiation,

b surface net radiation, c surface

latent flux, and d sensible flux.

The grey bars represent the

standard deviation
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Figure 8b shows a positive correlation between JJA pre-

cipitation and SON latent heat even in SAMS, which

implies a positive land-atmosphere feedback in coupled

models during the dry and transition season.

Figure 9 shows the seasonal mean of the 200 hPa zonal

winds. In SON, several models including GFDL-ESM2M,

the two GISS models, IPSL and INM-CM4 miss the weak

westerly tongue from the tropical Pacific extending to

eastern South America. The overestimated westerly winds

implies a weaker cold air incursions in these five models,

which can contribute to their lack of northwest-southeast

advancement of rainfall in SON in these five models.

During DJF, the weak westerly wind area, representing

the anticyclonic center, is overestimated over most of the

models, except for IPSL, which underestimates the extent

of its area. During MAM, the southern hemisphere sub-

tropical jets are realistically represented in GISS-E2R, the

three Had models and IPSL. The jets are too poleward in

CCSM4, the two GFDL models, GISS-E2H and MPI.

During JJA, the southern hemisphere subtropical jets are

well represented by most of the models, except for CCSM4

and GFDL-ESM2M.

To summarize our results in this sub-section, the CMIP5

models we evaluated have reasonably well captured the

observed large-scale circulation pattern during wet and dry

seasons (DJF, MAM and JJA). During SON, i.e., the

transition from dry to wet season, the models with large dry

biases in rainfall show unrealistically strong 200 hPa

westerly zonal winds over Amazonia (GFDL-CM3, GFDL-

ESM2M and IPSL), implying weaker incursions of extra-

tropical disturbances, which in turn reduce rainfall over the

Amazon (Garreaud and Wallace 1998; Li et al. 2006).

Surface solar flux and net radiation are overestimated by

10–100 % in most of the models in all seasons over the

entire Amazon and SAMS regions, suggesting a significant

underestimate of cloudiness and perhaps aerosols. Exces-

sive net radiation is balanced by excessive sensible flux at

the surface in most of models, except for the two GISS

models. The overestimate of sensible flux is stronger dur-

ing dry and transition seasons, when latent flux is

(d) 

(c) 

Fig. 7 continued
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underestimated in most of the models, except for CCSM,

HadGEM2-CC and HadGEM2-ES and INM models. This

combination of high bias in surface sensible flux and low

bias in surface latent flux leads to strong overestimates of

surface Bowen ratio, with convection suppressed during

the dry and transition seasons (Li and Fu 2004). The dry

biases of rainfall are well correlated with low biases of

surface latent flux (or high bias in sensible flux and Bowen

ratio) and lack of large-scale moisture convergence in

models. Positive correlation between JJA surface latent

flux and SON rainfall and JJA rainfall with SON surface

latent flux in models suggest that dry biases in surface

latent flux soil moisture feedback and rainfall can re-

enforce each other through a positive soil moisture

feedback.

3.3 Evaluation of rainfall variability and its connection

to oceanic forcings

Observations suggest that the influence on rainfall vari-

ability, including droughts, over the Amazon by ENSO, the

inter-hemispheric SST gradient in the tropical Atlantic and

AMO (Moura and Shukla 1981) is mainly during DJF and

MAM (Liebmann and Marengo 2001; Marengo et al.

2001). Doi et al. (2012) shows a bias in the Atlantic ITCZ

could induce a dry bias in the dry season over the Amazon

for the GFDL model. Thus, we evaluate how well the

CMIP5 models can simulate the sensitivity of Amazonian

rainfall to its oceanic sources of interannual and decadal

variability.

Figure 10 shows the correlation between precipitation

and Niño 3, Niño 4, AMO and AtlG in the wet seasons (DJF,

MAM). Four models (GFDL-ESM2M, HadGEM2-CC and

HadGEM2-ES and ISPL) can capture the relationships

between precipitation and the Niño 3 and Niño 4 index,

respectively. CCSM4 can capture these relationships over

Nama (Fig. 10b), but not over NWama (Fig. 10c). However,

these models also exaggerate relationships between rainfall

in these regions and AMO and AtlG, respectively.

Over Sama, observations show significant correlation

during DJF and MAM between rainfall anomalies in this

region and the Niño3 index and with AtlG (Fig. 10a). The

models (CCSM4, the two GFDL models, and HadCM3)

that capture the correlation with ENSO in DJF and MAM,

tend to miss the correlation with AtlG, whereas the models

that capture the relationship with AtlG (GISS-E2R, Had-

GEM2-ES, and MPI) tends to miss the correlation with

ENSO. Only IPSL and INM capture both of these rela-

tionships suggested by observations.

Over the SAMS region, while half of the models (GFDL-

ESM2M, HadCM3, HadGEM2-CC, IPSL and INM) capture

the correlation between rainfall anomalies in this region and

Nino3 in MAM, they exaggerate the relationship in DJF

(Fig. 10d). Most of the models capture the relationship in

SAMS between rainfall in this region and AtlG.

In general, about half of the CMIP5 models we evalu-

ated (the two GFDL models, the two HadGEM2, IPSL and

INM models) capture, but exaggerate, the relationship

between the regional rainfall anomalies and the Niño3 and

Niño4 indices. The same model groups, along with

CCSM4, also capture the relationship between rainfall

anomalies over the Sama and SAMS regions and AtlG, but

(a)

(b)

Fig. 8 Scatter plot of a JJA latent heat flux and SON total

precipitation, and b SON latent heat flux and JJA total precipitation

Fig. 9 Seasonal mean of 200 hPa zonal winds. (A CCSM3, B GFDL-CM3, C GFDL-ESM2M, D GISS-E2H, E GISS-E2R, F HadCM3,

G HadGEM2-CC, H HadGEM2-ES, I MPI-ESM, J IPSL, K INM-CM4)
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they exaggerate the relationship between rainfall anomalies

over northern Amazon (Nama and NWama) and AtlG.

Over northern Amazon (Nama, NWama), about half of the

models (CCSM4, the two GFDL models, two HadGEM2

models and IPSL) show a spurious relationship between

rainfall anomalies and AtlG. Roughly the same group of

models (GFDL-CM3, HadGEM2-CC, HadGEM2-ES,

MPI, and INM) also shows simply exaggerated relationship

between regional rainfall and AMO.

4 Metrics evaluation

This section examines how well the simulation of CMIP5

models compare with observations of rainfall and other

variables shown above. To assess the model performance

relative to the reference observations, we use simple and

popular statistical measures of model fidelity. One is the

root-mean square error (RMSE) for a simulated field M

corresponding to a reference O (Gleckler et al. 2008). Since

the regions in this study are not large enough to get suffi-

cient samples to determine RMSE of spatial pattern, we

only use RMSE to account for errors in time series.

Therefore, we apply RMSE to the mean seasonal cycle, and

it is calculated as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

T

X

�Mx;y
t � �Ox;y

tð Þ2
r

ð3Þ

The index t corresponds to the time dimension, and T is

the total time steps, i.e., 12 months. In order to have RMSE

for all variables on the same scale and to make easy

comparisons, Fig. 11 shows by color the rank of RMSE for

each variable. Overall, HadGEM2-ES is the best model in

most variables especially surface conditions and

atmospheric circulation in all the four regions. The

smallest errors of these processes could result in its best

performance for rainfall simulation. The HadGEM2-ES

does not necessarily have the most reasonable SST indices

compared with observations, and its relationships between

these SST indices and rainfall are not as strong as in some

other models. HadGEM2-CC has better surface conditions

while its atmospheric circulation and SST indices are

worse, which suggests the significance of SST bias on

influencing the rainfall simulation. GFDL-ESM2M has

overall the largest RMSE for rainfall, both large-scale and

convective. GFDL-CM3 and IPSL have large RMSE in

Sama and SAMS. Although GFDL-CM3 is reasonable in

simulating Niño 4, AMO, AtlG and moisture convergence,

some other variables particularly the MC and surface fluxes

are not well reproduced.

5 Discussion

5.1 How does CMIP5 perform compared with CMIP3?

Figure 1a shows that most CMIP5 models still have dry

bias in the dry season (JJA) as was the case in CMIP3

models. However, we can see that CMIP5 has some

improvements. For instance, GFDL-CM3 has increased

(a) (b)

(c) (d)

Fig. 10 Correlation between

4-season Nino3, Nino4, AMO,

tropical Atlantic SST Gradient

and precipitation in DJF and

MAM in a Sama, b Nama,

c NWama, and d SAMS. The

green stars indicate the

correlations are significant

based on the 95 % confidence

level
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precipitation in tropical South America compared with the

old version GFDL-CM2.0 (Vera et al. 2006), although it is

still too dry. This improvement is mainly due to new

treatments of aerosol indirect effect and deep and shallow

cumulus convection in the new atmosphere model (AM3)

(Donner et al. 2011). GFDL-ESM2M, still have a dry bias

in the dry season, despite its using a new version of land

model. Most CMIP5 models have more annual mean

rainfall in the southern Amazon than their CMIP3 versions

(Li et al. 2006). The new models also tend to have standard

deviations of rainfall more similar to those of the obser-

vations (Fig. 2b) than the old ones (Vera and Silvestri

2009), especially in the wet seasons. However, the dry bias

in the dry season still remains as the major issue in most of

the models. The GISS models still has too strong an

Atlantic ITCZ, while they underestimate rainfall amount

over central South America throughout the year. IPSL still

lacks rainfall in the dry and transition seasons over the

southern Amazon, similar to its old version (Vera et al.

2006).

5.2 What causes the dry bias of rainfall over Amazonia

in CMIP5 models?

The results in Sect. 3.2 suggest that large-scale circulation

in most of the models is generally well simulated over

South America during the dry season. Thus, it is probably

not the main cause of the dry bias occurring then. Recall

that the net surface radiative flux is overestimated all year

round, and is balanced by excessive surface latent flux

during the wet season. The latter in turn cause excessive

soil moisture loss during the wet season, hence reduced soil

moisture storage that reduces latent flux and increases

sensible flux during the subsequent dry season. These

biases of surface latent and sensible fluxes would reduce

dry season rainfall, further exacerbating surface dry biases

through a positive soil moisture feedback. Dry biases in

rainfall, together with underestimated cloudiness, can

enhance atmospheric longwave cooling and compensa-

tional subsidence, which in turn causes excessive moisture

divergence, and further suppresses rainfall. These positive

feedbacks between land surface latent flux, rainfall, atmo-

spheric radiation and large-scale circulation are likely

responsible for the dry biases in most of the models.

Underestimated cloudiness not only initiates these feed-

backs during the wet season, but also enhances them during

the dry season through increase of surface Bowen ratio and

atmospheric radiative cooling.

In the models without dry biases, e.g., HadGEM2-CC,

HadGEM2-ES, CCSM and INM, these positive feedbacks

were circumvented in part by excessive wet season rainfall,

which balances excessive latent flux. In CCSM4, ground

water is used to maintain soil moisture storage, which

effectively provides an unlimited soil water supply and

high latent flux during the dry season.

During the transition season (SON), weak incursions of

extratropical fronts, as suggested by excessively strong

upper tropospheric westerly winds, likely contribute to the

strong dry biases, in addition to the dry biases induced by

excessive surface radiation in GFDL-CM3, GFDL-

ESM2M, GISS-E2H, GISS-E2R and IPSL.

5.3 Uncertainty of the results

Since rainfall is a non-linear output influenced by various

processes including both large-scale and local conditions,

biases in the processes could be very crucial for rainfall

simulations in the CMIP5 models. Large uncertainties in

SST and surface fluxes in Amazonia have been reported for

CMIP3 coupled models in previous IPCC AR4 and related

studies (IPCC 2007; Li et al. 2006; Yu and Kim 2010), and

they still remain in the current generation of GCMs. One

way to reduce the noise-to-signal ratio is to run as many

ensembles as possible for simulations (Deser et al. 2010).

However, due to tremendous expense of running GCMs,

not all the centers around the world could finish at least 5

ensembles for a single experiment. Only six out of eleven

models in this study, shown in Table 1, give at least 5

ensembles for the historical experiment, and even fewer

Fig. 11 RMSE ranking of precipitation, U850, V850, GH500, U200,

Latent heat, sensible heat, net solar radiation, moisture convergence,

Nino3, Nino4, AMO, tropical Atlantic SST Gradient. The cross signs

indicate the total water vapor change is not provided as an output

variable by HadCM3
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ensemble members were determined for future projections.

Another important limitation is the resolution when it is

important for topography and subgrid scale parameteriza-

tions. Evaluation of the influence of the uncertainties and

differences in model design is beyond the scope of this

study.

Several model studies also pay attention to the land use

change in Amazonia and its potential influence on rainfall

(Lee et al. 2011; Medvigy et al. 2012). For example, Lee

et al. (2011) indicates that the vegetation and land use can

be more important than remote SST forcing for the rainfall

change in the southern Amazon region, particularly in the

dry season. Since surface ET is crucial for the wet season

onset and rainfall in the dry and transition seasons (Li and

Fu 2004), reduced vegetation coverage as a result of land

use change could lead to a decrease in surface ET and thus

rainfall. While tropical Atlantic warming is demonstrated

to be partly responsible for the decrease in dry season

rainfall in Amazonia (Marengo et al. 2011), land use

change and increased deforestation (Toomey et al. 2011)

can exacerbate Amazonian rainfall change and induce

more extreme drought events in the twenty-first century.

The reasonable incorporation of such regional impacts in

the models may improve estimates of the surface moisture

and heat flux.

6 Conclusions

We have evaluated the performance of the eleven CMIP5

models for historical rainfall seasonality over Amazonia by

comparing them to the GPCP and CMAP rainfall datasets,

the ERA-Interim reanalysis product and NOAA/NCDC

SST. The results show that the eleven models we evaluated

adequately simulate the patterns of annual cycles in Sama

and SAMS, but have a large range of performance in Nama

and NWama.

The results show that these models generally capture the

total rainfall amount during the wet season (DJF and

MAM) over the entire Amazon and SAMS. During the dry

and transition seasons (JJA and SON), most of the models

underestimate total rainfall except for the HadGEM2-CC,

HadGEM2-ES, CCSM4 and INM-CM4. The dry biases are

strongest in southern tropical South America.

HadGEM2-CC and HadGEM2-ES generally capture the

spatial distribution of rainfall over the Amazon basin dur-

ing all seasons. During the transition season, the three

Hadley models, CCSM4 and MPI-ESM realistically cap-

ture the northwest-southeast advancement of rainfall in

South America that may be linked to the strength and

location of subtropical jet, whereas the other models show

a dry season rainfall pattern that leads to underestimation

of rainfall during the transition season.

Except for the two GISS models (GISS-E2H and GISS-

E2R), all others underestimate large-scale rainfall during

all seasons. These models generally overestimate convec-

tive rainfall during the wet season and underestimate it

during the dry and transition seasons. The two GISS

models tend to have more large-scale rainfall than con-

vective precipitation, possibly in part due to their lower

resolution relative to other models. The two HadGEM2

models realistically capture the distribution of rainrate, as

also for CCSM4 and INM-CM4 to a lesser extent. Other

models tend to overestimate the occurrence of no rain

events and moderate rainrate events. For example, GFDL-

ESM2M and IPSL show too many pentads with no rain in

the four regions ([50 % in Sama and SAMS, [40 % in

Nama and [35 % in NWama), and too few pentads with

strong rainfall in Nama and NWama.

Overall, HadGEM2-CC and HadGEM-ES most realis-

tically capture the spatial and seasonal distributions, as

well as distribution of rainrate in all the regions of our

analysis.

To investigate the possible reasons for rainfall bias in

different seasons over Amazonian regions, we have

examined surface conditions, atmospheric circulation, SST

forcing and water budgets. In the dry and transition sea-

sons, both less moisture convergence or more divergence

and lower surface ET are responsible for an underestimate

of rainfall. The underestimate of MC by some models

(CCSM4, GFDL-CM3, and the two GFDL models) is

connected to, and is probably caused by, excessive rainfall

over the tropical Atlantic or/and eastern Pacific ITCZs.

Other models (the two GISS models for Sama and SAMS)

have realistic MC so that low ET accounts for their

underestimate of dry season rainfall.

Surface solar and net radiative fluxes are overestimated

during all seasons and over all four regions. Surface sen-

sible fluxes are generally overestimated, compensating for

their excessive net surface solar radiation and leading to

high Bowen ratios. During dry and transition seasons, the

high bias in surface sensible flux and Bowen ratio reduces

surface latent flux and may suppress rainfall, leading to

underestimation.

The westerly 200 hPa zonal wind over the southern

Amazon region is excessively strong during the transition

season (SON) in some of the models with dry bias that fail

to capture the southeast spread of the rainy area (the two

GFDL models and IPSL). This connection suggests that

these excessively strong westerly winds weaken incursions

of the extratropical synoptic disturbance, and so underes-

timate rainfall during the transition season.

The evaluation of correlation coefficients between

regional rainfall anomalies and the interannual and decadal

oceanic variability indices suggest that about half of the

CMIP5 models (the two GFDL models, the two
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HadGEM2, IPSL, and INM models) capture, but exag-

gerate, the relationship between the regional rainfall

anomalies and the Niño3 and Niño4 indices. The same

groups of models, along with CCSM4, also capture the

relationship between rainfall anomalies over Sama and

SAMS regions and AtlG, but exaggerate the relationship

between rainfall anomalies over the northern Amazon

(Nama and NWama) and AtlG, and also show a spurious

relationship between rainfall anomalies and AtlG. The rest

of CMIP5 models do not show significant correlations

between their rainfall variability over Amazonia and the

SAMS region, or Niño and AtlG.

We also have used RMSE and correlations to rank

model performance for precipitation and related physical

processes. HadGEM2-ES outperforms other models in

most variables especially surface conditions and atmo-

spheric circulation in all four regions. GFDL-ESM2M has

only one ensemble member; thus its has a high RMSE and

its output could be dominated by random internal

variability.

Dry biases during the dry and transition seasons still

exist in the majority of the models and appear to be caused

by three factors. First, excessive surface solar radiation,

which exists even in the models that overestimate rainfall,

persists through all seasons, presumably due to underesti-

mate of cloudiness. During dry seasons, to balance exces-

sive net radiation at the surface, sensible flux, thus Bowen

ratio, have to increase. These biases would reduce air

buoyancy in the atmospheric boundary layer and suppress

convection. Second, in some models, excessively strong

ITCZs over the tropical Atlantic and eastern Pacific could

cause unrealistically strong moisture divergence and low

cloud amounts over Amazonia (e.g., the two GFDL mod-

els). These biases would contribute to a dry bias of rainfall

in these models. Third, an overestimate of upper tropo-

spheric westerly winds in the two GFDL models and IPSL,

may lead to an underestimate of incursions of extratropical

synoptic disturbances during the transition season (SON),

and cause dry bias in rainfall.
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