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Abstract A box model of the inter-hemispheric Atlantic

meridional overturning circulation is developed, including

a variable pycnocline depth for the tropical and subtropical

regions. The circulation is forced by winds over a periodic

channel in the south and by freshwater forcing at the sur-

face. The model is aimed at investigating the ocean feed-

backs related to perturbations in freshwater forcing from

the atmosphere, and to changes in freshwater transport in

the ocean. These feedbacks are closely connected with the

stability properties of the meridional overturning circula-

tion, in particular in response to freshwater perturbations.

A separate box is used for representing the region north of

the Antarctic circumpolar current in the Atlantic sector.

The density difference between this region and the north of

the basin is then used for scaling the downwelling in the

north. These choices are essential for reproducing the sen-

sitivity of the meridional overturning circulation observed

in general circulation models, and therefore suggest that

the southernmost part of the Atlantic Ocean north of the

Drake Passage is of fundamental importance for the sta-

bility of the meridional overturning circulation. With this

configuration, the magnitude of the freshwater transport by

the southern subtropical gyre strongly affects the response

of the meridional overturning circulation to external forc-

ing. The role of the freshwater transport by the overturning

circulation (Mov) as a stability indicator is discussed. It is

investigated under which conditions its sign at the latitude

of the southern tip of Africa can provide information on the

existence of a second, permanently shut down, state of the

overturning circulation in the box model. Mov will be an

adequate indicator of the existence of multiple equilibria

only if salt-advection feedback dominates over other pro-

cesses in determining the response of the circulation to

freshwater anomalies. Mov is a perfect indicator if feed-

backs other than salt-advection are negligible.

Keywords Atlantic �Meridional overturning circulation �
Stability � Freshwater � Salt-advection feedback �
Southern subtropical gyre

1 Introduction

The stability of the Atlantic meridional overturning circu-

lation (MOC) in the ocean has been a topic of investigation

in oceanography and climatology since the pioneering

work of Stommel (1961). The central idea of Stommel

(1961) is that the MOC is linked to a feedback between the

circulation and the salinity advected from the tropics to the

subpolar regions, increasing density where sinking occurs

and enhancing the MOC strength. This mechanism, usually

referred to as salt-advection feedback, is also responsible

for the collapse and reversal of the circulation, if a suffi-

ciently strong freshwater anomaly is dumped in the sub-

polar areas. This concept was originally developed to

describe the MOC in a single hemisphere, with the circu-

lation being driven only by buoyancy forcing and,

implicitly, by mixing-induced vertical diffusivity at low

latitudes. It has been used to describe the inter-hemispheric

MOC as well, with the circulation being driven by a north-

south, instead of equator-pole density difference (Rooth

1982; Rahmstorf 1996; Huisman et al. 2010). Even if
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extremely simple, this paradigm has been helpful in

understanding the behaviour of the MOC in more complex

general circulation models (GCMs) of various complexity,

which all show that the MOC can substantially weaken if a

sufficiently strong perturbation is applied.

It has been shown in several earth system models of

intermediate complexity that if the freshwater forcing over

the North Atlantic (say measured by a parameter c) is

increased, the MOC will first slow-down and then undergo

a more or less abrupt transition to a collapsed state

(Rahmstorf et al. 2005). The point of collapse is believed

to be associated, in the terminology of dynamical systems

theory, to a saddle node bifurcation. At such a point, which

we will call L1, a previously stable steady state of the

system (the present day ‘‘ON’’ state of the MOC, see

Fig. 1) loses its stability, and the system jumps to another

stable steady state with little or reversed overturning in the

Atlantic (the ‘‘OFF’’ state, see Fig. 1). If the forcing is then

reduced again, the MOC does not recover immediately, but

stays collapsed until another critical value of the freshwater

forcing is reached. At this second point, named L2, the

‘‘OFF’’ state loses its stability and the system jumps to the

‘‘ON’’ state, with vigorous overturning. In the region of c
between L1 and L2, called the multiple equilibria (ME)

regime, two stable steady states coexist under the same

boundary conditions, separated by an unstable steady state

of the system, usually not observable in numerical models

performing time integration.

In this context, it has been suggested that the freshwater

transport by the MOC at the southern border of the Atlantic

Ocean, usually shorthanded Mov
30�S, may play a special role

in determining MOC stability (Huisman et al. 2010; de

Vries and Weber 2005). In analogy with the original salt-

advection feedback of the Stommel model, the sign of the

freshwater transport may determine whether the MOC

could be permanently collapsed or, in other words, if a

second stable steady solution, with a very weak or reversed

MOC, exists.

If Mov
30�S is negative, the MOC is importing salt into the

basin. A negative perturbation on the MOC would deter-

mine a negative salinity anomaly, and consequently a

negative density anomaly, within the Atlantic basin. If

sufficiently strong, this density anomaly can be advected

northward up to the sinking regions of the northern North

Atlantic, either by the gyres or by the MOC itself. There, it

would feed back onto the MOC strength, reducing the

downwelling rate and amplifying the initial negative MOC

perturbation, providing a mechanism for the collapse of the

MOC. If, on the other hand, Mov
30�S is positive, the MOC is

importing freshwater into the Atlantic basin. A negative

perturbation in MOC strength would then lead to a positive

density perturbation, as it would bring a positive salinity

anomaly in the Atlantic, and no amplification of the initial

perturbation is possible. In this second case, even if the

MOC can be slowed down substantially or even reversed

by a sufficiently strong freshwater perturbation, it will

spontaneously recover when the perturbation is removed,

as no stable ‘‘OFF’’ state of the MOC exists under the

unperturbed boundary conditions.

In de Vries and Weber (2005), it is shown that bringing

Mov
30�S to negative values through appropriate surface

freshwater flux anomalies it was possible to permanently

collapse the MOC if net evaporation over the North

Atlantic is below a critical value. In particular, it was

shown that a dipole freshwater anomaly applied over the

southern portion of the Atlantic Ocean affects the fresh-

water transport by the southern subtropical gyre circulation

(usually referred to as Maz
30�S), and hence can affect Mov

30�S.

With an increase of Maz
30�S, Mov

30�S can eventually become

negative, enabling a permanent shut-down of the MOC.

Recently, a series of numerical experiments with two

different GCMs was performed to further explore the

importance of freshwater budget of the Atlantic Ocean. In

Cimatoribus et al. (2012), it is shown that the freshwater

transport by the southern subtropical gyre is of paramount

importance in determining the stability of the MOC, even if

the overturning rate is only weakly sensitive to Maz
30�S.

Similarly to de Vries and Weber (2005), Maz
30�S and Mov

30�S

were tuned through freshwater anomalies at the surface,

showing that the sensitivity of the MOC to changes in the

net precipitation over the Atlantic Ocean depends strongly

γ

Ψ

Multiple equilibria regime

L 1

L 2

ON

OFF

Fig. 1 Sketch of a bifurcation diagram for the MOC strength W, as a

function of a generic freshwater forcing strength c. The blue lines

mark the two stable steady state solutions, ‘‘ON’’ and ‘‘OFF’’; the

grey line marks the unstable solution connecting the two stable ones.

At points L1 and L2, marked by green circles, the stability of the

steady state solution changes. The range of c-values between the two

dashed vertical red lines is the ME regime, where two stable states

coexist under the same boundary conditions. Changing c further, the

system jumps from one solution to the other at the two limit points L1

and L2, as indicated by the red arrows
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on how the freshwater transport at the southern border of

the Atlantic is divided between the gyre and the MOC. In

particular, as the freshwater transport by the gyre is

increased, Mov
30�S decreases and this leads to a permanent

collapse of the MOC for weaker reductions of the net

evaporation. The MOC can even be collapsed by solely

increasing Maz
30�S, without changing the integrated net

evaporation over the Atlantic basin. A similar sensitivity of

the MOC to the freshwater transport in the South Atlantic

can be inferred from the work of Marsh et al. (2007). They

show that, in a low resolution model, changes in the zonal

salinity contrast over the South Atlantic control the MOC

sensitivity to freshwater perturbations.

The results above consistently point to the importance of

the freshwater (that is, buoyancy) forcing in setting the

MOC stability and strength in connection with the salt-

advection feedback, but they are in apparent contradiction

with the point of view of Ferrari and Wunsch (2009), who

suggest that the direct mechanical forcing by the wind over

the Southern Ocean is the main driver of the MOC. A

synthesis of these two views was attempted in Wolfe and

Cessi (2011) and Nikurashin and Vallis (2012); a series of

numerical experiments with an ocean-only GCM (both

at eddy-resolving and non eddy-resolving resolutions)

contribute to a description of the MOC as driven by the

wind-induced upwelling in the Southern Ocean, but with

buoyancy distribution controlling whether an active pole-

to-pole overturning can actually take place. A similar

synthesis of these two views was attempted in simple

models by Gnanadesikan (1999) and Johnson et al. (2007)

(from now on J07).

On the other hand, the results of Longworth et al. (2005)

point to the importance of the transport of salinity by the

wind driven gyres (represented in a box model by hori-

zontal diffusion) for the stability of the MOC. In particular,

they show that a simultaneous increase in the horizontal

diffusivity in both hemispheres is in general a stabilising

factor for the MOC, providing a way to transport salt from

low to high latitudes that bypasses the salt-advection

feedback mechanism.

In this paper, the main goal is to understand the results

of Cimatoribus et al. (2012) in the framework of a box

model, and to better understand the validity of Mov
30�S as an

indicator of MOC stability. The box model is based on that

developed by J07 and Gnanadesikan (1999), with a few

important differences. Its formulation and solution method

are described in Sect. 2. We are particularly interested in

understanding the role of the freshwater transport by the

gyre and overturning circulation at the southern entrance of

the Atlantic Ocean on the changes in stability of the MOC

found in Cimatoribus et al. (2012). This can be done by

including a representation of the transport by the southern

subtropical gyre as a horizontal diffusive transport,

similarly to what was done by Longworth et al. (2005).

The sensitivity of the solutions of the model to this as well

as to other parameters of the system is described in Sect. 3.

In relation to this, the conditions under which Mov
30�S can

provide useful information on the stability properties of the

MOC are discussed in Sect. 3.3.

2 Methods

2.1 Model definition

The box model (see Fig. 2) used in this work consists of a

basin spanning both hemispheres (which represents the

Atlantic Ocean) connected in the south to a periodic

channel (representing the Southern Ocean, shorthanded s).

It is assumed that the entire flow at depth from the Atlantic

Ocean is upwelled into the mixed layer represented by box

s, due to Ekman pumping. Upwelling in other basins, due

to diapycnal mixing, is thus neglected in this work. The

basin has four other boxes: a pycnocline (made of two

boxes: t and ts) and a deep box (box d) separated by a

pycnocline at a variable depth D, and a northern box (box

n) of fixed volume. The northern box only represents that

portion of the Northern Seas where downwelling actually

takes place. Differently from J07 and Gnanadesikan

(1999), the Atlantic thermocline and the Southern Ocean

are connected through a further box, named ts. The box

extends south of the latitude of the tip of the African

continent (approximately 30�S). The use of this box,

motivated in detail in the following sections, enables to

compute the meridional density gradient within the

Atlantic basin, assumed to be the driver of the overturning

circulation (see Secs. 2.1.1, 2.1.2). This region is charac-

terised by larger isopycnal slopes than within the Atlantic

basin (see, e. g. Lumpkin and Speer 2007), with the

pycnocline becoming shallower moving poleward. The box

ends in the south at the latitude where the deepest Antarctic

Intermediate Waters (northward flowing) outcrop, approx-

imately 40�S (Lumpkin and Speer 2007). The depth of this

box at its northern end is the same depth scale D used for

the main thermocline box t. This depth scale is obtained

from the pycnocline model used by J07 and Gnanadesikan

(1999), but with the thermocline box divided in the two

boxes t and ts, as described. The temperature is fixed in all

boxes, while the salinities are prognostic variables of the

model. This is a common choice in simple models of the

MOC, stemming from the much shorter decay time of large

scale temperature perturbations in the ocean, with respect

to salinity ones. This choice implies that we will neglect

any feedback with the atmosphere. This appears as an

obvious limitation of the work; but it may not be, as

recent studies suggest that atmospheric feedbacks play a
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secondary role for MOC stability (den Toom et al. 2012;

Arzel et al. 2010; Scott et al. 1999).

The pycnocline model results from a balance between

the following terms:

1. Ekman transport into the Atlantic basin from the

Southern Ocean (and through the ts box), associated

with the wind-driven upwelling in the Southern Ocean

(qEk);

2. eddy induced flow out of the Atlantic basin (from box

ts to box s) due to baroclinic instability (qe);

3. diffusively controlled upwelling of water from the

deep layer (qU);

4. downwelling in the North Atlantic (qN).

Within box t, we assume that the MOC can be approximated

as a coherent flow, northward in the pycnocline and

southward at depth. This pycnocline model can be paral-

leled to the view of the MOC by Wolfe and Cessi (2011),

which also includes a wind-driven upwelling (‘‘pushed’’

from the south) and a diffusively controlled upwelling

inside the basin, the latter compensating only for a small

part of the downwelling in the north. The volume of the

Atlantic pycnocline is the sum of the volumes of boxes t and

ts, and the volume budget of the pycnocline thus reads:

dðVt þ VtsÞ
dt

¼ sLxS

q0jfSj
� AGM

LxA

Ly

Dþ jA

D
� qN

¼ qEk � qe þ qU � qN

¼ qS þ qU � qN ; with qS ¼ qEk � qe:

ð1Þ

In the equation, s is an average zonal wind stress

amplitude over the periodic channel region, LxS is the

zonal extent of the Southern Ocean, LxA is the zonal extent

of the Atlantic Ocean at its southern end, D is the py-

cnocline depth, q0 is a reference density, fS is the Coriolis

parameter in the frontal region of the Southern Ocean,

AGM is an eddy diffusivity, Ly is the meridional extent of

the frontal region, A is the horizontal area of the Atlantic

pycnocline and j is the vertical diffusivity. The total

volume flux at the southern boundary of boxes t and ts is

called qS; it is the difference between the Ekman inflow

and the outflow due to baroclinic instability, while qN, the

downwelling flux in the north, is left unspecified for the

moment. As the Ekman inflow in the Atlantic Ocean is

related to the wind forcing over the whole ACC (Allison

et al. 2010; Friocourt et al. 2005), the zonal width of the

entire Southern Ocean is used in the computation of qEk.

The zonal width of the Atlantic Ocean is used instead for

computing the eddy outflow into the periodic channel. The

volume of the box t is given by Vt = A D, while that of

box ts by Vts = LxA Ly D/2. It can be seen from Eq. (1)

that the volume flux from the box s goes through box ts

into the main thermocline without any change, we thus

neglect any diapycnal upwelling within box ts. As far as

the pycnocline model is concerned, boxes t and ts behave

as a whole, and the model is in fact completely equivalent

to that of J07 and Gnanadesikan (1999).

The model can be interpreted as an analogue of the

adiabatic pole-to-pole circulation paradigm of Wolfe and

Cessi (2011) and Nikurashin and Vallis (2012). Diabatic

fluxes mainly take place in the north, at the interface

between boxes t and n, where thermocline waters are made

denser by the interaction with the atmosphere, and in the

Southern Ocean, where water flowing northward in the

Ekman layer gains buoyancy. In the interior, the flow is

mainly adiabatic, and the lower branch of the overturning

is virtually isolated from the upper one, apart from the

diffusive upwelling qU, very small in our configuration.

The upwelling in the south is also adiabatic, as water mass

transformation only takes place when the lower branch of

the MOC enters the box s, the mixed layer of the ACC.

d

s
nt

ts

ACC Atlantic30 °S

D
qS

r S

qN

rN

qU

E sE s

E a

(Variable) pycnocline

depth D

qS = qEk − qe

Downwelling

∝ (ρn − ρ ts )D 2

Fig. 2 Structure of the box

model, with flow pathways

connecting the different boxes.

Red arrows represent net

volume fluxes (with names in

the same colour), green arrows

represent gyre exchanges

between the different boxes

(with names in the same

colour), blue arrows are water

vapour transports through the

atmosphere (with names in the

same colour). In black, the

boxes names

314 A. A. Cimatoribus et al.

123



2.1.1 The scaling for qN

Based on geostrophy, J07 used the scaling qN � D2 (qd - qt)/

q0 for the downwelling (Gnanadesikan 1999; Oliver et al.

2005; Johnson and Marshall 2002), with qd the density of

the deep box and qt that of the thermocline box. Since at

steady state the densities of the deep and northern boxes are

equal, this scaling can be written as qN � D2 (qn - qt)/q0,

with qn the density of the northern box. The density dif-

ference between the northern and pycnocline boxes is

almost entirely determined, in the box model, by the

temperature difference (fixed in J07 and here). Using this

scaling, the sensitivity to freshwater fluxes is thus too low

(more than 1 Sv is needed to collapse the MOC—not

shown). Furthermore, if a representation of the southern

subtropical gyre is included in the box model of J07, the

MOC shows no sensitivity to the gyre strength and to the

freshwater transport associated with it (not shown). This

latter result is in striking disagreement with the results of

Cimatoribus et al. (2012), as discussed in Sect. 1.

Levermann and Fürst (2010) tested the scalings used in

J07 and Gnanadesikan (1999). They show that the down-

welling can be described by qN ¼ gD2Dq, with Dq the

density difference between north-western and tropical water

at the base of the thermocline. Even if the validity of the

above results for different models is still uncertain (De Boer

et al. 2010), the connection between overturning strength

and meridional pressure gradients is well established [see

e. g. Sijp et al. (2012), Cessi and Wolfe (2009)]. In the

simple context of the box model, this translates into a

meridional density gradient in the thermocline (Oliver et al.

2005). We exploit this idea by taking Dq ¼ ðqn � qtsÞ=q0.

In our model, the box ts is the southern end of the ther-

mocline, which means that the overturning circulation is

proportional to the density difference between the sinking

regions in the north and the southern end of the thermocline.

The pycnocline model then reads:

Aþ LxALy

2

� �
dD

dt
¼ jA

D
þ sLxS

q0jfSj
� AGM

LxA

Ly

D

� g
ðqn � qtsÞ

q0

D2: ð2Þ

From a heuristic point of view, this scaling for qN

implies that, when a large meridional density gradient is

present, the sensitivity of the MOC is mainly determined

by changes in pycnocline depth (neglecting the variable

pycnocline depth leads in fact to unrealistic sensitivity to

wind stress, not shown), while a freshwater flux in the north

leads to a collapse due to the reduction of the inter-

hemispheric density difference. We thus view the collapse

due to a freshwater perturbation as ‘‘buoyancy driven’’,

even though the sensitivity of the MOC in the ‘‘ON’’ state

is dominated by ‘‘wind driven’’ dynamics (e. g. changes in

the Ekman inflow). Even though we can collapse the MOC

exploiting a buoyancy flux, reducing the wind stress over

the Southern Ocean below a critical value also brings qS

to zero (see Sect. 3.1.1), leaving a purely diffusive

intrahemispheric MOC (qN = qU [ 0) similarly to what

is suggested by the results of Wolfe and Cessi (2011).

2.1.2 The role of the box ts

The pycnocline model of Eq. (2) is equivalent to the one

defined in J07, the only difference being our thermocline

box split into two boxes, in order to emphasise the

importance of the meridional density gradient.

Considering the salinity transport, instead, we proceed in

a different way from J07. We argue that at the southern

border of the thermocline (the southern border of box ts in

our model) the Ekman inflow and eddy outflow, whose

difference gives the net volume flux, have to be taken into

account separately concerning the salt transport. The

salt flux from box s to box ts has then to be written as qEk

Ss - qe Sts. In other words, even if the net volume flux and

net density flux may sum to zero, there can still be exchange

of salt between the Southern Ocean and the pycnocline. In

case of no net volume flux (qEk = qe) the salt transport must

be compensated in density by heat transport (not considered

explicitly in this work). This salinity transport must then be

associated to transport of spiciness: it represents in this case

an isopycnal salinity flux. In general, for qEk= qe, the net

volume flux will be associated with density transport on top

of this isopycnal salinity transport. Although the Ekman and

eddy fluxes may compensate globally, they will not do so

locally, so that transport of properties is still present. From

box ts to box t, instead, we assume that the flow is coherent

because the flow is already within the pycnocline layer, in

geostrophic balance and with less prominent baroclinic

eddy flow. The transport of salt from box ts to box t can then

be written simply as qS Sts (for the case of a northward net

flow). Upwelling in the box s is also taken proportional to

the net flow qS.

A last connection between boxes ts and t is added

through a diffusive constant, to represent in the simplest

possible way the transport by the southern subtropical gyre,

similarly to what was done by Longworth et al. (2005) and

J07 (the latter only considered the northern subpolar gyre).

We argue that, if the MOC is sensitive to the difference

between the sinking regions and the thermocline waters

north of the ACC, the southern subtropical gyre may play a

very important role in setting this density difference. The

argument in J07 of the effect of rS being negligible, at least

in comparison with the gyre in the northern part of the

basin, does not seem to be applicable in this context.

With this configuration, we neglect the interaction with

the atmosphere of the area represented by box ts. This

Meridional overturning circulation 315
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choice is done for simplicity, but seems to be at least

indirectly supported by Garzoli and Matano (2011), who

show that little mass water transformation takes place for

lighter water classes in this region (their Fig. 6).

A more important assumption in this work is the neglect

of the exchanges between the Atlantic Ocean and the other

Ocean basins, in particular with the Indian Ocean through

Agulhas Leakage. This is still a highly debated subject,

outside the scope of the present paper.

2.1.3 Salt conservation equations

The equations needed to close the system are given by salt

and volume conservation in each box. They comprise the

following set of equations for a state of the MOC similar to

the present day one (qN [ qS [ qU [ 0):

d VtStð Þ
dt

¼ qSSts þ qUSd � qNSt þ rSðSts � StÞ

þ rNðSn � StÞ þ 2EsS0; ð3aÞ

d VtsStsð Þ
dt

¼ qEkSs � qeSts � qSSts þ rSðSt � StsÞ; ð3bÞ

Vn

dSn

dt
¼ qNðSt � SnÞ þ rNðSt � SnÞ � ðEs þ EaÞS0; ð3cÞ

d VdSdð Þ
dt

¼ qNSn � qUSd � qSSd; ð3dÞ

Vs

dSs

dt
¼ qSSd þ qeSts � qEkSs � ðEs � EaÞS0; ð3eÞ

S0Vtot � VnSn � VdSd � VtSt � VtsSts � VsSs ¼ 0; ð3fÞ

with V being the volume of the various boxes and

Vtot = Vn ? Vt ? Vts ? Vd ? Vs. The last equation states

salt conservation in the model. S is the salinity in the

various boxes, rS is the gyre exchange between boxes t and

ts, while rN is the gyre exchange between the pycnocline

and northern box. The salt transport by the gyres takes in

this simple framework the form of a diffusive constant. Es

is the symmetric part of the atmospheric freshwater flux,

from the pycnocline to the boxes n and s. Ea is the asym-

metric part of the atmospheric freshwater flux, transferring

freshwater from the Southern Ocean into the box n.

Physically, the asymmetry in the freshwater forcing is due

to the different sizes of the boxes in the north and in the

south, differences in precipitation amount connected with

the fact that box n is closer to the pole than box s and

differences in the runoff from the continents. We will

change Ea, changing the North-South density gradient, for

collapsing the MOC. In reality, possible sources of the

freshwater flux are ice-sheets at high latitudes or Arctic

sea-ice, not represented in the box model; these will gen-

erally cause a net change in the total freshwater content of

the ocean. Using Ea as a ‘‘hosing’’ flux, enables to maintain

a closed salinity budget, and thus to explore steady states of

the system; the approach is similar to that used in GCMs,

where ‘‘hosing’’ fluxes are usually compensated over the

rest of the Ocean surface. Both Es and Ea are represented

through a virtual salt flux. Despite the different definition

used here, the atmospheric freshwater fluxes Ea and Es can

be cast in a form equivalent to that used in Longworth et al.

(2005) and Scott et al. (1999). S0 is a reference salinity and a

linear equation of state is used, i. e. q = q0(1 - a(T - T0) ?

b(S - S0)), where a and b are the constant thermal expansion

and haline contraction coefficients respectively, T0 is a ref-

erence temperature.

To summarise, there are six differences in our model

definition from J07: (1) a different choice of the box sizes,

to account for our interpretation of the model as the

Atlantic and Southern Oceans alone; (2) the pycnocline

layer is split in two meridionally at the latitude of the

southern tip of Africa; (3) the two components of salt

advection between the southern box and the thermocline,

due to the Ekman and eddy fluxes, are treated separately;

(iv) the meridional density gradient used in the scaling of

qN; (4) the use of a term representing gyre exchange (rS)

between boxes t and ts and (5) a slightly different parameter

choice including lower vertical and eddy diffusivities.

2.1.4 Reference solution

At steady state, if qN [ qS [ 0, it follows that Sd = Sn from

Eq. (3d), as qS = qN - qU. The reference parameter values

are shown in Table 1. A solution for the system of Eqs. (2)

and (3) can be found using Mathematica software

(Wolfram 2010), but only after substituting the parameters

with their numerical values. The solution for the reference

configuration of Table 1 is reported in Table 2.

Similarly to J07, the reference solution consists of a flow

northward in the boxes ts and t and southward at depth,

downwelling from box n to box d and upwelling from box d

to box s. Diffusive upwelling takes place from box d to box

t. The northern box is saltier than the southern one under

symmetric forcing, due to the asymmetry of the circulation

itself (in other words, the circulation is maintained by the

salt-advection feedback). Differently from J07, the value of

pycnocline depth is close to what commonly observed in the

real ocean and in GCMs. This is mainly due to smaller

downwelling flux than in J07, closer to the present day

estimate of 18.7 ± 2.1 Sv (Cunningham et al. 2007), given

by the different scaling for qN and by the smaller vertical

diffusion considered here. The value of the hydraulic con-

stant g used is the one estimated in (Levermann and Fürst

2010), but we stress that this quantity is badly constrained

since it will strongly depend on the choice of the tempera-

ture difference between boxes n and ts (or, in a more real-

istic framework on the locations used for the computation of
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the meridional density difference). For this reason, we will

study the model at different values of the hydraulic constant

g [0.5, 1 and 1.5 times the value given by Levermann

and Fürst (2010)], in order to assess the robustness of the

results.

The temperature chosen for the box Tts is 10�C, giving a

difference of 5�C between the northern box and the

southern end of the pycnocline. This temperature is rep-

resentative of the waters north of the periodic channel in

the South Atlantic. This temperature, or the temperature

difference between boxes n and ts,1 is particularly impor-

tant since it determines the strength of the MOC for fixed

g and a given salinity distribution. The choice of this

temperature difference was made in order to use the esti-

mate of g given by Levermann and Fürst (Levermann and

Fürst 2010), the most recent we are aware of, and to obtain

at the same time a realistic MOC rate.

A negative value of Ea is used for the reference solution,

to account for the different interpretation of the boxes in

the model, with respect to J07. A negative Ea is needed in

order to reduce the export of freshwater from the Atlantic

Ocean, and also to reduce the net precipitation over the

sinking regions of the North Atlantic, also considering the

asymmetry of the sizes of box n and s.

2.1.5 Freshwater budget

In order to compare our results with those from more

complicated models, we compute the equivalent freshwater

budget of the ‘‘Atlantic’’ basin north of 30�S (see Fig. 2).

With the definitions:

Mov ¼ � 1
S0

qS Sts � Sdð Þ;
Maz ¼ � 1

S0
rSðSts � StÞ;

valid under the same conditions considered in Eq. (3), we

find that the net steady evaporation from the Atlantic basin

must be balanced by the freshwater import by the ocean

circulation:

ðEs � EaÞ ¼ Mov þMaz: ð4Þ

This budget includes the dominant terms in GCMs of

various complexity (Cimatoribus et al. 2012; Drijfhout

et al. 2011). Equation (4) states that the freshwater trans-

ported through the atmosphere out of the basin must be

balanced by the freshwater transport by the ocean circu-

lation, split into its overturning (Mov) and gyre (Maz)

components. Maz can be controlled by varying rS, and Mov

will change in the opposite way, as long as the net evap-

oration is kept constant. This behaviour, which is trivial in

this model, has been observed in GCMs as well. In

Cimatoribus et al. (2012), Maz is changed using anomalies

in the surface freshwater flux instead of perturbing the gyre

strength, and Mov reacts in a similar way as here, com-

pensating for the changes in the azonal transport and

keeping the total budget closed.

2.2 Solution method

The system of Eqs. (2) and (3) is studied using the software

AUTO-07p, which enables the continuation and bifurcation

of solutions of systems of Ordinary Differential Equations

(ODEs) (Doedel and Oldeman 2009). Only exact (within

numerical accuracy) steady states are obtained with this

technique, and no transient behaviour is studied in any part

of this work.

The system of Eqs. (2) and (3) can be written as the

autonomous ODEs system:

dxðt; pÞ
dt

¼ GðxðtÞ; pÞ; ð5Þ

with x the 6-dimensional state vector, p the vector con-

taining the system parameters, and G a nonlinear mapping.

Table 1 Reference values of the parameters used in Eqs. (2) and (3)

Vtot 3.0 9 1017 m3 Vs 9 9 1015 m3 Vn 3 9 1015 m3

A 1.0 9 1014 m2 q0 1027.5 kg m-3 a 2 9 10-4 K-1

b 8 9 10-4 psu-1 T0 5 C S0 35 psu

LxS 3.0 9 107 m LxA 1.0 9 107 m Ly 1.0 9 106 m

fS -10-4 s-1 Tn 5.0 C Tts 10.0 C

AGM 1700m2 s-1 Es 0.25 9 106 m3s-1 Ea -0.1 9 106 m3s-1

rN 5 9 106 m3 s-1 rS 10 9 106 m3s-1 s 0.10 Nm-2

g 3.0 9 104 m s-1 j 1 9 10-5 m2s-1

Table 2 Steady solution for the reference configuration of the model

(using the parameters in Table 1)

D 696 m Sn 35.0 psu Sd 35.0 psu

St 35.2 psu Sts 34.6 psu Ss 34.4 psu

qN 18.8 Sv qS 17.4 Sv qU 1.4 Sv

1 Since the equation of state is linear, only temperature (or salinity)

differences are physically relevant.
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Given a steady state solution x0 of (5) for a particular

parameter set p0, AUTO-07p can track the evolution of the

steady-state solution as the value of one parameter of the

system is changed; the solutions can be stable or unstable,

and their stability is determined as well. The initial solution

x0 can be analytical or numerical, as long as it is known

with sufficient numerical precision. The software is based

on Newton’s method for continuation of steady states; for

further details, see Doedel and Oldeman (2009) and ref-

erences therein. Special points, such as saddle node bifur-

cations, are detected and can be continued in two

parameters, obtaining the locus of those special points in a

parameter plane. Multiple steady states can be identified

following the solution beyond a special point and, more in

general, a systematic exploration of the parameter space is

possible. All the results are obtained with small continua-

tion step sizes, so that the results are not sensitive to the

value actually used. The relative convergence criterion for

the steady solution in AUTO-07p is set to 10-7.

In the next section, starting from the reference solution

obtained from Mathematica (see Sect. 2.1.4), the sensitiv-

ity of the model to several parameters is studied. Solutions

are continued within physically plausible regions of the

parameter space, or down to the point where qS = 0. When

the sensitivity to freshwater fluxes is studied, the solution is

continued for qS \ 0 down to the point at which the

downwelling in the north stops. When qS changes sign, the

definition of the box model has to be changed. In particular,

Eqs. (3a), (3b), (3d) and (3e) become for a negative qS:

d VtStð Þ
dt

¼ qSSt þ qUSd � qNSt þ rSðSts � StÞ

þ rNðSn � StÞ þ 2EsS0;

d VtsStsð Þ
dt

¼ qEkSs � qeSts � qSSt þ rSðSt � StsÞ;

d VdSdð Þ
dt

¼ qNSn � qUSd � qSSs;

Vs

dSs

dt
¼ qSSs þ qeSts � qEkSs � ðEs � EaÞS0;

while the equations for the northern box and total salt

conservation are unchanged. The two sets of equations are

automatically chosen in order to match the solution at

qS = 0.

The solutions are not continued below qN = 0 as then the

MOC is completely reversed and the scaling for qN is not

meaningful anymore. In fact, if qN was allowed to reach

negative values, the scaling used in the ‘‘ON’’ state would

represent an enhanced upwelling in the high latitudes of the

North Atlantic, for which no plausible physical mechanism

is known. Furthermore, a reversed MOC is determined by

the shallow outflow from the Atlantic, in the present box

model this is due to an eddy flux stronger than the Ekman

transport. Whether such a situation could exist in reality is

unclear. With these limitations in mind, the study stops at

the point where qN = 0 with qS small and negative. The

change in sign of qS when the downwelling in the north is

weaker than the mixing-driven upwelling (qN \ qU) does

not affect the fundamental properties of the model, which is

still controlled by the same scaling law for qN. On the

contrary, the model is no more valid when Dq and qN

change sign. An extension of the model including a con-

sistent representation of the completely reversed MOC is

beyond the scope of this work.

3 Results

This section is comprised of three subsections. In Sect. 3.1

we investigate the sensitivity of the model solutions to the

southern ocean wind stress and the strength of the southern

gyre. In Sect. 3.2, the stability of the MOC to freshwater

perturbations is considered while in Sect. 3.3, the results in

3.2 are interpreted using the freshwater budget of the box

model.

3.1 Model sensitivity

In general, the sensitivity to the model parameters is very

similar to that found in J07. We will briefly discuss the

importance of wind stress, and then analyse the sensitivity

of the model to the gyre transport and to changes in the

freshwater fluxes.

3.1.1 Southern Ocean wind stress

In Fig. 3 the sensitivity of D, qS and qN to the wind stress s
is shown. When the wind stress is changed, the role of

pycnocline depth in determining the MOC strength is

dominant. The values of the volume transports change

mostly due to the increased Ekman inflow at the southern

border, generating a deeper pycnocline and a consequently

stronger outflow in the north, which is qualitatively the

same behaviour as in J07. The changes in the meridional

density difference, with a reduction of the salinity in the

box ts (due to the increased inflow from the fresher box s)

but little change in the northern box, enhance the changes

in qN and qS. Below a certain critical value of s (approxi-

mately 0.02 N m-2) the eddy flux becomes as large as the

Ekman inflow, and the waters sinking in the north are

upwelled only through diffusion within the Atlantic basin.

Without a net inflow from the Southern Ocean, the MOC

can not extend beyond the Atlantic basin, consistently with

what is shown in the numerical experiments of Wolfe and

Cessi (2011); no pole-to-pole MOC is possible without

wind-stress over the Southern Ocean.
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3.1.2 Southern gyre

As discussed in Sect. 2.1.4, a basic representation of the

southern subtropical gyre is included in this work. The

sensitivity of D, qS and qN to rS is shown in Fig. 4. In

addition, the sensitivity of Mov and Maz is also shown in the

bottom panel. Both qS and qN decrease when the gyre

strength increases, with stronger sensitivity for lower val-

ues of rS. This is a purely buoyancy driven response, which

we could not reproduce using the J07 model with a term

equivalent to rS added to their equations (not shown).

Downwelling in the north decreases due to the lowering of

the north-south density difference, caused by the increased

exchange between boxes ts and t which leads to a salini-

fication of the southern end of the thermocline and a slight

freshening of the box t. The pycnocline depth increases

moderately, in connection with the slightly stronger

decrease of qN compared to qS, and a slightly decreased

upwelling flux qU. The northward volume transport into

box ts is reduced by the stronger eddy outflow, associated

with a deeper pycnocline. This response is absent from J07

since rS strongly increases the salinity of box ts, but very

little that of boxes t, n and d. The scaling used in this work

for qN is thus affecting the MOC (as it depends on (qn - qts)),

contrary to the one used in J07 (� (qd - qt)).

As expected from the freshwater budget, Eq. (4), Mov

decreases and becomes negative as Maz increases from

zero, similarly to what is observed in numerical

experiments with GCMs (Huisman et al. 2010; de Vries

and Weber 2005; Cimatoribus et al. 2012). This behaviour,

trivial in the box model, has been exploited in GCMs to

change Mov, in order to reach the ME regime (de Vries and

Weber 2005; Cimatoribus et al. 2012). In GCMs, this

behaviour is usually induced by different means; Maz is

increased not by modifying the gyre strength, but rather by

perturbing the surface salinity, and Mov compensates Maz

due to changes in the intermediate depth ocean stratifica-

tion (Cimatoribus et al. 2012).

The response of Maz to rS saturates for large values of rS.

This is due to the decrease in the salinity difference

between boxes ts and t as rS increases, which limits the

ability to tune Maz using rS in the box model. Another limit

of representing the gyre through a diffusive constant,

already discussed by Longworth et al. (2005), is the fact

Fig. 3 Sensitivity of D (top panel, blue), qS (lower panel, blue) and

qN (lower panel, red) to the wind stress s. All other parameters are

kept at the reference values of Table 1

Fig. 4 Sensitivity of D (top panel, blue), qS (central panel, blue), qN

(central panel, red), Mov (lower panel, blue) and Maz (lower panel,

red) to the gyre exchange between the boxes ts and t (rS). All other

parameters are kept at the reference values of Table 1
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that the freshwater exchange depends on the meridional

density difference while in reality the freshwater transport

by the wind-driven gyre will rather scale with the zonal

salinity gradient.

3.2 Stability to freshwater perturbations

3.2.1 Symmetric freshwater flux

Opposite to what found in J07, the MOC strength increases

when Es is increased (Fig. 5, the results are shown for three

different values of g). The different sign of the sensitivity

to Es is due to the new definition of the qN scaling.

Increasing Es, freshwater is moved from the thermocline

box to the two high-latitude boxes. Given the sense of the

overturning circulation, this produces an increase in the

density difference between boxes n and ts, as the freshen-

ing by the freshwater forcing in the box n is partly com-

pensated by increased salt advection from the thermocline,

while box ts is made fresher by its exchange with the

southern box. The response is thus due to the asymmetry

between north and south, induced by the MOC itself; the

sense of the circulation (northward above the pycnocline)

causes a stronger salt transport from the thermocline

towards the north than towards the south. It is interesting to

note that an increase of Es amounts to a decrease of the

freshwater forcing over the entire Atlantic basin, as the net

evaporation from the Atlantic (boxes ts, t and n) is given

(Es - Ea). The pycnocline depth decreases in response to

the stronger outflow from box t to box n.

Extending the study to the non physical regime Es \ 0

(net evaporation in the high latitudes) confirms the role of

the MOC asymmetry; the MOC can not be collapsed

decreasing Es below some threshold because, as the MOC

weakens, also the impact of Es on the north-south density

difference decreases. The sensitivity of the MOC thus goes

to zero for large enough negative values of Es (not shown).

Similarly, as the value of rS increases, the sensitivity of qN

to ES decreases (not shown) as the southern subtropical

gyre transports salty waters from box t to box ts regardless

of the sense of the overturning circulation.

3.2.2 Asymmetric freshwater flux

In Fig. 6, three bifurcation diagrams computed for different

values of g are shown, including D, qN, qS and Mov.

As expected, we find that an increase in the freshwater

flux Ea leads to a decrease of the MOC strength. We thus

recover the result of Cimatoribus et al. (2012), den Toom

et al. (2012), that the MOC strength is controlled by the net

evaporation of the overall Atlantic basin. Even if the area

where a freshwater anomaly is applied determines quanti-

tative changes in the sensitivity of the MOC, the sign of

this sensitivity is the same as long as the perturbation is

applied within the basin. In the framework of our box

model, both increasing Ea or decreasing Es amounts to a

reduction of net evaporation out of the Atlantic basin, and

both determine a decrease of the MOC strength. An

increase of Ea is, however, much more effective in

reducing the MOC strength than a decrease of Es, since it

changes directly the north-south density difference to

which qN is proportional, and can completely collapse the

MOC, differently from Es, as discussed in the previous

section. The freshwater flux needed to collapse the MOC is

about 0.4 Sv, a value comparable to that used in several

‘‘hosing’’ experiments with models of various complexity

(e. g. Hawkins et al. 2011) and much smaller than the

symmetric freshwater flux needed to collapse the J07

model. Even if a similar freshwater flux Ea is used as a

‘‘hosing’’ in the model of J07, the sensitivity in this model

is still relatively weak.

In Fig. 6, the solution is continued to negative values of

qS, down to the point where the downwelling stops in the

north. This implies that, at qS = 0, Eqs. (3a, 3b, 3d) and

(3e) are changed in order to account for the reversal of the

advection direction at the boundaries of the boxes s and ts

(see Sect. 2.2). The continuation to negative qS, down to

the point qN = 0, is performed for discussing the relevance

of Mov as a stability indicator (Sect. 3.3).

Fig. 5 Sensitivity of D (top panel, blue), qS (central panel, dashed)

and qN (central panel, full) to the symmetric freshwater flux Es. The

different colors (red, green and blue) refer to different g values:

(1.5, 3.0, 4.5) 9 104m s-1 respectively
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At the point where qN reaches zero, an increase of the

freshwater flux Ea maintains the collapsed state with

qN = 0 and a weakly negative qS compensating the

upwelling in the Atlantic, as an increase of Ea decreases qn

with respect to qts. On the other hand, if starting from the

point where qN reaches zero the freshwater flux is

decreased further, the reversed solution can no longer exist,

as a decrease of Ea determines an increase of qn with

respect to qts, which must be associated at the steady state

with downwelling in the north. We thus conclude that the

point defined by qN(Ea) = 0 is the second saddle node

bifurcation L2 of the bifurcation diagram of the MOC

strength of the box model (Fig. 1).

3.2.3 Sensitivity of MOC stability to changes in the gyre

circulation

We now turn to the assessment of the sensitivity of the

collapse position, the saddle node bifurcation L1, to changes

in the gyre circulation. The position of the saddle node

bifurcations of Fig. 6 is tracked while rS or rN are changed.

This enables to compute the critical value of Ea in a range of

values of rS (Fig. 7) and rN (Fig. 9), for each value of g used

in the bifurcation diagram of Fig. 6. The regime diagram

obtained divides the parameter plane in two regions: below

the critical curve an ‘‘ON’’ state of the MOC is possible,

while above the line only a collapsed state is present.

Considering first the dependence of L1 position on rS (top

panel of Fig. 7), we see that the asymmetric freshwater flux

needed to collapse the MOC is reduced by an increase of the

gyre strength in the south. The decrease with rS of the

freshwater forcing needed for collapsing the MOC is sub-

stantial, and leads almost to the disappearance of the ‘‘ON’’

state for the highest values of rS and lowest g. Even if a gyre

exchange of 50 Sv or more is unrealistic, the value of Maz

Fig. 6 Sensitivity of D (top panel, blue), qS (central panel, dashed),

qN (central panel, full) and Mov (lower panel) to the asymmetric

freshwater flux Ea. The different colors (red, green and blue) refer to

different g values: (1.5, 3.0, 4.0) 9 104 m s-1 respectively. L1 marks

the position of the saddle node bifurcation ending the ‘‘ON’’ state of

the MOC. After L1, the solution is unstable, and for higher values of

Ea only a collapsed state of the MOC is possible. L2 marks the

position of the saddle node bifurcation ending the ‘‘OFF’’ state of the

MOC. The plot of Mov stops before the saddle node bifurcations for

clarity

Fig. 7 Continuation of the limit point L1, determining the collapse of

the MOC, (see Fig. 6). A stable ‘‘ON’’ state exists only below the

lines, marking the position of L1. On the top panel, the continuation in

(Ea, rS) is shown, while in the lower panel the same regime diagram is

shown using Maz instead of rS for plotting. The different colors (red,

green and blue) refer to different g values: (1.5, 3.0, 4.5) 9 104 m s-1

respectively
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associated with it (Fig. 7, lower panel) is well within the

range observed in GCMs (Drijfhout et al. 2011). A more

effective way of changing Maz, i. e. changing the South

Atlantic freshwater fluxes, may actually lead to the total

disappearance of the ‘‘ON’’ state for realistic Ea values

(Cimatoribus et al. 2012). Longworth et al. (2005), on the

other hand, did not observe this behaviour in their box model,

finding that the effect of the gyres was always a stabilising

one. The difference in results is due to the fact that they only

considered the impact of changes in both northern and

southern gyres at the same time, in a much more symmetrical

configuration (no periodic channel and ACC in the south,

boxes of equal sizes in the north and south, and no box ts).

The sensitivity of the position of L1 can be understood

considering the lower panel of Fig. 7, where the value of

Ea at L1 is plotted versus Maz instead of versus rS. The loss

of stability of the ‘‘ON’’ state is connected to an increase of

the amount of freshwater transported by the southern gyre

into the Atlantic basin. This reduces the north-south density

difference by increasing the salinity of the box ts and

slightly decreasing that of the box t; a smaller Ea is then

sufficient to bring (qn - qts) to zero, stopping the sinking

in the north. We conclude that an increase of Maz, in this

case obtained by increasing rS, brings an effective negative

density perturbation in the basin. In terms of changes in the

bifurcation diagram, we have a shift to the left of the

bifurcation diagram and a slight decrease of the width of

the ME region as rS increases (see Fig. 8, top panel).

The impact of the northern gyre on the stability of the

MOC (Fig. 9) is opposite to that of the southern gyre.

A strengthening of the northern gyre increases the salinity

in the northern box, increasing the MOC strength (not

shown) and reducing the sensitivity of the MOC to fresh-

water perturbations. This translates into two effects: (1) L1

moves to higher values of Ea, i. e. a stronger freshwater

flux from outside the Atlantic into the n box is necessary to

collapse the MOC and (2) the collapse of the MOC takes

place at weaker MOC rates (Fig. 9). A strong gyre in the

north brings salty waters in the n box independently of the

state of the MOC, and thus reduces on one hand the

effectiveness of a freshwater anomaly (L1 moves to higher

Ea), and on the other hand the importance of the salt-

advection feedback (L1 takes place at lower qS and qN), as it

reduces the relative importance of the salt transport by the

MOC. In connection with the latter point, also the width of

the ME regime shrinks markedly (see Fig. 8, lower panel).

This response to changes in rN is consistent with what was

found by Longworth et al. (2005).

3.3 The role of Mov

In Fig. 6, the bifurcation diagram of Mov as a function

of Ea was shown, together with the MOC strength.

Mov monotonically decreases as the freshwater flux in the

north is increased until L1 is reached. A decrease in Mov is

thus a robust indication of a reducing distance from the

limit point L1, where the ‘‘ON’’ state is no longer stable. It

must be kept in mind that all the results presented here

refer to steady state solutions. Changes in Mov are thus

differences between different steady states, and not trends

in time. The validity of the box-model approach, and that

of Mov, far from the steady state is unclear; for this reason

we focus on the equilibrium solutions alone.

We can then consider the ME region, that is the part of

the bifurcation diagram between L1 and the end of the

‘‘OFF’’ branch, L2. In this region, a shut down state of the

MOC is present besides the ‘‘ON’’ state under the same

boundary conditions. As discussed in the introduction, it has

been suggested that the change in sign of Mov may mark the

entrance into the ME regime, or in other words Mov may

change sign at the value of Ea for which L2 is reached. If

qN = 0 is taken as L2, we see that Mov is not a perfect

indicator of the ME region, but it gives a good approxi-

mation of the ME region, at least for low values of g.

Fig. 8 Changes in the bifurcation diagram of the MOC as a function

of Ea, as the strength of the gyres are changed; the full (dashed) line

refers to qN (qS). On the top panel, rS is changed, while in the lower

panel rN is changed. The different colors (red, green and blue) refer to

different rS or rN values: 5, 10, 15 Sv respectively. For the case of rN,

the discontinuity in the MOC strength at the point where qS = 0 is

due to the fact the when qS reverses the sensitivities of the MOC

change abruptly. L1 and L2 mark the limit points ending the ‘‘ON’’

and ‘‘OFF’’ state respectively

322 A. A. Cimatoribus et al.

123



To analyse this issue in more detail, we study the differ-

ence between Ea|q_N
0 , the value of Ea for which qN = 0 and

Ea|M_ov
0 , the value of Ea for which Mov = 0 but qS,qN [ 0.

The first can be computed considering the system:

qN ¼ 0; ð6aÞ
rNðSt � SnÞ � ðEs þ EaÞS0 ¼ 0; ð6bÞ
qEkSs � qeSts � qSSt þ rSðSt � StsÞ ¼ 0; ð6cÞ
qSSs þ qeSts � qEkSs � ðEs � EaÞS0 ¼ 0; ð6dÞ
Es � Ea ¼ Mov þMaz; ð6eÞ
qU þ qS ¼ 0; ð6fÞ

where the equations represent, in order, the condition of no

downwelling in the north, the salt budget of the northern

box, the salt budget for the box ts, the salt budget for the box

s, the freshwater budget of the Atlantic Ocean (the latter

three for the case qS \ 0, with Mov = qS/S0(Sd - St)), and

the volume budget for the pycnocline, all under the condi-

tion qN = 0.

From Eq. (6f) the pycnocline depth at L2 can be com-

puted; choosing the positive solution of the second order

equation we obtain:

Dj0qN
¼ 1

2

Ly

LxA

qEk

AGM

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

LxA

Ly

AGMjA

q2
Ek

s !
; ð7Þ

where we write the value of D at L2 as D|q_N
0 , and the

Ekman inflow into the pycnocline, qEk ¼ ðsLxSÞ=ðq0 fSj jÞ, is

left implicit. Eliminating the salinities from Eqs. (6a– 6e)

and using Eq. (7), an expression for Ea|q_N
0 can be obtained:

Eaj0qN
¼Es

rNqEk � qej0qN
qej0qN

� qEk þ rS

� �

rNqEk þ qej0qN
qej0qN

� qEk þ rS

� �

þ rN

DTa
S0b

qej0qN
qej0qN

� qEk þ rS

� �

rNqEk þ qej0qN
qej0qN

� qEk þ rS

� � ;
ð8Þ

where qe|q_N
0 represents the value of the eddy flux at the

point where qN = 0 and DT ¼ Tts � Tn. Ea|q_N
0 does not

depend on g, as confirmed by the numerical results in

Fig. 6. It is interesting to compute the limit of Ea|q_N
0 for rS

and j going to zero. From Eq. (7), we find that:

lim
j!0

Dj0qN
¼ Ly

LxA

qEk

AGM

;

which simply states that if j goes to zero, qEk = qe if

qN = 0, since also qS must be zero. The non diffusive

version of Eq. (8) is then easily obtained:

lim
j!0

Eaj0qN
¼ Es

rN � rS

rN þ rS

þ DTa
S0b

rNrS

rN þ rS

; ð9Þ

from which the rS? 0 limit of Ea|q_N
0 can be computed:

lim
j;rS!0

Eaj0qN
¼ Es;

this shows that the ‘‘OFF’’ solution ends at the point where

net evaporation over the Atlantic basin sums up to zero

(Ea = Es), if no vertical diffusion or gyre transport in the

south are present: no ‘‘OFF’’ state is available for values of

Ea lower than Es. It is interesting to note that the presence

of rN is irrelevant in this limit, i. e. the redistribution of

freshwater within the Atlantic basin is irrelevant. This

limiting behaviour is the one discussed in Rahmstorf

(1996).

Similarly, the value of Ea associated with Mov = 0,

shorthanded Ea|M_ov
0 , can be obtained solving the system:

Sts ¼ Sn ð10aÞ
qNðSt � SnÞ þ rNðSt � SnÞ � ðEs þ EaÞS0 ¼ 0 ð10bÞ
qEkSs � qeSts � qSSts þ rSðSt � StsÞ ¼ 0 ð10cÞ
qSSn þ qeSts � qEkSs � ðEs � EaÞS0 ¼ 0 ð10dÞ
qS � qN þ qU ¼ 0 ð10eÞ

Fig. 9 Continuation of the limit point L1 determining the collapse of

the MOC (see Fig. 6). A stable ‘‘ON’’ state exists only below the

lines, marking the position of L1. On the top panel, the continuation in

(Ea, rN) is shown, while in the lower panel the same regime diagram

is shown considering qS instead of Ea, that is the strength of the flux in

the south at the point of collapse. The different colors (red, green and

blue) refer to different g values: (1.5, 3.0, 4.5) 9 104 m s-1

respectively
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where the first equation is the condition for Mov = 0 if

qS [ 0, the second is the salt budget for the northern box,

the third is the salt budget for the ts box, the fourth is the

salt budget for the s box (with Sd = Sn, as qS [ 0) and the

last equation is the volume budget of the pycnocline. The

algebra is in this case more tedious, but an expression for

Ea|M_ov
0 can be obtained similarly to what done for Ea|q_N

0 ,

exploiting Mathematica software (Wolfram 2010) (see

‘‘Appendix’’). The skill of Mov as an indicator of ME can

then be measured as

DE ¼ Eaj0qN
� Eaj0Mov

:

The analytical expression obtained for DE and Ea|M_ov
0

are very long, so that they are reported in the ‘‘Appendix’’.

The expression of DE in the limit j ? 0 reads:

from which it trivially follows that DE ! 0 if also rS ? 0.

We thus obtain the important result:

lim
rS;j!0

DE ¼ 0; ð12Þ

recovering the result of the simpler model of Rahmstorf

(1996). Indeed, Mov is a perfect indicator of ME if the

response of diffusive upwelling and southern gyre transport

to MOC changes are neglected. From Eq. (12) we can

expect Mov to be a good indicator of the ME regime as long

as feedback mechanisms other than the salt-advection

feedback, which is measured by Mov, do not play a relevant

role. In particular, vertical diffusion and the freshwater

transport by the gyre circulation (or by diffusion) at the

southern border of the pycnocline must not provide an

effective feedback mechanism to changes in the MOC,

which in the simple framework of the box model is the

limit j, rS ? 0. In the limit of no vertical diffusion and no

gyre in the south, other mechanisms are irrelevant to the

skill of Mov as an indicator of ME.

In Fig. 10, the dependency of DE on rS, j and g are

shown (from top to bottom). The top panel shows the

dependency of DE on rS in the non-diffusive limit j ? 0

and the centre panel that of DE on j in the limit of rS ? 0.

In the case of the southern gyre, DE first grows towards

negative values, reaching a minimum at about 5 Sv to

increase again and reach positive values for higher rS

values. An increase in rS has two effects: (1) it increases

Maz and consequently decreases Mov (see Fig. 4, bottom),

making Ea|M_ov
0 smaller, and (2) it shifts L2 to lower values

of Ea (see Fig. 8, top). The first change depends on how

effective rS is in increasing Maz, and from Fig. 4 it is clear

that Maz increases quickly for low rS, but then saturates for

larger values of rS, as the salinity difference between boxes

t and ts decreases. The value of Ea|q_N
0 decreases faster than

Ea|M_ov
0 at small rS, but then saturates as well being almost

constant above rS& 30 Sv. For this reason, at first the shift

of Ea|q_N
0 dominates, but as rS increases the change in

Ea|M_ov
0 becomes more important, and thus DE crosses zero

a second time for rS& 25 Sv, and is positive afterwards.

This second zero will move to higher values of rS as j
increases, marking the position where the effects of rS and

j compensate each other (not shown). The values of the

shift are always relatively small in magnitude (\0.05 Sv),

as long as rS is not unrealistically large.

The dependency of DE on j indicates that an increased

vertical diffusion does not affect Mov, but shifts L2 towards

more negative values of Ea, by stabilising the ‘‘OFF’’ state

of the MOC and widening the ME region. This translates

into the shift of DE towards negative values as j increases,

as seen in Fig. 10. This stabilising effect of vertical mixing

within the Atlantic basin for the ‘‘OFF’’ state was already

recognised by Sijp and England (2006). In their study, they

could not reach any permanently reversed state below a

critical value of vertical diffusivity within the Atlantic

basin. This is not the case in our study. This discrepancy is

likely due to the use of perturbations too small to push the

system to the ‘‘OFF’’ state with low diffusivity values in

the work by Sijp and England (2006). Considering the

values of vertical diffusion used in most numerical models

(Oð10�4 m2s�1Þ), we may expect the skill of Mov in iden-

tifying the ME regime to be often low. The fact that Mov

has been instead successfully used to identify the ME

regime in different numerical models (e. g. Huisman et al.

2010; de Vries and Weber 2005; Hawkins et al. 2011) is a

sign that a compensation between the effects of vertical

diffusion and horizontal advection (and/or diffusion) is

taking place in numerical models.

lim
j!0

DE ¼
rS

rN þ rS

rN

DTa
S0b
� 2Es

qEkDTagþ 1
2

AGMLxA

Ly

� �2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

Ly

AGMLxA

� �2

qEkDTag

r !

qEk þ rN þ rSð ÞDTagþ 1
2

AGMLxA

Ly

� �2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

Ly

AGMLxA

� �2

qEkDTag

r !

2
66664

3
77775; ð11Þ
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When g is increased, DE goes from positive to negative

values, if rS, j or both are greater than zero (Fig. 10, bottom).

This is due to the proportionality between Mov and the MOC

strength: increasing the hydraulic constant g will increase

Mov, requiring a higher Ea for bringing it to zero, while the L2

position is independent of g (Eq. (8)). DE is always smaller

than 0.1 Sv if g is taken in a range giving MOC rates not

too far from reality (g & 2 - 6 9 104 m s-1). If the gyre in

the south and vertical diffusion are both set to zero, DE is

identically zero independently of g, as discussed above.

4 Summary and conclusions

A box model for the MOC was developed, focusing on the

effect of the exchanges between the Atlantic Ocean and

Southern Oceans on the stability of the Atlantic MOC. The

model includes a shallow box of variable depth, providing

a basic representation of the Atlantic pycnocline depth

dynamics in the tropics and subtropics, similarly to what

was done in (Gnanadesikan 1999) and J07. The pycnocline

depth is set by a balance between inflow from the Southern

Ocean due to Ekman pumping, outflow due to baroclinic

activity near the southern subpolar front, upwelling at low

latitudes due to vertical diffusion and downwelling at the

high northern latitudes. Differently from previous studies,

the scaling for the downwelling flux in the north depends

on the density difference between the northern North

Atlantic and the region above the pycnocline north of the

ACC, which is represented by a separate box. Furthermore,

the transport (of salinity) between the ACC and the

Atlantic is treated in a different way than in earlier studies:

Ekman inflow and eddy outflow are considered separately

for what concerns their associated salt transport.

Similarly to what obtained in J07 and Gnanadesikan

(1999), this configuration produces an inter-hemispheric

MOC only if sufficiently strong wind stress is acting over

the Southern Ocean. The MOC is, however, still buoyancy

controlled, as changes in the north-south density differ-

ence, determined in the model only by changes in fresh-

water forcing or transport, can collapse the MOC. The

main advance with respect to previous works, is the ability

to reproduce the sensitivity of the MOC to changes in the

freshwater transport by the southern subtropical gyre in the

Atlantic Ocean. These results point to the fundamental

importance of the region south of the tip of Africa and

north of the ACC in determining the MOC stability.

In particular, the freshwater transport at the latitude of

the southern tip of Africa, by either the overturning or the

azonal circulation, can change completely the response of

the MOC to perturbations in the surface freshwater flux. In

this view, the net freshwater import into the Atlantic basin

by the meridional overturning circulation, Mov, is playing a

fundamental role, being associated with the growth of

perturbations due to the salt-advection feedback. If the salt-

advection feedback is the dominant feedback connected

with a MOC collapse, the sign of Mov completely deter-

mines whether a permanent collapse is possible. If other

responses are important (gyre circulation, vertical diffu-

sivity, atmospheric feedbacks or others not considered in

this paper), the sign of Mov will not be a perfect indicator of

multiple steady states anymore, its skill being dependent on

the strength of the salt-advection feedback in comparison

with other responses. For a parameter set representative of

the real ocean, we can expect Mov to be well below 0.1 Sv

Fig. 10 Dependence of DE on rS (top), j (centre) and g (bottom). DE

is shown on the top (central) panel as a function rS (j), keeping

j = 0 m2 s-1 (rS = 0 Sv); all other parameters are kept at the

reference value of Table 1. In the bottom panel, DE is shown as a

function of g with all other parameters as in Table 1
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when entering the ME regime. Considering the effect of

noise and internal variability, this difference from zero is

unlikely to be important. On the other hand, if vertical

diffusion is providing a strong feedback during a MOC

collapse (in particular in numerical ocean models with high

vertical diffusivity—both physical and numerical) the skill

of Mov as indicator of ME may be reduced. The observation

that Mov actually is a good indicator in different numerical

models (Huisman et al. 2010; de Vries and Weber 2005;

Hawkins et al. 2011), suggests that a compensating

mechanism between different feedbacks is operating, in

particular between the response due to vertical diffusivity

and horizontal advection by the southern subtropical gyre.

Apart from its sign, a downward trend in Mov in response to

a slowly varying external forcing2 is a robust signal of an

approach to the collapse point of the MOC, independently

of the source of the freshwater perturbation (i. e. any term

of the freshwater budget Eq. (4)).

The box model enables to speculate on the importance

of the latitude at which Mov is computed: ‘‘Why thirty

degrees south?’’ or, in other words, why should Mov be

computed at the southern edge of the Atlantic Ocean? One

hypothesis is that the latitude of the southern tip of Africa

marks the point north of which the MOC can be considered

as a coherent flow with approximately constant water

properties in numerical models. Southward of this latitude

and down to the northern end of the ACC, the interaction

between the Ekman inflow from the Southern Ocean and

the salt transport from the north by the subtropical gyre

determines the density of the waters that flow into the

Atlantic basin. North of this point, salinity anomalies

entering the Atlantic Ocean will eventually be advected to

the northern downwelling regions where they will translate

to a MOC strength anomaly (neglecting feedbacks other

than the salt-advection feedback). Whether these anomalies

are subject to a positive feedback loop or a negative one

depends on the sign of the freshwater transport at the

southern entrance of the basin. A second hypothesis, pos-

sibly related to the first one, concerns the presence of zonal

boundaries north of the southern tip of Africa, which can

support a zonal pressure gradient across the basin, con-

trolling the MOC strength through planetary geostrophic

balance (Callies and Marotzke 2012). Changes in this

region may affect the entire basin, setting the boundary

conditions for the MOC within the basin.

We have demonstrated that the box model is a useful

diagnostic tool to understand results from GCMs, and that

Mov can be a good indicator of the stability of the MOC,

but one may ask if these results are relevant to interpret the

results from high-resolution GCMs and, more importantly,

observations from the real ocean. In order for our conclu-

sions to hold in those cases as well, the main assumption

that must be satisfied is that the meridional overturning

circulation should have a meridionally coherent response to

freshwater perturbations on long time scales, at least within

the Atlantic basin. Finally, even if the role of meridional

density gradients in driving the MOC is corroborated by

various studies (see e. g. Sijp et al. 2012; Marshall and

Pillar 2011), the relevance of the scaling for the down-

welling flux in an eddying ocean with complex geometry is

still to be demonstrated. While the downwelling in the

subpolar gyre seems to be well described by the theory of

Spall (2004), the connection between the downwelling in

the subpolar gyre and the overturning circulation and its

scaling law on the global scale is still unclear.
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Appendix: Derivation of Ea|M_ov
0 and DE

To compute the Ea value needed to bring Mov to zero with

qS [ 0, the system (10) has to be solved.

In the non diffusive limit j ? 0 Eq. (10e) reduces to

qS - qN = 0, a second order equation in D, which can be

solved giving as positive solution:

lim
j!0

Dj0Mov
¼ � 1

2

1

Tts � Tnð Þag
AGMLxA

Ly

� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4qEk

Ly

AGMLxA

� �2

Tts � Tnð Þag

s2
4

3
5:

This result can be substituted into Eqs. (10a–10d), and

salinity can be eliminated giving:

Es rN � rS þ Tts � Tnð Þ Dj0Mov

� �2

ag

� �

¼ Ea rN þ rS þ Tts � Tnð Þ Dj0Mov

� �2

ag

� �
: ð13Þ

The latter is solved for Ea giving Ea|M_ov
0 in the case of

j ? 0:

lim
j!0

Eaj0Mov
¼ Es

rN � rS þ Tts � Tnð Þ Dj0Mov

� �2

ag

rN þ rS þ Tts � Tnð Þ Dj0Mov

� �2

ag

¼ Es

rN � rS þ qN j0Mov

rN þ rS þ qN j0Mov

: ð14Þ

(14) can be combined with Eq. (9) to give DE in the non

diffusive limit, Eq. (11).

2 That is, changes slow enough to leave the system close to the steady

state.
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The method outlined for the non diffusive limit can be

used for the model including vertical diffusion as well.

Also in this case, the mathematics involved is very simple

on conceptual grounds, but the large expressions obtained

render the problem tedious with pencil and paper. The final

result is obtained with Mathematica software. Eq. (10d), in

this case a third order algebraic equation, can be solved for

pycnocline depth, and the positive solution reads:

After eliminating salinity, Eqs. (10a–10d) reduce again to

(13), and Ea|M_ov
0 is still given by Eq. (14), but with D|M_ov

0

and qN|M_ov
0 for the finite vertical diffusion case.

The difference between Ea|q_N
0 and Ea|M_ov

0 then gives

DE, which can be written as:

DE ¼
2EsrS

rN þ rS þ Tts � Tnð Þ Dj0Mov

� �2

ag

�
AGMDj0qN

LxA AGMDj0qN
LxA þ Ly rS � qEkð Þ

h i
rN Tn � Ttsð Þaþ 2EsS0b½ �

AGMDj0qN
LxA

� �2

þL2
yqEkrN þ AGMDj0qN

LxALy rS � qEkð Þ
� �

S0b

¼ 2EsrS

rN þ rS þ qN j0Mov

�
qej0qN

qej0qN
þ rS � qEk

� �
rN Tn � Ttsð Þaþ 2EsS0b½ �

qej0qN

� �2

þqEkrN þ qej0qN
rS � qEkð Þ

� �
S0b

:

In the limit of no vertical diffusion, qe|q_N
0 = qEk if qN = 0,

and thus DE reduces to:

lim
j!0

DE ¼ rS

2Es

rN þ rS þ qN j0Mov

� 2Es

rN þ rS

þ rN Tts � Tnð Þa
rN þ rSð ÞS0b

" #
;

which can be written in the form of Eq. (11) when

qN|M_ov
0 is written explicitly.
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