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Abstract Snow cover changes in the middle (2040–2059)

and end (2080–2099) of the twenty-first century over China

were investigated with a regional climate model, nested

within the global model BCC_CSM1.1. The simulations

had been conducted for the period of 1950–2099 under the

RCP4.5 and RCP8.5 scenarios. Results show that the

model perform well in representing contemporary

(1986–2005) spatial distributions of snow cover days

(SCDs) and snow water equivalent (SWE). However, some

differences between observation and simulation were

detected. Under the RCP4.5 scenarios, SCDs are shortened

by 10–20 and 20–40 days during the middle and end of the

twenty-first century, respectively. Whereas simulated SWE

is lowered by 0.1–10 mm in most areas over the Tibetan

Plateau (TP). On the other hand, the spatial distributions of

SWE are reversed between the middle and end terms in the

northeast China. Furthermore, compared with the changes

of RCP4.5 scenario, SCDs are reduced by 5–20 days in the

middle period under RCP8.5 scenario with even larger

decreasing amplitude in the end term. SWE was lowered

by 0.1–2.5 mm in most areas except the northeast of China

in middle term under RCP8.5 scenario. The great center of

SCDs and SWE changes are always located over TP. The

regional mean of SCDs and SWE for the TP and for China

display a declining trend from 2006 to 2099 with more

pronounced changes in the TP than in China as a whole.

Under the RCP8.5 scenario, the changes are enhanced

compared to those under RCP4.5.
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1 Introduction

Snow cover affects the radiation balance of the earth-

atmosphere system due to its high albedo characteristics. It

is one of the important factors that cause atmospheric cir-

culation anomalies (Gong et al. 2003; Fasullo 2004; Zhang

et al. 2004; Dash et al. 2005). Meanwhile, processes of

snow freezing and melting can also disturb the balance of

material and energy which have significant impact on cli-

mate and environment (Qin 2002).

The response of snow cover variation is very sensitive to

climate change. The occurrence of snowfall and melting

were largely determined by temperature in the Northern

Hemisphere (IPCC 2007). Due to the fast speed of global

warming in the recent decades, decreasing trends of snow

cover areas and depth occurred in some regions, such as

western North America in spring (Groisman et al. 2004;

Stewart et al. 2005; Mote 2006); central Europe (Scherrer

et al. 2004; Vojtek et al. 2003; Falarz 2002) and so on. The

temporal and spatial distributions of snow cover and their

changes in China had been investigated based on obser-

vations, suggesting increased trends of snow depth and

snow cover days in northwest China (Li 1999; Che 2006;
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Qin et al. 2006) and Tibetan Plateau (Kang et al. 2010, You

et al. 2011) in the last decades unalike the trends in North

America and central Europe.

Projection of snow cover changes were generally

implemented by global climate models (ACIA 2004; Sun

et al. 2010). However, the coarse resolution of the global

climate models had led to errors from simulated results,

while high-resolution regional climate model could com-

pensate for this deficiency (Gao et al. 2006; 2008). Shi

et al. (2011) used a regional climate model with 25 km

horizontal grid space to predict snow cover changes over

China under A1B scenario (Nakicenovic et al. 2000).Yet,

there are no results about the snow cover changes over

China under representative concentration pathway (RCP)

scenarios (Moss et al. 2008).

In this work, a regional climate model was used to

simulate a period of 150 years over East Asia. Results

showed that the model could well represent the basic cli-

matology over this region (Ji 2012). In order to understand

future changes of snow cover under RCP scenarios which

might be contributing to the Intergovernmental Panel on

Climate Change Fifth Assessment Report (IPCC AR5),

changes in snow cover days (SCDs) and snow water

equivalent (SWE) were investigated under RCP8.5 and

RCP4.5 scenarios, respectively.

2 Model, data and experiments design

The Regional Climate Model version 4.0 (RegCM4)

developed at Abdus Salam International Center for Theo-

retical Physics (ICTP) was used (Giorgi et al. 2012).

RegCM4 is updated from the previous version of RegCM2

(Giorgi et al. 1993a, b) and RegCM3 (Pal et al. 2007). The

series models of RegCM were widely applied in China, to

address investigations on climate change (Gao et al. 2001,

2011, 2012), extreme events assessment (Gao et al. 2002),

aerosols effects (Ji et al. 2010, 2011; Zhang et al. 2009),

land use investigations (Gao et al. 2007; Zhang et al. 2010),

and paleoclimate simulations (Ju et al. 2007).

We conducted a series of parametric sensitivity tests and

finally set the model configuration to be as follows. Bio-

sphere–Atmosphere Transfer Scheme (BATS1e) (Dic-

kinson et al. 1993) was used to describe land surface

processes. NCAR CCM3 radiation package was employed

as the radiative transfer module. Convective precipitation

was represented by the mass flux scheme of Grell (1993)

with Arakawa and Schubert type closure (Arakawa and

Schubert 1974), and the planetary boundary layer compu-

tation was assessed with the non-local formulation of

Holtslag et al. (1990).

Initial and lateral boundary conditions were obtained

from the global model outputs of the Beijing Climate Center-

Climate System Model version 1.1 (BCC_CSM1.1) avail-

able on http://cmip-pcmdi.llnl.gov/cmip5/. BCC_CSM1.1 is

composed by the following parts: the BCC_AGCM2.1

atmospheric model (Wu et al. 2010; Wu 2011), which is

developed from NCAR CAM3.0 (Collins et al. 2004), the

BCC_AVIM1.0 land surface model (Ji 1995; Dan et al.

2002), the ocean and sea-ice modules of MOM4-L40

(Griffies et al. 2004) and the SIS from Geophysical Fluid

Dynamics Laboratory (GFDL). Horizontal resolution of

BCC_AGCM2.1 is T42 (&280 km). The validation of the

model performance shows good results about simulating the

present climate (Wu et al. 2010; Zhang et al. 2011).

BCC_CSM1.1 is one of the Chinese models participating the

CMIP5 (Coupled Model Intercomparison Project Phase 5).

Two experiments were conducted from 1950 to 2099 (the

first year is considered as model initialization/spin up time).

We analyzed SCDs and SWE at present period from 1986 to

2005 (reference, RF), and in the future phase during

2006–2099 under RCP4.5 and RCP8.5 emission scenarios.

RCP4.5 pathway is a stabilization of radiative forcing at

4.5 W/m2 in 2100, while RCP8.5 simulates adapted emis-

sions with stabilizing near 8.5 W/m2. The period of

2040–2059 are considered as the middle of the twenty-first

century (mid-term) and the period of 2080–2099 represents

the end of the twenty-first century (end-term). The differ-

ences between RCP4.5 and RF (RCP4.5-RF) are considered

as the changes of snow cover under the RCP4.5 scenario.

Whereas RCP8.5 minus RCP4.5 (RCP8.5-RCP4.5) repre-

sents the changes under increasing emission concentration

and it can also compare the changes between two different

emission scenarios. In addition, the regional mean temporal

evolution of annual mean SCDs and SWE changes of TP

and China are discussed for the period between 2006 and

2099 (relative to 1986–2005).

The model horizontal resolution is 50 9 50 km, while

the vertical configuration was set at 18 sigma layers with the

model top at 10 hPa. Central point of the model was fixed at

35�N, 105�E, with 160 grids in the west-east direction and

109 grids for the north–south. Figure 1 shows the model

domain and topography. The model domain covers the

continent China and its neighboring countries. The loca-

tions of Tibetan Plateau, Xinjiang, Inner Mongolia, North-

east China and the other regions that we analyzed were

marked on the map. RegCM4 describes well the topogra-

phy, e.g. Tianshan Mountains, Qaidam Basin and Qilian

Mountains in northwest China can be easily identified.

The daily datasets of snow depth were developed by Che

et al. (2008) based on remote sensing data with the cali-

bration from meteorological station observations. As did in

Shi et al. (2011), a snow cover day is defined as a day when

the snow depth is deeper than 1 cm in the observation data,

and SWE must be greater than 1 mm in the simulation.

SCDs is the total number of snow cover days during the
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annual snow cycle, which starts from the first day of

September and ends on the last day of the following August.

Global Monthly EASE-Grid Snow Water Equivalent

Climatology (Armstrong et al. 2007) datasets were used to

compare with the simulated SWE. The observation dataset

of CN05 (Xu et al. 2009) and Xie-Arkin (Xie et al. 2007)

are used to validate the simulated surface air temperature

and precipitation, respectively. These observations are

given at the resolution of 0.5� 9 0.5�.

3 Model performances

Previous studies have indicated that RegCM4 had a good

performance for simulating the climate over China (Ji

2012). As shown in Fig. 2, simulated surface air tempera-

ture (Fig. 2b) follows generally that of the observations

(Fig. 2a). It represents colder trends in the north and

warming in the south over the flat areas of eastern China.

While in western China, the distribution of temperature is

largely affected by topography and shows significant

temperature gradients. Compared with observations, the

model captures the regional details well. For examples, the

high values in the Tarim and Qaidam Basin, and low areas

located in the Altai, Tianshan and Qilian Mountains are

accurately represented by RegCM4.

In the mean time, the model reproduced the basic posi-

tion of rain band over China. Annual mean precipitation

shows a decrease from southeast to northwest (Fig. 2c),

with greatest value exceeding 1500 mm in the southeastern

coastal areas. In the northwest where arid and semi-arid

climate prevails, the precipitation is less than 100 mm per

year. Though the simulations (Fig. 2d) are not thoroughly

representing the distribution of the observations, the pre-

cipitation patterns caused by topographical effects, e. g. the

larger values in the Qilian Mountains and smaller values in

the nearby Qaidam Basin, are captured well by RegCM4.

Figure 3 shows observed and simulated SCDs and SWE

during RF period over China. TP, Northwest (except for the

desert regions of Tarim Basin and Inner Mongolia) and

Northeast China are the three great snow cover regions with

annual mean SCDs usually exceeding 60 days (Fig. 3a). In

the eastern plain areas along the north of the Yangtze River,

the SCDs are in the range of 1–30 days, and there is almost

no snow cover day in the Sichuan Basin, midwest Inner

Mongolia and south of the Yangtze River. The simulated

results (Fig. 3b) are basically consistent with the observa-

tions. Furthermore, the model captures the spatial charac-

teristics in areas of complex terrain, such as the Tianshan

Mountains, Qaidam Basin and Qilian Mountains in the

northwest of China. Finally, the large overestimates of

SCDs in the TP and Northeast China as simulated by

RegCM3 (Shi et al. 2011) are improved in our experiments.

The model can also represent the spatial distribution of

SWE (Fig. 3c, d). The pattern is similar with SCDs. In

most areas of north Xinjiang, TP and northeast China,

SWE are beyond 10 mm, while Tarim Basin, Midwest

Inner Mongolia and southern China show values below

0.5 mm. Due to its higher resolution, the model simulates

well also over high mountain regions (e. g. Tianshan, Altai

Mountains and southeastern TP) where the values of SWE

are greater than 75 mm.

Fig. 1 Model domain and

topography (units: meter)
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RegCM4 has a good simulation capability in the three

major snow cover areas of China. However, some discrep-

ancies can be found between observation and simulations.

For instance, the model simulated SCDs are overestimated in

the north of the TP, west of the Hetao Plain, and Tarim Basin.

In particular, the greatest overestimate of SCDs appears in

Kunlun Mountains located in northern TP. The snowfall

processes are determined both by air temperature (less than

0 �C) and precipitation in the model, while the cold and wet

bias often occurs in high altitude regions (Shi 2010; Gao et al.

2011) leading to greater snowfall and delayed snowmelt.

4 Projection of snow cover changes

4.1 Changes of SCDs

The differences in spatial distribution of annual mean SCDs

changes (RCP4.5-RF, RCP8.5-RCP4.5) of are shown in

Fig. 4. Annual mean SCDs decline over the main snow cover

areas during the mid-term in the RCP4.5 scenario compared

to RF simulation (Fig. 4a). In northern Xinjiang, Inner

Mongolia, eastern TP and northeast China, SCDs decrease

by 10–20 days, while the other regions show relatively small

changes. At the end-term (Fig. 4b), the spatial distribution of

SCDs changes is similar to that during the mid-term’s. And

the depleted areas are extended in the east and in the north of

Sichuan Basin. Meanwhile, the decreased intensity is greater

than that in the mid-term and values are ranging between

-20 and -30 days. In the Three-River-Source areas (the

place where Yangtse, Yellow and Lantsang River originate

in the central TP) and in parts of the southern TP, SCDs are

reduced by more than 30 days.

SCDs decrease in the TP and central China during the

mid-term in the RCP8.5 scenario compared with RCP4.5’s

results (Fig. 4c). Spatial decreasing is obvious over the TP

with values of -5 to -20 days. At the end-term (Fig. 4d),

the amplitude of changes has been more enhanced in the

(a) (b)

(d)(c)

Fig. 2 Observed (a, c) and simulated (b, d) annual mean temperature (a, b) (units: �C) and precipitation (c, d) (units: mm) during 1986–2005
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three snow cover areas compared to the mid-term’s. SCDs

will reduce significantly, reaching over 20 days of differ-

ence with the largest center located in the TP.

SCDs are shortened over China in future under the RCP4.5

scenario. Decreased intensity at the end-term is greater than

the results of mid-term in the TP. While the concentration of

greenhouse gas emission is increased, larger reduction of

SCDs occurs in the TP than that in the other parts of China.

Changes of temperature greatly impact the variations of snow

cover. Figure 5 shows temperature increases in two terms

under the RCP4.5 and RCP8.5 scenarios, respectively. In

general, warming in north China and TP is greater than those

in the other regions. The increased amplitude in the end-term

(Fig. 5c, d) is larger than that in the mid-term’s (Fig. 5a, b).

Temperature increases can affect snowfall and snowmelt.

Compared with Figs. 4 and 5, the distributions are signifi-

cantly more similar in the corresponding regions. For

example, the differences of temperature between RCP8.5 and

RCP4.5 in the mid-term (Fig. 4c) shows warming almost

over the whole TP, while smaller changes are shown in the

other areas of China. It is noteworthy that SCDs are mainly

decreased in the plateau and changes in the other regions are

not apparent in the same period. Though precipitation

increases in two terms in the north China (Fig. 6), the dis-

tributions of precipitation changes do not match with those of

SCDs’.

Due to the large snow-covered areas, the influence of

temperature on SCDs in the TP are much greater than in the

other regions of China’s under the background of global

warming. Thus, in the future, the sensitivities between

SCDs and temperature seem to increase in the TP. This

conclusion is consistent with the prognosis of Ma et al.

(2010) which were based on the observed data.

4.2 Changes of SWE

Spatial changes of SWE are different from those of SCDs’.

Figure 7a depicts the changes of SWE over China under

(a) (b)

(d)(c)

Fig. 3 Observed (a, c) and simulated (b, d) annual mean SCDs (a, b) (units: days/year) and SWE (c, d) (units: mm) during 1986–2005
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RCP4.5 scenario in the mid-term. In eastern and southern

TP, northern Xinjiang and central of northeast China, SWE

show a reduction of -1 to -10 mm. However, regions

with SWE values ranging between 0.1 and 2.5 mm are to

be found in the north of northeast and central China. At the

end-term, the spatial distribution of SWE in the TP and

Northwest China are consistent with the mid-term’s pattern

(Fig. 7b). Although, changes of SWE are different from the

former results in central China where there are decrease or

less changes are found. The areas with increased SWE in

the north of northeastern China show an expansion and the

largest center is beyond 2.5 mm. It is noted that the SCDs

are shortened in northeastern China, while the SWE is

increased. That may be due to the fact that the extreme

snowfall events might strengthen (Sun et al. 2010).

The difference of SCD between RCP8.5 and RCP4.5

(RCP8.5–RCP4.5) scenarios in the mid-term show signifi-

cant decrease of SWE are clearly in the north of TP

(Fig. 7c). It decreases by 0.1–1 mm in the central and

eastern China, while increases in most parts of northeastern

China can be found. At the end-term (Fig. 7d), SWE

reduces more than 10 mm in the TP and in the northwest of

China. Contrary to the increase of SWE in northeastern

China, a reduction of 5 mm is simulated.

SCDs and SWE show a general consistent decrease in

north of TP and Xinjiang during the two terms of the twenty-

first century, while a reversed situation appears in the

northeast of China under the RCP4.5 scenario. The simulated

results of SCDs show similar distribution with Shi et al.

(2011), which estimated the snow cover changes by using

RegCM3 under the IPCC A1B scenario suggesting that the

changes of values were between RCP4.5’s and RCP8.5’s.

However, changes in SWE are partly different from the

former research which displayed on the positive distribution

(Shi et al. 2011). The reduction of SWE is also significantly

greater than the results of RCPs scenarios for the same

(a) (b)

(d)(c)

Fig. 4 Differences in annual mean SCDs changes in the mid-term and the end-term (units: days/year) (a RCP4.5-RF in the mid-term; b RCP4.5-

RF in the end-term; c RCP8.5-RCP4.5 in the mid-term; d RCP8.5-RCP4.5 in the end-term)
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period. For example, reduced values exceed 10 mm in the TP

under A1B scenario, while they are reported less than 10 mm

under the two RCP scenarios. The same tendency is also

represented from multi-GCM (global climate model)

ensemble outputs of CMIP3 (Coupled Model Intercompar-

ison Project Phase 3) (e.g. Ma et al. 2011; Wang et al., 2010),

while the magnitude of SWE changes are still different. It is

noted that the uncertainties are prevalent in the projection of

SWE under different scenarios.

4.3 Changes in the regional mean

Figure 8 shows the regional mean changes of the annual

cycle of SCDs. Decreases of SCDs can be found in all the

months, both at mid- and end-term, and under the two

scenarios. Magnitudes of the decrease under RCP8.5 at the

end-term are clearly larger than those of RCP4.5 at the

mid-term, RCP4.5 at the end-term and RCP8.5 at the mid-

term, all of which show similar patterns. The greatest

reduction appears in autumn (September–November) with

the maximum in November, followed by winter (Decem-

ber–February) and spring (March–May). The least changes

occur in summer (June–August) when snowfall events are

rare. In general, snowfall over China starts in autumn and

ends in early summer in the following year. It is noted that

the reduced SCDs in autumn and spring are supported by

the prediction that the snow cover starting date advances

while the ending date delays in future (Shi et al. 2011).

Changes of regional mean of SCDs and SWE in the TP

and the whole of China (CN) from 2006 to 2099 suggest

decreased SCDs in CN and TP from 2006 to 2099 (Fig. 9).

The linear trend of the TP is greater than that of CN.

Changes of SCDs are ranged from -10 to 0 days in CN and

-30 to 0 days in the TP (Fig. 9a). Under the RCP8.5 sce-

nario (Fig. 9b), the linear trends are also declining in both

CN (2 days/decade) and TP (3.7 days/decade). However,

(a) (b)

(d)(c)

Fig. 5 Differences in annual mean temperature changes in the mid-term and the end-term (units: �C) (a RCP4.5-RF in the mid-term; b RCP4.5-

RF in the end-term; c RCP8.5-RCP4.5 in the mid-term; d RCP8.5-RCP4.5 in the end-term)
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the amplitude is enlarged in the TP. The range of SCDs’ in

CN was -20 to 0 days and -50 to 0 days in the TP.

Trends of SWE (Fig. 9c) are also reduced under both

scenarios. The value ranges are -3 to 1 mm in CN and -4 to

1.5 mm in the TP. Clearly the trend of declining in TP is

larger than that in CN. More dramatic decreasing is sug-

gested under the RCP8.5 scenario (Fig. 9d) than those under

the RCP4.5 scenario. The outline patterns of TP and CN

are similar with those under the A1B scenario, while the

decreased intensities of SWE are quite different. For

instance, the linear trends of TP are 1.5 mm/decade under

A1B’s (Shi et al. 2011), however, they are just 0.3 and

0.5 mm/decade under RCP4.5’s and RCP8.5’s, respectively.

5 Summaries

A regional climate model was used to conduct two

experiments under RCPs scenarios to investigate the snow

cover changes in the twenty-first century. The capability of

model was evaluated by comparing the simulations against

observations firstly followed by the analysis of SCDs and

SWE changes under RCP4.5 and RCP8.5 scenarios.

The results show that model can reproduce the spatial

distribution of SCDs and SWE over China. The main dis-

crepancies of the model simulation are the overestimation

of SCDs and SWE compared with the observations. The

errors in climatology over west China from model simu-

lation are the primary reason for generating the bias

between simulated and observed SWE.

SCDs decrease both at the middle and at the end of

twenty-first century under RCP4.5 scenario. SWE is mostly

reduced except in parts of northeast and central China.

Under RCP8.5 scenario, the amplitude of reduced SCDs

and SWE are greater than their changes under RCP4.5

scenario. The larger center is always found to be located in

the TP. That is due to increased greenhouse gasses that

changed the temperature over China and exhibit impacts on

(a)

(c)

(b)

(d)

Fig. 6 Differences in annual mean precipitation changes in the mid-term and the end-term (units: %) (a RCP4.5-RF in the mid-term; b RCP4.5-

RF in the end-term; c RCP8.5-RCP4.5 in the mid-term; d RCP8.5-RCP4.5 in the end-term)
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snow cover. However, snow cover in the plateau shows

greatest sensitivity to climate change. The regional mean

SCDs and SWE of TP and China show declining trend

from 2006 to 2099. The fluctuant reduction of TP is sig-

nificantly greater than the national average. While the

concentration of greenhouse gas emissions increased, the

respective changes get enhanced. It is implied that emis-

sion reductions could decelerate snow cover changes in the

future.

Still large uncertainties exist in the projection of snow

cover changes in the present days. Of them, precipitation as

is one of the main factors affecting snow cover changes,

show larger uncertainties and differences among different

models and emission scenarios. The CORDEX (COordi-

nated Regional climate Downscaling EXperiment) inter-

national program has been proposed (Giorgi et al. 2009),

try to carried out dynamic downscaling of utilizing regional

climate model simulations driven by multiple GCM

(a) (b)

(d)(c)

Fig. 7 Differences in annual mean SWE changes in the mid-term and the end-term (units: mm) (a RCP4.5-RF in the mid-term; b RCP4.5-RF in

the end-term; c RCP8.5-RCP4.5 in the mid-term; d RCP8.5-RCP4.5 in the end-term)
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Fig. 8 Annual cycle of SCDs changes in the mid-term and the end-

term under RCP4.5 and RCP8.5 scenarios, respectively (units: days/

year)
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outputs (e. g. CMIP5 results) at different regions of the

world (Giorgi et al. 2012; Sylla et al. 2010; Wu 2012). The

outcomes of CORDEX can contribute in exploring and

reducing the uncertainties.

Our future research will be not only limited to snow

cover and its impact on the climate and environment, but

will combine with the effects and detection of aerosols

deposited on snow in ITPCAS (Institute of Tibetan Plateau

Research, Chinese Academy of Sciences) (Xu et al. 2009).

A snow—black soot feedback module will be coupled with

RegCM4 in the future, which will indeed help in the study

of the impacts and feedbacks of aerosols deposition in the

Tibetan Plateau.
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