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Abstract In this study the results of the regional climate

model COSMO-CLM (CCLM) covering the Greater Alpine

Region (GAR, 4�–19�W and 43�–49�N) were evaluated

against observational data. The simulation was carried out as

a hindcast run driven by ERA-40 reanalysis data for the

period 1961–2000. The spatial resolution of the model data

presented is approx. 10 km per grid point. For the evaluation

purposes a variety of observational datasets were used: CRU

TS 2.1, E-OBS, GPCC4 and HISTALP. Simple statistics

such as mean biases, correlations, trends and annual cycles

of temperature and precipitation for different sub-regions

were applied to verify the model performance. Furthermore,

the altitude dependence of these statistical measures has

been taken into account. Compared to the CRU and E-OBS

datasets CCLM shows an annual mean cold bias of -0.6

and -0.7 �C, respectively. Seasonal precipitation sums are

generally overestimated by ?8 to ?23 % depending on the

observational dataset with large variations in space and

season. Bias and correlation show a dependency on altitude

especially in the winter and summer seasons. Temperature

trends in CCLM contradict the signals from observations,

showing negative trends in summer and autumn which are in

contrast to CRU and E-OBS.

1 Introduction

Regional Climate Models (RCMs) provide for the investi-

gation of the spatial and temporal evolution of the climate on

a regional to continental scale. The use of current

RCMs makes it possible not only to simulate atmospheric

processes at higher temporal and spatial resolution, but

should add significant skill to simulating the climate on a

scale of 5 to 50 km. Information on how the climate might

change in the future on the regional scale is of great impor-

tance for the planning of adequate adaptation measures.

In recent years considerable efforts have been made to

understand both the regional climate predictability and

capability of RCMs over Europe in simulating the regional

climate within the framework of ENSEMBLES (Hewitt

2005) and PRUDENCE (van der Linden and Mitchell

2009; Christensen et al. 2002, 2007). In a study based

on PRUDENCE, models were validated in terms of

reproducing long term climate means and inter-annual

variability of temperature and precipitation in comparison

with the CRU observational data set over Europe (Jacob

et al. 2007). Daily precipitation statistics from model

simulations of both PRUDENCE and ENSEMBLES over

Europe were evaluated by Boberg et al. (2009, 2010) and

Kjellström et al. (2010). Nikulin et al. (2011) investigated

temperature, precipitation and wind extremes over Europe,

as simulated by the Swedish Climate Model RCA3 (Rossby

Center Regional Climate Model).

An evaluation of the ability to simulate precipitation in

seven different regions over the globe has shown that

CCLM cannot be transferred directly to other climate

zones, but requires specific adjustments in each case

(Rockel and Geyer 2008). The RCM CCLM—which has

also been used in this study—has furthermore been under

investigation in respect of its model skills for the region of

Europe (Bachner et al. 2008; Dobler and Ahrens 2008;

Feldmann et al. 2008; Hollweg et al. 2008; Jaeger et al.

2008; Smiatek et al. 2009; Suklitsch et al. 2010;

Davin et al. 2011).
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Whereas regional climate simulations have been under

thorough investigation for larger parts of Europe, only a

few studies exist that evaluate RCMs specifically over the

European Alpine Region. This region covers nearly

200,000 km2 and is located at the centre of the European

continent, marking the transition area between the Atlantic,

Continental, and Mediterranean climate zones. Large

mountain chains, reaching up to 4,000 m above sea level,

alternate with deep valleys on a relatively small spatial

scale. This complexity induces considerable differences in

regional climate, which has led to the definition of distinct

climatologic sub-regions (HISTALP regions) even in this

rather small-scale area (Auer et al. 2007). Modifications of

local climate due to the orography include phenomena like

temperature inversions in valleys (e.g. Whiteman 1990),

precipitation enhancement or shadowing effect by moun-

tain chains (e.g. Roe 2005), as well as föhn events (e.g.

Brinkmann 1971; Seibert 1990).

For the Alpine Region, different RCMs have been

evaluated and compared in terms of precipitation on a

daily basis for current climate conditions (Schmidli et al.

2007). The authors found substantial variations in model

performance between different sub-regions in the Alps as

well as higher skills for precipitation occurrence than for

intensity. An extensive analysis of high resolution RCM

simulations in the Alpine Region revealed considerable

uncertainties and weaknesses in the simulation of daily

precipitation, depending on the model and/or the specific

setup chosen for the simulation (Suklitsch et al. 2008).

However, the skill for simulated temperatures was gen-

erally higher. The bias was found to differ considerably

among the sub-regions under investigation and no sys-

tematic dependency could be detected. Cloud resolving

climate models still show large biases in complex terrain,

but perform better than conventional RCMs in smaller

investigation areas (Smiatek et al. 2009). Daily precipi-

tation statistics from different RCM simulations were

investigated by Frei et al. (2003) for the European Alps.

They found that all models were able to simulate the

spatial distribution of seasonal precipitation well, but

revealed considerable shortcomings in wet-day frequency

and precipitation intensity on the daily resolution at the

same time.

All in all there are challenging demands on RCMs when

meteorological processes and hence specific characteristics

of the regional climate have to be simulated in complex

terrain. Consequently, there is a strong need for further

investigations on the skill of RCMs in such special regions

like the European Alps, and for deeper insight in their

capabilities and limits with a view to further improving the

model physics.

The purpose of this paper is to evaluate the ability of

the RCM CCLM 4.8 (COSMO model in Climate Mode,

version 4.8) to simulate the present climate in the

Greater Alpine Region (GAR) at a spatial resolution of

10 km. Hindcast simulations driven by ERA-40 reanalysis

data (Uppala et al. 2005) are compared to several obser-

vational datasets for temperature and precipitation. Beside

the conventional evaluation of climatologic variables

for different sub-regions, the authors focused on the mod-

el‘s capabilities in respect of underlying meteorological

processes.

The paper is structured as follows: In the data and

methods section, an introduction to the CCLM-setup and

the observational datasets is given, along with an assess-

ment of the uncertainties in the observational datasets and a

description of the evaluation methods used. In the results

section, the CCLM skill concerning temperature and pre-

cipitation as well as temperature trends and altitude

dependencies of model bias and correlation is shown. In the

discussion section, the main findings are discussed and

possible reasons for the bias in the model are addressed.

The conclusions summarize the most important findings of

this study.

2 Data and methods

2.1 RCM setup and data

The CCLM is the climate version of the weather forecast

model of the German Weather Service (DWD) (Böhm

et al. 2006; Doms et al. 2002). It is a non-hydrostatic RCM,

using a regular latitude/longitude grid with a rotated pole

and a terrain following height coordinate with 32 vertical

layers. The CCLM includes the multilayer soil model

TERRA (Schrodin and Heise 2001) with 10 soil layers

defined down to a depth of 15 m. The evapotranspiration

of plants is parameterized based on the Biosphere-

Atmosphere Transfer Scheme (BATS) (Dickinson et al.

1986). For the moist convection the Kain-Fritsch parame-

terization scheme has been chosen (Kain and Fritsch 1993).

The numerical integration followed the Runge-Kutta-

approach. The model has been used previously for the

simulation of present and/or future climate conditions in

the following EU funded projects: PRUDENCE (http://

prudence.dmi.dk/), ENSEMBLES (http://ensembles-eu.

org/) and is also involved in the CMIP5 simulations for

the 5th Assessment Report of the IPCC. In this study the

model version 4.8 has been used, simulating the Alpine

climate in a two-step nesting approach. The first nesting

encompasses the European domain at 50 km spatial reso-

lution (104 by 104 grid points, 360 s time step) and the

second step covers the Greater Alpine Region (GAR) in a

10 km resolution (125 by 110 grid points, 80 s time step)

(see Fig. 1).
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2.2 Observational data

2.2.1 Gridded observation data from CRU for air

temperature and precipitation

For the validation of surface temperature and precipitation,

the Climate Research Unit (CRU) monthly mean global

gridded dataset version TS 2.1 has been used (Mitchell and

Jones 2005). It has a spatial resolution of 0.5� 9 0.5�
covering the time period 1901–2002 and is based on in-situ

measurements from a large number of stations from dif-

ferent sources. The dataset contains variables such as daily

mean, minimum and maximum temperatures, diurnal tem-

perature range, precipitation amount, wet day frequency,

frost day frequency, vapour pressure and cloud cover. The

interpolation method takes correlations between the stations

into account and identifies inhomogeneities.

2.2.2 Gridded observation data from E-OBS for air

temperature and precipitation

This data set consists of European land-only daily high-

resolution gridded data for precipitation, and minimum,

maximum and mean surface temperatures covering the

period 1950–2006. These data is provided in four different

versions, each with a different spatial resolution to allow the

validation of RCM results. Observations from about 250

stations having data over 50 years collected via the Euro-

pean Climate Assessment and Data set (ECA&D), from

other research projects like STARDEX (Haylock et al.

2006) and additional time series provided by European

National Weather Services have been interpolated. Based

on the spatial correlation of the data (altogether 2,316 sta-

tions, number varies over time) an estimation of uncertainty

is offered to the users (Haylock et al. 2008).

2.2.3 Gridded observation data from GPCC4

for precipitation

The full reanalysis product from the German Weather

Service GPCC4 is a global gridded dataset (Schneider et al.

2008) with a horizontal resolution of 0.5� and a monthly

temporal resolution covering the time period from 1901 to

2007. The reanalysis is based on quality controlled obser-

vation data from up to 67,200 stations (Rudolf et al. 2011).

2.2.4 Gridded observation data from HISTALP

for precipitation

Within the framework of the HISTALP activities at the

Austrian Weather Service (ZAMG), a high resolution

precipitation dataset was created by linear interpolation of

the gridded precipitation data set from Efthymiadis et al.

(2006). It spans the time period from 1,800 to 2003

providing gridded data on a monthly basis. The spatial

resolution is 0.08� covering the Greater Alpine Region

from 4�–19� eastern longitude and 43�–49� northern lati-

tude. (Chimani et al. 2011)

The observational datasets by CRU, E-OBS and GPCC

were interpolated to the rotated CCLM grid using a bilinear

approach considering land-/sea-fraction and a constant

height gradient for temperature of 0.0065 K/m, whereas

the HISTALP dataset was interpolated using a nearest

neighbour technique due to the similar spatial resolution.

2.3 Uncertainties in observational datasets

RCM simulations barely produce ideal results when

hindcast runs driven by reanalysis data are compared to

observations. However, gridded datasets of observed cli-

mate variables are afflicted with uncertainties as well. As

Frei et al. (2003) stated, precipitation measurements at high

alpine sites are generally afflicted with a considerable

amount of uncertainty emerging from a systematic

measurement bias. This is mainly caused by wind field

deformation and deflection of hydrometeors over the gauge

orifice, leading to significant undercatchment of precipita-

tion. Estimates of this error for the Alpine region are

largest in winter, due to high wind speed and a high frac-

tion of snowfall leading in general to underestimations of

40 % at altitudes above 1,500 m and 12 % in summer

(Frei et al. 2003).

Other potential sources of uncertainty in observational,

gridded datasets emerge from the different gridding

techniques applied (Hofstra et al. 2008; Ensor and Robeson

2008) or more simply from data quality issues (e.g.

Schmidli et al. 2001). Factors like a low station density, an

uneven allocation of stations, as well as changes in station

density over time potentially influence resultant grid-point

average estimates, especially by changes in variance

(Hofstra et al. 2009a; Perry and Hollis 2005). As a result,

extremes are much more affected than the means, espe-

cially as regards variables with large spatio-temporal var-

iability like precipitation in mountainous regions.

All these aspects are of relevance also for temperature,

although in general the effects on temperature are less than

on precipitation (Hofstra et al. 2009b). In mountainous

terrain, however, temperature can show a very complex

vertical structure even in narrow space and especially in the

winter half-year, leading to an additional uncertainty in the

gridded data, dependent on the complexity of the under-

lying terrain itself (Stahl et al. 2006; Daly 2006).

Various gridded datasets have been used in this study to

get an insight into the range of uncertainty amongst these

datasets, especially in the critical areas with highly com-

plex orography.
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Figure 2 shows the range of seasonal precipitation totals

between four different observational datasets used in this

study (CRU, E-OBS, HISTALP and GPCC). The ranges in

the upper two panels are defined as the difference of the

dataset with the maximum value and the dataset with the

minimum value of temperature and mean precipitation sum,

respectively, at each grid point. The absolute precipitation

range shows a similar pattern in each season, with the largest

uncertainties over the central Alpine region according to the

areas of highest elevation. The picture is somehow different

as regards uncertainty in terms of relative values. These have

been calculated by dividing the absolute range by the

respective seasonal mean of each dataset. Values of more

than 100 % indicate that the range is even bigger than the

mean seasonal precipitation amounts. The relative ranges as

displayed in Fig. 2 (lower panel) show a stronger signal in

winter due to the lower absolute precipitation totals in the

cold season. Nevertheless, uncertainty seems to be largest

over mountainous terrain again, indicating a much higher

relative range compared to the lowlands. Especially at some

points in the central and western parts of the Alpine Ridge,

there is little correspondence between the given datasets,

indicating large uncertainties in the observation.

2.4 Evaluation methods

The evaluation in this study has been carried out based on

seasons, and separately for the different sub-regions. The

seasons are defined as follows: winter—December,

January, February (DJF), spring—March, April, May

(MAM), summer—June, July, August (JJA) and autumn—

September, October, November (SON). Mean values

always refer to the time period 1961–2000.

The sub-regions were defined by Auer et al. (2007) by

applying a Principal Component based analysis of

HISTALP station data to study climate variability in the

Alpine region. These sub-regions are: Northwest (NW),

Northeast (NE), Southwest (SW) and Southeast (SE), each

comprising specific characteristics of temperature, precipi-

tation, pressure, sunshine duration and cloudiness. To

investigate the skill of CCLM within the mountainous ter-

rain of the study region, a fifth sub-region has been intro-

duced—the High Altitude (HI) region—indicating those

CCLM grid boxes above 1,000 m sea level in the Alpine

region. The domains of the sub-regions are shown in Fig. 1.

To assess the model skill, statistics of mean bias, correla-

tion and variability, as well as trends were calculated. In terms

of correlation, the spearman rank correlation was applied, as a

robust alternative to the Pearson product moment correlation

(Wilks 2006). To determine linear trends, simple linear

regressions on the given time series were used. The magnitude

of trends always refers to the whole length for each time period

under consideration unless specified otherwise.

Inter-annual variability is expressed in terms of standard

deviation, derived from annual totals or means of a certain

variable under consideration.

3 Results

3.1 Temperature

As compared to the CRU and E-OBS data, CCLM shows a

mean annual bias of -0.6 and -0.7 �C averaged over the

whole domain. This cold bias is largest in the Alpine areas,

as opposed to some regions south of the Alps with a slight

warm bias at different locations dependent on the obser-

vational dataset (see Fig. 3). The temperature bias in winter

(Fig. 4) is between -2 and -3.5 �C with the largest

deviation in the HI region, followed by the SW region, but

with considerable variability in space, particularly against

CRU ranging from 1� to nearly -7 �C in the HI region.

The other sub-regions show a range of cold bias spanning

from roughly -1.5 to -2.0 �C, whereas the temperature

bias in summer is close to zero averaged over all sub-

regions. While nearly no bias is apparent in the northern

sub-regions, the southern sub-regions show a warm bias

with a maximum of more than 1 �C compared to CRU and

less than 1 �C to E-OBS in the SW region. The transitional

seasons show a similar pattern with almost no bias in the

low land sub-regions. The HI region clearly stands out

against the others considering the cold bias, but also in

terms of spatial variability against the CRU dataset. This

underestimation of temperatures is somewhat stronger in

autumn, especially at higher altitudes, reaching values of

more than -2 �C (against E-OBS) in the HI region as

compared to spring. In both transitional seasons the bias in

the other sub-regions is roughly the same, spanning from 0

to 1 �C.

Similarly to the mean bias, the correlation between

modelled and observed seasonal mean temperatures

(Fig. 5) shows considerable variations between seasons and

regions. Figure 5 shows that correlation is very high in

winter in the northern sub-regions, whereas the HI region

faces lower correlations around 0.7, but with large spatial

variability that is very high against E-OBS. The opposite

pattern occurs in summer with higher correlation towards

high altitude regions. Correlation in spring is more or less

homogeneous over the whole domain, reaching values of

0.8 to 0.9. In autumn correlation reaches 0.8 in the eastern

sub-regions, whereas the western sub-regions and the HI

sub-region show lower correlation of 0.7, but with higher

spatial variability compared to the eastern sub-regions.

The main characteristics in the representation of the

mean annual cycle of temperature in the CCLM simula-

tions are an underestimation in winter, followed by a
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Fig. 2 Seasonal range between gridded observational datasets for

temperature (CRU, E-OBS, upper panel) and precipitation (CRU,
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decreasing bias towards spring and evolving into an over-

estimation in late summer and early autumn (cf. Fig. 6).

The weakest bias is evident in the Northern sub-regions

with modest overestimation in the warm season. The cold

bias in winter is in a range of -1 to -2 �C, with largest

values mostly in December. The temperature bias shows a

very pronounced dependency on the seasons in the south-

ern and the HI sub-regions. Substantial differences in the

temperature bias occur in the SW sub-region with a bias

range of 5 �C spanning from -3� in winter to ?2 �C in

summer. In the HI sub-region a somewhat smaller bias

range is evident, but with a shift towards intensified cold

bias, particularly compared to E-OBS where no warm bias

occurs in summer.

To evaluate the performance of CCLM in reproducing

the year to year variability of 2 m temperature, the standard

deviation of detrended time series of seasonal temperatures

averaged over the sub-regions is calculated. Figure 7

summarizes these results showing the highest values of

standard deviation in winter especially in the northern sub-

regions and the lowest in summer. CCLM is not fully able

to reproduce this characteristic, which is mainly due to the

overestimation of variability in summer and autumn,

apparent in every sub-region, with the least differences in

the HI region. A possible reason for this behaviour can be

determined when looking at the time series of summer

temperatures (see Fig. 15), where CCLM shows a strong

warm bias in the first 10 years of the simulation resulting in

higher variability than observed. The variability in CCLM

in winter is somewhat overestimated, particularly in the

western sub-regions, whereas deviations are small in the

eastern sub-regions and the HI region. The year to year

variability is best simulated in spring, when only minor

differences between CCLM and observations arise. As a

matter of fact, the HI region is the best simulated one in

terms of year to year variability of temperature.

As stated in Sect. 2.3, the uncertainties in the observa-

tional datasets of temperature are largest in the high alpine

regions, mainly due to low station density. As a conse-

quence, the results of the bias, correlation and variability
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analysis should be interpreted with caution, particularly in

the HI region because the deviations might be a combi-

nation of both model bias and lack of gridded observations

in these areas.

3.2 Precipitation

The simulation of annual mean precipitation totals in

CCLM is characterized by a mean bias which is between

?8 to ?23 % when averaged over the whole domain

dependent on the observational dataset. The spatial patterns

thereof are displayed in Fig. 8, showing a pronounced wet

bias in the Alps and the northern surroundings, as well as a

dry bias mainly occurring south of the Alps. The mean

seasonal bias averaged over each sub-region is shown in

Fig. 9. The overall bias in winter is mainly generated in the

northern sub-regions and over the high elevated parts of the

domain. South of the Alps precipitation is simulated quite

well with a mean bias between 0 and ?15. Spring shows a

similar pattern but with an increase in wet bias particularly

in the northern sub-regions and the HI region. In summer a

relatively inhomogeneous pattern with biases from -20 to
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?20 % in the lowlands is apparent, with wet bias mainly in

the HI region. Autumn is the season with the largest

underestimation of precipitation, which occurs in the

southern sub-regions ranging between -40 and -20 %

according to the different observations. Only the NW

regions show a positive bias against all observations.

The temporal correlations of seasonal precipitation

amounts between CCLM and observations show large

variations depending on the respective season (Fig. 10). In

winter, values are highest reaching 0.8. A clear decrease of

the correlation towards the warm season is visible, with

values around 0.4 in summer. In autumn the correlation is

substantially higher, but with a gradient from high corre-

lation in the West of around 0.7 to lower correlation in the

eastern parts of the domain of about 0.5.

The annual cycle of CCLM precipitation is character-

ized by an overestimation in spring and an underestimation

in autumn, with the magnitude of deviation dependent on

the sub-region (cf. Fig. 11). The results for the NW region

show a general overestimation over the year with least

deviation in September, compared to the other low land

sub-regions. These regions show a positive bias mainly in

winter and spring with values up to ?40 mm and a nega-

tive bias in late summer and autumn. In the HI region a

similar pattern is apparent, but with an intensified wet bias

in winter and spring and large ranges amongst the datasets

of 20 to 40 mm.

The year to year variability of seasonal precipitation

amounts in CCLM and observations is displayed in Fig. 12

in the same way as for temperature (cf. Fig. 7). In winter

only small deviations to the observations occur, except for

the HI region where CCLM overestimated variability.

Spring is characterized by a minor overestimation in each

region. In summer these positive deviations are even larger

and also the spatial variability in CCLM is exceptionally

higher, particularly in the southern sub-regions. In autumn

only small differences of CCLM to observations are

apparent; some underestimations occur in the southern sub-

regions and minor overestimation is evident in the northern

sub-regions and the HI region.

The seasonal bias of wet days (number of days with

precipitation [1 mm in a given time period, RR1) and the

simple daily intensity index (precipitation sum divided by

the number of days in a given time period, SDII) of CCLM
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Fig. 7 Standard deviation of seasonal mean temperatures averaged

over sub-regions of CCLM (black circles), CRU (green squares) and

E-OBS (purple circles), the upper and lower bars indicate the spatial

variability within a sub-region (5th and 95th percentile of the

distribution of all grid points within a sub-region)
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Fig. 8 Mean annual precipitation bias, CCLM minus CRU, E-OBS, HISTALP and GPCC
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against E-OBS in each sub-region was calculated (van

Engelen et al. 2008) and is displayed in Fig. 13. In winter

an overestimation of wet days can be seen in each sub-

region, whereas the SDII shows only a weak bias. This

means that the overall bias in winter is mainly caused by an

overestimation of rain events, whereas intensity is simu-

lated well. In spring a striking positive bias of RR1 in the

HI region contrasts the rather low positive bias in the SDII,

consequentially leading to the season with the largest

overall wet bias. The summer season is characterized by an

underestimation in RR1, except for the HI region. In con-

trast to the RR1 bias the SDII bias shows large positive

deviations over the entire domain. This leads to fewer rain

events with higher intensities, which in turn results in a

reasonable simulation of mean summer precipitation

amounts (cf. Fig. 9). The overall negative bias in autumn is

to a large part caused by an underestimation of wet days,

except for the HI region which shows a positive bias. The

bias pattern of SDII in autumn shows only minor bias. In

the latter case, the underestimation of wet days results in a

dry bias in autumn in the southern sub-regions.

Gridded datasets for precipitation are afflicted with a

considerable amount of uncertainty, especially regarding

the alpine areas and the winter season. As shown in Fig. 2,

the range of precipitation between the observational data-

sets in the HI region in winter is above 60 % relative to the

mean for most areas. This has a major impact on the bias of

CCLM as shown in Fig. 9. The precipitation bias against

CRU is roughly ?10 % in winter in the HI region, span-

ning from -60 to ?80 % within the sub-region. On the

contrary, CCLM vs. GPCC shows a mean bias of ?70 %,

ranging between 0 and almost ?140 %. Considering
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Fig. 9 Seasonal precipitation bias in sub-regions, CCLM minus CRU
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and GPCC (yellow diamonds) respectively; the upper and lower bars
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temporal correlation in winter, the deviations among the

observational datasets used for calculation are again sub-

stantial, ranging between 0.65 and 0.85.

3.3 Temperature trends

Figure 14 shows the linear trend of seasonal mean 2 m

temperatures in every grid box. The upper panel displays

the trends derived from CCLM, in the middle and the lower

panel trends from the CRU and E-OBS datasets are plotted.

The most striking feature in this figure is the difference in

the trend signal between the model and the observations.

The trends coincide only in winter, with positive trends of

1 to 2 �C in CCLM, CRU and E-OBS, except for some

areas in CCLM that show a weaker trend, for example in

the central and southern Alpine regions. In the other sea-

sons, there appears to be no dependence of temperature

trends on orographic features in the CRU and E-OBS

datasets. CCLM, however, shows a shift from positive

trends of 0.5 �C in the northwest of the domain to -1 �C in
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Fig. 11 Mean annual cycle of precipitation of CCLM (black circles),

CRU (black hollow squares), E-OBS (black hollow circles),

HISTALP (black hollow triangles) and GPCC (black hollow

diamonds) and precipitation bias of CCLM against CRU (green
squares), E-OBS (purple circles), HISTALP (red triangles) and

GPCC (yellow diamonds) respectively, averaged over sub-regions
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Fig. 12 Standard deviation of seasonal precipitation totals averaged

over sub-regions of CCLM (black circles), CRU (green squares),

E-OBS (purple circles), HISTALP (red triangles) and GPCC (yellow

diamonds); the upper and lower bars indicate the spatial variability
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the south eastern part in spring. In summer, generally

negative trends occur in CCLM, primarily in the northern

sub-regions, but also in some areas of the southern

sub-regions. In the Alpine Ridge, however, the trends of

summer temperatures in CCLM are sharply standing out

against the surrounding regions showing only weak posi-

tive trends. In autumn, the CRU and E-OBS data show a

patchy spatial pattern of areas with positive and negative

trends. This is in contrast to the CCLM simulation where

an overall negative trend of -1 �C or even larger occurs.
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Fig. 13 Seasonal bias in the number of wet days (RR1) on the left
panel in absolute (top) and relative (bottom) values and seasonal bias

of the simple daily intensity index (SDII) on the right panel in

absolute (top) and relative (bottom) values between CCLM and

E-OBS, averaged over sub-regions

DJF

C
C

L
M

MAM JJA SON

−2
−1
−0.8
−0.6
−0.4
−0.2
0.2
0.4
0.6
0.8
1
2

[°C/40yrs]

DJF

C
R

U

MAM JJA SON

−2
−1
−0.8
−0.6
−0.4
−0.2
0.2
0.4
0.6
0.8
1
2

DJF

E
−O

B
S

MAM JJA SON

−2
−1
−0.8
−0.6
−0.4
−0.2
0.2
0.4
0.6
0.8
1
2

Fig. 14 Linear trend of seasonal mean temperatures at every grid point simulated by CCLM (upper panel) and the gridded observations by CRU

(middle panel) and E-OBS (lower panel)
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It should be noted that the linear trend is a highly sen-

sitive measure when used to determine model skill, as

regards outliers at the beginning or the end of the time

series. To get a more robust measure, floating trends are

used; each calculated over a time period of 15 years in steps

of 2 years from seasonal mean values of temperature over

the whole GAR. The results are plotted in the upper panel of

Fig. 15, which shows the seasonal 15-year floating trends as

points on the location of the 8th year (middle of the period)

for CCLM, CRU and E-OBS and also for the ERA40 data

and the first nesting step of CCLM with a spatial resolution

of 50 km. Overall, model and observations coincide in

winter, when the steep, wavelike structure of rising and

falling trends is mostly captured by CCLM. Larger differ-

ences appear in spring, when CCLM constantly shows

stronger negative trends in the first half of the period and

weaker positive trends in the second as compared to the

observations. Over the entire period, a balanced trend in

CCLM is observed. In summer, this behaviour of the model

is more pronounced, with trends being strongly negative at

the beginning, switching to a positive signal at the end of the

1970s and turning negative at the end of the whole period

again. This is in contrast to the observations that show

continuous positive trends after 1975. In autumn, the

observations show a wavelike progression of the floating

trends similar to the winter season, but with smaller

amplitude. CCLM is able to simulate this wave feature quite

well, but strongly overestimates the negative trends at the

beginning and the end of the period, which results in an

entire negative trend that cannot be detected in the CRU,

E-OBS or ERA40 data in that order of magnitude.

When analysing ERA-40, it becomes evident that the

disparity of trends is not an artefact arising from the driving

data, because ERA-40 trends match CRU and E-OBS quite

well. The disparity may be caused by a shortcoming of the

CCLM simulation at the first nesting step (CCLM_50 km),

when these trends start to become apparent, with only

minor differences in the summer season.
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Fig. 15 Upper panel: seasonal 2-year floating trends (15 year

periods) averaged over the GAR from CCLM (black circles),

CCLM_50 km (first nesting step, grey hollow circles), ERA40 (grey
crosses), CRU (green squares) and E-OBS (purple circles); lower

panel: time series averaged over the GAR of seasonal mean

temperatures from CCLM (black), CCLM_50 km (grey dashed line),

ERA40 (grey chain line), CRU (green) and E-OBS (purple) and the

corresponding bias as well as the trend values of the bias
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In the lower panel of Fig. 15, the corresponding time

series of seasonal temperature of the floating trends are

plotted, revealing a potential cause for this mismatch of

decadal trends. The bias of seasonal temperatures develops

from positive or neutral conditions in the beginning to

negative values at the end of the period in all seasons,

except in winter. The trends of the bias in spring, summer

and autumn are all significant at 95 % using the non-

parametric Mann-Kendall trend test and range between -1

and -1.7 �C/40 years. In winter, the model results show

negative trends in the bias as well, but weaker and sig-

nificant only against CRU. This in turn could lead to the

hypothesis that there might be systematic temperature

drifts in the simulations.

3.4 Altitude dependencies

Based on the investigation of seasonal mean bias and

correlation in the different sub-regions, a strong altitude

dependence of the results can be assumed (cf. Sects. 3.1

and 3.2). In this section, the relation between model skill

and altitude will be investigated in greater detail. In every

season, except in summer, an increasing negative bias

(Fig. 16) is obvious. In summer, the bias is positive at

altitudes below 500 m.s.l; above this height, the bias is

negative against E-OBS and positive against CRU.

The height dependence of the correlation is character-

ized by substantial differences among the seasons. Winter

shows high correlation in grid boxes below 1,000 m.s.l,

whereas a rapid decrease is visible beyond this level,

dropping to values of 0.5 mean correlations in elevations

around 2,500 m.s.l. This situation is different in summer,

when the correlation is lowest in the plains ranging

between 0.4 and 0.7 and increases continuously with

heights up to 1,500 m.s.l. Thereafter, the correlation is

fairly stable at the mean value of 0.7. In autumn, the cor-

relation is generally high (0.8), with a slight decrease above

2,000 m.s.l. The values of the correlation in spring are

again high (0.8) at all altitudes.

The bias and correlation of precipitation shows larger

variations for height than for temperature dependence. In

winter, an enhanced wet bias with altitude is apparent only

against the HISTALP and GPCC datasets, whereas CCLM

against CRU and E-OBS shows no clear altitude depen-

dence. Spring is characterized by a similar pattern, but the

increasing wet bias against HISTALP and GPCC is less

pronounced. In summer, the bias pattern is comparable

among the observational datasets, with increasing bias

from 0 to 1,500 m.s.l. and decreasing bias above. Autumn

shows no altitude dependence in bias of CCLM against

CRU and E-OBS, whereas it is increasing with height

against HISTALP and GPCC.
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Fig. 16 Bias (upper panel) and correlation (lower panel) of seasonal

mean temperature (CCLM vs. CRU in green and E-OBS in purple)

plotted against the corresponding altitude; the thick curves represent

the mean in 100 m classes of altitude smoothed with a Gaussian low

pass filter, the thin lines represent the smoothed 5th and 95th

percentile of the distribution in every altitude-class; above

2,400 m.s.l. the curve of the mean value is dotted and the confidence

lines are missing because of too little grid points beyond this altitude

to reasonably calculate percentiles
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The correlation of precipitation against altitude does not

indicate any clear height dependence (cf. Fig. 15). Only

autumn shows an increase in correlation with higher levels

of altitude.

In the light of the mentioned uncertainties in the

observational datasets in high alpine terrain, the interpre-

tation of this height dependency is problematic for deter-

mining model skill. This is the case especially for

precipitation, where the spread of bias in winter ranges

from 0 to 100 % between the observations. This spread is

reduced in summer, but is still in a range of -20 to ?30 %.

When considering temperature, bias with height coinci-

dence amongst the observations is found from 0 to

*800 m.s.l; beyond that altitude, the spread reaches 1 �C

or more at 2,400 m.s.l. (Fig. 17).

As shown in Fig. 12, observed seasonal mean temper-

ature trends are poorly represented by CCLM. Apart from

that, trends in the model show a dependence on altitude,

whereas the observations do not, especially not in winter

and summer. In Fig. 18, scatter plots of temperature trend

against altitude are shown for winter and summer. CCLM

shows a kind of ‘‘S’’-shape in vertical trends in winter

(upper panel), with weaker overall trends towards higher

altitudes. This is in contrast to the observations, where no

height dependence is observed in the CRU data and slightly

larger positive trends appear in the E-OBS data above

1,000 m.s.l. As opposed to that, increasing trends with

altitude in CCLM can be detected in summer (lower panel),

starting with negative values from 0 to 1,500 m.s.l. and

shifting to positive trends at higher altitudes. The obser-

vational data show uniform trends of about 1.5 �C/40 years

at all height levels. The only difference in the observations

is the diverse spread, in winter as well as in summer, being

closer around the mean in CRU and wider (3 �C/40 years)

in E-OBS.

4 Discussion

The results show that the CCLM model, with the specific

setup used in this study, is basically able to simulate the

spatial and temporal characteristics of seasonal climate in

the Central European Alpine Region. The mean biases are

of similar magnitude as those in other RCM simulations

focusing on the Alpine Region, as several studies have

shown (Bucchignani et al. 2011; Davin et al. 2011;

Kotlarski et al. 2010; Jaeger et al. 2008; Roesch et al. 2008;

Kotlarski et al. 2005). Differences are mainly due to the use

of different model versions, model setups and driving data.

The evaluation of ERA-40 driven CCLM hindcast simu-

lations by Jaeger et al. (2008) e.g., show a reasonable

simulation of winter temperatures except for the moun-

tainous regions, but a strong underestimation of summer

temperatures, which is in contrast to our results that show a
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Fig. 17 Bias (upper panel) and correlation (lower panel) of seasonal

precipitation sums (CCLM vs. CRU in green, E-OBS in purple,

HISTALP in red and GPCC in yellow) plotted against the corre-

sponding altitude; the thick curves represent the mean in 100 m

classes of altitude smoothed with a Gaussian low pass filter, the

thin lines represent the smoothed 5th and 95th percentile of the

distribution in every altitude-class; above 2,400 m.s.l. the curve of the

mean value is dotted and the confidence lines are missing because of

too little grid points beyond this altitude to reasonably calculate

percentiles
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pronounced cold bias in winter and reasonably simulated

temperatures in summer. Besides that, the bias of precipi-

tation can be compared to our simulations, with an over-

estimation of rainfall in winter and the highest values of

wet bias at the northern rim of the Alps. The simulation of

summer precipitation shows a prominent dipole pattern

with a wet bias north of the Alpine Ridge and a dry bias on

the southern slopes of the Alps. Overall, the simulations

show both similarities and contradictions; an in-depth

comparison, however, is not reasonable because of the

different model versions, parameterization schemes, sur-

face boundary conditions etc., as mentioned above.

Bearing in mind that our simulations cover the highly

complex orography of the European Alps, the investigation

of height dependence of the model skill is an important

issue. CCLM shows an intensification of cold bias with

increasing height, as well as a simultaneously increasing

wet bias in higher altitudes. This relationship of elevation

and temperature and precipitation bias might originate

from an overestimation of rainfall in the high alpine areas,

which can in turn lead to an underestimation of mean

temperature due to snow cover, moisture and evaporation

feedbacks. Kotlarski et al. (2010) have shown that their

simulation of Alpine climate with the RCM REMO also

faced an altitude dependence of precipitation bias, with an

increase of wet bias mostly between 1,000 and 2,000 m sea

level and a decrease of bias between 2,000 and 3,000 m.

They concluded that this bias could be caused by a missing

advection scheme for rain and snow from one grid box to

another, leading to an overestimation of precipitation on

the windward slopes and an underestimation downwind

(Kotlarski et al. 2010). The CCLM used in this study has an

advection scheme for drifting rain and snow, so this may

not be the main reason for the specific bias patterns in our

simulations. Kotlarski et al. also argued that the effect of

non-smoothed model topography leads to sharp gradients

between neighbouring grid boxes and the generation of

small scale gravity waves (Roe 2005), which can cause a

dislocation of zones of up- and downdraft on a coarse

model grid. This might come along with too early con-

densation of water vapour and a too early occurrence of

precipitation when humid air masses are lifted over an
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Fig. 18 Temperature trend at every grid point plotted against altitude

for winter (upper panel) and summer (lower panel) and for CCLM

(black), CRU (green) and E-OBS (purple), with the scatter plot of

CCLM plotted in the background of the observation plots; the thick
curves represent the mean in 100 m classes of altitude smoothed with

a Gaussian low pass filter
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orographic obstacle. These may have been part of the

reasons for the bias patterns of precipitation in our inves-

tigation, but probably only for the summer season and

partly for autumn, when there is a pattern of dry to no bias

at the highest ridges of the Alps surrounded by consider-

able wet bias towards the north and the south. The other

seasons show diverse patterns with largest wet bias arising

mainly over the Alpine crest. An in depth investigation of

possible reasons and mechanisms leading to this altitude

dependence of precipitation bias would go beyond the

scope of this study, but there is definitely a strong demand

for further simulations and sensitivity studies with special

focus on that issue.

Apart from evidences that CCLM shows some insuffi-

ciencies in simulating Alpine climate, uncertainties in the

observational datasets which the model results are com-

pared to, have to be taken into account. The uncertainties

are evident in both precipitation and temperature datasets,

although they are much higher in the gridded rainfall data,

particularly in winter and the alpine regions. The analysis

showed that the precipitation bias of CCLM in winter in

these areas (?10 to ?70 %) is in the same order of mag-

nitude as the uncertainties (range between the datasets of

roughly 50 % relative to the mean) in observational data.

This uncertainty expressed as a spread between the datasets

relative to the mean is lower in the other seasons, mainly

due to the higher absolute precipitation rates. The absolute

range amongst the datasets is in the same order of mag-

nitude in each season. So the bias of CCLM is not just an

expression of the model shortcomings, but has to be seen as

combined information on model performance and dataset

performance. As our results show, the attribution of skill to

the CCLM is strongly dependent on the observational

dataset used for comparison. It is therefore suggested that

the evaluation of RCM performance should be carried out

using as many datasets as possible for bias calculation to

take all uncertainties rigorously into account.

Apart from altitude dependent model and observational

dataset performance, the simulation of observed tempera-

ture trends is another important issue in this investigation.

The positive trends in CCLM are generally weaker than in

the observations, and even switch to a negative sign, which

contradicts the trends found in the observational datasets.

The differences are largest in spring, summer and autumn

with more or less pronounced negative trends over the

whole domain as simulated by CCLM in comparison to

generally positive trends in CRU and E-OBS in spring and

summer and weak varying trends between a positive and a

negative trend sign in autumn. The analysis of seasonal

temperature progression revealed a pronounced overesti-

mation of temperature in summer at the beginning of the

simulation, followed by a convergence of model tempera-

tures towards observed values at the end of the simulation

period, which produced the overall negative trend in

summer. In spring and autumn, the situation is somehow

different, with simulated temperatures being close to the

observed ones at the beginning of the investigation period,

but drifting into cooler conditions as observed by CRU or

E-OBS, which leads to similar features of negative trends

over the whole simulation period. The prominent feature of

strongly overestimated summer temperatures at the begin-

ning lead to the assumption that these biases are caused by

flaws in the simulated surface energy balance. An inves-

tigation of model soil moisture, latent and sensible heat

flux (not shown) revealed that the initial state of soil water

is far too dry, because within the 3 years of the model spin-

up (1958–1960), the relative soil wetness was doubled as

compared to the initial values. After the model spin-up,

there is still a slight positive trend in soil moisture appar-

ent, which is negatively correlated to the temperature trend.

Due to the important role of soil moisture for the energy

balance at the surface (Jaeger and Seneviratne 2010) and

related feedbacks, the lack of soil moisture at the beginning

might cause the trend reversal in the CCLM simulations.

However, this is just a first guess and further analysis is

required to get a better understanding of all processes

involved. We also conclude that the flawed trend repre-

sentation is not a matter of the ERA-40 driving data, since

the trends in the reanalysis are similar to those of CRU and

E-OBS.

The analysis of temperature trends also revealed distinct

altitude dependence, especially in the summer season. The

trends are negative in the lowland areas of the northern

sub-regions and switch to positive ones above 1,500 m sea

level. This behaviour can also be observed in other RCM

simulations (Ceppi et al. 2010), but with stronger variations

in magnitude. On the contrary, this altitude dependence

cannot be seen in CRU and E-OBS observations, and in

addition, trend signals are much more pronounced than

those from CCLM. This might be a consequence of limited

soil moisture in high mountain areas leading to weaker

related energy balance feedbacks as compared to the low-

lands, resulting in a slight positive trend signal above

1,500 m sea level.

5 Conclusions

This paper presents a comprehensive evaluation of climate

simulations for the Greater Alpine Region for past condi-

tions from 1961 to 2000, conducted with the CCLM

regional climate model driven by ERA-40. Four different

observational datasets have been used to assess the model

skill of temperature and precipitation by analysing the

seasonal mean bias and correlation, representation of the

annual cycle and inter-annual variability in five different
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sub-regions, proportion of wet days and rainfall intensity,

as well as temperature trends and altitude dependencies of

bias, correlation and trends. The main findings of this study

are:

• The overall temperature bias of -0.7 to -0.8 �C and

precipitation bias of ?8 to ?23 % are similar to results

from other evaluation studies carried out for RCM

simulations covering Europe and the Greater Alpine

Region.

• A considerable cold bias is apparent in winter (-1.5

to -4 �C), particularly at high elevations above

1,000 m.s.l.

• The wet bias in CCLM is most dominant in winter and

spring and the HI region throughout the year. Espe-

cially in the northern sub-regions and at high elevated

areas above 1,000 m.s.l, bias is largest, especially in

winter, with values of ?10 to ?70 %, which might be

caused by additional uncertainty in the observational

datasets.

• A disproportion of wet days and rainfall intensity is

apparent mainly in summer, with an underestimation of

wet days accompanied by an overestimation of rainfall

intensity in the lowlands.

• The CCLM simulations show negative temperature

trends in spring, summer and autumn to a large extent.

This is quite contrary to the observations, where mostly

positive trends are perceived.

• Both temperature and precipitation biases are altitude

dependent, showing increasing biases along with

height.

• The summer temperature trends in CCLM also show

pronounced altitude dependence, which cannot be seen

from observational data.

• Gridded datasets of observed temperature and precip-

itation are afflicted with a considerable amount of

uncertainty, particularly in areas with complex orogra-

phy and high elevation, which makes the assessment of

model skill difficult.

In summary, the performance of CCLM is similar to

other ERA-40 driven simulations for Europe or the

Greater Alpine Region, but biases of temperature and

precipitation are rather large, even on a seasonal basis.

Especially for the needs of climate impact research over

complex mountain terrain like the Alps, the CCLM-model

has to be improved in terms of temperature and precipi-

tation. Additional detailed analysis is required to detect

specific processes responsible for the model shortcomings

on a daily basis, in order to improve the model. This

study also confirmed that there is demand for improved

gridded observational datasets over alpine terrain to

reduce uncertainties in the model skill assessment and

that it is not reasonable to compare the evaluation of

RCM results to only one observational dataset, because

major differences in the different observational datasets

are apparent, particularly for precipitation datasets over

complex terrain.
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