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Abstract The wind power generated during winter

months 1999–2003 at several wind farms in the north-

eastern Iberian Peninsula is investigated through the

application of a statistical downscaling. This allows for an

improved understanding of the wind power variability and

its relationship to the large scale atmospheric circulation. It

is found that 97 % of the variability of this non-climatic

variable is connected to changes in the atmospheric cir-

culation. The methodological uncertainty associated with

multiple configurations of the statistical downscaling

method replicates well the observed variability of the wind

power, an indication of the robustness of the methodology

to changes in the model set up. In addition, the use of the

statistical model is extended out of the observational period

providing an estimation of the long-term variability of

wind power throughout the twentieth century. The exten-

ded wind power reconstruction shows large inter-annual

and multidecadal variability. Alternative approaches to

calibrate the empirical downscaling model using actual

wind power observations have also been investigated. They

involve the estimation of wind power changes from

downscaled wind values and make use of several transfer

functions based on the linearity between wind and wind

energy. The performance of the latter approaches is similar

to the direct downscaling of wind power and may allow

wind power production estimations even in the absence of

historical wind turbine records. These results can be of

great interest for deriving medium/long term impact-ori-

ented energy assessments, especially when wind power

observations are missing as well as in the context of cli-

mate change scenarios.
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1 Introduction

The impacts of the climate change on a wide range of natural

(physical and biological) and human managed systems have

experienced a significant growing attention during the last

decades (Nicholls et al. 2001; Parry et al. 2007; Munslow

and O0Dempsey 2010; Adnan and Atkinson 2011).

Climate impact models are valuable tools to explore the

connections between climatic forcings and impacts on

ecosystems. There is an extensive variety of impact-ori-

ented applications that calls for methodologies providing

climatic information at the spatial scales not resolved by

General Circulation Models (GCMs). Examples of the last

are river flows and runoff studies (Tisseul et al. 2010;

Chiew et al. 2010), agriculture (Zhang 2005), health (van

Lieshout et al. 2004) and air quality assessments (Nolte

et al. 2008). Extreme events analyses such as strong pre-

cipitation episodes (Toreti et al. 2010), heatwaves
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(Kuglitsch et al. 2010) or hurricanes intensity and fre-

quency assessments, often required by insurance compa-

nies (Bender et al. 2010) also pertain to the context of

impact studies. Statistical downscaling methodologies are

frequently applied as they can provide reliable estimations

of the climatic variables required by impact models at the

regional/local scale (Chu and Yu 2010). Alternatively,

Regional Circulation Models (RCMs) render estimates

with suitable spatial resolution that could serve as inputs to

the impact models (Pryor et al. 2005a).

One key aspect of relevance for society that can be

subject to the impact of a potential climate change in the

future, is the accessibility to energy resources. Further, the

conflict between the availability and the increasing energy

demand steers a controversial debate between policy

makers, ecologists and society in general (Agarwal et al.

2010). The dispute stresses the search of ad hoc solutions

to fulfill the energy requirements of an increasing global

population and comfort-demanding societies (DTI 2006;

Dermibas 2009). Considerable effort in the search for new

and cleaner energy supplies as substitute to the fossil-fuel

reserves, has been made (Hohmeyer and Trittin 2008) with

wind energy being one of the resources that has received

most attention during last decades. As a consequence, the

evaluation of its variability and predictability together with

an improved understanding of the inherent relation with its

primary agent, the wind, is of great relevance in the frame

of renewable energy resource (Mathew et al. 2002; Pryor

et al. 2005a; Edenhofer et al. 2011).

A limitation to the understanding of the relation between

wind speed and wind power is usually imposed by the

insufficient availability of historical power production

records. Therefore, a classic handling of the wind power

resource evaluation is based on the use of a theoretical

probability distribution function (PDF) (Li and Li 2005;

Pryor et al. 2005b). Wind turbine outputs have only

recently become available. This favours the treatment of

the power production as an independent variable alterna-

tively to the classical procedures that obtain wind energy

density as a wind related variable (Akpinar and Akpinar

2005; Jamil et al. 1995; Weisser and Foxon 2003; Pryor

and Schoof 2005). Thus, the analysis of this non-atmo-

spheric variable as a response to the large scale circulation

constitutes a new opportunity to the topic. This is therefore

aligned with impact-oriented studies where the under-

standing of the relationship between the power generation

and its main driver, the wind, and eventually the atmo-

spheric circulation becomes of relevance.

In this line, Garcı́a-Bustamante et al. (2009; GBea09

hereafter) showed the existence of a linear relation between

wind and wind power using wind power records from

several wind farms in the northeastern Iberian Peninsula

(IP). The linear association was found at the monthly

timescale despite the fact that at shorter timescales the

expected relation is cubic (Palutikof et al. 1987). In addi-

tion, Garcı́a-Bustamante et al. (2012; GBea11 hereafter)

described the connection between the large scale atmo-

spheric circulation and the wind field over the same region

applying a statistical downscaling method based on a

combination of Principal Component Analysis (PCA) and

Canonical Correlation Analysis (CCA). This method

assumes linearity between the predictor and predictand

simultaneous variations. GBea11 found that the variability

of the regional wind (predictand), although modulated by

orography, is governed to a great extent by the large scale

circulation (predictor). Therefore, considering the transfer

of linearity between variables, the question arises whether a

linear relationship can also be identified between the large

scale atmospheric circulation and the wind power produc-

tion at monthly timescales. To test this a downscaling

procedure as in GBea11 is applied here to monthly wind

power production in the role of the predictand.

The analysis that follows illustrates an impact-like case

study in order to provide direct wind power downscaled

estimations. This topic has not yet been documented in the

literature. In addition, optional strategies can be proposed

based first on the estimation of the wind field (GBea11) and

subsequently the conversion of the downscaled wind into

wind power estimations using the observed linear relation

between monthly wind and wind power (GBea09). There-

fore, the linearity, either between wind power and wind

speed or as an inherent feature of the downscaling meth-

odology, that searches for linear associations between the

predictand and predictor fields, underlies the arguments for

all methodological variants explored within this work.

Moreover, the validity of a regional linear association

between wind speed and wind power, that is suitable for all

wind farms in this study will be discussed. This last method

offers advantages as wind power could then be estimated at

locations without available records of energy production.

The long-term variability of the wind power production

is of interest in diverse applications. For example, the wind

resource evaluation for companies and investors requires

an analysis of the interannual and decadal fluctuations of

the wind energy. An interesting question in this long-term

context is whether independent wind speed and power

production past estimates maintain the linear relation (see

Fig. 1 in GBea09). It allows for estimating wind power

from wind prior the instrumental period. In addition, the

long-term trends of wind power production or the presence

of periods with high/low anomal variations of power gen-

eration are of relevance for the wind resource sustainability

as well as the wind power production system (Thomas

et al. 2009).

The present analysis includes an evaluation of the

methodological variance that accounts for the impact on
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estimations due to changes in the downscaling model

configuration and provides thus insight into the uncertainty

associated with wind power estimates. The methodological

variance can be considered as one source of the whole

cascade of uncertainties that affects the regional climate

estimations and propagates from large to regional and local

scales (Mitchell and Hulme 1999; Schwierz et al. 2006). At

the regional scale, estimates of climatic variables may be

affected by the selection of the methodology. The use of a

particular methodology also involves a degree of uncer-

tainty that relates to the selection of a certain configuration

of the model. For instance, changes in the choice of

physical parametrizations (Zhang and Zheng 2004) in the

case of dynamical downscaling models or the choice of

parameters that are relevant in the design of the statistical

downscaling method may also introduce some variability

within the regional estimates. This particular source of

uncertainty is not usually explored in the case of statistical

downscaling models (Huth 2000, 2004) and novel for a

wind power variable. We present a sensitivity analysis of

wind power downscaled estimates conceptually similar to

that in GBea11, where the methodological variance asso-

ciated with downscaled wind estimates was explored by

allowing variations in the parameters of the downscaling

model set up.

The following section describes the study region and the

datasets used. Section 3 briefly presents the downscaling

methodology and its application to wind power and large

scale atmospheric circulation predictors. In this section we

also evaluate the methodological uncertainties associated

with wind power estimations. The wind power long-term

variability based on past estimates back to 1850 is further

explored and its implications in the context of wind energy

resource assessment are discussed. Section 4 investigates

several variants to estimate wind power production and

compares their ability to reproduce the observations to

results from Sect. 3. Moreover, the application of the latter

approaches is presented in Sect. 4 as an inference exercise.

Potential benefits for the assessment of wind energy

availability and sustainability in the absence of wind power

historical records are discussed therein. Finally, in Sect. 5

the conclusions are provided.

2 Data and region under study

The Comunidad Foral de Navarra (CFN, Fig. 1) is a

region of intricate orography where testing the ability of

downscaling methods represents a challenge. Moreover,

the spatial focus over the CFN is attractive as the region

has gone through a notable development in the use of

renewable energies during the last decades, in combina-

tion with a compatible energy policy showing significant

contributions to the regional energy generation capacities

(Faulin et al. 2006). The reader is referred to (Jiménez

et al. 2008, 2009; GBea11) for further descriptions of the

region.

The analysis is based on the wind speed and wind power

production data recorded at three wind farms at the CFN

(Aritz, El Perdón and Alaiz, blue squares in Fig. 1, top

right). A wind power production time series from each

wind farm was obtained by calculating the spatial average

of the power outputs from every wind turbine at each wind

farm (Garcı́a-Bustamante et al. 2008; GBea08 hereafter).

Wind data series were also collected from anemometers

located at the hub height of wind farm turbines, between 30

and 45 m. Wind and wind power records span throughout

the period June 1999 to May 2003. Ideally the observa-

tional series would cover a period long enough to allow for

an accurate representation, not only of the intra-annual, but

also of the long-term variability of the wind power. How-

ever, the length of the calibration period is imposed by the

availability of observed records. Nevertheless, statistical

models have successfully been applied in cases with

observational periods no longer than a decade (Huth 2002,

2004; Orlowsky et al. 2008).

Monthly values were calculated from the original hourly

records. The monthly temporal resolution allows for fil-

tering short term fluctuations of the power production that

relate to more local effects and technical aspects (such as

manipulation or shading between turbines) that distort the

wind speed-wind power linear relationship. An example of

time series at El Perdón, is shown in Fig. 1. Standardized

monthly wind (green) and wind power production (blue)

show large intra- and interannual variability and evidence

the linear connection between changes in time of both

variables for the whole period of observations (GBea09).

Correlations between monthly wind and wind power at

Aritz, El Perdón and Alaiz reach 0.76, 0.94 and 0.96,

respectively.

In addition, an extended wind dataset with observations

from January 1992 to September 2005 is employed in the

last part of the study to illustrate the relative performance

of alternative methods to obtain wind power estimates. The

geographical distribution of the 29 meteorological stations

within this dataset and the observed mean wind field

(vectors) are shown in Fig. 1 (top). The channeling effect

of the Ebro Valley is obvious. Drier and colder winds with

a dominant NW-SE orientation are known as Cierzo; the

wind from the opposite direction (Bochorno) is milder and

moister (de Pedraza 1985; Garcı́ a and Reija 1994). Some

stations in the central and northern parts of the region show

a slightly different orientation of the mean flow. These sites

correspond to a good degree to locations with more com-

plex orographical features and to more windy sites like the

wind farms. This can also be identified in Fig. 1 (top)
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examining the solid red (dashed grey) contours that rep-

resent the mean (standard deviation) wind velocity.

Both datasets have been already used in other studies

that explored the variability of the wind field in the region

(Jiménez et al. 2008, 2009; GBea11) and the relation

between wind and wind power production at the wind farm

locations (GBea08; GBea09). The datasets were subject to

respective quality control procedures, more exhaustive in

the case of the wind stations over the CFN (Jiménez et al.

2010).

Several gridded (2.5�lat. 9 2.5�lon.) variables over the

North Atlantic region and Europe are used as predictor

fields in the downscaling experiments: the sea level pres-

sure (SLP), 850 and 500 hPa geopotential heights (/850

and /500), 10-m height zonal (U10) and meridional (V10)

wind components and 500–850 hPa thickness data

(Z500–850). These fields are taken from the ERA-40

reanalysis of the European Center for Medium-Range

Weather Forecast (ECMWF; Uppala et al. 2005) from

1992 to 2002. Analyses from the ECMWF global model

outputs (Jakob et al. 2000) are also used to complete the

whole period of observations (2002–2005); for the sake of

simplicity this dataset will be referred to as the ECMWF

fields henceforth. We use the ERA-40 reanalysis in order to

allow for comparisons with a previous study (GBea11).

In order to provide an extension of power estimates to

the past (Sect. 3.4), only one variable, the SLP, but with

longer temporal coverage is used. Additional datasets are

considered in this part of the study: (a) monthly SLP

observations from 1899 to 2005 from the National Center

for Atmospheric Research (NCAR; Trenberth and Paolino

1980, updated) and (b) an observational dataset provided

by the Hadley Centre consisting of historical gridded

monthly mean SLPs (HadSLP2) for the period 1850–2004

(Allan and Ansell 2006).

The present study is focused on the most windy months

September–March, when the link between the atmospheric

circulation and the regional wind field is strongest.
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358º 359ºFig. 1 The region under study.

Top left panel shows the Iberian

Peninsula and the main

geographical features

surrounding the Comunidad

Foral de Navarra. The right
panel amplifies the region of the

CFN and its orography

(shading). Blue squares
correspond to the wind farm

locations: Aritz, El Perdón and

Alaiz (see Table 1 in GBea08).

Circles stand for the location of

the wind stations (orange
circles represent those stations

with anemometers at 2 m while

the white ones are located at 10

m height; labels at each location

correspond to those in Jiménez

et al. 2008, see Table 1 therein

for wind sites description). The

mean wind field is also

represented (vectors) together

with the mean wind speed (solid
red contours) and the

corresponding standard

deviation (dashed grey
contours). Bottom standardized

monthly wind (green) and wind

power (blue) observed time

series at El Perdón. Monthly

values between 2002/03 and

2002/05 were removed for the

analysis as they showed

questionable quality due to

errors in the data recording
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3 Statistical downscaling of wind power production

3.1 Downscaling methodology

The CCA is a multivariate statistical technique that iden-

tifies linear associations between sets of predictor and

predictand variables that are optimally correlated (Hotelling

1936; Glahn 1968). The original matrix of time-space

dependent data is projected onto their Empirical Orthogo-

nal Functions (EOFs) to reduce noise and the number of

degrees of freedom. The methodology is fully described in

von Storch and Zwiers (1999). Before the calibration of the

statistical method the annual cycle is removed in such a

way that anomalies are obtained by subtracting the monthly

climatological mean. To ensure long-term stationarity, time

series are detrended applying a linear least square fit

(Xoplaki et al. 2003). Anomalies from the large scale fields

are weighted considering the decreasing size of grid boxes

with latitude (North et al. 1982). Additionally the time

series are normalized, with respect to the whole observa-

tional period, to present unit variance. The resulting

patterns are re-scaled by the standard deviation at each site

after applying the CCA so that they present actual physical

units of the field.

The performance of the downscaling model is evaluated

by applying a crossvalidation technique that allows for

avoiding a possible overfitting of data by the model

(Michaelsen 1987). The estimations obtained in every time

step of the crossvalidation procedure involve the recalcu-

lation of anomalies, EOFs and CCAs. Here the crossvali-

dation subset consists of a single monthly value, however,

variations on the size of the sampling subsets are discussed

later in the manuscript. The ability of the method is

explored in terms of the correlation coefficient and the

Brier Skill Score (q and b, respectively; Barnett and

Preisendorfer 1987).

A certain combination of the model parameters was

selected in a first step, prior to the sensitivity analysis. Such

a selection (thereafter called the reference case) does not

correspond necessarily to the optimal configuration,

although it generates wind power estimates that reasonably

agree with the observations. This serves to illustrate the

potential of the methodology and allows for the under-

standing of the associations between predictors and pre-

dictand. To enable comparisons, the choice of parameters

for this reference case is similar to that in GBea11, i.e., the

predictor fields employed are the /850 and the Z500–850

from the ECMWF fields as they can provide a compre-

hensive description of dynamical and thermal forcings

from the atmosphere; the geographical window spans from

35�N to 65�N and 40�W to 10�E; 4 predictor EOFs, that

account for a 81 % of the total variance, are retained for the

analysis. Only 2 EOFs of the wind power predictand are

considered in the reference case due to the short period of

observations and the limited spatial coverage (three loca-

tions). They retain however a 97 % of the total observed

variance. The two canonical modes are then kept for the

regression step in the downscaling model.

3.2 Coupled modes of variability

The two canonical pairs of patterns (CCA1pow and CCA2-

pow) and their respective amplitude time series, that

describe temporal changes of sign and intensity of the

corresponding patterns, are shown in Fig. 2. The first large

scale canonical pattern (Fig. 2a) consists of a negative

(positive) anomaly centre located westward of the British

Isles. This configuration is connected with anomalous

southwesterly (northeasterly) flow in the region (Jiménez

et al. 2009). In its positive phase the corresponding local

pattern (Fig. 2c) shows a dipole with positive anomalies of

wind power production to the north and negative ones to

the centre of the region. This pattern is coherent with that

obtained if a comparable CCA is applied to the wind

velocity as predictand. The resulting canonical pattern of

the wind (not shown) shows identically windy conditions,

equivalent to positive wind power anomalies, in the

northern areas and a decelerated flow, equivalent to nega-

tive wind power anomalies, to the centre of the region, in

its positive phase. Thus, this CCA mode shows an out-of-

phase flow over the northern areas with respect to circu-

lations over the central mountains and the Ebro Valley

(Jiménez et al. 2008). The variance explained by the first

canonical mode is 25 % in the case of the large scale

predictors and 63 % for the wind power. The correspond-

ing canonical time series present a strong correlation (0.89,

Fig. 2e). The coherent coupling in the variations of both

predictor and predictand patterns suggests that this mode is

responsible for the wind power monthly variability at the

wind farm locations. This can also be concluded from the

correlations between the wind power monthly observations

and the two canonical time series (Table 1). Correlation

values are indicative of consistency in the monthly varia-

tions of observed wind power at the three wind farms and

the time component of CCA1 mode. It is interesting to note

that the out-of-phase wind power variations at El Perdón

and Alaiz with respect to that in Aritz is observable in the

reverse of sign of the correlation values.

It is worth noting that the large scale CCA1pow pattern

resembles the second pattern obtained by GBea11 for the

wind field. This pattern was found to be responsible for

anomalous eastward geostrophic flow over the region. The

corresponding canonical pattern of the wind therein

showed a more zonal orientation of the circulation at the

windiest locations over northern and central parts of the

CFN, thus, at the wind farm locations. As stated in GBea11
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the sites located at higher altitudes, exhibited a large

influence of quasi-geostrophic circulations and are there-

fore hardly affected by smaller scale effects. Hence, the

variability of both the wind and the wind power at these

specific locations is dominated by the same large scale

patterns (Fig. 2a). This idea further provides a sense of

validation of the results from the application of the

downscaling model to the wind power predictand.

The second CCA circulation pattern (Fig. 2b) shows a

monopole structure with negative wind power anomalies

in its positive phase, less intense but with a broader

penetration into the peninsula compared to that of

CCA1pow. This implies a similar influence of the large

scale flow over the northern and central parts of the region

and thus, it favours the appearance of positive wind power

anomalies at the three wind farms (Fig. 2d). The second

CCA mode accounts for 24 % (34 %) of the large scale

predictor fields (wind power predictand) variance. The

amplitude time series of CCA2pow shows somewhat lower

temporal concordance (canonical correlation is 0.31,

Fig. 2f). However, the second mode is also kept for the

subsequent analyses for consistency with the reference

CCA model configuration in GBea11 and because at least

in one of the locations (Alaiz), it contributes to improve

the predictability of the wind power estimation (see cor-

relation values in Table 1). The canonical series of both

first and second CCA modes indicate considerable intra-

annual variability.
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Fig. 2 a and b canonical

patterns of the predictor fields

(/850 hPa, shaded, and Z500–850

hPa in contours); c and

d canonical patterns of the

regional wind power

(predictand) and e and

f amplitude time series of the

CCA1pow (left) and CCA2pow

(right) modes

Table 1 Correlation values between the two first canonical series and

the observed monthly values of the wind power production at each

one of the wind farms

Aritz El Perdón Alaiz

CCA1 -0.66 0.73 0.66

CCA2 0.34 0.52 0.65

940 E. Garcı́a-Bustamante et al.

123



3.3 Model validation and methodological uncertainty

analysis

After the calibration, the downscaling model outputs are

subject to a crossvalidation process. The correlation (Beta

Brier skill score) values, i.e., q (b), are represented in

Fig. 3d. q is a measure of the temporal concordance

between the observations and estimations. b provides a

measure of the variance of observations that is accounted

for by the model. This coefficient is defined as

b ¼ 1� S2
ES=S2

OB

� �
, where SES

2 represents the variance of

the estimations error and SOB
2 is the observations variance,

provided that the climatology is selected as a reference to

evaluate the error. In such conditions b = 0 represents a

prediction not better than climatology. If the estimations

error variance is similar to that of the observations a

positive b is obtained (the better the prediction, the closer

to 1). These scores evidence the presence of some pre-

dictability for the wind farms Aritz and El Perdón, where

q/b are 0.71/0.40 and 0.54/0.15, respectively. The perfor-

mance is poorer at Alaiz (q/b = 0.35/0.01). Nevertheless,

the main hypothesis is substantiated at two of the locations

which is indicative of a linear relationship between the

large scale circulation and the variability of the wind power

generated at the wind farms. The lower scores in Alaiz will

be further discussed in the following paragraphs.

The downscaling model based on the reference config-

uration yields validated wind power estimations at the three

locations (Fig. 3a, b, c). The observed (black line) and

reference estimated (dash-dotted grey line) series show

good agreement through most part of the observational

period, especially at Aritz (Fig. 3a). Nonetheless, the

agreement between observed and estimated wind power

series is also noticeable at El Perdón, particularly for the

periods 1999 to about mid 2000 (correlation 0.88) and from

2001 to 2002 (correlation 0.98). Interestingly, and in spite

of the difference in the global correlation scores at El

Perdón and Alaiz (see Fig. 3d), at the latter site the

agreement between observations and estimates is also

apparent. In fact, the correlation value for the period

September 1999 to March 2000 (February and December

2001) is 0.89 (0.72, Fig. 3c). In view of this agreement

between observed and estimated values it can be argued

that in some periods the downscaling method performs

reasonably well, while other time intervals (i.e., 09/2000–

01/2001 and 10/2002–03/2003) the skill of the method

decreases, particularly at Alaiz. Those periods, that to

a great extent are coincident at El Perdón and Alaiz

(Fig. 3b and c), will show an important contribution to the

methodological uncertainty in all wind farms.

In this part of the analysis and following GBea11, the

sensitivity of the wind power estimates to changes in the

model configuration is explored. Different sizes of the large

scale domain are examined: nine different spatial windows

that cover from larger domains over the northern Atlantic and

Mediterranean areas to smaller windows over the target

region, that may still show some predictability potential, are

analyzed here as in GBea11 (see Fig. 8 therein for details on

the extension of the spatial windows). Several dynamical and

thermal large scale predictor fields, that were already detailed

in Sect. 2, and combinations of two or three of them are

explored, yielding a total of 25 options. In addition, a varying

number of EOF and CCA modes for the analysis are evalu-

ated: the number of retained EOFs fluctuates between 2 and 6

for the large scale predictor and between 2 and 3 for the pre-

dictand. The maximum values were determined by calculat-

ing the statistically significant correlations between predictor

and predictand principal components (PCs). The minimum

number of EOFs was selected by determining the breakpoint

in the curves describing the explained variance versus the

number of EOFs/CCAs (as in GBea11). This represents an

indicator of the EOFs that should be included as they retain the

larger amount of the original variance. The maximum number

of CCA modes retained is imposed by the minimum number

of EOFs (3). Considering the previous requirements about

maximum/minimum number of patterns, 13 combinations of

this model parameter are possible. Finally, the size of the

crossvalidation subsets was also evaluated although its

selection does not impact the connection between the large

scale circulation and the regional predictand. By doing so it

can be verified whether the skill of the downscaling model

depends on the specific choice of the crossvalidation subset

size. This was done by exploring nine different possibilities

from one month to four years (4 9 7 = 28 months). For

further details on the number of options for all parameters the

reader is referred to Table 4 in GBea11.

The spread of estimates (26,325 different combinations)

provides a measure of the methodological uncertainty

obtained by allowing, within the ranges described above,

systematic variations in the model parameter values. The

uncertainty is represented by the frequency distribution

(deciles with respect to the median, blue area) in Fig. 3a, b

and c for Aritz, El Perdón and Alaiz, respectively, together

with the observations (red line) and the maximum and

minimum estimates (dotted blue line) for illustration. Aritz

(Fig. 3a) shows the narrowest uncertainty distribution. For

the other two sites the distribution replicates reasonably

well the variability of the observations. Therefore, it can be

concluded that the methodology is robust to multiple

changes in the model configuration. All figures evidence a

wider distribution, and thus larger uncertainty in estima-

tions, during the periods where the concordance between

observed and estimated series decreases (between the

middle and the end of 2001 and from the end of 2002
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onwards). The latter supports the relevance of assessing the

methodological sensitivity to changes in model parameters,

especially for those time steps that reveal a reduced pre-

dictability. Nonetheless, the observations within those

periods fall well within the range of the uncertainty inter-

vals produced by the ensemble of downscaled estimates.

The observations that fall out of the range of values defined

by the uncertainty distribution at Aritz, El Perdón and

Alaiz, respectively are tagged in the horizontal axis of

Fig. 3a, b and c for illustration. It is worth noting that more

observed values are confined in the uncertainty area in the

case of Alaiz with respect to El Perdón (Fig. 3b and c).

Thus, it can be argued that, in spite of the lower skill scores

obtained in Alaiz, the performance at this site and at El

Perdón is comparable. However, the less agreement

between observations and estimations at certain time steps

might be associated not only with a reduced predictability

of the model but also with the quality of the measurements

(GBea08). At this respect it is also important to note that

the limited length of wind power records allows to capture

only a certain portion of the spectral variability.

The reference estimations (dash-dotted lines in Fig. 3a,

b and c) fall well within the envelope of the uncertainty

distribution and thus the reference selected configuration

can be considered as representative of the whole ensemble

of estimations.

3.4 Long-term wind power variability

In order to shed light on the long term variations of the

wind power, past estimates of power production are

obtained. The statistical downscaling method allows to

obtain estimations out of the observational period by using

the relation found between the wind power and the large

scale circulation predictors during the calibration period

(1999–2003). Using this relation the statistical downscaling

methodology allows for extending estimations in the

absence of predictand records. This can be accomplished

within a regression scheme using the available historical

information from large scale predictor fields. This exami-

nation can help clarifying some aspects related to the long

term variations of wind power including the plausible lin-

ear relation with the wind at interannual and decadal

timescales.

Past estimates of wind power using the reference CCA

configuration (identical to that of Sect. 3.1) at El Perdón as

an example are represented in Fig. 4 (the conclusions

drawn here for El Perdón are also valid for Alaiz and

Aritz). Wind power estimation is extended back to the mid

19th century using SLP information. As mentioned in Sect.

2, several SLP predictor datasets are used to reconstruct the

past variability of the wind power: ECMWF SLP (light

blue line in Fig. 4a, RPow-ecmwf), NCAR SLP (green line,

RPow-ncar) and HadSLP2 database (violet line, RPow-had2). A

good agreement between the three reference reconstruc-

tions can be seen in Fig. 4a. Additionally, we obtain an

independent reconstruction for the wind speed (dashed

lines) with an analogous procedure. Independence between

wind and wind power reconstructions implies that a CCA is

applied separately to wind observations in order to obtain

the wind field reconstructions shown in Fig. 4a. All series

are standardized to allow for a better comparison and they
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Fig. 3 Deciles distribution (wrt

the median) of the uncertainty

associated with the wind power

estimates (degraded blue area);

observations are given in red at

Aritz (a), El Perdón (b) and

Alaiz (c) wind farms; the

reference case estimate (dash-
dotted grey line) and the

maximum and minimum values

(dashed blue line) are also

represented. The observations

that fall out of the range of

values defined by the

uncertainty distribution are

tagged in the horizontal axis for

illustration. d Correlation and

Brier skill scores calculated

between the wind power

observations and estimations at

the three wind farms within the

CFN region
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are represented with a 2-year moving-average filter. It is

evident that both variables preserve their linear relation

throughout the whole reconstruction period (correlation

values are 0.98 in the three cases). Therefore, linearity

between wind and wind power is an inherent feature of the

relation between the two variables that holds from monthly

to annual and also longer timescales. As mentioned earlier,

the linear relation is an interesting property that will show

relevant implications from the perspective of using alter-

native conceptual approaches to obtain wind power esti-

mates. This will be explored in the last subsection.

Further, it is worth noting that the independent recon-

structions of wind speed and wind power are consistent

with each other, providing robustness to the estimation of

both variables. This is specially interesting if we recall the

short length of the calibration period. It would be

reasonable to expect that inter-decadal or even longer term

large scale variability could contribute to changes in the

regional wind field not accounted for by the statistical

downscaling model built using only 5 years of data. This

could be the case, for instance, if a mode having a relevant

contribution to the low frequency variability, would how-

ever not show a significant contribution to the explained

variance during the calibration period. Nonetheless, even if

this problem can arguably be mitigated using longer

instrumental datasets, it is inherent to this type of exercises

for any given length of the calibration period. Therefore,

there may always exist relevant variability at lower fre-

quency that is not captured due to the length of the avail-

able instrumental series.

The reference reconstructions reveal no overall trends

for the whole reconstruction period, although a marked

tendency to increase power production is found between

1960 and 1990. This is in agreement with GBea11. Pre-

vious studies have found links between an increase of the

10 m wind in the North Sea and the intensification of a

NAO-like SLP pattern from 1960s to mid-1990s (Suselj

et al. 1999; Brayshaw et al. 2011). Further, considerable

intra- and interannual variability can be seen in Fig. 4a.

The assumption of stationarity between predictor and

predictand relationship deserves some attention. The main

drawback of the statistical methodologies that provide past

estimates of any climatic variable relates to the fact that the

strength of the cross-scales connection might change

depending on the time period considered. In such a situa-

tion the long-term past estimates could be affected and in

principle there is no robust way of assessing this potential

effect even in the case of long calibration periods. There-

fore, an approach to overcome this uncertainty consists of

estimating the methodological variance as similar to

GBea11. There, the impact of the selection of a specific

model configuration on the long-term estimates of wind,

that was negligible during the calibration period, was

shown. The methodological variance of the regional wind

power reconstructions related to variations in the parame-

ters of the model configuration (see also Sect. 3.3) has also

been calculated (Fig. 4b). The three wind power reference

reconstructions (based on the three SLP datasets) are also

shown (the colors of the different reference reconstructions

are identical to those in Fig. 4a). Series are given with a

2-year moving average filter. The area defined by the fre-

quency distribution (grey), that accounts for the dispersion

of estimates due to the multiple model configurations

explored, preserves to a great extent the variability of the

reference configuration estimates. Thus, the methodologi-

cal variance at longer timescales also shows a robust

response of the model to changes in its relevant parameters.

Nonetheless, the uncertainty estimation is significant since

anomalies of some tens of kW implies a large gap between

1850 1875 1900 1925 1950 1975 2000

Time (years)

Rpow-ecmwf
Rpow-ncar Rpow-ncar

pow-ecmwf

ecmwf

(a)

(b)

Fig. 4 a Reconstructed monthly wind and wind power standardized

series at El Perdón. The estimations are calculated using the reference

configuration of the downscaling method (Sect. 3.1). See legend for

color and line type assignment. All series are 2 year moving average

filter outputs. b Reconstructed monthly wind power at El Perdón

obtained with the reference configuration of the downscaling method.

The deciles distribution (wrt the median) of the methodological

uncertainty, calculated by sistematically varying the parameters of the

statistical downscaling model set up, is also represented (grey
shading). Note that wind power in panel a is standardized to allow

for a better comparison with the wind speed estimates, while in panel

b the anomalies of the estimated wind power are represented
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the real generation and the estimation of power production

that could be of great importance for manufacturers, pro-

motors or electricity markets.

4 Alternative methods for the estimation of wind power

production

The approach presented in the previous section for the

direct estimation of wind power production is based on

evidences of linearity between the wind variability and

atmospheric circulation in previous works (GBea11). We

have shown that this linear assumption can be transferred

to the case of the wind power due to an empirical linear

association between wind and wind power at monthly

timescales that was observed in GBea09. It has been also

tested that the linearity between the two variables holds for

longer (interannual to decadal) timescales. In this section,

such empirical linear relationship serves as the rationale to

explore alternative strategies providing wind power esti-

mates at sites without available observations. In doing so,

the regional character of the wind-wind power relationship

will also be assessed.

The estimation of wind power is undertaken with simple

variants as substitutes of the direct downscaling of wind

power explored above. This will provide independent wind

power estimates that can be compared with those from

Sect. 3 The alternative technique consists in the down-

scaling of the wind field followed by the translation of the

wind estimates into wind power using a transfer function

based on their linear association. In this line, two variants

have been explored in order to obtain comparable estima-

tions of wind power. These variants could present advan-

tages and different implications depending on the specific

situation, for instance, in the absence of wind power data at

several locations over the CFN.

The first alternative approach, hereafter CCAPow-mod,

where mod stands for wind speed, consists in obtaining

downscaled wind speed estimates and their subsequent

conversion into wind power values. The latter step is

carried out by applying a linear regression between the

standardized observed wind and wind power during the

calibration period at the corresponding wind farm. Only

those months entering the CCA (September–March) in

both, wind speed and wind power cases, are considered in

the calculation of the regression parameters. In order to

make estimations independent from the fitted model, a

single regression is calculated for each time step by

excluding the target month and estimating it from the

independent regression over the remaining monthly values

within the dataset. The procedure is repeated for every

month and also independently for each wind farm. The

linear regressions (one per month) are represented in

Fig. 5a where blue corresponds to Alaiz, green to Aritz

and red to El Perdón. The standardized monthly wind and

wind power observations are represented by crosses with

the corresponding color. Interestingly, the weakest linear

relationship corresponds to the wind farm in which the

best scores are achieved during the validation of the

downscaling method (Aritz, green in Fig. 5a). Notwith-

standing, correlations in the case of Aritz (0.85 on average

considering all independent regressions), although lower

than in the other sites (0.95 in El Perdón and 0.98 in

Alaiz), are still indicative of a robust linearity between

wind speed and wind power. It can be argued that this

behavior is related to potential deficiencies in the quality

of observations or aspects connected to the manipulation

of wind turbines.
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Fig. 5 a Monthly standardized wind speed versus wind power

observations. Colors represent each wind farm (see legend). Their

corresponding linear fits (one per month) are also shown. Black lines
depict the regional fits (one per month). b Taylor diagram for the

wind power production estimations. Circles stand for the direct

downscaling of the wind power, stars for CCAPow-mod, and pentagons

for CCAPow-reg
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The second variant, CCAPow-reg, involves a regional

linear regression as transfer function between downscaled

wind and wind power estimates. This implies that, instead

of fitting the standardized wind power and wind speed

observations individually at each site, a unique regression

valid for the three locations is calculated. Additionally, as

in the previous cases regressions are calculated for each

time step to keep independence between observations and

estimations. In standardized conditions (zero mean and unit

variance) the linear relation between wind power and wind

speed can be expressed as P ¼ q � w, where P and w are the

monthly standardized wind power and wind speed,

respectively and q represents the correlation coefficient.

Thus, the relation between both variables becomes inde-

pendent of the particular features of each location as for

instance, the type of wind turbines installed, that can pro-

vide different levels of wind power output according to

their dimensions. The assumption involves the use of a

single regression model that can be considered valid to

describe the linear relationship between wind power and

wind speed at the three locations, and therefore it is

denoted as the regional linear transfer function. The basis

for this hypothesis is the degree of agreement (Fig. 5a)

between the linear fits at the different sites (blue at Alaiz,

red at El Perdón and green at Aritz) and the regional

regressions (black, also one per month). In view of the

small dispersion of wind speed-wind power pairs at each

wind farm and that of the regional case, it can be said that a

regional regression model is a reasonable approach to

estimate the wind power production at the three sites. Then,

this CCAPow-reg case is comparable to the CCAPow-mod

variant except for using a regional linear model to translate

wind into wind power instead of using a local linear

regression (one per site).

In all variants the downscaled wind speed is obtained by

making use of reference configurations identical to that of

Sect. 3. All estimations of wind power are in the last step

re-scaled with the standard deviations of the observed

power at the corresponding wind farm. A Taylor diagram

(Taylor 2001) in Fig. 5b compares the performance of all

methodological variants. A different color (as in Fig. 5a) is

assigned to each one of the three wind farms within the

dataset. In addition, symbols are representative of the

corresponding approach followed to obtain the wind power

estimations. Correlations are within the range 0.26–0.75

(values not significant at the 0.05 level are distinguished by

a cross). The standard deviation ratios between observa-

tions and estimations are comprised in the interval (0.5,

1.1). The variance is generally underestimated in all cases

except for CCAPow-reg at Aritz. In view of Fig. 5b it is

apparent that the direct downscaling of the wind power

production (red circles, see Sect. 3.1) performs somewhat

better than the other three more elaborated approaches

although the three approaches show comparable skill in

reproducing the observed wind power. The scores of each

variant are grouped, at every site, around similar values of

correlation and a slightly larger degree of scattering for the

deviation ratios. Thus, the variants employed do not pro-

duce a large impact on the resulting variance of estimations

nor do they distort the linear relation between wind speed

and wind power. In contrast, the differences in the scores

observed in Fig. 5b depend mostly on the specific location.

This suggests that the better the results from the down-

scaling step, the better the wind power estimations from all

the variant approaches. One of the winds farms (Aritz)

shows better results than the other two. The difference in

the ability of the statistical model to reproduce the

observed wind power depending on the site could be

indicative of some spatial variability, as discussed in the

previous paragraphs and illustrated in Fig. 3. Therein, a

better predictability in northern than in central areas of the

CFN, both for wind and wind power, was found. This is

consistent with results in GBea11, where it was shown that

the Ebro Valley and the northern areas indicate better

predictability than other locations in the central part of the

region. This represents an additional argument that pro-

vides consistency to the conclusions met in this section

regarding the application of the CCA to obtain wind power

estimates.

4.1 Applications: estimating wind power in the absence

of observations

This section aims at illustrating a potential use of the

predictability of the wind power production based on the

downscaling of the wind field and the subsequent use of

the regional linear relation between the wind speed and the

turbine outputs. This application allows for obtaining wind

energy estimations at locations with no availability of

observed wind power records.

As it has been shown, CCAPow-reg can be assumed as a

sound approach to obtain wind energy estimates at monthly

timescales. This can be also understood if it is recalled that

the extent to which the wind power estimations reproduce

the observations has proven to depend mainly on the skill

of the downscaling step. Thus, an interesting application of

the latter would be the estimation of the wind power pro-

duction also in those sites with no wind power production

records but for which wind speed measurements are

available. Wind power production estimates in the fol-

lowing case study are obtained by first applying a CCA to

wind observations. In this case the CCA is calculated using

wind components as predictands to illustrate the orientation

of circulations over the region. The performance of this

variant that makes use of zonal and meridional wind

components (that could be denoted CCAPow-uv) was also
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tested (not shown). It yields comparable results to those

from the approaches explored in the previous paragraphs

using wind speed as predictand. Wind speed values are

calculated from the wind components (observed, blue and

downscaled, green in Fig. 6a) and finally, wind power

estimations are obtained via the regional linear transfer

function. An example of this is represented in Fig. 6b.

September 2001 has been randomly selected to illustrate

windy conditions over the CFN. The spatial distribution of

the wind field for the selected month is plotted in Fig. 6a.

For this month high mean wind velocities are recorded in

most of the locations within the dataset, except for those

sites at the north of the region, where lower winds can be

noticed. This month stand as representative for the out-of-

phase wind variations in northern areas with respect to the

rest of the CFN (Jiménez et al. 2008). Additionally, there is

a reasonable agreement between observations and estima-

tions, not only in the direction but also in the length of

vectors, representative of the intensity of the wind. As

mentioned above, if it is assumed that a regional linear fit

conveniently represents the relationship between wind

speed and wind power at all locations, then it seems per-

tinent to obtain local wind power estimates by applying the

regional linear transfer function to both observed and

downscaled wind fields. The wind power estimations are

re-scaled (multiplying by the average standard deviation

and adding the mean of the observed wind power). This is

represented in Fig. 6b, where circles stand for power pro-

duction calculated from the observed wind and diamonds

represent the production obtained from the downscaled

wind. As expected, there is a good agreement between both

wind power estimates in most of the sites (recall that wind

power at the wind farms is observed while in the rest of

sites it is estimated from wind values). Some locations in

central CFN evidence poorer concordance between obser-

vations and estimations related to a poorer performance of

the downscaling approach as it was discussed before. A

final comment is worth concerning Fig. 6b. Estimations of

wind power in this inference exercise are obtained for wind

speed values at the hub heights (around 30–45 m in this

case study). The wind was extrapolated in height by using

the power law (Pryor and Schoof 2005). A more elaborated

approach for the extrapolation of wind values with height

as, for instance, the application of the logarithmic wind

profile (Stull 1990; Arya 2000), would require information

about the surface roughness at each location. However the

purpose here is to illustrate potential applications of the

wind-wind power regional linear relation within a down-

scaling context in a simple fashion, rather than presenting

more refined approaches for the estimation of wind power

production. Thus, this can be considered a straightforward

application of the estimation of wind power based on a

downscaling frame even in the absence of power produc-

tion records. This approach may help in estimating the

potential availability of wind energy over a wider region,

provided that a regional linear transfer function can be

assumed and that the variability of the wind field at

monthly timescales is dominated by the large scale

circulation.

5 Conclusions

This work has provided some insight into the relationship

of the wind power generated (between 1999 and 2003) at

three wind farms over the northeastern Iberian Peninsula,

and the large scale atmospheric circulation over the North

Atlantic area. This study can be placed in the context of the

impact-oriented analyses as the target variable is non-cli-

matic but depends on variations of the wind field and

ultimately, of the large scale atmospheric circulation.

Different approaches that render wind power estimations

have been tested. First, a direct downscaling of the wind

power production as predictand variable was explored at

(a) (b)
Fig. 6 a Observed (blue) and

estimated (green) wind field for

September 2001 over the CFN

and b observed (circles) and

estimated (diamonds) wind

power production for the same

month
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those sites with historical wind turbine outputs. This

exercise showed the existence of wind power predictability

at the wind farms through the application of a statistical

downscaling method (CCA). The methodological variance

associated to multiple changes in the configuration of the

downscaling model was also explored. It has been shown

that the method is robust to variations of the parameters in

the model set up. Hints on enlarged methodological

uncertainty during periods with lower predictability have

been also provided.

Additionally, an estimation of the long-term past vari-

ability of the wind power outside of the observational

period allowed for an insight into the low frequency

changes of the power production at the wind farms. It was

shown that the wind power past estimates share coherent

variability with an independent wind speed reconstruction

at longer than those timescales of the instrumental period.

The latter suggests robustness in the estimation of past

variations of wind power in spite of the shortness of the

calibration period. In this work it has been shown that the

generation of wind energy presents considerable variability

at interannual and interdecadal timescales. This type of

exercise allows for an insight into the potential variability

of local wind power production at interannual and decadal

timescales. Typically, for the evaluation of a specific

location on its suitability as a wind energy facility, a single

year of observations is considered sufficient to assess the

range of variability of the wind (Barbour and Walker

2008). However, as shown, the natural variability of the

wind power resource can be considerably large from year

to year and consequently the power production could be

significantly different to the expected if a single year is

considered to evaluate the suitability of a certain location

for wind energy generation purposes. Analogously,

regarding the uncertainty associated to estimations, it can

be said that a single estimation does not provide a robust

level of confidence. For instance, providing a suitable

estimation of the uncertainty in estimations is desirable in

order to take part in the electricity market in order to

maintain reasonable margins of the risk associated with the

goodness of wind power production predictions (Zeineldin

et al. 2009).

Other alternatives to the direct downscaling of wind

power were also tested based on the downscaling of the

wind field followed by a linear transfer function to obtain

final wind power values. The different methodologies evi-

denced a local dependence on the ability of the downscaling

model to provide reasonable estimations of wind/wind

power. The locations with poorer performance at some

periods or time steps in the downscaling of the wind power

coincide to a good degree with those where the downscaling

of the wind field suffers also a decrease in the ability to

reproduce the observed variability.

One inference analysis is presented as an example of

potential applications of the wind power production estima-

tions. Downscaled wind at every location was used to obtain

power production estimates over the whole CFN through the

use of a regional linear relation between wind and wind

power. The added value of this approach lies in the possibility

of estimating wind power at sites with no availability of wind

power series, providing thus an idea of the wind power gen-

eration that would be feasible over the region.

The application of this kind of methodologies to non-

meteorological variables shape a framework for climate

related impact analyses. Underlying arguments are based

on evidences of the large scale circulation governing

monthly variations of the wind power production in the

region. This allows for the application of simple strategies

to assess the spatial and temporal variability of the wind

power together with its associated uncertainty over the

region under study. Such evaluations could be of relevance

to assess the impact on wind energy resources of potential

changes in wind and wind power variability due to the

expected evolution of the climate in the future.
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Garcı́a-Bustamante E, González-Rouco JF, Navarro J, Xoplaki E,
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