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Abstract Surface temperatures are projected to increase

3–4�C over much of Africa by the end of the 21st century.

Precipitation projections are less certain, but the most

plausible scenario given by the Intergovernmental Panel on

Climate Change (IPCC) is that the Sahel and East Africa

will experience modest increases (*5%) in precipitation

by the end of the 21st century. Evapotranspiration (Ea) is

an important component of the water, energy, and bio-

geochemical cycles that impact several climate properties,

processes, and feedbacks. The interaction of Ea with cli-

mate change drivers remains relatively unexplored in

Africa. In this paper, we examine the trends in Ea, pre-

cipitation (P), daily maximum temperature (Tmax), and

daily minimum temperature (Tmin) on a seasonal basis

using a 31 year time series of variable infiltration capacity

(VIC) land surface model (LSM) Ea. The VIC model

captured the magnitude, variability, and structure of

observed runoff better than other LSMs and a hybrid model

included in the analysis. In addition, we examine the inter-

correlations of Ea, P, Tmax, and Tmin to determine rela-

tionships and potential feedbacks. Unlike many IPCC cli-

mate change simulations, the historical analysis reveals

substantial drying over much of the Sahel and East Africa

during the primary growing season. In the western Sahel,

large increases in daily maximum temperature appear

linked to Ea declines, despite modest rainfall recovery. The

decline in Ea and latent heating in this region could lead to

increased sensible heating and surface temperature, thus

establishing a possible positive feedback between Ea and

surface temperature.
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1 Introduction

Evapotranspiration is an important component of the water,

energy, and biogeochemical cycles that impact several

climate properties, processes, and feedbacks that relate to

landcover and phenological change. The timing and extent

of a major heat wave across Europe in 2003 for example,

lead to an increase in sensible heating and decline in

evaporative cooling, which further amplified sensible

heating and surface temperatures during the normal

growing season when drought conditions were most severe

(Fischer et al. 2007). Evapotranspiration is limited by soil

moisture supply and atmospheric moisture demand. The

former is largely linked to precipitation, while the latter

relates to net radiation and advection which are impacted

by surface and atmospheric temperature (Law et al. 2002).

The coupling of evapotranspiration, temperature, and pre-

cipitation is particularly pronounced in moisture-limited

sub-tropical regions at the interface between wet (mon-

soonal) and dry climate regimes (Koster et al. 2004).

Notably, runoff (Q) has been declining throughout many

sub-tropical regions during the primary growing season

(Huntington 2006). These declines have been attributed to

M. Marshall (&) � J. Michaelsen

Department of Geography, Climate Hazards Group,

University of California Santa Barbara, Santa Barbara, CA, USA

e-mail: marshall@geog.ucsb.edu

J. Michaelsen

e-mail: joel@geog.ucsb.edu

C. Funk

US Geological Survey Earth Resources Observation

and Science (EROS) Center, Department of Geography,

University of California Santa Barbara,

Santa Barbara, CA, USA

e-mail: cfunk@usgs.gov

123

Clim Dyn (2012) 38:1849–1865

DOI 10.1007/s00382-012-1299-y



decreasing precipitation and increasing temperature which

have caused soil moisture to decline and atmospheric

demand to increase. Despite increases in atmospheric

demand, or potential evapotranspiration (Ep), soil moisture

deficits in subtropical regions have caused evapotranspi-

ration (Ea) rates to decline in recent decades. In fact,

steeply declining soil moisture in subtropical Africa and

Australia has been a major contributor to a global decline

in annual Ea of *10 mm since the 1997–1998 El Nino

event (Jung et al. 2010). Global Ea declines correspond to

simulated losses in net primary production of up to 21 gC/

m2/year in some areas, reducing global carbon sequestra-

tion and increasing surface heating due to desertification

and increased sensible heating (Zhao and Running 2010).

Understanding the magnitude, timing, and variability of

changes in Ea and its connection to temperature and pre-

cipitation changes in the sub-tropics and tropics is therefore

a regional concern with global implications.

A key research objective is to determine how trends in

the supply and demand side of moisture availability have

impacted vegetation (Allen et al. 2010; Lobell and Burke

2010). Studies which analyze the interaction of regional

land surface climate and Ea in Africa have focused on the

relationship between Ea proxies, such as soil moisture and

plant phenology, to precipitation (P). Although surface

temperature–Ea relationships exist in Africa, namely the

negative relationship between Ea and atmospheric demand

as demonstrated with simulated data (Koster et al. 2006),

regional analysis of this relationship remains unexplored.

In the Sahel, increases in soil moisture (Ea) can establish a

positive feedback, in which wetter soils produce increased

atmospheric instability and moisture convergence, leading

to increased P (Douville 2002). In southern Africa, on the

other hand, a negative feedback between Ea and P has been

observed, in which increased Ea acts to lower sensible heat

thus enhancing atmospheric stability and subsidence (Cook

et al. 2006).

For Africa, a vast body of literature exists, beginning

with Nicholson et al. (1990), that explores trends in P and

the normalized difference vegetation index (NDVI). NDVI

is derived from red and infrared wavelengths captured by

remote sensors. These wavelengths give a relative measure

of the photosynthetic capacity of plants (Sellers et al.

1996a). Increases in NDVI typically lag P by 1–2 months,

due to the accumulated response of plants to root zone

moisture in semi-arid areas where vegetation is sensitive to

interannual rainfall fluctuations (Camberlin et al. 2007).

Using NDVI, increases in vegetation biomass have been

attributed to increases in precipitation over much of the

Sahel during the primary growing season (Philippon et al.

2007), while decreasing trends in NDVI have been attrib-

uted to the intensification of the El Nino Southern Oscil-

lation (ENSO) in southern Africa (Anyamba and Eastman

1996). Although the magnitude and extent of the former,

typically referred to as the ‘‘re-greening of the Sahel’’ is

uncertain (Giannini et al. 2008), several authors have

attributed this change in part to a positive feedback

between soil moisture and P (Giannini et al. 2003; Wang

and Eltahir 2000; Zeng 2003; Zeng and Neelin 2000; Zeng

et al. 1999). A time series analysis of Ea in Africa could

improve upon these studies by providing a quantifiable

measure of a regional water balance component that is

more tightly coupled to the atmosphere than soil moisture.

The purpose of this study is to explore trends in the

phase (timing) and magnitude of Ea in Africa during the

past 31 years and to relate these changes to trends in P and

surface temperature as proxies for surface moisture storage

and atmospheric moisture demand, respectively. It should

be stressed that this analysis is based on simulated data,

because it has been difficult for the climate community to

agree on a multimodal ensemble mean that characterizes

all aspects of climate at the interface of the Sahel and

Saharan desert (Xue et al. 2010). Land surface models

(LSMs) and hybrid models are used to simulate and

explore these trends. LSMs are defined here as those

models that yield global estimates of the land surface state

and fluxes by interactively incorporating global-scale,

ground-based and remote sensing derived soil, vegetation,

and atmospheric forcing data. The ground-based and

remote sensing data are used to reduce bias in synthesizing

the reanalysis data. The hybrid models incorporate a

dynamic green canopy (transpiration) component defined

in Fisher et al. (2008), which is driven by time series of

vegetation indices that may be more appropriate in semi-

arid regions where the variability in photosynthesis is not

adequately captured using leaf area index (LAI) monthly

means (DehghaniSanij et al. 2004). LSM and hybrid model

Ea over a 31 year period is used to meet the following

objectives: (1) identification of an LSM or hybrid model

that best represents the timing and magnitude of moisture

fluxes in Africa; (2) seasonal trend analysis of Ea and

relation to trends in surface temperature and P; and (3)

trend analysis of the timing of peak Ea.

2 Methods

2.1 Land surface models

The LSMs used in this paper are part of the global land

data assimilation system (GLDAS) (Rodell et al. 2004).

GLDAS integrates several climate reanalysis, remote

sensing, and observation datasets to drive the LSMs which

in turn provide further information on soil moisture and

latent heat and sensible heat flux. Forcing and output data

is provided by the National Aeronautics and Space
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Administration Global Goddard Space Flight Center

Hydrology Branch (http://daac.gsfc.nasa.gov/hydrology).

The parameterization data include the bias-corrected

European Center for Medium-Range Weather Forecasts

(ECMWF) Reanalysis from 1979 to 1993 and National

Center for Atmospheric Research (NCAR) Reanalysis from

1994 to 1999 (Berg et al. 2003), NOAA global data

assimilation system (GDAS) atmospheric analysis fields

(Derber et al. 1991) for 2000, and from 2001 to 2009 a

combination of National Oceanic and Atmospheric

Administration (NOAA) GDAS atmospheric analysis

fields, climate predication center merged analysis of pre-

cipitation (CMAP) fields (Xie and Arkin 1997), and radi-

ation fields derived from observed incoming radiation

using the method of the Air Force Weather Agency’s

AGRicultural METeorological modeling system (Idso

1981; Shapiro 1987). The forcing data are synthesized

using various ground-based and remote sensing data and

assimilation techniques are used to improve model accu-

racy, resolution, and consistency. The process yields a

31-year (1979–2009) global monthly time series of Ea at

1.0� resolution. The estimated Ea from three of the LSMs

were chosen for comparison in this paper, including the

Common Land Model Version 2 (CLM), Noah, and the

variable infiltration capacity model (VIC).

2.1.1 CLM

The CLM was developed from collaboration of a com-

munity of scientists and improves on three existing LSMs

by combining the best elements from each. These include

the NCAR LSM (Bonan 1998), the biosphere–atmosphere

transfer scheme (BATS) (Dickenson et al. 1986), and the

LSM of the Institute of Atmospheric Physics of the Chi-

nese Academy of Sciences (Dai and Zeng 1997). The

model employs a single column soil–vegetation–atmo-

sphere transfer (SVAT) scheme, discretized using finite-

difference methods and split-hybrid (energy and water

balance) temporal integration (Dai et al. 2003). The veg-

etation component consists of one layer parameterized

using NCAR LSM photosynthesis-stomatal resistance

which is based on the semi-empirical Ball version descri-

bed in Sellers et al. (1996b). Large negative biases in CLM

Q due to overestimation of Ea have been observed in

tropical basins, most notably the Amazon basin (Dickinson

et al. 2006), and have been attributed primarily to inac-

curate parameterization data and secondly to a poor soil

layering scheme (Qian et al. 2006).

The Ea component used in CLM, as with the other LSMs

used in this paper, consists of three terms: evaporation from

bare soil (Es), wet canopy evaporation (Ew), and transpi-

ration (Et).

Ea ¼
qcpfwet

c
ðesat � eaÞ

Ra
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
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ET

ð1Þ

where q is air density, c is the psychrometric constant, Ra is

the aerodynamic resistance bounded by the reference

height and free atmosphere, Rsoil is the bare soil resistance

constrained by dimensionless soil wetness function defined

in Lee and Pielke (1992), Rsun
s is the stomatal resistance for

the sunlight fraction of the canopy, Rsha
s is the stomatal

resistance for the shaded fraction of the canopy, fwet is the

fraction of the canopy that is wet, esoil is the vapor pressure

of the soil defined in Philip (1957), esat is the saturation

vapor pressure, ea is the vapor pressure at reference height,

and cp is the specific heat of air. Et is a function of Pen-

man–Monteith Ep constrained by three resistance terms

(Bonan 1996). Stomatal resistance is computed at the leaf

level for the sunlight (shortwave energy flux) and shaded

(longwave energy flux) which is then scaled to the canopy

scale using LAI.

2.1.2 Noah

The National Centers for Environmental Protection, Ore-

gon State University, Air Force, and Hydrologic Research

Lab (Noah) model was first developed in the early 1990’s

through collaboration between government and private

institutions. It has gone through a series of improvements,

including the introduction of a canopy resistance compo-

nent and an increase in the number of soil layers (Chen

et al. 1996), introduction of snowpack and frozen ground

physics (Koren et al. 1999), variable roughness length

dependent on the Reynold’s number (Chen et al. 1997),

implementation of a soil thermal model and a vegetation

fraction derived from remote sensing climatology (Betts

et al. 1997), and a non-linear (quadratic) soil evaporation

function (Ek et al. 2003). The model uses a single column

SVAT transfer scheme, discretized using finite-difference

methods and a Crank–Nicholson (energy balance) temporal

integration scheme. The vegetation component consists of

one layer adapted from the Jacquemin and Noilhan (1990)

photosynthesis-stomatal resistance model. The model tends

to have a low-level warm season bias, which has been

attributed to under-prediction of the vegetation fraction of

the transpiration component of Ea. This bias tends to be

stronger in semi-arid areas where plant phenology is highly

variable (Hogue et al. 2005).

M. Marshall et al.: Examining evapotranspiration trends in Africa 1851

123

http://daac.gsfc.nasa.gov/hydrology


The Noah component of Ea, unlike CLM, constrains Ep

using water storage terms and is therefore dependent pri-

marily on P instead of vapor pressure. Bare soil evapora-

tion, originally parameterized using a demand–supply

approach similar to CLM, was later adapted after Mahfouf

and Noilhan (1991) and now only relies on soil moisture. Et

and Ew are functions of the intercepted canopy water

content (Wc), which is a residual of the water balance:

Ea ¼ ð1� fcÞb
|fflfflfflfflffl{zfflfflfflfflffl}

Es

þ fc

Wc

S

� �1=2

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Ew

þBc 1� Wc

S

� �1=2
" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Et

8

>
>
>
>
<

>
>
>
>
:

9

>
>
>
>
=

>
>
>
>
;

Ep

ð2Þ

where fc is the canopy fraction, b is moisture availability

constrained by the field capacity and wilting point of the

soil, S is maximum Wc (constant), and Bc is the plant

coefficient that includes the Jarvis (1976) stomatal resis-

tance formulization. Ep is parameterized using the Pen-

man–Monteith formulation with zero stomatal resistance.

2.1.3 VIC

The VIC model was developed in the early 1990’s at the

University of Washington. It is fundamentally different

from CLM and Noah, as rainfall-runoff response is simu-

lated using a variable infiltration curve that accounts for

variations in landcover type at the sub-pixel level and

baseflow is routed using a non-linear recession curve

(Liang et al. 1994). The model has undergone a series of

improvements, including the addition of a skin layer and

parameterization of upward diffusion across soil layers

(Liang et al. 1996b), inclusion of sub-grid variability in P

(Liang et al. 1996a), a ground heat flux component that

accounts for heat storage and diffusion across all soil layers

and vegetation effects in the surface layer (Liang et al.

1999), a surface runoff component that accounts for infil-

tration excess (Liang and Xie 2001), and explicit repre-

sentation of cold land processes (Cherkauer et al. 2003).

The vegetation component consists of a single layer based

on the atmosphere-canopy resistance formulation in Du-

coudre et al. (1993). The formulation introduces an archi-

tectural resistance term that accounts for within-canopy

effects on turbulent flux. VIC tends to underestimate soil

moisture at mid-latitudes (Nijssen et al. 2001b) and over-

estimate Q in semi-arid regions (Nijssen et al. 2001a),

which has been attributed to poor forcing data (precipita-

tion) and over prediction of Ea.

The wet canopy and transpiration components of VIC

are similar to Noah, as aerodynamic and canopy resis-

tance including bulk limitations on soil moisture, tem-

perature, and vapor pressure deficit are included in Wc.

Unlike Noah, S varies as a function of LAI. As with the

other LSM’s, Ep is defined using Penman–Monteith with

zero stomatal resistance. The soil component of VIC

employs an area integration to define the soil moisture

constraint on Ep:

Es½n� ¼
Z

A

0

dAþ
Z

1

A

i0

im 1� ð1� AÞ1=b
h i

8

<

:

9

=

;

EP ð3Þ

where Es is the soil evaporation for landcover type n, A is

the area of the soil profile, i0 is the initial infiltration

capacity, im is the maximum infiltration capacity, and b is a

shape parameter for the infiltration curve. The first integral

represents the saturated area which evaporates at the

potential rate.

2.2 Hybrid models

The hybrid models were developed by combining the

canopy component of a modified Priestley–Taylor model

with the soil and wet canopy components of the Noah and

VIC models by direct insertion. The vegetation component

of the Fisher model is easily adapted for remote sensing

and surface reanalysis data, including the introduction of an

NDVI time series. This is particularly valuable in semi-arid

areas, where NDVI climatology used by other LSM’s does

not adequately capture variability in Ea. A full description

of the model, along with a bibliography highlighting major

model advancements can be found in Fisher et al. (2008).

The Fisher model has shown superior performance against

other Ea models in the tropics, when compared using eddy

covariance flux tower data (Fisher et al. 2009). Given

uncertainties in the forcing data and parameterization of the

wet canopy and soil evaporation components of the model,

a hybrid was developed using the GLDAS 0.25� forcing

data, Noah soil and wet canopy evaporation, and MODIS

vegetation index products from 2000 to 2009 (Marshall

et al. 2011). The hybrid model showed higher correlations

and lower RMSE with observed data than the Noah or

Fisher model. The hybrid, labeled Noah* in this paper, is

parameterized instead with the 1.0� resolution GLDAS

forcing data and Noah soil and wet canopy evaporation

from 1979 to 2009. The vegetation indices were derived

from version 3 of the Long Term Data Record (LTDR)

(Nagol et al. 2009; Pedelty et al. 2007). The LTDR dataset

consists of AVHRR daily reflectance at 0.05� resolution

that has undergone rigorous inter-sensor calibration and

atmospheric correction. The LTDR dataset ends in 2000, so

the hybrid models were only run until then. The second

hybrid model, labeled VIC*, combines the Fisher canopy

component with the VIC wet canopy and soil evaporation

components. The soil scheme and Q parameterizations in

VIC, as briefly described above, tends to generate Q closer
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to observed data than the soil scheme and Q parameter-

izations used in Noah and CLM (Wang et al. 2008).

2.3 Runoff data and model evaluation

The models were evaluated in a water balance approach

using nine gauged stations representing major basins in

Africa (Fig. 1). Monthly discharge data for these stations

was acquired from the global runoff data centre (GRDC).

The GRDC, directed by the World Meteorological Orga-

nization, compiles daily and monthly discharge data from

stations across the globe. The monthly mean discharge data

was converted to total annual runoff using catchment area

from boundaries defined using the USGS EROS Hydro 1 K

database derived from the GTOPO30 (1 km resolution)

digital elevation model. Not all stations were located at the

mouth of the watershed, so the upstream contributing area

was determined using the Pfafstetter codes of each sub-

basin and procedures described in Verdin and Verdin

(1999). The Hydro 1 K boundaries compared well with a

subset of boundaries determined using the 90 m resolution

shuttle radar topography mission (SRTM) defined bound-

aries. Table 1 gives a brief summary of each station and

upstream contributing area, including important eco-phys-

iographic characteristics. With the exception of the Congo

station, each station had at least 10 years of monthly data.

The Nile station, which is a very small headwater catch-

ment, was included to give a better representation of Q in

tropical Africa. All of the catchment data ended in 2000, so

the evaluation period spanned 1979–2000.

The stations were evaluated using a water balance

approach. The difference between P and Q equals Ea at an

annual time-step, assuming that soil moisture storage is

negligible. This assumption is most appropriate for areas

where the residence time of soil moisture is short (i.e. soils

completely dry out between years) and where the change in

soil moisture storage over time due to climate change/

variability is close to zero. According to Milly et al. (2003),

these areas fall primarily in the Sahel, Saharan Desert, and

southern Africa, and exclude tropical Africa. The differ-

ence in annual total GLDAS P and observed Q derived

from monthly means was plotted against modeled annual

total Ea using a conventional time series plot and Taylor

diagram. The Taylor diagram (Fig. 2a) summarizes the

overall skill of a model by plotting the standard deviation

on arcs that cross the x- and y-axis, the Pearson correlation

Fig. 1 Hydrologic stations measuring discharge from the upstream

contributing area of nine major basins in sub-Saharan Africa. Monthly

runoff from these stations were used with GLDAS precipitation in a

water balance validation of Ea from three global land surface models

and two model hybrids that are driven by a time series of remotely

sensed vegetation indices

Table 1 The eco-physiographic characteristics of nine sub-basins used in the water balance evaluation of the Ea models

Basin Sub-basin GRDC Period Area (km2) Elevation (m) IGBP T (�C) P (mm) Q (m3/s)

Congo Sangha 1,748,500 1985–1994 73,378 694 DBF 23.9 1,409 577

Gambia Koulountou 1,813,320 1981–1995 6,802 110 OSH 27.6 901 27

Lake Chad Chari 1,537,100 1982–1991 629,517 533 CSH/DBF 26.6 827 461

Niger Dire 1,134,700 1981–1992 349,845 377 CSH/DBF/CRO 27.2 870 583

Nile Kanyaru 1,670,200 1981–1991 5,156 1,630 CRO 19.4 1,054 23

Okavango Mohembo 1,357,100 1981–2000 232,631 1,314 SAV 21.0 684 257

Orange Vioolsdrif 1,159,100 1981–2000 510,828 1,293 SAV 16.6 483 150

Senegal Kayes 1,112,100 1981–1990 125,027 371 OSH 27.6 788 224

Volta Dapola 1,931,400 1981–1991 91,707 303 CRO 28.3 672 61

Each sub-basin includes a unique GRDC identifier. The dominant landcover type(s) for each sub-basin is shown using the International

Geosphere-Biosphere Program (IGBP) naming convention
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(R) on the main arc, and the root mean square difference

(RMSD) on the arcs that cross the standard deviation arcs

(Taylor 2001). A model that reflects the timing and mag-

nitude of observed Ea well will have a high R, low RMSD,

and standard deviation close to the standard deviation of

the observed data. Visually, this model will fall close to the

point marked observed on the Taylor diagram.

2.4 Time series analysis

The time series analysis was performed on the Ea model

that best reflected the timing and magnitude of observed Q

for the nine sub-basins on an annual basis. Linear and

non-linear (Theil-Sen median slope) techniques at each

grid cell of the image time series were used to determine

the magnitude, direction, and significance of the trend.

Trend analysis was performed on 31 years (1979–2009) of

seasonal (December, January, February (DJF), March,

April, May (MAM), June, July, August (JJA), and Sep-

tember, October, November (SON) totals for Ea and P and

averages for minimum (Tmin) and maximum (Tmax) daily

temperatures respectively. The 31 year time series at each

grid cell was fit using linear regression and masked for

95% confidence (0.05 significance). The Theil-Sen method

was selected as a complementary approach, because

unlike linear techniques, the trends are not significantly

impacted by outliers or missing data (Huth and Pokorná

2004). This is particularly important in this paper, where

the trends are determined over several forcing datasets and

the AVHRR data contains a large gap in 1994. Unlike

non-parametric techniques, the magnitude and confidence

intervals can be expressed for each trend using the Theil-

Sen method. In the Theil-Sen method, the slope between

each data pair of values in the time series is computed and

the median value of the slopes is taken as the slope of the

trend. Confidence intervals are expressed using the Mann–

Kendall statistic. Standard linear regression at each grid

cell was applied to the seasonal data to determine the

strength and significance of the relationships between Ea,

P, Tmin, and Tmax.

The trends in Ea timing at each grid cell were performed

by applying the linear and Theil-Sen techniques to a har-

monic regression at each grid cell of the image time series.

In harmonic regression, a time series is fit by adding a

series of sine and cosine functions or harmonics together

(Wilks 1995). The harmonic regression was applied to

monthly data on an annual basis. The first harmonic in this

case represents peak Ea, which occurs during the primary

growing season, while the second harmonic measures the

second peak typically found during the secondary growing

season in bimodal climate regimes. The equation for the

first two harmonics is shown below.

yt ¼ y0 þ
X

2

k¼1

Ak cos
2pkt

n

� �

þ Bk sin
2pkt

n

� �

ð4Þ

where yt is the predicted variable (Ea) for year t, y0 is the

monthly mean value over year t, k is the frequency

number, and n is the number of points in the series

(n = 12). Higher harmonics would be appropriate for

trimodal systems as can be found in the Ethiopian high-

lands (western Ethiopia), but these systems are rare and a

risk is involved in over fitting the data. The trend analysis

was therefore performed on the phase (timing) of the first

two harmonics.

Fig. 2 Taylor diagram (a) and time series (b) of annual total

P–observed runoff (Q) versus nine (A = VIC, B = Noah, C = CLM,

D = Noah*, E = VIC*, and F = Fisher) Ea models for the Senegal

basin. In the taylor diagram, the correlation coefficient (shown on the

primary arc) subtends arcs expressing STD (shown on the y axis).

RMSD cross the STD arcs and are incremented at the same interval as

STD. A model which accurately captures the structure, amplitude, and

variability in observed annual Ea would fall on the point labeled

‘‘Observed’’
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3 Results

3.1 Land surface model evaluation

The evaluation revealed on an annual basis that the VIC

model performed equally as well or better than the other

LSMs for all nine catchments in capturing the magnitude,

timing, and variability of observed Q. The results of the

original Fisher model were included as a baseline of com-

parison with the hybrid models. No observable trends were

detected in the annual signal, as might be expected,

assuming a change in water storage over time. CLM did well

for many of the sub-basins, particularly for the only humid

(tropical) sub-basin (Congo). The Fisher model showed

significantly low correlations with Q for many of the sub-

basins and greatly underestimated the variability in observed

Q. Figure 2a, b show a Taylor diagram and time series of

modeled Ea versus the difference of GLDAS P and observed

Q for the Senegal sub-basin. Annual totals were derived

from monthly means. The RMSD on the Taylor diagram is

incremented at the same interval as the standard deviation on

the y-axis. The LSMs tend to correlate well with observed Q,

but greatly underestimate the variability and show high

RMSD. In the Senegal sub-basin, for example, the perfor-

mance of the LSMs tends to diverge from VIC after 1985,

missing the highest peak in 1988. The dissimilarity between

the performance of the VIC model and the other LSMs is

well represented for most of the sub-basins, as illustrated in

Table 2. Given the relative magnitude of P over Q, the dif-

ference in P and Ea was plotted against observed Q, however

there was no change in the outcome of the results. VIC does

particularly well at the semi-arid sub-basins (Niger and

Senegal), where the water balance assumption is most valid.

It was expected that the hybrid models would perform better

than VIC in these sub-basins, because they include a time

series of vegetation indices. The hybrid models correlate

better than VIC in the Congo sub-basin, but still underesti-

mate the variability and show high RMSD.

Table 2 The correlation coefficient (R), standard deviation (STD), and root mean square difference (RMSD) of observed (P–Q) versus modeled

AET for nine sub-basins in sub-Saharan Africa

Basin Metric VIC Noah CLM Noah* VIC* Fisher

Congo R 0.96 0.96 0.98 0.98 0.98 0.94

(STD = 503.01) STD 474.69 411.94 403.88 381.24 378.17 220.26

RMSD 141.36 162.48 131.15 151.21 151.31 303.59

Gambia R 0.87 0.64 0.84 0.78 0.74 0.57

(STD = 141.86) STD 130.64 99.59 83.04 86.75 83.92 56.83

RMSD 70.96 109.61 84.76 92.01 97.91 118.72

Lake Chad R 0.98 0.94 0.97 0.95 0.94 0.85

(STD = 299.33) STD 285.84 267.85 230.59 222.82 231.12 186.43

RMSD 31.45 68.43 83.76 94.99 90.07 189.10

Niger R 0.91 0.52 0.62 0.59 0.56 0.10

(STD = 106.72) STD 80.75 59.01 50.56 49.91 52.91 22.20

RMSD 47.78 91.45 85.04 87.39 88.52 106.88

Nile R 0.98 0.94 0.97 0.95 0.94 0.85

(STD = 235.75) STD 162.56 156.25 138.96 137.13 125.44 108.74

RMSD 83.04 102.25 105.75 114.41 126.28 154.08

Okavango R 0.97 0.88 0.93 0.82 0.71 0.12

(STD = 152.36) STD 155.48 119.29 111.95 105.67 117.87 152.93

RMSD 36.91 73.09 64.40 89.45 106.95 202.92

Orange R 0.92 0.88 0.88 0.91 0.76 0.41

(STD = 202.26) STD 146.36 108.79 93.98 108.42 72.04 146.73

RMSD 87.52 118.65 127.51 112.47 154.86 195.44

Senegal R 0.98 0.48 0.52 0.55 0.41 0.55

(STD = 129.67) STD 98.64 43.49 36.59 43.38 45.17 13.15

RMSD 36.72 115.28 115.17 111.91 118.49 122.90

Volta R 0.99 0.94 0.94 0.93 0.93 0.92

(STD = 214.92) STD 216.82 181.00 177.41 171.18 186.24 96.70

RMSD 15.35 75.38 76.09 85.21 78.01 132.30

The observed STD is indicated in parantheses
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3.2 Seasonal trend analysis

The seasonal trend analysis revealed that steady declines in

Ea over much of sub-Saharan Africa, coincide with increases

in Tmax and to a lesser extent P. The divergence Ea and P is

most pronounced after the early 1990’s and could be the

result of temperature-moisture feedbacks in areas of high Ea

variability (e.g. western Sahel) during the primary growing

season (JJA). Figure 3 shows the results of the trend analysis

for JJA. Grid cells with a value of zero showed no significant

trend at the 95% CI. The sharp edges shown on this figure and

related figures are a result of the confidence mask used and

the spatial resolution of the surface reanalysis data. The

trends in all figures were derived using the Theil-Sen

method, as the linear trends and confidence mask were

similar. Large Ea declines, on the order of 5 mm/year or

150 mm (nearly half of the seasonal average total) can be

seen over much of coastal West Africa, the Sahel, and the

Ethiopian highlands (western Ethiopia).

Figure 4 shows Pearson correlations between seasonal

(JJA) total Ea and P and average daily Tmax. The correlations

between Tmax and P were determined from the residuals of

each, given the strong relationship between Ea Tmax, and P

across the region. This approach does not account for any

covariance between Tmax, Ea, and P. The correlations are

significant at the 95% confidence band. Strong positive

correlations ([0.6) between Ea and P can be seen over most

of northern Africa. The strong correlations between Ea,

Tmax, and P do not show causality, but do reveal potential

feedbacks which merit further analysis. For much of the

areas showing declines in Ea, strong correlations between P

and Tmax exist. However, in these areas, Tmax is increasing,

while P remains unchanged. This is further elaborated upon

in the following paragraph.

Figure 5 shows a scatterplot of JJA Ea and observed P

and Tmax for cropped areas in Senegal. Agriculture repre-

sents a significant and expanding portion of land use in the

Sahel. The observed P shows a strong positive and sig-

nificant relationship with Ea at the 99.9% CI. There is also

a relatively weaker, but significant, negative relationship

between Tmax and Ea. This relationship is reflected in other

cropped areas of the western Sahel where data was available

Fig. 3 The trend (per year) for

JJA total evapotranspiration

(Ea), total precipitation (P),

minimum surface temperature

(Tmin), and maximum surface

temperature (Tmax). The trends

have been masked for the 95%

confidence band. Trends and

confidence were computed

using Sen’s method of median

slopes
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(Burkina Faso R2 = 0.59, 0.88; Mali R2 = 0.57, 0.78; and

Niger R2 = 0.74, 0.89). A time series of the data (not shown)

reveals after 1993, that a large increase in Tmax corresponds

to a recovery in P declines from the previous decade and

continued declines in Ea. The potential decoupling of Ea and

P could be the result of agricultural expansion. In southern

Sudan and the Ethiopian highlands the temperature-Ea rela-

tionship is reversed. The positive relationship between Tmax

and Ea appears to fall outside areas with a strong moisture

relationship, so vegetation may be less constrained by

moisture: increases in daytime temperatures and Ep lead to

increases in Ea. Southern Sudan reflects this pattern, as

declines in Tmax correspond to declines in Ea. The simulated

declines in Tmax, however, do not agree with observed data,

which showed dramatic increases in Tmax in this region. No

significant change in Tmax or Ea was detected in the Ethiopian

highlands where the temperature relationship exists.

Figure 6 shows the average soil moisture (depth = 0–10

cm) for December, January, February (DJF); March, April,

May (MAM); June, July, August (JJA); and September,

October, November (SON). The soil moisture in the top

layer tends to track the progression of Intertropical

Convergence Zone (ITCZ), with the lowest and highest soil

moisture storage occurring over the Sahel during DJF and

JJA respectively. The high positive correlation between Ea

and P and relatively low soil storage over most of North

Africa indicates that water input in this region is primarily

evaporated away. The steady declines in Ea and P over

coastal West Africa and the eastern Sahel (southern Chad

and Sudan) and results from previous work (e.g. Douville

2002) suggest that these declines are amplified by a strong

Ea and P positive feedback. Decreases in Tmin or dew point

temperature and relative humidity would favor increased

subsidence, which further corroborates declines in precip-

itation, but correlations between Tmin and Ea in this region

are low. There is a strong negative correlation in the

western Sahel and positive correlation in the eastern Sahel

and Ethiopian highlands between Tmax and Ea. The strong

negative relationship between Tmax and Ea in western Sahel

and declining trends in Ea suggest a relationship between

the two. If there is sufficient moisture in the root zone to

maintain plant functions, plants will continue to transpire

as daytime temperatures increase atmospheric demand (Ep)

(Buckley 2005). According to Morton (1983), if soil

Fig. 4 The Pearson correlation

(R) between seasonal total Ea

and seasonal total P and

seasonal average daily Tmax for

JJA. The correlations for Tmax

were determined from P and Ea

residuals. Grid cells with a

value of zero either showed no

correlation or correlations that

were not significant at the 95%

confidence level

Fig. 5 JJA average Ea plotted

against observed P (a) and Tmax

(b) masked for crop producing

areas in Senegal. Ea declines

correspond to increased Tmax

and an anti-correlation between

Tmax and Ea
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moisture is low in the root zone, as indicated by Fig. 6, Ea

(latent heat) will decrease, leading to an increase in sen-

sible heating, surface temperatures, and atmospheric

demand. Given that there was no trend detected in P, we

suggest that lower Ea may be contributing to increases in

surface temperatures. This contribution has likely com-

bined with sensible heat advection from surrounding areas

and direct radiative forcing from greenhouse gasses and

aerosols. While more research into the relative components

seems warranted, the role played by the sensible/latent

heating partitioning appears likely to play an important and

perhaps unexpected role.

Land use and cover change could in combination with

regional climatic drivers also affect Ea trends. The con-

version of native vegetation to croplands for example,

would reduce evapotranspiration (Zeng 2003), increase

sensible heating (Tmax), and increase the absorption of light

for crop production, favoring a higher NDVI (Herrmann

et al. 2005). Figure 7 represents the change in land cover

from natural vegetation to croplands in Sahelian countries

between 2005 and 2009. Two maps of annual land cover

(2005 and 2009) distributed as part of the European Space

Agency (ESA) GlobCover project were used to develop the

change map. The maps are derived from 300 meter spatial

resolution MERIS (Medium Resolution Imaging Spec-

trometer) surface reflectance mosaics. The mosaics undergo

rigorous geolocation and atmospheric correction before a

combination of supervised and unsupervised spectral clas-

sifiers that account for regional characteristics are used to

define 22 unique land cover classes (Bontemps et al. 2010).

The maps are validated using hundreds of ground control

points across the globe. Land cover classified as irrigated

crops, rain-fed crops, and mixed cropland and natural

vegetation (primarily grasslands and shrublands) were

combined to define the extent of cropped area. The change

map reveals that significant portions of native vegetation

have been converted to croplands in the area corresponding

to increases in Tmax and declines in Ea between 2005 and

2009. Although many of these changes over such a short

time frame could be the result of crop rotation or response to

climate variability, the average increase across Sahelian

countries is 14.25%, with more staggering increases in

countries such as Mali (24.6%) and Mauritania (38.63%),

suggesting that some of this change is permanent. VIC

Fig. 6 Seasonal soil moisture

for top (0–10 cm) soil layer as

modeled using VIC. Seasons are

defined as (DJF—December,

January, February), (MAM—

March, April, May), (JJA—

June, July, August), and

(SON—September, October,

November)
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incorporates land use and cover, but not change. The hybrid

models include a dynamic vegetation component which

captures this change, but did not perform as well as the

original VIC, revealing that land use and land cover change

may not play either a significant role in surface moisture

flux dynamics or at the very least, in controlling Ea in the

context of the VIC model. Further analysis, particularly at

the catchment scale using field data appears warranted.

Similar trend analyses were performed for the other

seasons, but the extent and correlation between Ea and cli-

mate change drivers were not as significant as in JJA. One

notable exception was Ea declines corresponding to P

declines over central Kenya, Tanzania, Uganda, northern

Mozambique, and southern Ethiopia during the primary

growing season (MAM). Figure 8 shows the change in

amplitude and phase of peak Ea, which corresponds to the

critical reproductive (‘‘grain filling’’) phase of plant

development. The trends are expressed in days and repre-

sent the change in amplitude and phase of Ea from the first

harmonic of the harmonic fit. The trend analysis from the

second harmonic (not shown) was highly sporadic, reveal-

ing only localized changes in the secondary growing season.

In the western Sahel, peak Ea from the primary growing

season has advanced by nearly 1 day per year (or 1 month

over the 31 year time series). In the Horn of Africa (Kenya,

Ethiopia, and Somalia), peak Ea from the primary growing

appears to be occurring 1 month or earlier in the year.

4 Discussion

This paper characterizes changes in Ea on a regional basis

in sub-Saharan Africa using remote sensing and surface

reanalysis data. The results of the Theil-Sen and linear

Fig. 7 Land cover change

between 2005 and 2009 for the

Sahelian countries (Burkina

Faso, Chad, Eritrea, Ethiopia,

Mail, Mauritania, Niger,

Nigeria, Senegal, and Sudan)

using the ESA GlobCover data

product. Areas in yellow and

turquoise show baseline (2005)

cropland and predominantly

native vegetation respectively,

while areas in red show new

cropland areas as of 2009

Fig. 8 The trend in the phase of

Ea expressed in days for the first

harmonic (primary growing

season) of the harmonic

regression at each grid cell. Grid

cells with a value of zero either

showed no correlation or

correlations that were not

significant at the 95%

confidence level
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methods were very similar, reflecting the overall robustness

of the results. The results agree with previous studies (see

Dai 2010 for a review) that show a general drying over

much of Africa and the divergence in the continental water

cycle attributed primarily to the Ea response to decreases in

P and soil moisture supply. These trends as reflected by

ground-based and bias corrected satellite data appear to

diverge from IPCC projections, which expect moderate

increases in precipitation over this century (Brown and

Funk 2008). In this paper, we add, based on the 31 year

time series analysis of modeled data that Ea and P are

becoming decoupled in areas where a strong relationship

between the two have been observed, while temperature

continues to increase. This relationship is most prevalent

during the primary growing season in the northern hemi-

sphere of Africa (JJA). In the western Sahel, an inverse

relationship between Tmax and Ea and direct relationship

between P and Ea were observed. Since no significant

decreasing trend in P was observed in the region, the

simulated data suggests that significant declines in Ea and

latent heat are increasing sensible heat and surface air

temperatures. In this semi-arid region, soil moisture storage

is low, so it is expected that atmospheric demand is

increasing in response to decreases in Ea according to

Morton’s hypothesis. Although the VIC model does not

include a stomatal resistance component, LSMs that do,

reflect similar patterns between Ea and Tmax attributed to

plant response to increased moisture stress.

After 1993, P declines in the Sahel appear to be

rebounding, while Ea declines continue. While 1993

denotes a transition period for the forcing data, the

recovery in Sahelian rainfall has been documented in pre-

vious studies using observed and other simulated data

(Funk et al. 2011; Hoerling et al. 2009; Lebel and Ali

2009). Given the historic coupling between rainfall

increases and temperature decreases in the Sahel, the recent

increases in temperatures, which have been validated

through analyses of station measurements (Funk et al.

2011) are quite striking, and the decline in Ea corresponds

to a dramatic increase in daytime temperatures after 1993.

The decline in Ea and latent heat and rise in sensible

heating and Tmax could result in a positive feedback

between Ea and Tmax, which could lead to further diver-

gence in the water balance. The decoupling of P and Ea is

occurring in areas where daily maximum temperatures

exceed 40�C throughout much of the year. At high tem-

peratures, the relationship between Tmax and the saturation

vapor pressure becomes exponential, so small increases in

temperature could produce significant increases in atmo-

spheric demand, further limiting healthy plant function and

consequently enhancing desertification. The impact of the

temperature-moisture relationship on plant health in the

western Sahel and Africa has been explored in previous

studies using NDVI (Brown and de Beurs 2008; Vrieling

et al. 2011) with results similar to this study. The results

could be further explored and refined using a crop model or

MODIS land surface temperature (LST) which is likely

closer to plant temperature than air temperature. The

introduction of observed energy and moisture flux data via

the African Monsoon Multidisciplinary Analyses (AMMA:

http://amma-international.org/) should improve the under-

standing of the temperature-moisture relationship as well.

Landcover change and other non-climatic related fac-

tors could be affecting the simulated temperature-moisture

relationships as well. The steady decline in Ea over the

western Sahel coincides with a steady increase in photo-

synthetic activity, as shown using NDVI (Herrmann et al.

2005; Heumann et al. 2007; Vrieling et al. 2011) and land

cover maps in this study. The apparent discrepancy

between Ea declines and increasing NDVI, suggests that

natural (perennial) vegetation is being converted to annual

crops. Natural vegetation tends to have greater access to

soil moisture than annual crops, because it has a deeper

root zone. Natural vegetation therefore tends to have

higher seasonal total Ea than annual crops. Annual crops

produce more biomass than natural vegetation, so NDVI

tends to be higher for the former, even though annual Ea is

lower than the latter. The harmonic regression analysis

revealed a later green-up in this area, suggesting that

annual crops, which tend to green-up earlier than natural

vegetation, contradicts this hypothesis. The NDVI time

series used in temporal studies in the Sahel are derived

from global inventory modeling and mapping studies

(GIMMS) Group at NASA’s Goddard Space Flight Center

(Tucker et al. 2005). The GIMMS dataset is problematic

for time series analysis, because inter-calibration errors

and orbital drift can affect sun-sensor geometry and the

magnitude of the vegetation index across the multiple

AVHRR sensors used to develop the series (Nagol et al.

2009). So, if the observed positive NDVI trend in previous

studies is false, desertification could also lead to a nega-

tive Tmax and Ea relationship. If NDVI were declining due

to desertification, the reduction in plant biomass and Ea

would lead to higher sensible heating and increase Tmax.

Observed higher water tables in Niger and other parts of

the Sahel would support either of these hypotheses, as

desertification and lower ground cover would enhance Q,

while the conversion of natural vegetation with roots

adapted to access relatively deep ground water to crop-

lands with shallow roots would lead to an increase in

Q (Boone 2011). The influence of landcover on potential

temperature-moisture feedbacks is unresolved and appears

to be an important area for further study.

The largest simulated declines in Ea are in coastal West

Africa. This area has relatively higher soil moisture storage

and Ea shows strong correlations with P and weak
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correlations with temperature, so we expect that Ea

declines are driven primarily by declines in soil moisture

supply. Unlike the Sahel and Ethiopian highlands, which

showed gradual declines in Ea over the 31 year time series,

the trend in coastal West Africa appears to be driven pri-

marily by precipitation fluctuations associated with decadal

variations in sea surface temperatures (SST). This concurs

with Lebel and Ali (2009) who showed continued declines

in P in coastal West Africa, while the western Sahel

showed rainfall recovery in the early 1990’s. Due to its

proximity to the ocean, declines in P and Ea in coastal West

Africa in the 1980’s coincide with decreased warming in

the northern tropical Atlantic Ocean and increased warm-

ing in the Indian Ocean. Cooling in the northern tropical

Atlantic occurs when the northern migration of the ITCZ

(tropical convection) contracts at the onset of the Atlantic

Monsoon (Chiang and Vimont 2004). The cooling creates a

region of stability and drying which prevents moisture

transport into coastal West Africa (Hagos and Cook 2008).

Warming in the Indian Ocean creates an area of deep

convection which draws moisture from and forces subsi-

dence in this region as well. Ea increases in the early

1990’s are followed by a brief period when warming in the

northern tropical Atlantic appears to have increased con-

vection and moisture flux onto the continent. Temperatures

in the northern tropical Atlantic since the early 1990’s have

remained above normal, though declines in Ea reappear and

are intensified. Warming in the Indian Ocean continues and

has intensified since the early 1990’s and the Ea declines

could be reflecting the prominence of Indian Ocean SSTs

in driving P in this region. The role of SST’s and general

circulation in impacting P has been studied in this region

extensively (e.g. Biasutti et al. 2008), however the full

land–ocean feedback, which includes the regional influence

of Ea should be explored in the future.

Declining trends in Ea and its in relation to climate drivers

in the Eastern Sahel and the Horn of Africa are less clear,

particularly for surface temperature, and should be revisited,

assuming Indian Ocean SST warming continues and its

impact in these areas intensifies. The decrease in Ea over

central Kenya, Tanzania, Uganda, and southern Ethiopia in

MAM and Sudan and Ethiopia in JJA and their correlation

with P reflects a general drying pattern that has been attributed

using climate reanalysis (Minobe 2005) and observed data

(Williams and Funk 2010) to warming in the Indian Ocean. As

in West Africa, the warming draws moisture from and induces

subsidence over Eastern Africa. Subsidence over most of

Eastern Africa is reflected by decreases in P and Tmin (an

indicator of dew point), though no strong relationship was

simulated between Tmin and Ea. Subsidence and increased

low-level stratus cloud cover could also explain the decrease

in Tmax for a narrow corridor in southern Sudan in JJA,

however the observed data did not agree with these declines. It

is unclear why the simulated temperature data did not agree

with observed data in this area, but dramatic changes in

topography or the lack of station data to remove bias in the

reanalysis data could be the cause. It should also be noted that

large increases in Tmax were observed during MAM over

much of the Sahel. The causal link between Ea and Tmax is

difficult to discern, as these trends occurred outside the pri-

mary growing season (JJA). One possibility could be that

vegetation in Sudan often increases productivity before the

rainy season in order to have a full canopy that provides shade

and conserves moisture during the rainy season (De Bie et al.

1998). Increased temperatures before the rainy season could

therefore put moisture stress on vegetation that leads to lower

productivity during the primary growing season. More

localized studies that employ higher spatial resolution datasets

that account for fine scale variability in landcover and

topography and expand on the understanding of vegetation

response to increased subsidence may resolve the tempera-

ture-moisture feedbacks simulated in the Sahel.

The large decline in Ea over much of northern Africa

during the primary growing season and throughout the year

in rainforests in the Ivory Coast, Liberia, Sierra Leone,

Congo basin, and Eastern Madagascar has major ramifi-

cations for ecosystem health and development. The

declines in Ea could be a result of deforestation. The Ivory

Coast, Liberia and Sierra Leone have lost between 60 and

85% of their forests already, while deforestation in the

Congo basin is becoming a growing concern (FAO 2010).

Rainforests are a major source of moisture flux, are critical

to global carbon cycling, and harbor a high level of bio-

diversity. Quantifying deforestation at the global level

remains an active area of research. Ea modeling could help

to improve these mapping efforts. Natural landcover in the

Sahel and Ethiopian highlands consist primarily of grass-

lands, savanna, shrublands, and woodlands, while land-use

consists primarily of rain-fed subsistence cultivation and

grazing. The large and significant decrease in Ea in these

regions, indicative of over-cultivation and/or desertifica-

tion, will undoubtedly further endanger natural ecosystems,

as growing population demands in these fringe areas will

increase the need for grazing and farm land.

The trends in the timing of Ea are also alarming, because

a change in timing could jeopardize ecosystem productiv-

ity. In addition, agriculturists and pastoralists in these areas

depend on regular timing of plant development in order to

maximize crop productivity. In the Horn of Africa, the

1 month or earlier trend in peak Ea corresponds to declines

in P. Given the relatively low soil moisture storage during

the peak season (JJA), natural vegetation may be assimi-

lating carbon or farmers may be planting earlier in the

season, in order to maximize early moisture withdrawals.

The month delay in peak Ea that was shown over the

western Sahel complements previous studies using NDVI
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(see Heumann et al. 2007). Unlike the Horn of Africa, the

Sahel shows a strong temperature–Ea and weak P–Ea

relationship. The rise in temperature and increase in sen-

sible heating could result in a delayed ‘‘green-up.’’ Annual

crops in the Sahel can lay dormant, if rainfall is insuffi-

cient. Since the rainfall trends are insignificant in this

region, it is possible that increased temperature may lead to

delayed germination brought on by increased Ep. Although

this paper looks at Ea phase, we did not partition the trend

into its constituent parts (start of season, end of season, and

length of growing season). Further study on how these

feedbacks affect each major component of plant phenology

could help to resolve these hypotheses.

The results of this paper should be regarded with care, as

the trend analysis was performed on model estimates driven

by various remote sensing and climate surface reanalysis

datasets. In addition, the observation data used to validate the

VIC model did not cover the entire 31 year time series. This is

critical, since many of the more sophisticated remote sensing

and observation based datasets were not integrated into

GLDAS until after the validation period. Although the data-

sets have been synthesized, it is difficult to know if the more

dramatic trends in Ea after the 1990’s are due to cloud forcing

common in satellite born data. Observed P and Tmax, for

example, corroborate the P and Tmax trend results in the

western Sahel, but not simulated Tmax trends in southern

Sudan. The Noah hybrid model was evaluated using eddy

covariance flux tower data after 2000 in Marshall et al.

(2011), so one might assume that VIC would do better in the

modern era as well, but that paper used higher spatial reso-

lution forcing data and better vegetation (MODIS) data, so

future work should aim to evaluate the LSMs using more

modern observation data.

The evaluation dataset may give misleading results as well.

Modeled Ea and observed Q were much lower than GLDAS P,

particularly for the semi-arid sub-basins. VIC model perfor-

mance therefore may be superior at the semi-arid sub-basins,

because P–Q response is stronger than the other models. In this

respect, the performance of the Fisher Ea could be obscured,

because it is not coupled to GLDAS P. The superiority of the

VIC model for the semi-arid catchments could be due to other

factors as well. The VIC model includes the most sophisti-

cated soil evaporation component and is strongly coupled to

precipitation. The coupling of soil moisture and precipitation

is particularly strong along the Sahel, particularly after a rain

event. Another possibility is that the VIC model, which

requires stream flow data to calibrate the infiltration curve,

could have been calibrated using the same stream flow data.

The poor performance of the Fisher model in semi-arid

regions has been attributed to poor soil parameterization and

reanalysis surface specific humidity and pressure (see Mar-

shall et al. 2011). The VIC and NOAH models, which are

strongly coupled to precipitation and not specific humidity,

reinforce the superiority of the VIC soil component in cap-

turing the timing and magnitude of Q in semi-arid regions.

One possible solution to resolve these issues would be to

evaluate the models using an independent P source, but the

difficulty in separating Ea performance from P performance

remains.

The assumption that soil moisture storage is negligible at an

annual time step is most appropriate for semi-arid sub-basins

where the most striking trends were simulated. No significant

trends in soil moisture were simulated over the Sahel, as is

expected, because these basins tend to dry out between years

and the simulated change in soil moisture storage over time is

close to zero. In the Congo Basin, however declining trends

have been simulated in previous studies, but the magnitude

and significance of this change is under debate (see Llovel

et al. 2010). Trend detection in the Congo Basin is difficult,

due to its proximity to two oceans. As a result, the basin

exhibits a ‘‘seesaw’’ climate, so trends could be capturing

actual change or variability. Assuming that the declining

trends in the basin are real, the underestimation of the models

should be considered grossly underestimating to accommo-

date the anticipated decline in Q. A critical evaluation of

regional ground water storage and its impacts on Ea and

atmospheric feedbacks should be performed in future studies.

The performances of the model hybrids and CLM at first

seem counterintuitive, because the use of a canopy com-

ponent driven by a time series of vegetation indices in the

case of the hybrids and the use of a sophisticated stomatal

resistance component should capture the variability better

at drier sites. Like the Fisher model, CLM is not as strongly

coupled to precipitation as NOAH or VIC and this might

have some influence on its poor performance for drier

catchments. Rosero et al. (2009) showed that vegetation

index time series improve the canopy component of Ea at

humid sites and not drier sites. This could be due to

inherent multi-sensor errors with the AVHRR data as dis-

cussed above and the dominance of bare soil at drier sites

that could be obscuring the vegetation signal in coarse

spatial resolution datasets. The lack of an advection term in

the Priestley–Taylor formulation for Ep could also be a

factor in the case of the Fisher model, as advection tends to

be an important component of Ep in dry regions, however

the substitution of the Priestley-Taylor formulation for Ep

with one that includes an advection term did not improve

the results of that analysis. These data issues should be

addressed as the process of model improvement continues.

5 Conclusion

This paper uses remote sensing and surface climate

reanalysis data to identify important temperature and

moisture relationships with evapotranspiration. In the
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western Sahel, a potential positive daytime temperature and

evapotranspiration feedback exists: decreased evapotrans-

piration and latent heating is leading to increased sensible

heating and daytime temperature which increases atmo-

spheric demand and further decreases evapotranspiration.

The African continent is expected to experience an annual

3–4�C increase in surface temperatures by the end of the

21st century, according to the IPCC A1B ensemble mean

(Christensen et al. 2007). The IPCC projects that tempera-

tures in subtropical regions (particularly the Saharan desert

and Sahel) will warm more than the humid tropics. This

feedback would therefore likely intensify under projected

IPCC projected climate warming. The increase in sensible

heating, resulting from this warming will likely delay the

reproductive phase of the growing season, which will fur-

ther strain natural ecosystems, farmers, and pastoralists who

depend on regular timing of plant phenology. Projected

changes in precipitation in the Sahel are less known, given

systematic errors in global simulations, lack of RCM sim-

ulations, and uncertainties in empirically derived down-

scaling techniques. The most plausible scenario suggested

by the IPCC is that lower pressure (convergence) over the

Sahel during JJA will bring modest increases in precipita-

tion (*5%) by the end of the 21st century. The simulated

historical trends from this study suggest, however, that the

Sahel will get drier. This could be due to other mechanisms

related to global warming, such as moisture divergence over

the Sahel driven by warming in the Indian Ocean. Given the

strong dependence of evapotranspiration on soil moisture, it

is likely that under a ‘‘drier’’ scenario that declining trends

in evapotranspiration in the Sahel will continue. El Nino

events are characterized by elevated SST due to the equator-

ward migration of the ITCZ. This results in a strengthening

of the Hadley Cell circulation and weakening of the Walker

Cell circulation, which produces above normal rainfall in

east Africa and drought conditions in southern Africa.

Rainfall projections in east and southern Africa indicate that

these areas will likely become more El Nino like by the end

of the 21st century. The simulated data suggests, however,

that Ethiopia, Somalia, Kenya, and northern Uganda are

becoming drier and given the dependence of evapotrans-

piration on soil moisture in this area, desertification is likely

to increase. Many articles related to ecological change have

identified southern Africa as a 21st century hotspot, given

the El Nino like climate projections. This study suggests,

however, that the Sahel is showing larger and more sig-

nificant declines in precipitation, which will be exacerbated

by warming and potential temperature feedbacks. If this

scenario continues, the Sahel will see larger and significant

declines in evapotranspiration. Dramatic shifts in moisture

flux in this region will have important ecological ramifi-

cations for sub-Saharan Africa and northern latitudes,

making this a global concern.
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