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Abstract A maximum entropy-based framework is pre-

sented for the synthesis of projections from multiple Earth

climate models. This identifies the most representative

(most probable) model from a set of climate models—as

defined by specified constraints—eliminating the need to

calculate the entire set. Two approaches are developed,

based on individual climate models or ensembles of mod-

els, subject to a single cost (energy) constraint or com-

peting cost-benefit constraints. A finite-time limit on the

minimum cost of modifying a model synthesis framework,

at finite rates of change, is also reported.

Keywords Climate model � Maximum entropy method �
Boltzmann principle � Thermodynamics � Cost-benefit

analysis � Finite-time information limit

1 Introduction

A major challenge facing humanity is the possibility of

climate change due to human and/or natural forcings, and

how best to respond in a rational and informed manner. To

this end, detailed global circulation models (GCMs) have

been developed to predict the behaviour of the Earth cli-

mate system (atmosphere and oceans), involving solution

of the continuity, Navier-Stokes, angular momentum and

energy equations and constitutive relations over two- or

three-dimensional domains, subject to various initial and

boundary conditions (Peixoto and Oort 1992; McGuffie

and Henderson-Sellers 2005). These are run interrogatively

to yield climate projections—predictions as a function of

future time – to examine various forcing and response

scenarios. However, a serious difficulty for policy-makers

is the promulgation of multiple models by different

research groups, due to different modelling priorities,

assumptions and input parameters, and inherent difficulties

in the construction of climate models, especially in the

handling of coupled phenomena [e.g. humidity (Paltridge

et al. 2009)] and the need to dramatically reduce their

computational complexity, necessitating a turbulence clo-

sure scheme. Even with the same (or similar) inputs, dif-

ferent models can provide significantly different climate

projections (Stocker et al. 2010). A rational framework for

the synthesis of such projections—which operates in a

transparent and fully defensible manner—is urgently

required, to avoid the lack of objectivity of seemingly ad

hoc amalgamations of projections from different groups.

Over the past century, maximum entropy (MaxEnt)

methods have been developed for the construction of

probabilistic models, initially in thermodynamics (Boltz-

mann 1877; Planck 1901) and subsequently for all proba-

bilistic systems (Jaynes 1957, 1963; Jaynes and Bretthorst

2003). Although imbued with several information-theoretic

interpretations (Jaynes 1957, 1963; Jaynes and Bretthorst

2003; Shannon 1948), the success of such models rests

ultimately on the maximum probability (MaxProb) princi-

ple of (Boltzmann 1877; Planck 1901; Vincze 1974;

Grendár et al. 2001; Niven 2005, 2006, 2009, 2009; Niven

and Grendar 2009; Grendar and Niven 2010): ‘‘a system

can be represented by its most probable state.’’ This
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provides a probabilistic definition of the (relative) entropy

function:

Hrel ¼ K lnP ð1Þ

where P is the governing probability of an observable

realization (macrostate) of the system and K is a constant.

The maximum of Hrel thus coincides with that of P: If the

system can be represented by the allocation of distinguishable

balls (objects) to distinguishable boxes (categories), then P

will satisfy the multinomial distribution (Brillouin 1930;

Fortet 1977; Read 1983):

P ¼ Probðn1; . . .; nsjq1; . . .; qs;NÞ ¼ N!
Ys

i¼1

qni
i

ni!
ð2Þ

where ni is the observed occupancy (number of balls) and

qi is the prior probability of the ith category, N is the total

number of balls and s the number of categories. Insertion of

(2) into (1) with K ¼ N�1; taking the asymptotic limit N !
1 and ni=N ! pi; gives the (negative) Kullback-Leibler

entropy function:

HKL ¼ �
Xs

i¼1

pi ln
pi

qi
: ð3Þ

Maximisation of (3) for a system which satisfies (2), sub-

ject to its constraints, is therefore equivalent to seeking its

most probable realization in the asymptotic limit, subject to

the same constraints.

We therefore adopt a broader concept of ‘entropy’ than

that normally used in the physical sciences. Climatologists

will be familiar with the thermodynamic entropy S, which

has a clearly defined meaning as the state function

S = $dQ/T (Clausius) or S ¼ k lnW (Boltzmann), where

dQ is the increment of heat entering a system, T is tem-

perature, k is the Boltzmann constant and W is the number

of microstates within a given realization (macrostate) of a

system. Its rate of change is dS/dt, of which the excess

(exported) component is commonly termed the thermody-

namic entropy production _r (de Groot and Mazur 1984;

Niven 2009, 2010). However, under the MaxProb or

MaxEnt approach adopted here, entropy acquires a more

fundamental meaning in terms of the probabilistic state

space of a system, however defined. To emphasise their

generic character, such entropies are here denoted H: The

thermodynamic entropy is in fact a special case of the

generic, being derivable by the application of MaxEnt to an

energetic system (Boltzmann 1877; Planck 1901; Jaynes

1957, 1963; Jaynes and Bretthorst 2003). The ensuing

analyses are based entirely on generic entropy functions,

not necessarily related to S; that said, much of the under-

lying mathematical structure is identical.

The aim of this study is to construct a framework for the

synthesis of climate projections from multiple climate

models, based on the MaxProb (hence MaxEnt) principle.

By analogy with thermodynamics, two approaches are

presented, involving constraints on the properties of indi-

vidual climate models or of ensembles of climate models.

In each case, the analysis identifies the most representative

(most probable) model from a set of climate models, cir-

cumventing the need to calculate the entire set. Other

implications of these frameworks, which arise from the

mathematical structure given by (Jaynes 1957, 1963; Jay-

nes and Bretthorst 2003), are examined. In addition, we

report a curious finite-time limit on the minimum cost of

varying the overall framework at specified rates of change,

using a theorem from finite-time thermodynamics (Rup-

peiner 1979; Salamon et al. 1980; Salamon and Berry

1983; Nulton et al. 1985; Niven and Andresen 2009).

2 Derivations

Consider an individual Earth general climate model

(GCM), composed of J separable computational compo-

nents. Each component j = 1, …,J is executed by a single

choice i(j) of algorithm, methodology or paradigm, from a

total of I(j) possible choices. As shown in Fig. 1, this gives

a combinatorial scheme in which an individual model is

constructed from a set of unique choices i(j) [ {1, …,

I(j)}, V j. We assume that all models are calculated using

the same set of input parameters and assumptions h;
moreover, to accommodate variability or errors in h; each

model will yield a set or domain of climate projections,

which can be explored by Monte Carlo analysis or by some

other means. If we move beyond the deterministic mindset

that an individual climate model must be the ‘‘correct’’ one,

how should we weight the projection sets from different

climate models, to obtain a (statistical) picture of their

merged sets of projections? One could simply combine an

available set of model outputs using equal or assigned

weighting factors, as suggested in Stocker et al. (2010), but

unless every possible combination has been computed, the

resulting composite model will be rather arbitrary. In
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Fig. 1 Generic combinatorial representation of the climate model

weighting framework, showing a single model composed of individ-

ual discrete choices of the i(j)th algorithm or methodology for each

model component j ¼ 1; . . .; J
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addition, if the model space is infinite (or merely very

large), it will be impossible to compute the composite

model in the lifetime of the universe (or in any reasonable

time frame). Moreover, the use of equal weights does not

allow the incorporation of additional constraints on the

model space. We therefore propose a MaxProb-based

(hence MaxEnt-based) framework for the weighting of

multiple climate models, for which two distinct approaches

are available.

2.1 ‘‘Microcanonical’’ framework

We first construct a ‘‘microcanonical’’ climate model

weighting framework, based on the properties of individual

climate models. Extending the representation in Fig. 1,

consider a single climate model shown in Fig. 2a, in which

we choose to rank each choice of algorithm or method i(j)

by its cost or energy eij, indicating (for example) the rela-

tive programming and computational cost of execution of

this particular choice. Each energy level i(j) is considered

to have the degeneracy gij C 1, equal to the number of

choices which share the same cost eij. The ranking scheme

i(j) therefore accounts for, but does not distinguish

between, choices of equal cost. Each level i(j) is taken to

have the occupancy mij [ {0,1} (the choices are unique).

From simple probabilistic considerations (Brillouin 1930;

Fortet 1977; Read 1983) for equiprobable degenerate

choices, the probability of a given choice i(j) is given by

the reduced multinomial distribution:

P
ðlÞ
ijj ¼ Probðmjjgj; hÞ ¼

1

Gj

YIðjÞ

i¼1

g
mij

ij

mij!
ð4Þ

where mj ¼ fm1j; . . .;mIðjÞjg; gj ¼ fg1j; . . .; gIðjÞjg;Gj ¼
PIðjÞ

i¼1 gij and superscript l denotes the microcanonical

framework. Equation (4) reduces to P
ðlÞ
sjj ¼ gsj=Gj; where

s(j) is the selected choice, but it is preferable to keep the mij

explicit using (4). The probability of selecting a single

overall model, assuming that the J components are

independent, is therefore given by the ‘‘multi-

multinomial’’:

P
ðlÞ ¼ Probðmjg; hÞ ¼

YJ

j¼1

Probðmjjgj; hÞ

¼
YJ

j¼1

P
ðlÞ
ijj ¼

YJ

j¼1

1

Gj

YIðjÞ

i¼1

g
mij

ij

mij!

ð5Þ

where m and g are the respective matrices of mij and gij.

Each model is subject to J constraints on the total

occupancy within each component j:

XIðjÞ

i¼1

mij ¼ 1; 8j: ð6Þ

Assuming that the costs are additive over the J

components, we can also include a constraint on the total

cost E of running the overall model:

XJ

j¼1

XIðjÞ

i¼1

�ijmij ¼ E: ð7Þ

To determine the most probable or equilibrium model,

given the above occupancy and total energy constraints, we

should maximise (5) with respect to the unknowns {mij},

subject to (6)–(7). From the Boltzmann definition (1) with

K = 1, this is equivalent to maximising the entropy:

HðlÞ ¼ lnPðlÞ ¼
XJ

j¼1

� ln Gj þ
XIðjÞ

i¼1

ðmij ln gij � ln mij!Þ
( )

ð8Þ

subject to the same constraints. We again emphasise that

(8) is defined on the space of climate models, and has no

connection to the thermodynamic entropy S. If one adopts

the Stirling (1730) approximation ln mij! � mij ln mij � mij

for large mij (in fact this is not strictly valid), (8) reduces to:
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Fig. 2 Combinatorial representations of a the microcanonical frame-

work, showing a single model composed of gij degenerate choices i(j)
for each model component j ¼ 1; . . .; J (ranked by energy level �ij);

and b the canonical framework, composed of an ensemble of

N amalgamated microcanonical models. Ball numbers denote the

model index
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H
ðlÞ
St ¼

XJ

j¼1

� ln Gj �
XIðjÞ

i¼1

ðmij ln
mij

gij
þ mijÞ

( )
: ð9Þ

Extremisation of (9) subject to (6)–(7) yields the

(microcanonical) Boltzmann distribution at equilibrium:

m�ij ¼ gije
�ðk0jþ1Þ�kE�ij ¼ 1

Z
ðlÞ
j

gije
�kE�ij ð10Þ

where * denotes the asymptotic (Stirling-approximate)

extremum, k0j and kE are Lagrangian multipliers respec-

tively for the allocation (6) and total energy (7) con-

straints, and Z
ðlÞ
j ¼ ek0jþ1 ¼

PIðjÞ
i¼1 gije

�kE�ij is the jth

microcanonical partition function. Equation (10) can be

solved in conjunction with (7) to calculate the predicted

occupancies m�ij: If the occupancies are restricted to dis-

crete values {0,1}, this will yield the choices i(j) of the

optimal climate model, subject to the total energy con-

straint E. In practice, numerical solution will typically

give floating-point values of m�ij; which can be used as

weighting factors with which to combine multiple models

of the same total energy E.

As noted, since mij [ {0,1}, Stirling’s approximation

does not strictly apply to the above analysis, and so

(10) is only an approximate solution. This can be

addressed by directly maximising the non-asymptotic

entropy (8) with respect to mij, subject to (6)–(7),

giving the equilibrium distribution (Niven 2005, 2006,

2009, 2009):

m#
ij ¼ K�1 ln gij � k0j � kE�ij

� �
ð11Þ

where # denotes the non-asymptotic extremum and

K�1ðyÞ ¼ w�1ðy� 1Þ is the upper inverse of the function

KðxÞ ¼ wðxþ 1Þ; defined for convenience, in which w(x) is

the digamma function. (Note (11) can be written with

additional terms in Gj and N (c.f. Niven 2009); these are

here incorporated in k0j.) In this case, no explicit partition

functions exist, and (11) must be solved in conjunction

with (6)–(7). This method will give more precise values of

the optimal weighting factors m#
ij , although in practice, its

numerical solution can be difficult. The non-asymptotic

solution (11) is itself an approximation to the true discrete

MaxProb solution (with mij [ {0,1}), which must be

identified by a (computationally expensive) combinatorial

search scheme.

Example The above framework can be demonstrated by a

simple example, in which a climate model is constructed

from J = 3 components, with I = [3, 4, 3] choices of

algorithm. The degeneracies and energy levels are taken as:

g ¼

1 2 1

2 4 2

4 8 4

16

2
664

3
775; � ¼

1 1 1

4 4 4

9 9 9

16

2
664

3
775units: ð12Þ

In this framework, more (degenerate) algorithms, and

algorithms with a fourth energy level, are available for

model component 2. For a total energy per model of

E = 17 units, the inferred asymptotic (10) and non-

asymptotic (11) solutions are, respectively:

m� ¼

0:2823 0:2250 0:2823

0:3650 0:2909 0:3650

0:3527 0:2811 0:3527

0:2031

2

6664

3

7775;

k0
� ¼ 0:1192; 1:0393; 0:1191½ �>; k�E ¼ 0:1455

ð13Þ

and

m# ¼

0:1950 0:1695 0:1950

0:4206 0:3883 0:4206

0:3844 0:3532 0:3844

0:0890

2
6664

3
7775;

k0
# ¼ 0:1494; 0:8755; 0:1494½ �>; k#

E ¼ 0:1460

: ð14Þ

All calculations were conducted in Maple 14. The

equilibrium model should thus be constructed using the

weights in m� (or, arguably, m#). In this example,

algorithms of intermediate cost (the second energy

level) have the highest weighting. Some difference is

evident between the asymptotic and non-asymptotic

solutions m and Massieu functions k0, due to the small

model space of this simplified example. The energy

multipliers kE of the two solutions are, however, quite

similar.

2.2 ‘‘Canonical’’ framework I

The foregoing methodology is mathematically sound and

provides a formal framework for the combination of

different climate models. It is, however, somewhat

restrictive in that it only includes models of a single total

energy E. It is possible to conduct the analysis at a higher

‘‘canonical’’ level—in the same manner as in thermody-

namics—by the analysis of ‘‘systems of systems’’, in this

case involving ensembles of individual climate models.

This is shown in Fig. 2b, in which an ensemble is con-

structed by collecting a sample (without replacement) of

N individual models, and amalgamating the results. This

can be represented by a combinatorial scheme in which

distinguishable balls—labelled by the model index
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z [ {1, …, N}—are allocated to distinguishable levels

i(j), again indicating choices of energy level eij with

degeneracy gij. This gives the occupancies nij 2 f0;Ng
for each energy level of the ensemble, which are con-

nected to those for each model by:

nij ¼
XN

z¼1

m
ðzÞ
ij ; 8j ð15Þ

N ¼
XIðjÞ

i¼1

nij ¼
XIðjÞ

i¼1

XN

z¼1

m
ðzÞ
ij ; 8j ð16Þ

The probability of a specified set of occupancies nij for a

particular j is now given by (Brillouin 1930; Fortet 1977;

Read 1983):

P
ðvÞ
j ¼ Probðnjjgj;N; hÞ ¼

N!

GN
j

YIðjÞ

i¼1

g
nij

ij

nij!
ð17Þ

where nj = {n1j,…, nI(j)j}, while v denotes the canonical

framework. The multinomial factor N!
QIðjÞ

i¼1

.
nij! accounts

for number of permutations of models which attain the

same set of occupancies nj. The probability of a specified

ensemble, again assuming J independent components, is

thus given by the ‘‘multi-multinomial’’:

P
ðvÞ ¼ Probðnjg;N; hÞ ¼

YJ

j¼1

Probðnjjgj;N; hÞ

¼
YJ

j¼1

P
ðvÞ
j ¼

YJ

j¼1

N!

GN
j

YIðjÞ

i¼1

g
nij

ij

nij!

ð18Þ

where n is the matrix of nij, whence (1) with K ¼ N�1

gives the entropy:

HðvÞ ¼ 1

N
lnPðvÞ ¼ 1

N

XJ

j¼1

ln N!� N ln Gj

�

þ
XIðjÞ

i¼1

ðnij ln gij � ln nij!Þ
) : ð19Þ

This is subject to constraints on the occupancies, given by

the first part of (16).

How should we analyse ensembles of models? We

could, in the first instance, examine the set of all possible

models, of cardinality
QJ

j¼1 GN
j (Niven and Grendar 2009).

This would not, however, be very informative, since all

models would a priori be of equal weight and so would not

be discriminated by the MaxProb (or MaxEnt) method. The

total ensemble also does not allow the inclusion of addi-

tional information about the desired set of models. If, on

the other hand, we impose a constraint on the mean energy

of the ensemble:

1

N

XJ

j¼1

XIðjÞ

i¼1

�ijnij ¼ hEi ð20Þ

we then impose a decision rule on its desired composition,

namely, on the average cost of constructing its constituent

models. In contrast to the microcanonical framework, this

allows models of greater-than-average total energy

E [ hEi, so long as these are balanced in the ensemble

by models of lower energy E \ hEi. Combining (19) with

(16) and (20) gives the Lagrangian:

LðvÞ ¼
XJ

j¼1

1

N
ln N!� ln Gj þ

XIðjÞ

i¼1

nij

N
ln gij �

1

N
ln nij!

� �( )

�
XJ

j¼1

j0j

XIðjÞ

i¼1

nij

N
� 1

( )

� jE

XJ

j¼1

XIðjÞ

i¼1

�ij
nij

N
� hEi

( )
ð21Þ

where j0j and jE are Lagrangian multipliers for the

allocation (16) and energy (20) constraints. Extremisation

gives the non-asymptotic equilibrium solution:

n#
ij ¼ K�1 ln gij � j0j � jE�ij

� �
; 8j ð22Þ

(again all constant terms are brought into j0j). For any

given N, these can be solved numerically in conjunction

with the constraints (16) and (20), to give the optimum

number of times (weighting factor) nij
# that each choice i(j)

should be included in the ensemble, subject to hEi.
When the factorials in (19) satisfy Stirling’s approxi-

mation, (22) gives the (canonical) Boltzmann distribution

at equilibrium:

n�ij
N
¼ 1

Z
ðvÞ
j

gije
�jE�ij ð23Þ

where Z
ðvÞ
j ¼ Nej0jþ1 ¼

PIðjÞ
i¼1 gije

�jE�ij is the jth canonical

partition function.

Example The canonical framework can be demonstrated

using the example described previously (12), now constrained

by a mean total energy per model of hEi = 17 units (less than

the mean of all possible models, hEi = 24.3904 units). The

inferred asymptotic solution (23) is identical to (13), i.e.:

n�

N
¼ m�;

j0
� ¼

ln 3:062388620 N�1
� �

� 1

ln 7:685321125 N�1
� �

� 1

ln 3:062388620 N�1
� �

� 1

2

64

3

75; j�E ¼ k�E

: ð24Þ

For N = 27 (say) this gives j0
� ¼ ½�3:1766;�2:2565;

�3:1766�>. In comparison, the non-asymptotic solution

(22) at N = 27 is:
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n#

N
¼

0:2795 0:2232 0:2795

0:3668 0:2940 0:3668

0:3537 0:2834 0:3537

0:1994

2

6664

3

7775;

j0
# ¼ �2:2315;�1:3292;�2:2315½ �>; j#

E ¼ 0:1455

:

ð25Þ

Compared to (14), the latter exhibits a more uniform dis-

tribution for each j, and is closer to the asymptotic form

(24).

2.3 ‘‘Canonical’’ framework II

One difficulty with the above canonical framework is that

it—like its microcanonical precursor—still requires sepa-

rability of the model into J distinct components, for which

the costs eij are additive. In more general situations, this

separability may not be possible due to coupling between

components. In that case we must revert to a model space

based on ensembles of entire models. Severing all con-

nection to the components j, we consider a model space

from which we collect a sample (ensemble) of N models,

containing nı models each of total energy Eı. Each energy

level has degeneracy gi. The probability of a specified

ensemble is:

P
ðvÞ
II ¼ Probðnjg;N ; hÞ ¼ N !

GN
YI

ı¼1

gnı
ı

nı!
ð26Þ

where G ¼
PI

ı¼1 gı. Boltzmann’s equation (1) with K ¼
N�1

gives the entropy:

H
ðvÞ
II ¼

1

N lnP
ðvÞ
II ¼

1

N lnN !�N lnGþ
XI

ı¼1

ðnı lngı� lnnı!Þ
( )

ð27Þ

This is subject to the occupancy and mean ensemble energy

constraints:

XI

ı¼1

nı ¼ N ð28Þ

1

N
XI

ı¼1

Eını ¼ hEi ð29Þ

Forming the Lagrangian and extremisation gives the non-

asymptotic equilibrium occupancies:

n#
ı ¼ K�1 ln gı � u0 � uEEıð Þ ð30Þ

where u0 and uE are Lagrangian multipliers for the

occupancy and energy constraints. If (27) satisfies the

Stirling approximation, the distribution reduces to:

n�ı
N ¼

1

Z
ðvÞ
II

gıe
�uEEı ð31Þ

where Z
ðvÞ
II ¼ N eu0þ1 ¼

PI
ı¼1 gıe

�uEEı is the canonical II

partition function. Either (30) or (if valid) (31) can be

solved in conjunction with the constraints (28)–(29), to

give the weights nı of the most representative model.

2.4 Summary

At this point, it is worth summarising some important

features of the microcanonical and two canonical frame-

works proposed:

• As evident from the predicted solutions (10)–(11) and

(22)–(23), if one seeks the optimal model to describe a

set of climate models, it is not necessary to compute all

possible combinations of models. Using the MaxProb

method, one can directly calculate the single model or a

reduced set of models which best represents the model

set, subject to constraint(s) on the model or ensemble

properties. The effect of two competing constraints is

examined in the next section.

• The microcanonical framework imposes constraint(s) on

individual models, whereas the two canonical frame-

works impose constraint(s) over ensembles of models.

The latter enable the synthesis of larger sets of models.

• Note that, due to the assumed independence of the J

model components, the microcanonical and canonical I

frameworks are ‘‘multi-multinomial’’ (5) and (18). The

choices i(j) for a specified j = 0 are thus independent

of the other choices j = 0. The MaxProb prediction can

therefore be computed using individual models com-

posed of whichever choices i(j) are convenient, so long

as the overall set conforms to the MaxProb prediction.

In the canonical II model, we overcome the difficulty of

coupled model components by considering ensembles

of entire models, with constraints on the total energy of

each model.

• How should we interpret the Lagrangian multipliers on

the energy constraint? By analogy with thermodynam-

ics, these can be interpreted as kE = 1/kT(l), jE = 1/

kT(v) and uE = 1/kTII
(v), where the T parameters are

framework ‘‘temperatures’’ and k is a constant with

units of energy (or cost) per temperature unit. The T’s

are not thermodynamic temperatures, but express the

distribution of energy over the available energy levels,

in the relevant model or ensemble space. In effect, they

serve as proxy variables for the total model cost E or

mean ensemble cost hEi.
• Although the MaxProb framework is primarily

designed to determine the most probable (maximum

entropy) model, it is also possible to interrogate the
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Lagrangian to determine the minimum entropy mod-

el(s), i.e. those which lie farthest from the optimum. In

this manner, one can explore the extremities of the

model or ensemble space, to identify model outliers.

Since minimum entropy solutions tend to lie on non-

continuous boundaries of the solution domain, they are

generally inaccessible to extremisation methods (Kapur

and Kesevan 1992); nonetheless, they should be

identifiable by numerical optimisation algorithms such

as simulated annealing.

• The mathematical structure of the output from the

MaxEnt algorithm gives rise to many more features of

the predicted solution. Some of these features are

explored in later sections.

3 ‘‘Canonical’’ framework II with cost and benefit

constraints

3.1 Derivation

We now examine a more comprehensive canonical II

framework, in which we impose two constraints at the

ensemble level: a constraint on the mean ensemble cost or

energy hEi, as before (29), and also a constraint on some

measure of the average ensemble ‘‘worthiness’’ or ‘‘bene-

fit’’ hBi (for example, a measure of its precision or accu-

racy). In this manner, we construct a MaxProb framework

with which to conduct cost-benefit analyses of various

ensembles of models, and to interrogate the trade-off

between costs and benefits.1 In general, the energy and

benefit levels will have different ranks, necessitating the

use of different indices i [ {1, …, I} (as before) and

‘ 2 f1; . . .;Lg. We therefore consider model choices

ranked by total model energies Ei‘ and benefits Bi‘, of joint

degeneracy gi‘. The probability that an ensemble of N
models has the occupancies {ni‘} is governed by the

multinomial:

P ¼ N !

GN
YI

i¼1

YL

‘¼1

gni‘

i‘

ni‘!
ð32Þ

where now G ¼
PI

i¼1

PL
‘¼1 gi‘ (for convenience we drop

the superscript labels). From (1) with K ¼ N�1
; we

maximise the entropy:

H ¼ 1

N lnN !�N lnG þ
XI

i¼1

XL

‘¼1

ðni‘ ln gi‘ � ln ni‘!Þ
( )

ð33Þ

subject to the constraints:

1

N
XI

i¼1

XL

‘¼1

ni‘ ¼ 1 ð34Þ

1

N
XI

i¼1

XL

‘¼1

Ei‘ni‘ ¼ hEi ð35Þ

1

N
XI

i¼1

XL

‘¼1

Bi‘ni‘ ¼ hBi ð36Þ

to give the non-asymptotic equilibrium solution:

n#
i‘ ¼ K�1 ln gi‘ � x0 � xEEi‘ � xBBi‘ð Þ ð37Þ

where x0, xE and xB are the Lagrangian multipliers. If

Stirling’s approximation applies, the entropy is:

HSt ¼ lnN � lnG �
XI

i¼1

XL

‘¼1

ni‘

N ln
ni‘

gi‘

� �
ð38Þ

whence extremisation gives:

n�i‘
N ¼

gi‘

Z
e�xEEi‘�xBBi‘

Z ¼ N ex0þ1 ¼
XI

i¼1

XL

‘¼1

gi‘e
�xEEi‘�xBBi‘

ð39Þ

where Z is the partition function.

The Lagrangian multiplier xE can again be interpreted

as an inverse ensemble temperature xE = 1/kT, where k is

a constant. The multiplier xB can be considered as a

measure of the overall benefit provided by the ensemble, in

reciprocal benefit units. In effect, it acts as a proxy variable

for the mean benefit hBi. Since hBi measures the average

information or value provided by the framework, it can be

interpreted very crudely as a reciprocal density or volume,

whereupon we can interpret xB = P/kT, in which P is a

mean ensemble pressure (this interpretation should not be

taken too seriously).

3.2 Jaynesian mathematical structure

Now that we have the main results, we can examine

several important mathematical features of the solution.

Most of these were reported in a generic context by

Jaynes (Jaynes 1957, 1963; Jaynes and Bretthorst 2003)

[see also Kapur and Kesavan (1992) and Tribus (1961)],

although many were previously known in thermody-

namics. The foregoing microcanonical and canonical I

and II frameworks also exhibit these features, but it is

more interesting to examine the effect of two competing

constraints.

Firstly, for the Stirling-approximate case, substitution

of (39) into (38), by sorting into expectations along the

1 This approach is applicable not only to climate models, but models

of any type, including economic models.
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lines of (Jaynes 1963), gives the asymptotic maximum

entropy:

H� ¼ � lnG � /þ xEhEi þ xBhBi ð40Þ

where for convenience we define the potential function

(negative Massieu function) / = -x0 = -ln Z. The most

probable state of the ensemble is thus given by a constant term,

plus the Massieu function, plus the sum of products of the

constraints and their conjugate Lagrangian multipliers.

Since the entropy function and constraints are state

variables on the space of ensembles of models, (40) pro-

vides a linear homogenous equation which describes the

framework.2 This can be used to examine the response of

the framework to changes in the constraints and/or multi-

pliers. For constant G and / we immediately see that

(Jaynes 1957, 1963; Jaynes and Bretthorst 2003):

oH�

ohEi

����
hBi
¼ xE;

oH�

ohBi

����
hEi
¼ xB: ð41Þ

Second differentiation gives the Hessian matrix:

�a ¼
o2H�

ohEi2
o2H�

ohEiohBi
o2H�

ohBiohEi
o2H�

ohBi2

2
4

3
5 ¼

oxE

ohEi
oxB

ohEi
oxE

ohBi
oxB

ohBi

" #
: ð42Þ

If the mixed derivatives are equivalent (i.e. H� is

continuous and continuously differentiable, at least up to

second order), this gives the reciprocal or Maxwell-like

relation (Jaynes 1963; Jaynes and Bretthorst 2003):

oxE

ohBi ¼
oxB

ohEi: ð43Þ

Equivalently, (40) can be rewritten as a function of the

potential /, whence it can be shown that (Jaynes 1957,

1963; Jaynes and Bretthorst 2003):

o/
oxE

����
xB

¼ hEi; o/
oxB

����
xE

¼ hBi: ð44Þ

Second differentiation gives:

�a ¼
o2/
ox2

E

o2/
oxEoxB

o2/
oxBoxE

o2/
ox2

B

2

4

3

5 ¼
ohEi
oxE

ohBi
oxE

ohEi
oxB

ohBi
oxB

" #
ð45Þ

giving, again for equivalent mixed derivatives (Jaynes

1963, Jaynes and Bretthorst 2003):

ohBi
oxE

¼ ohEi
oxB

: ð46Þ

From (42) and (45), it is evident that:

a ¼ a�1: ð47Þ

This defines a Legendre transformation between H� and /
representations of the system (Jaynes 1963; Jaynes and

Bretthorst 2003; Kapur and Kesevan 1992).

Finally, we note that it may be desirable to rank climate

models by more than two properties, e.g. the model cost E

and several different benefits B1, B2, …, BM. The forego-

ing analysis can readily be extended into as many dimen-

sions as desired, giving the above mathematical structure as

a function of the constraints hEi, and hB1i, …, hBMi.

3.3 Implications

What are the implications of the above Jaynesian mathemat-

ical structure? In essence, it governs the effect of changes to

the constraints and/or multipliers on the manifold of equilib-

rium positions of the framework. This includes:

• Firstly, the first derivatives (41) and (44) can be interpreted

as equations of state on the space of ensembles of models,

describing the relationship between the rate of change of

the entropy or potential as a function of the constraints or

their conjugate multipliers (Jackson 1968).

• Secondly, the second derivatives (42) and (45) describe

the susceptibilities of the framework, i.e. the functional

connections between the constraints and multipliers. In

thermodynamics, such susceptibilities include the heat

capacity, isothermal compressibility, coefficient of ther-

mal expansion and so on (e.g. Gilmore 1982; Callen 1985;

Niven 2009; Niven and Andresen 2009); if desired, such

parameters can also be defined for the model framework

proposed here. The Maxwell-like relations (43) and (46)

reflect the coupling between the constraints, such that

changes in one constraint or its multiplier, at constant H�

or /, will produce adjustments to the other pair.

• Thirdly, the second derivative matrix (45) of the

potential function / contains even further information,

since in the asymptotic limit (N ? ?), it is equivalent

(with change of sign) to the variance-covariance matrix

of the constraints (Jaynes 1957, 1963; Jaynes and

Bretthorst 2003; Kapur and Kesevan 1992):

a ¼ hE2i � hEi2; hEBi � hEihBi
hEBi � hEihBi; hB2i � hBi2
� 	

: ð48Þ

Accordingly, a is positive definite (or semi-definite if

singularities exist) (Kapur and Kesevan 1992). From

the Legendre transformation (47), a is also positive

definite (or semi-definite) (Kapur and Kesevan 1992).

In consequence, from (42) and (45) (including the

tensor sign reversals), H�ðhEi; hBiÞ and /(xE, xB) are

both concave functions.

2 Strictly, if the initial terms in G and / are constant, the differential

of (40) is a linear homogeneous first-order differential equation.

Absorbing the constant into /, (40) can then be interpreted as an

Euler equation (c.f. Callen 1985).
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Furthermore, the diagonal of (48) gives the magnitude

of the standard deviation or ‘‘fluctuations’’ of the

ensemble with respect to each constraint, usually

expressed in normalised form by the coefficients of

variation (Callen 1985):

CVðEÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hE2i � hEi2

q

hEi ¼ 1

hEi

ffiffiffiffiffiffiffiffiffiffiffiffiffi

�ohEi
oxE

s

CVðBÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hB2i � hBi2

q

hBi ¼ 1

hBi

ffiffiffiffiffiffiffiffiffiffiffiffiffi

�ohBi
oxB

s : ð49Þ

The covariance, similarly normalised, provides a measure

of the coupling between constraints (Callen 1985):

CVðE;BÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hEBi � hEihBi
hEihBi

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

hEihBi �
ohBi
oxE

����

����

s ð50Þ

• Fourthly, the manifold of predicted equilibrium

positions defined by H�ðhEi; hBiÞ or /(xE, xB) can

be interpreted as a framework geometry, analogous to

the thermodynamic geometry examined by (Gibbs

1873, 1873, 1875) [see also (Callen 1985; Gaggioli

et al. 2002; Gaggioli and Paulus 2002)]. For example, if

we consider hBi as a function of hEi, as shown

graphically in Fig. 3, we can represent positions of

constant entropy H� by a series of isentropic curves on

this graph. From (40), these will be straight lines with

negative gradient -xE/xB, indicating that an increase

in the energy or cost hEi, at constant H� (and /), causes

a corresponding decrease in hBi. Of course, many other

curves can also be plotted on the diagram, including

isoenergetic, isobenefit, iso-xE and iso-xB curves,

defined by rearrangements of (40). We can also plot

xB as a function of xE, on which we can construct

isopotential curves with negative gradient -hEi/hBi.
(Adopting the crude analogy of Sect. 3.1, these can be

transformed to plots of P as a function of T for the

model framework.) Three-dimensional graphs such as

H�ðhEi; hBiÞ or /(xE, xB) can also be constructed,

containing isosurfaces of various kinds (Gibbs 1873,

1875). As pointed out by (Gibbs 1873, 1873, 1875), it is

advantageous to plot ‘‘fundamental equations’’ such

as H�ðhEi; hBiÞ or /(xE, xB), rather than forms

unobtainable from these by Legendre transformation

(such as H�ðxE;xBÞ), so that all parameters not

represented on the axes can be calculated for a given

path simply by differentiation.

Recalling that the frameworks herein consist of

all possible models consistent with the constraints, the

resulting manifold H�ðhEi; hBiÞ or /(xE, xB) should for

the most part be continuous in its geometric space, reflecting

infinitesimal changes in parameters and incremental

changes in model algorithms. However, in some

circumstances there may be discontinuities in the

manifold, due to abrupt changes in model algorithm or

adoption of different scientific paradigms. Such changes

can be described as phase changes or tipping points within

the model space, leading to assortments of stable and

unstable solutions and path-dependent hysteresis effects.

These may create particular difficulties, but can of course be

handled in much the same manner as in thermodynamics.

• Finally, it can be shown that either framework

H�ðhEi; hBiÞ or /(xE, xB) can be endowed with a

Riemannian geometry (entirely distinct from the frame-

work geometry just described), using the metric furnished

by the respective (positive definite) Hessian matrix a or a

(Weinhold 1975; Ruppeiner 1979; Salamon et al. 1980;

Salamon and Berry 1983; Nulton et al. 1985; Niven and

Andresen 2009). As noted, the two metrics and hence the

geometries are connected by Legendre transformation

(47). The Riemannian interpretation leads to an important

physical limit: a least action bound on the cost, in units of

H�or /, to move the framework from one equilibrium

position to another at finite rates of change of the

constraints or multipliers. This bound—which constitutes

an extension of finite time thermodynamics (Weinhold

1975; Ruppeiner 1979; Salamon et al. 1980; Salamon and

Berry 1983; Nulton et al. 1985; Niven and Andresen

2009), but is in some sense allied to the informational

limits identified by Szilard (1929), Landauer (1961),

Bennett (1973) and similar workers (Leff and Rex

1990)—is examined in more detail in the Appendix.

4 Conclusions

In this study, several maximum-entropy frameworks are

presented for the synthesis of outputs from multiple Earth

B

Isentropic lines Isenergetic lines

Iso-
benefit
lines

E

Fig. 3 Schematic diagram of Gibbs’ geometry, for the MaxEnt cost-

benefit climate model weighting framework of §3
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climate models, based on constraints on the properties of

individual models (microcanonical framework) or ensem-

bles of models (two canonical frameworks). The asymp-

totic and non-asymptotic entropy functions for each case

are derived by combinatorial reasoning, and applied to

simple systems constrained by the total model energy E

(microcanonical) or mean ensemble energy hEi (canoni-

cal). In each case it is shown that the MaxEnt method

identifies the most representative (most probable) model

from a set of climate models, subject to the specified

constraints, eliminating the need to calculate the entire set.

The parametric and geometric implications of the under-

lying Jaynesian mathematical structure are examined, with

reference to a canonical framework with competing cost

and benefit constraints, allowing interrogation of the trade-

off between costs and benefits. Finally, a finite-time limit

on the minimum cost of modification of the synthesis

framework, at finite rates of change, is also reported.

The foregoing analysis therefore provides climate

modellers—or those who must rank and combine climate

models—with a rational tool to amalgamate a large set of

models into a single representative model (or a small rep-

resentative set). This enables the weighting of climate

projections from different groups, and will also dramati-

cally reduce the computational demand on the climate

modelling community. Indeed, the benefits extend into

other fields: as commented by a reviewer, for long-range

weather forecasts it is common practice to combine pro-

jections from different meteorological models, to improve

reliability. The MaxEnt frameworks proposed here could

equally be applied to this task.

A caveat to the foregoing analysis is that the inferred

equilibrium climate model will not necessarily be the

‘‘most correct’’ model, but merely the one which is most

representative of the available set of models. If the model

space is incomplete, or their underlying physical or

modelling assumptions are incorrect, any resulting errors

will also be incorporated in the equilibrium model. A

more comprehensive probabilistic framework, which

incorporates the errors associated with our lack of

knowledge (of data, phenomena and models), would

consist of a Bayesian inferential framework extending

back to all raw climate data, a substantial endeavour

which—as its minimum condition—would require cli-

mate scientists to abandon their use of orthodox methods

for statistical inference and parameter estimation (Jaynes

and Bretthorst 2003).
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Appendix: The least action bound

The Riemannian geometric interpretation in §3.3 leads to a

rather curious physical limit. Consider a path on the

manifold of equilibrium positions defined by H�ðhEi; hBiÞ
or /(xE, xB), specified by some path parameter n in the

model space, which may—but need not—correspond to

time. The arc length of the path from position 1 to 2,

represented by n = 0 to n = nmax, is given by (Niven and

Andresen 2009):

Ł ¼
Znmax

0

ffiffiffiffiffiffiffiffiffiffi
_f>a_f

p
dn ¼

Znmax

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_X
>
a _X

q
dn ð51Þ

where f ¼ ½hEi; hBi�>;X ¼ ½xE;xB�> and the overdot

indicates the rate of change with respect to n. Now, in

the H� representation, the total change in the framework

entropy along the same path can be shown to be (Niven and

Andresen 2009):

DH� ¼
ZH�2

H�1

dH� ¼ ��

Znmax

0

1

2
_f
>

a_fdn ¼ ��J ð52Þ

where �� is a mean dissipation parameter (e.g. minimum

dissipation time) and J is an action integral defined within

the model space. Similarly, in the / representation, the

total change is:

�D/ ¼ �
Z/2

/1

d/ ¼ ��

Znmax

0

1

2
_X>a _Xdn ¼ ��J : ð53Þ

From the Cauchy-Schwarz inequality, (51)–(53) give, in

either case:

J � Ł2

2nmax

: ð54Þ

Equation (54) can be considered as a generalised least

action bound on processes on the manifold of optimal

solutions. In essence, it specifies the minimum cost or

penalty, in units of H� or /, to move the system from

n = 0 to n = nmax at the specified rates _f or _X: If the

process occurs infinitely slowly, the lower bound of the

action is zero (it is ‘‘reversible’’); otherwise, it is necessary

to pay the minimum penalty DH�min ¼ �D/min ¼ ��J min ¼
1
2
��Ł2=nmax to be able to alter the framework within the finite

parameter duration nmax (it is ‘‘dissipative’’). In the present

scenario, we assume that the costs hE i and benefits hB i of

the model framework are realisable as external physical

quantities, outside the model space itself; likewise, so will

be the entropy H� and potential /, either in the units of

k or the equivalent information units. Eq. (54) therefore
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provides an information limit on the minimum price for

making alterations to a constrained modelling framework.

(Of course, it applies to any modelling framework, not just

for climate modelling.) In some sense, this limit is allied to

the informational principles demonstrated by Szilard (1929),

Landauer (1961), Bennett (1973) and many others (Leff and

Rex 1990), although it is of quite different character.
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